1
|
Menendez-Gil P, Veleva D, Virgo M, Zhang J, Ramalhete R, Ho BT. Modulation of Vibrio cholerae gene expression through conjugative delivery of engineered regulatory small RNAs. J Bacteriol 2024; 206:e0014224. [PMID: 39292012 PMCID: PMC11500501 DOI: 10.1128/jb.00142-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The increase in antibiotic resistance in bacteria has prompted the efforts in developing new alternative strategies for pathogenic bacteria. We explored the feasibility of targeting Vibrio cholerae by neutralizing bacterial cellular processes rather than outright killing the pathogen. We investigated the efficacy of delivering engineered regulatory small RNAs (sRNAs) to modulate gene expression through DNA conjugation. As a proof of concept, we engineered several sRNAs targeting the type VI secretion system (T6SS), several of which were able to successfully knockdown the T6SS activity at different degrees. Using the same strategy, we modulated exopolysaccharide production and motility. Lastly, we delivered an sRNA targeting T6SS into V. cholerae via conjugation and observed a rapid knockdown of the T6SS activity. Coupling conjugation with engineered sRNAs represents a novel way of modulating gene expression in V. cholerae opening the door for the development of novel prophylactic and therapeutic applications. IMPORTANCE Given the prevalence of antibiotic resistance, there is an increasing need to develop alternative approaches to managing pathogenic bacteria. In this work, we explore the feasibility of modulating the expression of various cellular systems in Vibrio cholerae using engineered regulatory sRNAs delivered into cells via DNA conjugation. These sRNAs are based on regulatory sRNAs found in V. cholerae and exploit its native regulatory machinery. By delivering these sRNAs conjugatively along with a real-time marker for DNA transfer, we found that complete knockdown of a targeted cellular system could be achieved within one cell division cycle after sRNA gene delivery. These results indicate that conjugative delivery of engineered regulatory sRNAs is a rapid and robust way of precisely targeting V. cholerae.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Diana Veleva
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Mollie Virgo
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Jige Zhang
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Rita Ramalhete
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Brian T. Ho
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Rakibova Y, Dunham DT, Seed KD, Freddolino L. Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae. mSphere 2024; 9:e0001124. [PMID: 38920383 PMCID: PMC11288032 DOI: 10.1128/msphere.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches they occupy. H-NS, the histone-like nucleoid structuring protein, is the best-studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. IMPORTANCE New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. A proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.
Collapse
Affiliation(s)
- Yulduz Rakibova
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Sprenger M, Siemers M, Krautwurst S, Papenfort K. Small RNAs direct attack and defense mechanisms in a quorum sensing phage and its host. Cell Host Microbe 2024; 32:727-738.e6. [PMID: 38579715 DOI: 10.1016/j.chom.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Many, if not all, bacteria use quorum sensing (QS) to control collective behaviors, and more recently, QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or "listen in" on the host's communication processes, to switch between lytic and lysogenic modes of infection. Here, we study the interaction of Vibrio cholerae with the lysogenic phage VP882, which is activated by the QS molecule DPO. We discover that induction of VP882 results in the binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompetes and downregulates host-encoded small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs, and we demonstrate that one of these sRNAs, named VpdS, promotes phage replication by regulating host and phage mRNA levels. We further show that host-encoded sRNAs can antagonize phage replication by downregulating phage mRNA expression and thus might be part of the host's phage defense arsenal.
Collapse
Affiliation(s)
- Marcel Sprenger
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany
| | - Malte Siemers
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Kai Papenfort
- Friedrich Schiller University, Institute of Microbiology, 07745 Jena, Germany; Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
4
|
Rakibova Y, Dunham DT, Seed KD, Freddolino PL. Nucleoid-associated proteins shape the global protein occupancy and transcriptional landscape of a clinical isolate of Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573743. [PMID: 38260642 PMCID: PMC10802314 DOI: 10.1101/2023.12.30.573743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches it occupies. H-NS, the histone-like nucleoid structuring protein, is the best studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified a few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. Importance New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. Proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.
