1
|
Cavarelli M, Le Grand R. The importance of semen leukocytes in HIV-1 transmission and the development of prevention strategies. Hum Vaccin Immunother 2020; 16:2018-2032. [PMID: 32614649 PMCID: PMC7553688 DOI: 10.1080/21645515.2020.1765622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 sexual transmission occurs mostly through contaminated semen, which is a complex mixture of soluble factors with immunoregulatory functions and cells. It is well established that semen cells from HIV-1-infected men are able to produce the virus and that are harnessed to efficiently interact with mucosal barriers exposed during sexual intercourse. Several cofactors contribute to semen infectivity and may enhance the risk of HIV-1 transmission to a partner by increasing local HIV-1 replication in the male genital tract, thereby increasing the number of HIV-1-infected cells and the local HIV-1 shedding in semen. The introduction of combination antiretroviral therapy has improved the life expectancy of HIV-1 infected individuals; however, there is evidence that systemic viral suppression does not always reflect full viral suppression in the seminal compartment. This review focus on the role semen leukocytes play in HIV-1 transmission and discusses implications of the increased resistance of cell-mediated transmission to immune-based prevention strategies.
Collapse
Affiliation(s)
- Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT) , Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Kordy K, Tobin NH, Aldrovandi GM. HIV and SIV in Body Fluids: From Breast Milk to the Genitourinary Tract. ACTA ACUST UNITED AC 2019; 15:139-152. [PMID: 33312088 DOI: 10.2174/1573395514666180605085313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 is present in many secretions including oral, intestinal, genital, and breast milk. However, most people exposed to HIV-1 within these mucosal compartments do not become infected despite often frequent and repetitive exposure over prolonged periods of time. In this review, we discuss what is known about the levels of cell-free HIV RNA, cell-associated HIV DNA and cell-associated HIV RNA in external secretions. Levels of virus are usually lower than contemporaneously obtained blood, increased in settings of inflammation and infection, and decreased in response to antiretroviral therapy. Additionally, each mucosal compartment has unique innate and adaptive immune responses that affect the composition and presence of HIV-1 within each external secretion. We discuss the current state of knowledge about the types and amounts of virus present in the various excretions, touch on innate and adaptive immune responses as they affect viral levels, and highlight important areas for further study.
Collapse
Affiliation(s)
- Kattayoun Kordy
- Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Seminal Simian Immunodeficiency Virus in Chronically Infected Cynomolgus Macaques Is Dominated by Virus Originating from Multiple Genital Organs. J Virol 2018; 92:JVI.00133-18. [PMID: 29720516 PMCID: PMC6026730 DOI: 10.1128/jvi.00133-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/16/2018] [Indexed: 11/20/2022] Open
Abstract
The sexual transmission of viruses is responsible for the spread of multiple infectious diseases. Although the human immunodeficiency virus (HIV)/AIDS pandemic remains fueled by sexual contacts with infected semen, the origin of virus in semen is still unknown. In a substantial number of HIV-infected men, viral strains present in semen differ from the ones in blood, suggesting that HIV is locally produced within the genital tract. Such local production may be responsible for the persistence of HIV in semen despite effective antiretroviral therapy. In this study, we used single-genome amplification, amplicon sequencing (env gene), and phylogenetic analyses to compare the genetic structures of simian immunodeficiency virus (SIV) populations across all the male genital organs and blood in intravenously inoculated cynomolgus macaques in the chronic stage of infection. Examination of the virus populations present in the male genital tissues of the macaques revealed compartmentalized SIV populations in testis, epididymis, vas deferens, seminal vesicles, and urethra. We found genetic similarities between the viral strains present in semen and those in epididymis, vas deferens, and seminal vesicles. The contribution of male genital organs to virus shedding in semen varied among individuals and could not be predicted based on their infection or proinflammatory cytokine mRNA levels. These data indicate that rather than a single source, multiple genital organs are involved in the release of free virus and infected cells into semen. These findings have important implications for our understanding of systemic virus shedding and persistence in semen and for the design of eradication strategies to access viral reservoirs. IMPORTANCE Semen is instrumental for the dissemination of viruses through sexual contacts. Worryingly, a number of systemic viruses, such as HIV, can persist in this body fluid in the absence of viremia. The local source(s) of virus in semen, however, remains unknown. To elucidate the anatomic origin(s) of the virus released in semen, we compared viral populations present in semen with those in the male genital organs and blood of the Asian macaque model, using single-genome amplification, amplicon sequencing (env gene), and phylogenetic analysis. Our results show that multiple genital tissues harbor compartmentalized strains, some of them (i.e., from epididymis, vas deferens, and seminal vesicles) displaying genetic similarities with the viral populations present in semen. This study is the first to uncover local genital sources of viral populations in semen, providing a new basis for innovative targeted strategies to prevent and eradicate HIV in the male genital tract.
