1
|
Upadhyay S, Dhok A, Kashikar S, Quazi ZS, Agarkar VB. Unveiling the Significance of LysE in Survival and Virulence of Mycobacterium tuberculosis: A Review Reveals It as a Potential Drug Target, Diagnostic Marker, and a Vaccine Candidate. Vaccines (Basel) 2024; 12:779. [PMID: 39066417 PMCID: PMC11281339 DOI: 10.3390/vaccines12070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) remains a global health threat, necessitating innovative strategies for control and prevention. This comprehensive review explores the Mycobacterium tuberculosis Lysine Exporter (LysE) gene, unveiling its multifaceted roles and potential uses in controlling and preventing tuberculosis (TB). As a pivotal player in eliminating excess L-lysine and L-arginine, LysE contributes to the survival and virulence of M. tuberculosis. This review synthesizes findings from different electronic databases and includes 13 studies focused on the LysE of M. tuberculosis. The research unveils that LysE can be a potential drug target, a diagnostic marker for TB, and a promising candidate for vaccine development. The absence of LysE in the widely used BCG vaccine underscores its uniqueness and positions it as a novel area for TB prevention. In conclusion, this review underscores the significance of LysE in TB pathogenesis and its potential as a drug target, diagnostic marker, and vaccine candidate. The multifaceted nature of LysE positions it at the forefront of innovative approaches to combat TB, calling for sustained research efforts to harness its full potential in the global fight against this infectious disease.
Collapse
Affiliation(s)
- Shilpa Upadhyay
- Global Consortium of Public Health Research, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India
| | - Archana Dhok
- i-Health Consortium, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India;
| | - Supriya Kashikar
- GeNext Genomics Pvt. Ltd., Nagpur 440010, Maharashtra, India; (S.K.); (V.B.A.)
| | - Zahiruddin Syed Quazi
- Global Evidence Synthesis Initiative, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India;
| | - Vinod B. Agarkar
- GeNext Genomics Pvt. Ltd., Nagpur 440010, Maharashtra, India; (S.K.); (V.B.A.)
| |
Collapse
|
2
|
Upadhyay S, Dhok A, Agarkar V, Kashikar S, Quazi ZS. A protocol for cloning, expression, and purification of Lysine exporter (LysE) gene of Mycobacterium tuberculosis. F1000Res 2024; 12:297. [PMID: 38283902 PMCID: PMC10811417 DOI: 10.12688/f1000research.131768.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 01/30/2024] Open
Abstract
Background Tuberculosis (TB) is among the deadliest diseases and a significant cause of illnessacross the globe. Several studies on mycobacterial proteins, such as proteases and transporters that are essential for survival and pathogenesis have aimed to develop an efficient anti-tubercular agent. In mycobacterium, lysine exporter (LysE) is an amino acid transporter and a probable target for an anti-tubercular agent as it is responsible for bacterial growth inhibition and is also absent in the widely used Bacillus Calmette-Guérin (BCG) vaccine. Methods Some studies have purified LysE using different protocols. This study describes a protocol for purifying different constructs of LysE, focusing on its hydrophobic region using immobilized metal affinity chromatography (IMAC) after expressing LysE gene in a bacterial expression system. pET vector (pET28a) is used as an expression vector. Amplified LysE gene is ligated with the pET28a vector, and the resultant plasmid is then transformed into E. coli cells. The vector has a histidine tag that makes the purification process convenient. After IMAC, the samples will be subjected to size-exclusion chromatography for further purification. Results Cloning and amplification findings will be analyzed using 1% agarose gel, and protein expression and purification outcomes will be examined using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Domain-specific constructs of LysE can be further analyzed as an anti-tubercular agent. Conclusions Despite being a potential anti-tubercular target, research is quite limited on this protein. Therefore, we aim to purify LysE protein for further analysis. Similar protocols have already been implemented to purify several other bacterial proteins with >95% purity.
Collapse
Affiliation(s)
- Shilpa Upadhyay
- Research Associate, Division of Evidence Synthesis, Global Evidence Synthesis Initative (GESI), Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, 442001, India
| | - Archana Dhok
- Professor and Head, i-Health Consortium, Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, 442004, India
| | - Vinod Agarkar
- Director, Research and Development, GeNext Genomics Private Limited, Nagpur, Maharashtra, 440010, India
| | - Supriya Kashikar
- CEO, GeNext Genomics Private Limited, Nagpur, Maharashtra, 440010, India
| | - Zahiruddin Syed Quazi
- Director, One Health Centre, Global Consortium for Public Health and Research (GCPHR), Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, 442004, India
| |
Collapse
|
3
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
4
|
Singh S, Bolz M, Cornelius A, Desvignes L. Intravenous BCG driven antigen recognition in a murine tuberculosis model. Comp Immunol Microbiol Infect Dis 2022; 87:101838. [PMID: 35700556 DOI: 10.1016/j.cimid.2022.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Bacille Calmette-Guerin (BCG) is the only approved vaccine against tuberculosis but the subcutaneous route does not provide for the elimination of Mycobacterium tuberculosis (Mtb), thus highlighting the need for investigating other routes of administration. We used a unique set of 60 peptide pools with unprecedented coverage of the bacterium that had previously been used to study T cell responses in subjects latently infected with Mtb. We showed that intravenous BCG vaccination of C57BL/6 mice elicited a more robust IFN-γ response from splenocytes than the subcutaneous route, with the highest responses driven by the Ag85A/B and PE/PPE family epitopes, followed by TB10.4 and Esx-1. We then compared the spectrum of antigen recognition in BCG-naïve H37Rv-challenged and BCG-vaccinated H37Rv-challenged mice. Peptides belonging to TB10.4, ESAT-6, CFP-10, Ag85A/Ag85B, PE/PPE and Esx families up-regulated IFN-γ production in the lungs of BCG-naïve H37Rv-challenged mice but the response was much lower in the BCG-vaccinated group. Historically, a limited number of Mtb antigens have been used to study T cell responses in TB. The goal of using this 60-peptide assay was to define T cell responses in TB down to the epitope level. We envision that the use of broad antigen panels such as ours in conjunction with studies of bacterial load reduction will help delineate the protective efficacy of 'groups' of antigens.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care Medicine, USA.