Collapse
Affiliation(s)
- Yulduz Rakibova
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - P. Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Ghandour R, Papenfort K. Small regulatory RNAs in Vibrio cholerae. MICROLIFE 2023; 4:uqad030. [PMID: 37441523 PMCID: PMC10335731 DOI: 10.1093/femsml/uqad030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Vibrio cholerae is a major human pathogen causing the diarrheal disease, cholera. Regulation of virulence in V. cholerae is a multifaceted process involving gene expression changes at the transcriptional and post-transcriptional level. Whereas various transcription factors have been reported to modulate virulence in V. cholerae, small regulatory RNAs (sRNAs) have now been established to also participate in virulence control and the regulation of virulence-associated processes, such as biofilm formation, quorum sensing, stress response, and metabolism. In most cases, these sRNAs act by base-pairing with multiple target transcripts and this process typically requires the aid of an RNA-binding protein, such as the widely conserved Hfq protein. This review article summarizes the functional roles of sRNAs in V. cholerae, their underlying mechanisms of gene expression control, and how sRNAs partner with transcription factors to modulate complex regulatory programs. In addition, we will discuss regulatory principles discovered in V. cholerae that not only apply to other Vibrio species, but further extend into the large field of RNA-mediated gene expression control in bacteria.
Collapse
Affiliation(s)
- Rabea Ghandour
- Friedrich Schiller University Jena, Institute of Microbiology, 07745 Jena, Germany
| | - Kai Papenfort
- Corresponding author. Institute of Microbiology, General Microbiology, Friedrich Schiller University Jena, Winzerlaer Straße 2, 07745 Jena, Germany. Tel: +49-3641-949-311; E-mail:
| |
Collapse
|
6
|
Pombo JP, Ebenberger SP, Müller AM, Wolinski H, Schild S. Impact of Gene Repression on Biofilm Formation of Vibrio cholerae. Front Microbiol 2022; 13:912297. [PMID: 35722322 PMCID: PMC9201469 DOI: 10.3389/fmicb.2022.912297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrio cholerae, the etiological agent of cholera, is a facultative intestinal pathogen which can also survive in aquatic ecosystems in the form of biofilms, surface-associated microbial aggregates embedded in an extracellular matrix, which protects them from predators and hostile environmental factors. Biofilm-derived bacteria and biofilm aggregates are considered a likely source for cholera infections, underscoring the importance of V. cholerae biofilm research not just to better understand bacterial ecology, but also cholera pathogenesis in the human host. While several studies focused on factors induced during biofilm formation, genes repressed during this persistence stage have been fairly neglected. In order to complement these previous studies, we used a single cell-based transcriptional reporter system named TetR-controlled recombination-based in-biofilm expression technology (TRIBET) and identified 192 genes to be specifically repressed by V. cholerae during biofilm formation. Predicted functions of in-biofilm repressed (ibr) genes range from metabolism, regulation, surface association, transmembrane transport as well as motility and chemotaxis. Constitutive (over)-expression of these genes affected static and dynamic biofilm formation of V. cholerae at different stages. Notably, timed expression of one candidate in mature biofilms induced their rapid dispersal. Thus, genes repressed during biofilm formation are not only dispensable for this persistence stage, but their presence can interfere with ordered biofilm development. This work thus contributes new insights into gene silencing during biofilm formation of V. cholerae.
Collapse
Affiliation(s)
- Joao P. Pombo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Anna M. Müller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth – University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
7
|
Correia Santos S, Bischler T, Westermann AJ, Vogel J. MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT. Cell Rep 2021; 34:108722. [PMID: 33535041 DOI: 10.1016/j.celrep.2021.108722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/25/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.