Collapse
|
4
|
Lim SY, Osuna CE, Hraber PT, Hesselgesser J, Gerold JM, Barnes TL, Sanisetty S, Seaman MS, Lewis MG, Geleziunas R, Miller MD, Cihlar T, Lee WA, Hill AL, Whitney JB. TLR7 agonists induce transient viremia and reduce the viral reservoir in SIV-infected rhesus macaques on antiretroviral therapy. Sci Transl Med 2018; 10:eaao4521. [PMID: 29720451 PMCID: PMC5973480 DOI: 10.1126/scitranslmed.aao4521] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Antiretroviral therapy (ART) can halt HIV-1 replication but fails to target the long-lived latent viral reservoir. Several pharmacological compounds have been evaluated for their ability to reverse HIV-1 latency, but none has demonstrably reduced the latent HIV-1 reservoir or affected viral rebound after the interruption of ART. We evaluated orally administered selective Toll-like receptor 7 (TLR7) agonists GS-986 and GS-9620 for their ability to induce transient viremia in rhesus macaques infected with simian immunodeficiency virus (SIV) and treated with suppressive ART. In an initial dose-escalation study, and a subsequent dose-optimization study, we found that TLR7 agonists activated multiple innate and adaptive immune cell populations in addition to inducing expression of SIV RNA. We also observed TLR7 agonist-induced reductions in SIV DNA and measured inducible virus from treated animals in ex vivo cell cultures. In a second study, after stopping ART, two of nine treated animals remained aviremic for more than 2 years, even after in vivo CD8+ T cell depletion. Moreover, adoptive transfer of cells from aviremic animals could not induce de novo infection in naïve recipient macaques. These findings suggest that TLR7 agonists may facilitate reduction of the viral reservoir in a subset of SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christa E Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter T Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Jeffrey M Gerold
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | | | - Srisowmya Sanisetty
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Tomas Cihlar
- Gilead Sciences Inc., Foster City, CA 94404, USA
| | | | - Alison L Hill
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Perez S, Johnson AM, Xiang SH, Li J, Foley BT, Doyle-Meyers L, Panganiban A, Kaur A, Veazey RS, Wu Y, Ling B. Persistence of SIV in the brain of SIV-infected Chinese rhesus macaques with or without antiretroviral therapy. J Neurovirol 2017; 24:62-74. [PMID: 29181724 DOI: 10.1007/s13365-017-0594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/27/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
Persistence of HIV-1 reservoirs in the central nervous system (CNS) is an obstacle to cure strategies. However, little is known about residual viral distribution, viral replication levels, and genetic diversity in different brain regions of HIV-infected individuals on combination antiretroviral therapy (cART). Because myeloid cells particularly microglia are likely major reservoirs in the brain, and more microglia exist in white matter than gray matter in a human brain, we hypothesized the major viral reservoirs in the brain are the white matter reflected by higher levels of viral DNA. To address the issue, we used the Chinese rhesus macaque (ChRM) model of SIV infection, and treated 11 SIVmac251-infected animals including long-term nonprogressors with cART for up to 24 weeks. SIV reservoirs were assessed by SIV DNA levels in 16 specific regions of the brain and 4 regions of spinal cord. We found relatively high frequencies of SIV in basal ganglia and brain stem compared to other regions. cART-receiving animals had significantly lower SIV DNA levels in the gray matter than white matter. Moreover, a shortened envelope gp120 with 21 nucleotide deletions and guanine-to-adenine hypermutations were observed. These results demonstrate that SIV enters the CNS in SIV-infected ChRM with a major reservoir in the white matter after cART; the SIV/ChRM/cART is an appropriate model for studying HIV CNS reservoirs and testing new eradication strategies. Further, examining multiple regions of the CNS may be needed when assessing whether an agent is successful in reducing the size of SIV reservoirs in the CNS.