| | - Miriam Bolz
- Division of Infectious Diseases and Immunology, Department of Medicine, USA
| | - Amber Cornelius
- Division of Infectious Diseases and Immunology, Department of Medicine, USA
| | - Ludovic Desvignes
- Division of Infectious Diseases and Immunology, Department of Medicine, USA; Office of Science & Research, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
5
|
Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nat Commun 2019; 10:4215. [PMID: 31527595 PMCID: PMC6746716 DOI: 10.1038/s41467-019-12224-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/28/2019] [Indexed: 11/17/2022] Open
Abstract
A major constraint for developing new anti-tuberculosis drugs is the limited number of validated targets that allow eradication of persistent infections. Here, we uncover a vulnerable component of Mycobacterium tuberculosis (Mtb) persistence metabolism, the aspartate pathway. Rapid death of threonine and homoserine auxotrophs points to a distinct susceptibility of Mtb to inhibition of this pathway. Combinatorial metabolomic and transcriptomic analysis reveals that inability to produce threonine leads to deregulation of aspartate kinase, causing flux imbalance and lysine and DAP accumulation. Mtb’s adaptive response to this metabolic stress involves a relief valve-like mechanism combining lysine export and catabolism via aminoadipate. We present evidence that inhibition of the aspartate pathway at different branch-point enzymes leads to clearance of chronic infections. Together these findings demonstrate that the aspartate pathway in Mtb relies on a combination of metabolic control mechanisms, is required for persistence, and represents a target space for anti-tuberculosis drug development. Amino acid biosynthetic pathways are an attractive alternative to treat chronic infections such as Mycobacterium tuberculosis (Mtb). Here, the authors investigate the metabolic response to disruption of the aspartate pathway in persistent Mtb and identify essential enzymes as potential new targets for drug development.
Collapse
|
6
|
Chen J, Ruan Q, Shen Y, Wang S, Shao L, Zhang W. Assessing and screening for T-cell epitopes from Mycobacterium tuberculosis RD2 proteins for the diagnosis of active tuberculosis. Braz J Infect Dis 2018; 22:462-471. [PMID: 30528601 PMCID: PMC9425668 DOI: 10.1016/j.bjid.2018.10.280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/06/2023] Open
Abstract
The Region of D eletion 2 (RD2) of Mycobacterium tuberculosis encodes reserved antigens that contribute to bacterial virulence. Among these antigens, Rv1983, Rv1986, Rv1987, and Rv1989c have been shown to be immunodominant in infected cattle; however, their diagnostic utility has not been evaluated in humans. In this study, we screened 87 overlapping synthetic peptides encoded by five RD2 proteins for diagnosing tuberculosis epitopes in 50 active tuberculosis (TB) cases, 31 non-tuberculosis patients and 36 healthy individuals. A pool of promising epitopes was then assessed for their diagnostic value in 233 suspected TB patients using a whole blood IFN-γ release assay. Only 10 peptides were recognized by more than 10% of active tuberculosis patients. The IFN-γ release responses to Rv1986-P9, P15, P16, Rv1988-P4, P11, and Rv1987-P11 were significantly higher in the active TB group than in the control groups (p < 0.05). The whole blood IFN-γ release assay based on these epitopes yielded a sensitivity of 51% and a specificity of 85% in diagnosing active tuberculosis, and the corresponding results using the T-SPOT.TB assay were 76% and 75%, respectively. In conclusion, these results suggest that the six epitopes from the RD2 of M. tuberculosis have potential diagnostic value in TB.
Collapse
Affiliation(s)
- Jiazhen Chen
- Fudan University, Huashan Hospital, Department of Infectious Diseases, Shanghai, China
| | - Qiaoling Ruan
- Fudan University, Huashan Hospital, Department of Infectious Diseases, Shanghai, China
| | - Yaojie Shen
- Fudan University, Huashan Hospital, Department of Infectious Diseases, Shanghai, China
| | - Sen Wang
- Fudan University, Huashan Hospital, Department of Infectious Diseases, Shanghai, China
| | - Lingyun Shao
- Fudan University, Huashan Hospital, Department of Infectious Diseases, Shanghai, China
| | - Wenhong Zhang
- Fudan University, Huashan Hospital, Department of Infectious Diseases, Shanghai, China.
| |
Collapse
|
7
|
Pandey K, Singh S, Bhatt P, Medha, Sharma M, Chaudhry A, Sharma S. DosR proteins of Mycobacterium tuberculosis upregulate effector T cells and down regulate T regulatory cells in TB patients and their healthy contacts. Microb Pathog 2018; 126:399-406. [PMID: 30476579 DOI: 10.1016/j.micpath.2018.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
It is well established that the current problem of tuberculosis (TB) can be combated by overcoming the drawbacks of the currently available BCG vaccine. This would involve incorporation of antigens that can control TB at all stages including the dormant phase which is generally ignored. Hence, DosR regulon proteins, which are expressed in latent infection, could prove to be very good vaccine candidates as they can possibly target the silent but most predominant form of TB infection. In the present study, the immune response to two DosR proteins Rv2627 and Rv2628 has been studied in PBMCs derived from normal individuals, TB patients and healthy contacts of TB patients. It was found that these antigens were capable of stimulating a strong IFN-γ+ T cell response along with accentuation of memory T cells and other protective cytokines such as IL-2 and IL-17. At the same time these proteins decreased the frequencies of immune-suppressor regulatory T cells in in vitro stimulation of PBMC from both patients and their contacts. Considering all these facts together, we suggest Rv2627 and Rv2628 to be one of the extremely promising candidates for incorporation into a post exposure subunit vaccine against TB.
Collapse
Affiliation(s)
- Kirti Pandey
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Swati Singh
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Parul Bhatt
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Medha
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Monika Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Anil Chaudhry
- Rajan Babu Institute of Pulmonary Medicine and Tuberculosis Hospital, GTB Nagar, Delhi, 110009, India.
| | - Sadhna Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
8
|
Viana MVC, Sahm A, Góes Neto A, Figueiredo HCP, Wattam AR, Azevedo V. Rapidly evolving changes and gene loss associated with host switching in Corynebacterium pseudotuberculosis. PLoS One 2018; 13:e0207304. [PMID: 30419061 PMCID: PMC6231662 DOI: 10.1371/journal.pone.0207304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/28/2018] [Indexed: 02/01/2023] Open
Abstract
Phylogenomics and genome scale positive selection analyses were performed on 29 Corynebacterium pseudotuberculosis genomes that were isolated from different hosts, including representatives of the Ovis and Equi biovars. A total of 27 genes were identified as undergoing adaptive changes. An analysis of the clades within this species and these biovars, the genes specific to each branch, and the genes responding to selective pressure show clear differences, indicating that adaptation and specialization is occurring in different clades. These changes are often correlated with the isolation host but could indicate responses to some undetermined factor in the respective niches. The fact that some of these more-rapidly evolving genes have homology to known virulence factors, antimicrobial resistance genes and drug targets shows that this type of analysis could be used to identify novel targets, and that these could be used as a way to control this pathogen.