Collapse
Affiliation(s)
- Sara Correia Santos
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| |
Collapse
|
8
|
Peschek N, Herzog R, Singh PK, Sprenger M, Meyer F, Fröhlich KS, Schröger L, Bramkamp M, Drescher K, Papenfort K. RNA-mediated control of cell shape modulates antibiotic resistance in Vibrio cholerae. Nat Commun 2020; 11:6067. [PMID: 33247102 PMCID: PMC7695739 DOI: 10.1038/s41467-020-19890-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae, the cause of cholera disease, exhibits a characteristic curved rod morphology, which promotes infectivity and motility in dense hydrogels. Periplasmic protein CrvA determines cell curvature in V. cholerae, yet the regulatory factors controlling CrvA are unknown. Here, we discover the VadR small RNA (sRNA) as a post-transcriptional inhibitor of the crvA mRNA. Mutation of vadR increases cell curvature, whereas overexpression has the inverse effect. We show that vadR transcription is activated by the VxrAB two-component system and triggered by cell-wall-targeting antibiotics. V. cholerae cells failing to repress crvA by VadR display decreased survival upon challenge with penicillin G indicating that cell shape maintenance by the sRNA is critical for antibiotic resistance. VadR also blocks the expression of various key biofilm genes and thereby inhibits biofilm formation in V. cholerae. Thus, VadR is an important regulator for synchronizing peptidoglycan integrity, cell shape, and biofilm formation in V. cholerae.
Collapse
Affiliation(s)
- Nikolai Peschek
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Roman Herzog
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marcel Sprenger
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
| | - Fabian Meyer
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Luise Schröger
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
| | - Marc Bramkamp
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, 07745, Jena, Germany.
- Faculty of Biology, Ludwig-Maximilians-University of Munich, 82152, Martinsried, Germany.
- Microverse Cluster, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
9
|
Abstract
Hfq (host factor for phage Q beta) is key for posttranscriptional gene regulation in many bacteria. Hfq's function is to stabilize sRNAs and to facilitate base-pairing with trans-encoded target mRNAs. Loss of Hfq typically results in pleiotropic phenotypes, and, in the major human pathogen Vibrio cholerae, Hfq inactivation has been linked to reduced virulence, failure to produce biofilms, and impaired intercellular communication. However, the RNA ligands of Hfq in V. cholerae are currently unknown. Here, we used RIP-seq (RNA immunoprecipitation followed by high-throughput sequencing) analysis to identify Hfq-bound RNAs in V. cholerae Our work revealed 603 coding and 85 noncoding transcripts associated with Hfq, including 44 sRNAs originating from the 3' end of mRNAs. Detailed investigation of one of these latter transcripts, named FarS (fatty acid regulated sRNA), showed that this sRNA is produced by RNase E-mediated maturation of the fabB 3'UTR, and, together with Hfq, inhibits the expression of two paralogous fadE mRNAs. The fabB and fadE genes are antagonistically regulated by the major fatty acid transcription factor, FadR, and we show that, together, FadR, FarS, and FadE constitute a mixed feed-forward loop regulating the transition between fatty acid biosynthesis and degradation in V. cholerae Our results provide the molecular basis for studies on Hfq in V. cholerae and highlight the importance of a previously unrecognized sRNA for fatty acid metabolism in this major human pathogen.
Collapse
|
10
|
Xi D, Li Y, Yan J, Li Y, Wang X, Cao B. Small RNA coaR contributes to intestinal colonization in Vibrio cholerae via the two-component system EnvZ/OmpR. Environ Microbiol 2020; 22:4231-4243. [PMID: 31868254 DOI: 10.1111/1462-2920.14906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae is a waterborne bacterium responsible for worldwide outbreaks of acute and fatal cholera. Recently, small regulatory RNAs (sRNAs) have become increasingly recognized as important regulators of virulence gene expression in response to environmental signals. In this study, we determined that two-component system EnvZ/OmpR was required for intestinal colonization in V. cholerae O1 EI Tor strain E12382. Analysis of the characteristics of OmpR revealed a potential binding site in the intergenic region between vc1470 and vc1471, and qRT-PCR showed that expression of the intergenic region increased 5.3-fold in the small intestine compared to LB medium. Race and northern blot assays were performed and demonstrated a new sRNA, coaR (cholerae osmolarity and acidity related regulatory RNA). A ΔcoaR mutant showed a deficient colonization ability in small intestine with CI of 0.15. We identified a target of coaR, tcpI, a negative regulator of the major pilin subunit of TcpA. The ΔtcpI mutant has an increased colonization with CI of 3.16. The expression of coaR increased 2.8-fold and 3.3-fold under relative acidic and hypertonic condition. In summary, coaR was induced under the condition of high osmolarity and acid stress via EnvZ/OmpR and explained that tcpI relieves pH-mediated repression of toxin co-regulated pilus synthesis.