Collapse
Affiliation(s)
- Stefanie Perez
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ann-Marie Johnson
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jian Li
- Department of Statistics, Tulane University School of Public Health and Tropic Medicine, New Orleans, LA, 70112, USA
| | - Brian T Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Lara Doyle-Meyers
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Antonito Panganiban
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA.,Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA, 20110, USA
| | - Binhua Ling
- Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA. .,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
HIV Trafficking Between Blood and Semen During Early Untreated HIV Infection. J Acquir Immune Defic Syndr 2017; 74:95-102. [PMID: 27548440 DOI: 10.1097/qai.0000000000001156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the dynamics of HIV across anatomic compartments is important to design effective eradication strategies. In this study, we evaluated viral trafficking between blood and semen during primary HIV infection in 6 antiretroviral-naive men who have sex with men. METHODS Deep sequencing data of HIV env were generated from longitudinal blood plasma, peripheral blood mononuclear cells, and seminal plasma samples. The presence or absence of viral compartmentalization was assessed using tree-based Slatkin-Maddison and distance-based Fst methods. Phylogeographic analyses were performed using a discrete Bayesian asymmetric approach of diffusion with Markov jump count estimation to evaluate the gene flow between blood and semen during primary HIV infection. Levels of DNA from human herpesviruses and selected inflammatory cytokines were also measured on genital secretions collected at baseline to evaluate potential correlates of increased viral migration between anatomic compartments. RESULTS We detected varying degrees of compartmentalization in all 6 individuals evaluated. None of them maintained viral compartmentalization between blood and seminal plasma throughout the analyzed time points. Phylogeographic analyses revealed that the HIV population circulating in blood plasma populated the seminal compartment during the earliest stages of infection. In our limited data set, we found no association between local inflammation or herpesvirus shedding at baseline and viral trafficking between semen and blood. CONCLUSIONS The early spread of virus from blood plasma to genital tract and the complex viral interplay between these compartments suggest that viral eradication efforts will require monitoring viral subpopulations in anatomic sites and viral trafficking during the course of infection.
Collapse
|
7
|
Kariuki SM, Selhorst P, Ariën KK, Dorfman JR. The HIV-1 transmission bottleneck. Retrovirology 2017; 14:22. [PMID: 28335782 PMCID: PMC5364581 DOI: 10.1186/s12977-017-0343-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
8
|
Salemi M, Rife B. Phylogenetics and Phyloanatomy of HIV/SIV Intra-Host Compartments and Reservoirs: The Key Role of the Central Nervous System. Curr HIV Res 2016; 14:110-20. [PMID: 26511341 PMCID: PMC9199530 DOI: 10.2174/1570162x13666151029102413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/10/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ability of the human immunodeficiency virus type 1 (HIV-1) to persist in anatomic compartments and cellular reservoirs is a major obstacle for eradication of replicationcompetent virus in the infected host. APPROACH We extensively review recent advancements in phylogenetic and phylogeographic techniques that provide a unique opportunity for studies of intra-host HIV-1 compartmentalization and the detection of potential reservoirs. CONCLUSION We show that infected macrophages in the central nervous system (CNS) harbor viral subpopulations that play a key role in the emergence of escape variants and viral rebound following discontinuation of antiretroviral therapy. An HIV cure, therefore, cannot be achieved without the effective targeting of the virus in the CNS, for which in depth knowledge of viral population dynamics contributing to the development and maintenance of latent reservoirs is critical.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, USA.