Collapse
Affiliation(s)
| | - Arne Sahm
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Aristóteles Góes Neto
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Cesar Pereira Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vasco Azevedo
- Department of General Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
9
|
The transcriptional regulator LysG (Rv1985c) of Mycobacterium tuberculosis activates lysE (Rv1986) in a lysine-dependent manner. PLoS One 2017; 12:e0186505. [PMID: 29049397 PMCID: PMC5648196 DOI: 10.1371/journal.pone.0186505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
The Mycobacterium tuberculosis protein encoded by the Rv1986 gene is a target for memory T cells in patients with tuberculosis, and shows strong similarities to a lysine exporter LysE of Corynebacterium glutamicum. During infection, the pathogen Mycobacterium tuberculosis adapts its metabolism to environmental changes. In this study, we found that the expression of Rv1986 is controlled by Rv1985c. Rv1985c is located directly upstream of Rv1986 with an overlapping promoter region between both genes. Semiquantitative reverse transcription PCR using an isogenic mutant of Mycobacterium tuberculosis lacking Rv1985c showed that in the presence of lysine, Rv1985c protein positively upregulated the expression of Rv1986. RNA sequencing revealed the transcription start points for both transcripts and overlapping promoters. An inverted repeat in the center of the intergenic region was identified, and binding of Rv1985c protein to the intergenic region was confirmed by electrophoretic mobility shift assays. Whole transcriptome expression analysis and RNAsequencing showed downregulated transcription of ppsBCD in the Rv1985c-mutant compared to the wild type strain. Taken together, our findings characterize the regulatory network of Rv1985c in Mycobacterium tuberculosis. Due to their similarity of an orthologous gene pair in Corynebacterium glutamicum, we suggest to rename Rv1985c to lysG(Mt), and Rv1986 to lysE(Mt).
Collapse
|
10
|
Liu Z, Gao Y, Yang H, Bao H, Qin L, Zhu C, Chen Y, Hu Z. Impact of Hypoxia on Drug Resistance and Growth Characteristics of Mycobacterium tuberculosis Clinical Isolates. PLoS One 2016; 11:e0166052. [PMID: 27835653 PMCID: PMC5106006 DOI: 10.1371/journal.pone.0166052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) is a specific aerobic bacterium, but can survive under hypoxic conditions, such as those in lung cheese necrosis, granulomas, or macrophages. It is not clear whether the drug sensitivity and growth characteristics of MTB under hypoxic conditions are different from those under aerobic conditions. In this study, we examined the drug resistance and growth characteristics of MTB clinical isolates by a large sample of in vitro drug susceptibility tests, using an automatic growth instrument. Under hypoxic conditions, variance in drug resistance was observed in nearly one-third of the MTB strains and was defined as MTB strains with changed drug sensitivity (MTB-CDS). Among these strains, resistance in a considerable proportion of clinical strains was significantly increased, and some strains emerged as multi-drug resistant. Growth test results revealed a high growth rate and large survival number in macrophages under hypoxia in MTB-CDS. According to the results of fluorescence quantitative PCR, the expression of some genes, including RegX3 (involving RIF resistance), Rv0194 (efflux pump gene), four genes related to transcription regulation (KstR, DosR, Rv0081 and WhiB3) and gene related to translation regulation (DATIN), were upregulated significantly under hypoxic conditions compared to that under aerobic conditions (p < 0.05). Thus, we concluded that some MTB clinical isolates can survive under hypoxic conditions and their resistance could change. As for poor clinical outcomes in patients, based on routine drug susceptibility testing, drug susceptibility tests for tuberculosis under hypoxic conditions should also be recommended. However, the detailed mechanisms of the effect of hypoxia on drug sensitivity and growth characteristics of MTB clinical isolates still requires further study.
Collapse
Affiliation(s)
- Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yulu Gao
- Department of Laboratory Medicine, Kunshan Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Kunshan, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Bao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changtai Zhu
- Department of Transfusion, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yawen Chen
- Department of Nursing, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhongyi Hu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Michelsen SW, Soborg B, Agger EM, Diaz LJ, Hoff ST, Koch A, Sorensen HCF, Andersen P, Wohlfahrt J, Melbye M. Host immunity to Mycobacterium tuberculosis and risk of tuberculosis: A longitudinal study among Greenlanders. Vaccine 2016; 34:5975-5983. [DOI: 10.1016/j.vaccine.2016.09.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
12
|
Prosser G, Brandenburg J, Reiling N, Barry CE, Wilkinson RJ, Wilkinson KA. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect 2016; 19:177-192. [PMID: 27780773 PMCID: PMC5335906 DOI: 10.1016/j.micinf.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines.
Collapse
Affiliation(s)
- Gareth Prosser
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Clifton Earl Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States; Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom; Department of Medicine, Imperial College, London, W2 1PG, United Kingdom.
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom
| |
Collapse
|
13
|
Belton M, Brilha S, Manavaki R, Mauri F, Nijran K, Hong YT, Patel NH, Dembek M, Tezera L, Green J, Moores R, Aigbirhio F, Al-Nahhas A, Fryer TD, Elkington PT, Friedland JS. Hypoxia and tissue destruction in pulmonary TB. Thorax 2016; 71:1145-1153. [PMID: 27245780 PMCID: PMC5136721 DOI: 10.1136/thoraxjnl-2015-207402] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 02/27/2016] [Accepted: 03/24/2016] [Indexed: 02/04/2023]
Abstract
Background It is unknown whether lesions in human TB are hypoxic or whether this influences disease pathology. Human TB is characterised by extensive lung destruction driven by host matrix metalloproteinases (MMPs), particularly collagenases such as matrix metalloproteinase-1 (MMP-1). Methods We investigated tissue hypoxia in five patients with PET imaging using the tracer [18F]-fluoromisonidazole ([18F]FMISO) and by immunohistochemistry. We studied the regulation of MMP secretion in primary human cell culture model systems in normoxia, hypoxia, chemical hypoxia and by small interfering RNA (siRNA) inhibition. Results [18F]FMISO accumulated in regions of TB consolidation and around pulmonary cavities, demonstrating for the first time severe tissue hypoxia in man. Patlak analysis of dynamic PET data showed heterogeneous levels of hypoxia within and between patients. In Mycobacterium tuberculosis (M.tb)-infected human macrophages, hypoxia (1% pO2) upregulated MMP-1 gene expression 170-fold, driving secretion and caseinolytic activity. Dimethyloxalyl glycine (DMOG), a small molecule inhibitor which stabilises the transcription factor hypoxia-inducible factor (HIF)-1α, similarly upregulated MMP-1. Hypoxia did not affect mycobacterial replication. Hypoxia increased MMP-1 expression in primary respiratory epithelial cells via intercellular networks regulated by TB. HIF-1α and NF-κB regulated increased MMP-1 activity in hypoxia. Furthermore, M.tb infection drove HIF-1α accumulation even in normoxia. In human TB lung biopsies, epithelioid macrophages and multinucleate giant cells express HIF-1α. HIF-1α blockade, including by targeted siRNA, inhibited TB-driven MMP-1 gene expression and secretion. Conclusions Human TB lesions are severely hypoxic and M.tb drives HIF-1α accumulation, synergistically increasing collagenase activity which will lead to lung destruction and cavitation.
Collapse
Affiliation(s)
- Moerida Belton
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Sara Brilha
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Francesco Mauri
- Department of Histopathology, Hammersmith Campus, Imperial College London, London, UK
| | - Kuldip Nijran
- Radiological Science Unit Charing Cross Campus, Department of Nuclear Medicine, Charing Cross Campus, Imperial College NHS Trust, London, UK
| | - Young T Hong
- Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Neva H Patel
- Radiological Science Unit Charing Cross Campus, Department of Nuclear Medicine, Charing Cross Campus, Imperial College NHS Trust, London, UK
| | - Marcin Dembek
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Liku Tezera
- NIHR Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Justin Green
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Rachel Moores
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Adil Al-Nahhas
- Radiological Science Unit Charing Cross Campus, Department of Nuclear Medicine, Charing Cross Campus, Imperial College NHS Trust, London, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Paul T Elkington
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK.,NIHR Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jon S Friedland
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| |
Collapse
|
14
|
Pandey K, Sharma M, Saarav I, Singh S, Dutta P, Bhardwaj A, Sharma S. Analysis of the DosR regulon genes to select cytotoxic T lymphocyte epitope specific vaccine candidates using a reverse vaccinology approach. Int J Mycobacteriol 2016; 5:34-43. [DOI: 10.1016/j.ijmyco.2015.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022] Open
|
15
|
Horvati K, Bősze S, Gideon HP, Bacsa B, Szabó TG, Goliath R, Rangaka MX, Hudecz F, Wilkinson RJ, Wilkinson KA. Population tailored modification of tuberculosis specific interferon-gamma release assay. J Infect 2015; 72:179-88. [PMID: 26632326 PMCID: PMC4747975 DOI: 10.1016/j.jinf.2015.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/23/2015] [Indexed: 11/12/2022]
Abstract
Objectives Blood-based Interferon-Gamma Release Assays (IGRA) identify Mycobacterium tuberculosis (MTB) sensitisation with increased specificity, but sensitivity remains impaired in human immunodeficiency virus (HIV) infected persons. The QuantiFERON-TB Gold In-Tube test contains peptide 38–55 of Rv2654c, based on data indicating differential recognition between tuberculosis patients and BCG vaccinated controls in Europe. We aimed to fine map the T cell response to Rv2654c with the view of improving sensitivity. Methods Interferon-gamma ELISpot assay was used in HIV uninfected persons with latent and active tuberculosis to map peptide epitopes of Rv2654c. A modified IGRA was tested in two further groups of 55 HIV uninfected and 44 HIV infected persons, recruited in South Africa. Results The most prominently recognised peptide was between amino acids 51–65. Using p51-65 to boost the QuantiFERON-TB Gold In-Tube assay, the quantitative performance of the modified IGRA increased from 1.83 IU/ml (IQR 0.30–7.35) to 2.83 (IQR 0.28–12.2; p = 0.002) in the HIV uninfected group. In the HIV infected cohort the percentage of positive responders increased from 57% to 64% but only after 3 months of ART (p = ns). Conclusions Our data shows the potential to population tailor detection of MTB sensitization using specific synthetic peptides and interferon-gamma release in vitro. Refined epitope mapping of Rv2654c was performed in a South African Xhosa population. The most frequently recognized peptide is p51-65 (VRAVAESHGVAAVLF). Using p51-65 in the QFT assay resulted in a significant boosting effect. Peptide p51-65 can improve the population tailored detection of MTB sensitization.
Collapse
Affiliation(s)
- Kata Horvati
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, Budapest, Hungary
| | - Hannah P Gideon
- Clinical Infectious Disease Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bernadett Bacsa
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, Budapest, Hungary
| | - Tamás G Szabó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Rene Goliath
- Clinical Infectious Disease Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Molebogeng X Rangaka
- Clinical Infectious Disease Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös L. University, Budapest, Hungary; Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary
| | - Robert J Wilkinson
- Clinical Infectious Disease Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute Mill Hill Laboratory, London NW7 1AA, UK; Department of Medicine, Imperial College London W2 1PG, UK
| | - Katalin A Wilkinson
- Clinical Infectious Disease Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute Mill Hill Laboratory, London NW7 1AA, UK.