| | | |
Collapse
|
9
|
Detection of Simian Immunodeficiency Virus in Semen, Urethra, and Male Reproductive Organs during Efficient Highly Active Antiretroviral Therapy. J Virol 2015; 89:5772-87. [PMID: 25833047 DOI: 10.1128/jvi.03628-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/22/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED A number of men receiving prolonged suppressive highly active antiretroviral therapy (HAART) still shed human immunodeficiency virus (HIV) in semen. To investigate whether this seminal shedding may be due to poor drug penetration and/or viral production by long-lived cells within male genital tissues, we analyzed semen and reproductive tissues from macaques chronically infected with simian immunodeficiency virus mac251 (SIVmac251) who were treated for 4 months with HAART, which was intensified over the last 7 weeks with an integrase inhibitor. We showed that a subset of treated animals continued shedding SIV in semen despite efficient HAART. This shedding was not associated with low antiretroviral drug concentrations in semen or in testis, epididymis, seminal vesicles, and prostate. HAART had no significant impact on SIV RNA in the urethra, whereas it drastically reduced SIV RNA levels in the prostate and vas deferens and to a lesser extent in the epididymis and seminal vesicle. The only detectable SIV RNA-positive cells within the male genital tract after HAART were urethral macrophages. SIV DNA levels in genital tissues were not decreased by HAART, suggesting the presence throughout the male genital tract of nonproductively infected cells. In conclusion, our results demonstrate that 4 months of HAART induced variable and limited control of viral infection in the male reproductive organs, particularly in the urethra, and suggest that infected long-lived cells in the male genital tract may be involved in persistent seminal shedding during HAART. These results pave the way for further investigations of male genital organ infection in long-term-treated infected individuals. IMPORTANCE A substantial subset of men receiving prolonged HAART suppressing viral loads in the blood still harbor HIV in semen, and cases of sexual transmission have been reported. To understand the origin of this persistence, we analyzed the semen and male reproductive tissues from SIV-infected macaques treated with HAART. We demonstrated that persistent seminal shedding was not linked to poor drug penetration in semen or semen-producing prostate, seminal vesicle, epididymis, and testis. We revealed that HAART decreased SIV RNA to various extents in all male genital organs, with the exception of the urethra, in which SIV RNA(+) macrophages were observed despite HAART. Importantly, HAART did not impact SIV DNA levels in the male genital organs. These results suggest that infection of male genital organs, and particularly the urethra, could be involved in the release of virus in semen during HAART.
Collapse
|
10
|
Houzet L, Matusali G, Dejucq-Rainsford N. Origins of HIV-infected leukocytes and virions in semen. J Infect Dis 2015; 210 Suppl 3:S622-30. [PMID: 25414416 DOI: 10.1093/infdis/jiu328] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although semen is the principal vector of human immunodeficiency virus (HIV) dissemination worldwide, the origin of the infected leukocytes and free viral particles in this body fluid remain elusive. Here we review the accumulated evidence of the genital origin of HIV in semen from therapy naive individuals and men receiving suppressive highly active antiretroviral therapy (HAART), summarize the data on the detection and localization of HIV/SIV within the male genital tract, discuss the potential involvement of each genital tissue as a source of infected cells and virions in semen in the absence and presence of HAART, and suggest further studies. Deciphering the exact sources of HIV in semen will be crucial to improving HIV transmission prevention strategies.
Collapse
Affiliation(s)
- Laurent Houzet
- Institut National de la Santé et de la Recherche Médicale, U1085-Institut de Recherche en Santé, Environnement et Travail, Université de Rennes 1, Structure Fédérative Recherche Biosit, Rennes, France
| | - Giulia Matusali
- Institut National de la Santé et de la Recherche Médicale, U1085-Institut de Recherche en Santé, Environnement et Travail, Université de Rennes 1, Structure Fédérative Recherche Biosit, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Institut National de la Santé et de la Recherche Médicale, U1085-Institut de Recherche en Santé, Environnement et Travail, Université de Rennes 1, Structure Fédérative Recherche Biosit, Rennes, France
| |
Collapse
|
11
|
Generation and evaluation of clade C simian-human immunodeficiency virus challenge stocks. J Virol 2014; 89:1965-74. [PMID: 25473043 DOI: 10.1128/jvi.03279-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The development of a panel of mucosally transmissible simian-human immunodeficiency virus (SHIV) challenge stocks from multiple virus clades would facilitate preclinical evaluation of candidate HIV-1 vaccines and therapeutics. The majority of SHIV stocks that have been generated to date have been derived from clade B HIV-1 env sequences from viruses isolated during chronic infection and typically required serial animal-to-animal adaptation for establishing mucosal transmissibility and pathogenicity. To capture essential features of mucosal transmission of clade C viruses, we produced a series of SHIVs with early clade C HIV-1 env sequences from acutely HIV-1-infected individuals from South Africa. SHIV-327c and SHIV-327cRM expressed env sequences that were 99.7 to 100% identical to the original HIV-1 isolate and did not require in vivo passaging for mucosal infectivity. These challenge stocks infected rhesus monkeys efficiently by both intrarectal and intravaginal routes, replicated to high levels during acute infection, and established chronic setpoint viremia in 13 of 17 (76%) infected animals. The SHIV-327cRM challenge stock was also titrated for both single, high-dose intrarectal challenges and repetitive, low-dose intrarectal challenges in rhesus monkeys. These SHIV challenge stocks should facilitate the preclinical evaluation of vaccines and other interventions aimed at preventing clade C HIV-1 infection. IMPORTANCE We describe the development of two related clade C SHIV challenge stocks. These challenge stocks should prove useful for preclinical testing of vaccines and other interventions aimed at preventing clade C HIV-1 infection.