| |
Collapse
|
16
|
Bai XJ, Liang Y, Yang YR, Li N, Zhang XY, An HR, Zhang JX, Chen D, Wang L, Wu XQ. Immune responses to latent tuberculosis antigen Rv2659c in Chinese populations. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:381-9. [DOI: 10.1016/j.jmii.2014.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 11/30/2022]
|
17
|
Delogu G, Provvedi R, Sali M, Manganelli R. Mycobacterium tuberculosis virulence: insights and impact on vaccine development. Future Microbiol 2015; 10:1177-94. [PMID: 26119086 DOI: 10.2217/fmb.15.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The existing TB vaccine, the attenuated Mycobacterium bovis strain BCG, is effective in protecting infants from severe forms of the disease, while its efficacy in protecting adults from pulmonary TB is poor. In the last two decades, a renewed interest in TB resulted in the development of several candidate vaccines that are now entering clinical trials. However, most of these vaccines are based on a common rationale and aim to induce a strong T-cell response against Mycobacterium tuberculosis. Recent advancements in the understanding of M. tuberculosis virulence determinants and associated pathogenic strategies are opening a new and broader view of the complex interaction between this remarkable pathogen and the human host, providing insights at molecular level that could lead to a new rationale for the design of novel antitubercular vaccines. A vaccination strategy that simultaneously targets different steps in TB pathogenesis may result in improved protection and reduced TB transmission.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Roberta Provvedi
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| | - Michela Sali
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Via Aristide Gabelli 63, 35121, Padova, Italy
| |
Collapse
|
18
|
Torres M, García-García L, Cruz-Hervert P, Guio H, Carranza C, Ferreyra-Reyes L, Canizales S, Molina S, Ferreira-Guerrero E, Téllez N, Montero-Campos R, Delgado-Sánchez G, Mongua-Rodriguez N, Sifuentes-Osornio J, Ponce-de Leon A, Sada E, Young DB, Wilkinson RJ. Effect of isoniazid on antigen-specific interferon-γ secretion in latent tuberculosis. Eur Respir J 2015; 45:473-82. [PMID: 25359354 PMCID: PMC4318657 DOI: 10.1183/09031936.00123314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/16/2014] [Indexed: 11/11/2022]
Abstract
Treatment of persons with latent tuberculosis (TB) infection at greatest risk of reactivation is an important component of TB control and elimination strategies. Biomarkers evaluating the effectiveness of treatment of latent TB infection have not yet been identified. This information would enhance control efforts and assist the evaluation of new treatment regimes. We designed a two-group, two-arm, randomised clinical study of tuberculin skin test-positive participants: 26 with documented contact with TB patients and 34 with non-documented contact. Participants in each group were randomly assigned to the immediate- or deferred-isoniazid treatment arms. Assays of in vitro interferon (IFN)-γ secretion in response to recombinant Rv1737 and overlapping synthetic peptide pools from various groups of immunodominant proteins were performed. During isoniazid therapy, a significant increase from baseline in the proportion of IFN-γ responders to the 10-kDa culture filtrate protein, Rv2031, Rv0849, Rv1986, Rv2659c, Rv2693c and the recombinant Rv1737 protein was observed (p⩽0.05). The peptide pool of Rv0849 and Rv1737 recombinant proteins induced the highest percentage of IFN-γ responders after isoniazid therapy. The in vitro IFN-γ responses to these proteins might represent useful markers to evaluate changes associated with treatment of latent TB infection.
Collapse
Affiliation(s)
- Martha Torres
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | | | - Claudia Carranza
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | - Susana Molina
- Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | | | - Norma Téllez
- Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | | | | | | | - Jose Sifuentes-Osornio
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Alfredo Ponce-de Leon
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Eduardo Sada
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Douglas B Young
- Dept of Medicine, Imperial College, London, UK MRC National Institute for Medical Research, London, UK
| | - Robert J Wilkinson
- Dept of Medicine, Imperial College, London, UK MRC National Institute for Medical Research, London, UK Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Lindestam Arlehamn CS, Lewinsohn D, Sette A, Lewinsohn D. Antigens for CD4 and CD8 T cells in tuberculosis. Cold Spring Harb Perspect Med 2014; 4:a018465. [PMID: 24852051 DOI: 10.1101/cshperspect.a018465] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (MTB), represents an important cause of morbidity and mortality worldwide for which an improved vaccine and immunodiagnostics are urgently needed. CD4(+) and CD8(+) T cells play an important role in host defense to TB. Definition of the antigens recognized by these T cells is critical for improved understanding of the immunobiology of TB and for development of vaccines and diagnostics. Herein, the antigens and epitopes recognized by classically HLA class I- and II-restricted CD4(+) and CD8(+) T cells in humans infected with MTB are reviewed. Immunodominant antigens and epitopes have been defined using approaches targeting particular TB proteins or classes of proteins and by genome-wide discovery approaches. Antigens and epitopes recognized by classically restricted CD4(+) and CD8(+) T cells show extensive breadth and diversity in MTB-infected humans.
Collapse
Affiliation(s)
| | - David Lewinsohn
- Oregon Health and Science University, Portland, Oregon 97239 Portland VA Medical Center, Portland, Oregon 97239
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037
| | | |
Collapse
|
20
|
Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics. Proc Natl Acad Sci U S A 2014; 111:1096-101. [PMID: 24395772 DOI: 10.1073/pnas.1314973111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A central goal in vaccine research is the identification of relevant antigens. The Mycobacterium tuberculosis chromosome encodes 23 early secretory antigenic target (ESAT-6) family members that mostly are localized as gene pairs. In proximity to five of the gene pairs are ESX secretion systems involved in the secretion of the ESAT-6 family proteins. Here, we performed a detailed and systematic investigation of the vaccine potential of five possible Esx dimer substrates, one for each of the five ESX systems. On the basis of gene transcription during infection, immunogenicity, and protective capacity in a mouse aerosol challenge model, we identified the ESX dimer substrates EsxD-EsxC, ExsG-EsxH, and ExsW-EsxV as the most promising vaccine candidates and combined them in a fusion protein, H65. Vaccination with H65 gave protection at the level of bacillus Calmette-Guérin, and the fusion protein exhibited high predicted population coverage in high endemic regions. H65 thus constitutes a promising vaccine candidate devoid of antigen 85 and fully compatible with current ESAT-6 and culture filtrate protein 10-based diagnostics.
Collapse
|
21
|
ESAT-6 (EsxA) and TB10.4 (EsxH) based vaccines for pre- and post-exposure tuberculosis vaccination. PLoS One 2013; 8:e80579. [PMID: 24349004 PMCID: PMC3861245 DOI: 10.1371/journal.pone.0080579] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022] Open
Abstract
The ESX systems from Mycobacterium tuberculosis are responsible for the secretion of highly immunogenic proteins of key importance for bacterial survival and growth. The two prototypic proteins, ESAT-6 (EsxA from ESX-1) and TB10.4 (EsxH from ESX-3) share a lot of characteristics regarding genome organization, size, antigenic properties, and vaccine potential but the two molecules clearly have very different roles in bacterial physiology. To further investigate the role of ESAT-6 and TB10.4 as preventive and post-exposure tuberculosis vaccines, we evaluated four different fusion-protein vaccines; H1, H4, H56 and H28, that differ only in these two components. We found that all of these vaccines give rise to protection in a conventional prophylactic vaccination model. In contrast, only the ESAT-6-containing vaccines resulted in significant protection against reactivation, when administered post-exposure. This difference in post-exposure activity did not correlate with a difference in gene expression during infection or a differential magnitude or quality of the vaccine-specific CD4 T cells induced by ESAT-6 versus TB10.4-containing vaccines. The post-exposure effect of the ESAT-6 based vaccines was found to be influenced by the infectious load at the time-point of vaccination and was abolished in chronically infected animals with high bacterial loads at the onset of vaccination. Our data demonstrate that there are specific requirements for the immune system to target an already established tuberculosis infection and that ESAT-6 has a unique potential in post-exposure vaccination strategies.
Collapse
|
22
|
Use of antigen-specific interleukin-2 to differentiate between cattle vaccinated with Mycobacterium bovis BCG and cattle infected with M. bovis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:39-45. [PMID: 24173026 DOI: 10.1128/cvi.00522-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We describe here the application of a novel bovine interleukin-2 (IL-2) enzyme-linked immunosorbent assay (ELISA) for the measurement of antigen-specific IL-2 in cattle naturally infected with Mycobacterium bovis and in cattle vaccinated with Mycobacterium bovis BCG and then experimentally challenged with pathogenic M. bovis. Supernatants from whole-blood cultures stimulated with mycobacterial antigen (bovine purified protein derivative [PPDB] or the peptide cocktail ESAT6-CFP10) were assessed using a sandwich ELISA consisting of a new recombinant monoclonal fragment capture antibody and a commercially available polyclonal anti-bovine-IL-2. The production of IL-2 was compared to the production of gamma interferon (IFN-γ) in the same antigen-stimulated whole-blood supernatants. The data show that cattle infected with M. bovis produced quantifiable levels of antigen-specific IL-2, while IL-2 levels in cattle vaccinated with M. bovis BCG did not. Furthermore, cattle vaccinated with M. bovis BCG and then challenged with pathogenic M. bovis displayed a more rapid induction of IL-2 but ultimately had lower levels of infection-induced IL-2 than did unvaccinated challenge control cattle. These data suggest that IL-2 responses are not detectable post-BCG vaccination and that these responses may require infection with virulent M. bovis to develop. This may be useful to differentiate infected cattle from uninfected or BCG-vaccinated cattle, although the overall sensitivity is relatively low, particularly in single intradermal comparative cervical tuberculin (SICCT)-negative infected animals. Furthermore, the strength of the IL-2 response may correlate with pathology, which poses interesting questions on the immunobiology of bovine tuberculosis in contrast to human tuberculosis, which is discussed.
Collapse
|
23
|
Impairment of IFN-gamma response to synthetic peptides of Mycobacterium tuberculosis in a 7-day whole blood assay. PLoS One 2013; 8:e71351. [PMID: 23951140 PMCID: PMC3738639 DOI: 10.1371/journal.pone.0071351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022] Open
Abstract
Studies on Mycobacterium tuberculosis (MTB) antigens are of interest in order to improve vaccine efficacy and to define biomarkers for diagnosis and treatment monitoring. The methodologies used for these investigations differ greatly between laboratories and discordant results are common. The IFN-gamma response to two well characterized MTB antigens ESAT-6 and CFP-10, in the form of recombinant proteins and synthetic peptides, was evaluated in HIV-1 uninfected persons in both long-term (7 day) and 24 hour, commercially available QuantiFERON TB Gold in Tube (QFT-GIT), whole blood assays. Our findings showed differences in the IFN-gamma response between 24 hour and 7 day cultures, with recombinant proteins inducing a significantly higher response than the peptide pools in 7 day whole blood assays. The activity of peptides and recombinant proteins did not differ in 24 hour whole blood or peripheral blood mononuclear cell (PBMC) based assays, nor in the ELISpot assay. Further analysis by SELDI-TOF mass spectrometry showed that the peptides are degraded over the course of 7 days of incubation in whole blood whilst the recombinant proteins remain intact. This study therefore demonstrates that screening antigenic candidates as synthetic peptides in long-term whole blood assays may underestimate immunogenicity.
Collapse
|
24
|
Dalmia N, Ramsay AJ. Prime-boost approaches to tuberculosis vaccine development. Expert Rev Vaccines 2013; 11:1221-33. [PMID: 23176655 DOI: 10.1586/erv.12.94] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Four individuals die from active TB disease each minute, while at least 2 billion are latently infected and at risk for disease reactivation. BCG, the only licensed TB vaccine, is effective in preventing childhood forms of TB; however its poor efficacy in adults, emerging drug-resistant TB strains and tedious chemotherapy regimes, warrant the development of novel prophylactic measures. Designing safe and effective vaccines against TB will require novel approaches on several levels, including the administration of rationally selected mycobacterial antigens in efficient delivery vehicles via optimal immunization routes. Given the primary site of disease manifestation in the lungs, development of mucosal immunization strategies to generate protective immune responses both locally, and in the circulation, may be important for effective TB prophylaxis. This review focuses on prime-boost immunization strategies currently under investigation and highlights the potential of mucosal delivery and rational vaccine design based on systems biology.