Collapse
|
12
|
Fieni F, Stone M, Ma ZM, Dutra J, Fritts L, Miller CJ. Viral RNA levels and env variants in semen and tissues of mature male rhesus macaques infected with SIV by penile inoculation. PLoS One 2013; 8:e76367. [PMID: 24146859 PMCID: PMC3795772 DOI: 10.1371/journal.pone.0076367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
HIV is shed in semen but the anatomic site of virus entry into the genital secretions is unknown. We determined viral RNA (vRNA) levels and the envelope gene sequence in the SIVmac 251 viral populations in the genital tract and semen of 5 adult male rhesus monkeys (Macaca mulatta) that were infected after experimental penile SIV infection. Paired blood and semen samples were collected from 1–9 weeks after infection and the monkeys were necropsied eleven weeks after infection. The axillary lymph nodes, testes, epididymis, prostate, and seminal vesicles were collected and vRNA levels and single-genome analysis of the SIVmac251 env variants was performed. At the time of semen collection, blood vRNA levels were between 3.09 and 7.85 log10 vRNA copies/ml plasma. SIV RNA was found in the axillary lymph nodes of all five monkeys and in 3 of 5 monkeys, all tissues examined were vRNA positive. In these 3 monkeys, vRNA levels (log10 SIVgag copies/ug of total tissue RNA) in the axillary lymph node (6.48±0.50) were significantly higher than in the genital tract tissues: testis (3.67±2.16; p<0.05), epididymis (3.08±1.19; p<0.0001), prostate (3.36±1.30; p<0.01), and seminal vesicle (2.67±1.50; p<0.0001). Comparison of the SIVmac251 env viral populations in blood plasma, systemic lymph node, and genital tract tissues was performed in two of the macaques. Visual inspection of the Neighbor-Joining phylograms revealed that in both animals, all the sequences were generally distributed evenly among all tissue compartments. Importantly, viral populations in the genital tissues were not distinct from those in the systemic tissues. Our findings demonstrate striking similarity in the viral populations in the blood and male genital tract tissues within 3 months of penile SIV transmission.
Collapse
Affiliation(s)
- Francis Fieni
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Mars Stone
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Zhong-Min Ma
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Joseph Dutra
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- Division of Infectious Diseases, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Heipertz RA, Sanders-Buell E, Kijak G, Howell S, Lazzaro M, Jagodzinski LL, Eggleston J, Peel S, Malia J, Armstrong A, Michael NL, Kim JH, O'Connell RJ, Scott PT, Brett-Major DM, Tovanabutra S. Molecular epidemiology of early and acute HIV type 1 infections in the United States Navy and Marine Corps, 2005-2010. AIDS Res Hum Retroviruses 2013; 29:1310-20. [PMID: 23972100 DOI: 10.1089/aid.2013.0087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The U.S. military represents a unique population within the human immunodeficiency virus 1 (HIV-1) pandemic. The last comprehensive study of HIV-1 in members of the U.S. Navy and Marine Corps (Sea Services) was completed in 2000, before large-scale combat operations were taking place. Here, we present molecular characterization of HIV-1 from 40 Sea Services personnel who were identified during their seroconversion window and initially classified as HIV-1 negative during screening. Protease/reverse transcriptase (pro/rt) and envelope (env) sequences were obtained from each member of the cohort. Phylogenetic analyses were carried out on these regions to determine relatedness within the cohort and calculate the most recent common ancestor for the related sequences. We identified 39 individuals infected with subtype B and one infected with CRF01_AE. Comparison of the pairwise genetic distance of Sea Service sequences and reference sequences in the env and pro/rt regions showed that five samples were part of molecular clusters, a group of two and a group of three, confirmed by single genome amplification. Real-time molecular monitoring of new HIV-1 acquisitions in the Sea Services may have a role in facilitating public health interventions at sites where related HIV-1 infections are identified.