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
25
|
Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DM, Kwok WW, Grey H, Sallusto F, Peters B, Sette A. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 2013; 9:e1003130. [PMID: 23358848 PMCID: PMC3554618 DOI: 10.1371/journal.ppat.1003130] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022] Open
Abstract
An understanding of the immunological footprint of Mycobacterium tuberculosis (MTB) CD4 T cell recognition is still incomplete. Here we report that human Th1 cells specific for MTB are largely contained in a CXCR3+CCR6+ memory subset and highly focused on three broadly immunodominant antigenic islands, all related to bacterial secretion systems. Our results refute the notion that secreted antigens act as a decoy, since both secreted proteins and proteins comprising the secretion system itself are targeted by a fully functional T cell response. In addition, several novel T cell antigens were identified which can be of potential diagnostic use, or as vaccine antigens. These results underline the power of a truly unbiased, genome-wide, analysis of CD4 MTB recognition based on the combined use of epitope predictions, high throughput ELISPOT, and T cell libraries using PBMCs from individuals latently infected with MTB. Mycobacterium tuberculosis is one of the most life-threatening pathogens of all time, having infected one-third of the present human population. There is an urgent need for both novel vaccines and diagnostic strategies. Here, we were able to identify the targets most dominantly recognized by latently infected individual that successfully contain infection. These targets are contained in three broadly genomic antigenic islands, all related to bacterial secretion systems and composed by several distinct ORFs. Thus, our results suggest that vaccination with one or few defined antigens will fail to replicate the response associated with natural immunity. Our analysis also pinpoints that the Th1 cells dominating the response are associated with novel and well-defined phenotypic markers, suggesting that the response is molded by unique MTB associated factors. This study demonstrates further that the approach combining peptide binding predictions with modern high throughput techniques is generally applicable to the study of immunity to other complex pathogens. Together, our data provide a new angle in the worldwide fight against M. tuberculosis and could be used for diagnostic or vaccine developments.
Collapse
Affiliation(s)
| | - Anna Gerasimova
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Federico Mele
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ryan Henderson
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Justine Swann
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jason A. Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Eddie A. James
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Randy Taplitz
- Antiviral Research Centre, University of California, San Diego, San Diego, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - William W. Kwok
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Howard Grey
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Commandeur S, van Meijgaarden KE, Prins C, Pichugin AV, Dijkman K, van den Eeden SJF, Friggen AH, Franken KLMC, Dolganov G, Kramnik I, Schoolnik GK, Oftung F, Korsvold GE, Geluk A, Ottenhoff THM. An unbiased genome-wide Mycobacterium tuberculosis gene expression approach to discover antigens targeted by human T cells expressed during pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:1659-71. [PMID: 23319735 DOI: 10.4049/jimmunol.1201593] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis is responsible for almost 2 million deaths annually. Mycobacterium bovis bacillus Calmette-Guérin, the only vaccine available against tuberculosis (TB), induces highly variable protection against TB, and better TB vaccines are urgently needed. A prerequisite for candidate vaccine Ags is that they are immunogenic and expressed by M. tuberculosis during infection of the primary target organ, that is, the lungs of susceptible individuals. In search of new TB vaccine candidate Ags, we have used a genome-wide, unbiased Ag discovery approach to investigate the in vivo expression of 2170 M. tuberculosis genes during M. tuberculosis infection in the lungs of mice. Four genetically related but distinct mouse strains were studied, representing a spectrum of TB susceptibility controlled by the supersusceptibility to TB 1 locus. We used stringent selection approaches to select in vivo-expressed M. tuberculosis (IVE-TB) genes and analyzed their expression patterns in distinct disease phenotypes such as necrosis and granuloma formation. To study the vaccine potential of these proteins, we analyzed their immunogenicity. Several M. tuberculosis proteins were recognized by immune cells from tuberculin skin test-positive, ESAT6/CFP10-responsive individuals, indicating that these Ags are presented during natural M. tuberculosis infection. Furthermore, TB patients also showed responses toward IVE-TB Ags, albeit lower than tuberculin skin test-positive, ESAT6/CFP10-responsive individuals. Finally, IVE-TB Ags induced strong IFN-γ(+)/TNF-α(+) CD8(+) and TNF-α(+)/IL-2(+) CD154(+)/CD4(+) T cell responses in PBMC from long-term latently M. tuberculosis-infected individuals. In conclusion, these IVE-TB Ags are expressed during pulmonary infection in vivo, are immunogenic, induce strong T cell responses in long-term latently M. tuberculosis-infected individuals, and may therefore represent attractive Ags for new TB vaccines.
Collapse
Affiliation(s)
- Susanna Commandeur
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guio H, Sherman DR, Vordermeier HM, Robertson BD, Young DB, Wilkinson RJ. Bioinformatic and empirical analysis of novel hypoxia-inducible targets of the human antituberculosis T cell response. THE JOURNAL OF IMMUNOLOGY 2012; 189:5867-76. [PMID: 23169589 DOI: 10.4049/jimmunol.1202281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We analyzed whole genome-based transcriptional profiles of Mycobacterium tuberculosis subjected to prolonged hypoxia to guide the discovery of novel potential Ags, by a combined bioinformatic and empirical approach. We analyzed the fold induction of the 100 most highly induced genes at 7 d of hypoxia, as well as transcript abundance, peptide-binding prediction (ProPred) adjusted for population-specific MHC class II allele frequency, and by literature search. Twenty-six candidate genes were selected by this bioinformatic approach and evaluated empirically using IFN-γ and IL-2 ELISPOT using immunodominant Ags (Acr-1, CFP-10, ESAT-6) as references. Twenty-three of twenty-six proteins induced an IFN-γ response in PBMCs of persons with active or latent tuberculosis. Five novel immunodominant proteins-Rv1957, Rv1954c, Rv1955, Rv2022c, and Rv1471-were identified that induced responses similar to CFP-10 and ESAT-6 in both magnitude and frequency. IL-2 responses were of lower magnitude than were those of IFN-γ. Only moderate evidence of infection stage-specific recognition of Ags was observed. Reconciliation of bioinformatic and empirical hierarchies of immunodominance revealed that Ags could be predicted, providing transcriptomic data were combined with peptide-binding prediction adjusted by population-specific MHC class II allele frequency.