Collapse
Affiliation(s)
- Richard A. Heipertz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Eric Sanders-Buell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Gustavo Kijak
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Shana Howell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Michelle Lazzaro
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Linda L. Jagodzinski
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - John Eggleston
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Sheila Peel
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jennifer Malia
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- United States Public Health Service, Rockville, Maryland
| | - Adam Armstrong
- Navy Bloodborne Infection Management Center, Navy Marine Corps Public Health Center, Bethesda, Maryland
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Robert J. O'Connell
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Paul T. Scott
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David M. Brett-Major
- Naval Medical Research Center, Silver Spring, Maryland
- Department of Preventive Medicine and Biometrics, Uniformed Services University, Bethesda, Maryland
| | - Sodsai Tovanabutra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
14
|
Frange P, Meyer L, Jung M, Goujard C, Zucman D, Abel S, Hochedez P, Gousset M, Gascuel O, Rouzioux C, Chaix ML. Sexually-transmitted/founder HIV-1 cannot be directly predicted from plasma or PBMC-derived viral quasispecies in the transmitting partner. PLoS One 2013; 8:e69144. [PMID: 23874894 PMCID: PMC3706485 DOI: 10.1371/journal.pone.0069144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/03/2013] [Indexed: 11/21/2022] Open
Abstract
Objective Characterization of HIV-1 sequences in newly infected individuals is important for elucidating the mechanisms of viral sexual transmission. We report the identification of transmitted/founder viruses in eight pairs of HIV-1 sexually-infected patients enrolled at the time of primary infection (“recipients”) and their transmitting partners (“donors”). Methods Using a single genome-amplification approach, we compared quasispecies in donors and recipients on the basis of 316 and 376 C2V5 env sequences amplified from plasma viral RNA and PBMC-associated DNA, respectively. Results Both DNA and RNA sequences indicated very homogeneous viral populations in all recipients, suggesting transmission of a single variant, even in cases of recent sexually transmitted infections (STIs) in donors (n = 2) or recipients (n = 3). In all pairs, the transmitted/founder virus was derived from an infrequent variant population within the blood of the donor. The donor variant sequences most closely related to the recipient sequences were found in plasma samples in 3/8 cases and/or in PBMC samples in 6/8 cases. Although donors were exclusively (n = 4) or predominantly (n = 4) infected by CCR5-tropic (R5) strains, two recipients were infected with highly homogeneous CXCR4/dual-mixed-tropic (X4/DM) viral populations, identified in both DNA and RNA. The proportion of X4/DM quasispecies in donors was higher in cases of X4/DM than R5 HIV transmission (16.7–22.0% versus 0–2.6%), suggesting that X4/DM transmission may be associated with a threshold population of X4/DM circulating quasispecies in donors. Conclusions These suggest that a severe genetic bottleneck occurs during subtype B HIV-1 heterosexual and homosexual transmission. Sexually-transmitted/founder virus cannot be directly predicted by analysis of the donor’s quasispecies in plasma and/or PBMC. Additional studies are required to fully understand the traits that confer the capacity to transmit and establish infection, and determine the role of concomitant STIs in mitigating the genetic bottleneck in mucosal HIV transmission.
Collapse
Affiliation(s)
- Pierre Frange
- Equipe d'accueil 3620, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Redd AD, Collinson-Streng AN, Chatziandreou N, Mullis CE, Laeyendecker O, Martens C, Ricklefs S, Kiwanuka N, Nyein PH, Lutalo T, Grabowski MK, Kong X, Manucci J, Sewankambo N, Wawer MJ, Gray RH, Porcella SF, Fauci AS, Sagar M, Serwadda D, Quinn TC. Previously transmitted HIV-1 strains are preferentially selected during subsequent sexual transmissions. J Infect Dis 2012; 206:1433-42. [PMID: 22997233 DOI: 10.1093/infdis/jis503] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A genetic bottleneck is known to exist for human immunodeficiency virus (HIV) at the point of sexual transmission. However, the nature of this bottleneck and its effect on viral diversity over time is unclear. METHODS Interhost and intrahost HIV diversity was analyzed in a stable population in Rakai, Uganda, from 1994 to 2002. HIV-1 envelope sequences from both individuals in initially HIV-discordant relationships in which transmission occurred later were examined using Sanger sequencing of bulk polymerase chain reaction (PCR) products (for 22 couples), clonal analysis (for 3), and next-generation deep sequencing (for 9). RESULTS Intrahost viral diversity was significantly higher than changes in interhost diversity (P < .01). The majority of HIV-1-discordant couples examined via bulk PCR (16 of 22 couples), clonal analysis (3 of 3), and next-generation deep sequencing (6 of 9) demonstrated that the viral populations present in the newly infected recipient were more closely related to the donor partner's HIV-1 variants found earlier during infection as compared to those circulating near the estimated time of transmission (P = .03). CONCLUSIONS These findings suggest that sexual transmission constrains viral diversity at the population level, partially because of the preferential transmission of ancestral as opposed to contemporary strains circulating in the transmitting partner. Future successful vaccine strategies may need to target these transmitted ancestral strains.
Collapse
Affiliation(s)
- Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moreau M, Le Tortorec A, Deleage C, Brown C, Denis H, Satie AP, Bourry O, Deureuddre-Bosquet N, Roques P, Le Grand R, Dejucq-Rainsford N. Impact of short-term HAART initiated during the chronic stage or shortly post-exposure on SIV infection of male genital organs. PLoS One 2012; 7:e37348. [PMID: 22615988 PMCID: PMC3355136 DOI: 10.1371/journal.pone.0037348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Background The male genital tract is suspected to constitute a viral sanctuary as persistent HIV shedding is found in the semen of a subset of HIV-infected men receiving effective antiretroviral therapy (HAART). The origin of this persistent shedding is currently unknown. Phylogenetic studies indicated that HIV in semen from untreated men arises from local sources and/or passive diffusion from the blood. We previously demonstrated in human and macaque low levels and localized infection of several semen-producing organs by HIV/SIV. Using a macaque model, this study investigates the impact of short term HAART (2–4 weeks) initiated either during the asymptomatic chronic stage or 4 h post-intravenous inoculation of SIVmac251 on the infection of male genital organs. Methodology/Principal Findings Short term HAART during the chronic stage decreased blood viral load. No major impact of HAART was observed on SIV DNA levels in male genital organs using a sensitive nested PCR assay. Using in situ hybridization, SIV RNA+ cells were detected in all male genital tract organs from untreated and treated animals with undetectable blood viral load following HAART. Infected CD68+ myeloid cells and CD3+ T lymphocytes were detected pre- and post-HAART. In contrast, short term HAART initiated 4 h post-SIV exposure led to a drastic decrease of the male genital tissues infection, although it failed to prevent systemic infection. In both cases, HAART tended to decrease the number of CD3+ T cells in the male organs. Conclusions Our results indicate that the established infection of male genital organs is not greatly impacted by short term HAART, whereas the same treatment during pre-acute phase of the infection efficiently impairs viral dissemination to the male genital tract. Further investigations are now needed to determine whether infection of male genital organs is responsible for long term persistent HIV shedding in semen despite HAART.
Collapse
Affiliation(s)
- Marina Moreau
- INSERM U1085-IRSET, Université de Rennes 1, Institut Fédératif de Recherche 140, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Role of donor genital tract HIV-1 diversity in the transmission bottleneck. Proc Natl Acad Sci U S A 2011; 108:E1156-63. [PMID: 22065783 DOI: 10.1073/pnas.1103764108] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The predominant mode of HIV-1 infection is heterosexual transmission, where a genetic bottleneck is imposed on the virus quasispecies. To probe whether limited genetic diversity in the genital tract (GT) of the transmitting partner drives this bottleneck, viral envelope sequences from the blood and genital fluids of eight transmission pairs from Rwanda and Zambia were analyzed. The chronically infected transmitting partner's virus population was heterogeneous with distinct genital subpopulations, and the virus populations within the GT of two of four women sampled longitudinally exhibited evidence of stability over time intervals on the order of weeks to months. Surprisingly, the transmitted founder variant was not derived from the predominant GT subpopulations. Rather, in each case, the transmitting variant was phylogenetically distinct from the sampled locally replicating population. Although the exact distribution of the virus population present in the GT at the time of transmission cannot be unambiguously defined in these human studies, it is unlikely, based on these data, that the transmission bottleneck is driven in every case by limited viral diversity in the donor GT or that HIV transmission is solely a stochastic event.
Collapse
|