Collapse
Affiliation(s)
- Hannah P Gideon
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fan L, Xiao HP, Hu ZY, Ernst JD. Variation of Mycobacterium tuberculosis antigen-specific IFN-γ and IL-17 responses in healthy tuberculin skin test (TST)-positive human subjects. PLoS One 2012; 7:e42716. [PMID: 22880090 PMCID: PMC3412824 DOI: 10.1371/journal.pone.0042716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/10/2012] [Indexed: 01/13/2023] Open
Abstract
Objective To determine the variation of IFN-γ and IL-17 responses to M. tuberculosis antigens in healthy TST+ humans. Methods We isolated peripheral blood mononuclear cells from 21 TST+ healthy adults, stimulated them with phytohemagglutinin (PHA), PPD, Ag85B, ESAT-6, and live M. bovis BCG, and assayed IFN-γ and IL-17 secretion by ELISA in supernatants after 24 or 72 hours of incubation respectively. Results As in other studies, we found a wide range of IFN-γ responses to M. tuberculosis antigens; the variation significantly exceeded that observed in the same donors to the polyclonal T cell stimulus, phytohemagglutinin (PHA). In addition, we assayed IL-17 secretion in response to the same stimuli, and found less subject-to-subject variation. Analysis of the ratio of IFN-γ to IL-17 secretion on a subject-to-subject basis also revealed a wide range, with the majority of results distributed in a narrow range, and a minority with extreme results all of which were greater than that in the majority of subjects. The data suggest that study of exceptional responses to M. tuberculosis antigens may reveal immunologic correlates with specific outcomes of M. tuberculosis infection. Conclusion Variation of IFNγ and IFN-γ/IL-17 responses to mycobacterial antigens exceeds that of responses to the polyclonal stimulus, PHA, in TST positive healthy humans. This indicates a quantitative spectrum of human immune responses to infection with M. tuberculosis. Since the outcome of human infection with M. tuberculosis varies greatly, systematic study of multiple immune responses to multiple antigens is likely to reveal correlations between selected immune responses and the outcomes of infection.
Collapse
Affiliation(s)
- Lin Fan
- Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - He-ping Xiao
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-yi Hu
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (ZH); (JE)
| | - Joel D. Ernst
- Division of Infectious Diseases, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (ZH); (JE)
| |
Collapse
|
29
|
Axelsson-Robertson R, Magalhaes I, Parida SK, Zumla A, Maeurer M. The Immunological Footprint of Mycobacterium tuberculosis T-cell Epitope Recognition. J Infect Dis 2012; 205 Suppl 2:S301-15. [DOI: 10.1093/infdis/jis198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Abstract
TB remains a public health problem worldwide, in part due to latent TB infection that serves as a global reservoir of potential disease. In the 20th century, the natural history of TB was defined by clinical symptoms, the tuberculin skin test and chest x-ray. The last decade witnessed the invention and application of IFN-γ release assays and newer immunological tools that enabled a re-appraisal of the natural history of TB. Here, we review the conventional understanding of latent TB and recount how immunology has redefined latent TB as a spectrum of pathogen burden and host immune control. We discuss recent and future advances in the fields of TB immunology and diagnostics that will improve public health strategies to control TB.
Collapse
Affiliation(s)
- Saranya Sridhar
- Tuberculosis Research Unit, Department of Respiratory Medicine, National Heart & Lung Institute, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | | | | |
Collapse
|
31
|
Esmail H, Barry CE, Wilkinson RJ. Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies. Drug Discov Today 2011; 17:514-21. [PMID: 22198298 DOI: 10.1016/j.drudis.2011.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022]
Abstract
Treatment of latent tuberculosis (LTBI) is a vital component of tuberculosis (TB) elimination but is not efficiently implemented with currently available diagnostics and therapeutics. The tuberculin skin test and interferon-γ release assays can inform that infection has occurred, but do not prove that it persists. Treatment of LTBI with isoniazid targets actively replicating bacilli but not non-replicating populations, prolonging treatment duration. Developing more predictive diagnostic tests and treatments of shorter duration requires a greater understanding of the biology of LTBI, from both host and bacillary perspectives. In this article, we discuss the basis of current diagnosis and treatment of LTBI and review recent developments in understanding the biology of latency that might enable future improved diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Hanif Esmail
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.
| | | | | |
Collapse
|
32
|
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), is the most successful pathogen of mankind and remains a major threat to global health as the leading cause of death due to a bacterial pathogen. Yet 90-95% of those who are infected with MTB remain otherwise healthy. These people are classified as "latently infected," but remain a reservoir from which active TB cases will continue to develop ("reactivation tuberculosis"). Latent infection is defined by the absence of clinical symptoms of TB in addition to a delayed hypersensitivity reaction to the purified protein derivative of MTB used in tuberculin skin test or a T-cell response to MTB-specific antigens. In the absence of reliable control measures for tuberculosis, understanding latent MTB infection and subsequent reactivation is a research priority. This review aims to summarize the recent findings in human and non-human primate models of tuberculosis that have led to new concepts of latent tuberculosis.
Collapse
Affiliation(s)
- Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
33
|
Jones GJ, Pirson C, Gideon HP, Wilkinson KA, Sherman DR, Wilkinson RJ, Hewinson RG, Vordermeier HM. Immune responses to the enduring hypoxic response antigen Rv0188 are preferentially detected in Mycobacterium bovis infected cattle with low pathology. PLoS One 2011; 6:e21371. [PMID: 21712953 PMCID: PMC3119702 DOI: 10.1371/journal.pone.0021371] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/26/2011] [Indexed: 01/25/2023] Open
Abstract
The DosR regulon and the Enduring Hypoxic Response (EHR) define a group of M. tuberculosis genes that are specifically induced in bacilli exposed in vitro to conditions thought to mimic the environment encountered by Mycobacteria during latent infection. Although well described in humans, latent mycobacterial infection in cattle remains poorly understood. Thus, the aim of this study was to identify antigens that may potentially disclose cattle with latent M. bovis infection. To this end, we initially screened 57 pools of overlapping peptides representing 4 DosR regulon and 29 EHR antigens for their ability to stimulate an immune response in whole blood from TB-reactor cattle using IFN-γ and IL-2 as readouts. All 4 DosR regulon proteins were poorly recognized (maximum responder frequency of 10%). For the EHR antigens, both IFN-γ and IL-2 revealed similar response hierarchies, with responder frequencies ranging from 54% down to 3% depending on the given EHR antigen. Furthermore, these results demonstrated that responses in the infected cattle were largely IFN-γ biased. To support the concept for their role in latency, we evaluated if EHR antigen responses were associated with lower pathology. The EHR antigen Rv0188 was recognised predominantly in animals presenting with low pathology scores, whereas responses to ESAT-6/CFP-10 or the other EHR antigens tested were prevalent across the pathology spectrum. However, when we determined the production of additional cytokines induced by the M. bovis antigens PPD-B or ESAT-6/CFP-10, we detected significantly greater PPD-B-induced production of the pro-inflammatory cytokine IL-1β in animals recognizing Rv0188 (i.e. those with limited or no pathology). Thus, these results are consistent with the idea that responses to Rv0188 may identify a subset of animals at early stages of infection or in which disease progression may be limited.
Collapse
Affiliation(s)
- Gareth J Jones
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency-Weybridge, Addlestone, Surrey, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|