Collapse
Affiliation(s)
- Daoyi Xi
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yujia Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Xiaochen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, 300457, China.,Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin, 300457, China.,Tianjin Research Center for Functional Genomics and Biochips, TEDA College, Nankai University, Tianjin, 300457, China.,Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin, 300457, China
| |
Collapse
|
11
|
The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability. J Bacteriol 2019; 201:JB.00293-19. [PMID: 31405916 DOI: 10.1128/jb.00293-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/17/2019] [Indexed: 11/20/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a bacterial second messenger molecule that is important in the biology of Vibrio cholerae, but the molecular mechanisms by which this molecule regulates downstream phenotypes have not been fully characterized. We have previously shown that the Vc2 c-di-GMP-binding riboswitch, encoded upstream of the gene tfoY, functions as an off switch in response to c-di-GMP. However, the mechanism by which c-di-GMP controls expression of tfoY has not been fully elucidated. During our studies of this mechanism, we determined that c-di-GMP binding to Vc2 also controls the abundance and stability of upstream noncoding RNAs with 3' ends located immediately downstream of the Vc2 riboswitch. Our results suggest these putative small RNAs (sRNAs) are not generated by transcriptional termination but rather by preventing degradation of the upstream untranslated RNA when c-di-GMP is bound to Vc2.IMPORTANCE Riboswitches are typically RNA elements located in the 5' untranslated region of mRNAs. They are highly structured and specifically recognize and respond to a given chemical cue to alter transcription termination or translation initiation. In this work, we report a novel mechanism of riboswitch-mediated gene regulation in Vibrio cholerae whereby a 3' riboswitch, named Vc2, controls the stability of upstream untranslated RNA upon binding to its cognate ligand, the second messenger cyclic di-GMP, leading to the accumulation of previously undescribed putative sRNAs. We further demonstrate that binding of the ligand to the riboswitch prevents RNA degradation. As binding of riboswitches to their ligands often produces compactly structured RNA, we hypothesize this mechanism of gene regulation is widespread.
Collapse
|
12
|
Plaza N, Pérez-Reytor D, Ramírez-Araya S, Pavón A, Corsini G, Loyola DE, Jaña V, Pavéz L, Navarrete P, Bastías R, Castillo D, García K. Conservation of Small Regulatory RNAs in Vibrio parahaemolyticus: Possible role of RNA-OUT Encoded by the Pathogenicity Island (VPaI-7) of Pandemic Strains. Int J Mol Sci 2019; 20:ijms20112827. [PMID: 31185635 PMCID: PMC6601013 DOI: 10.3390/ijms20112827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are molecules that play an important role in the regulation of gene expression. sRNAs in bacteria can affect important processes, such as metabolism and virulence. Previous studies showed a significant role of sRNAs in the Vibrio species, but knowledge about Vibrio parahaemolyticus is limited. Here, we examined the conservation of sRNAs between V. parahaemolyticus and other human Vibrio species, in addition to investigating the conservation between V. parahaemolyticus strains differing in pandemic origin. Our results showed that only 7% of sRNAs were conserved between V. parahaemolyticus and other species, but 88% of sRNAs were highly conserved within species. Nonetheless, two sRNAs coding to RNA-OUT, a component of the Tn10/IS10 system, were exclusively present in pandemic strains. Subsequent analysis showed that both RNA-OUT were located in pathogenicity island-7 and would interact with transposase VPA1379, according to the model of pairing of IS10-encoded antisense RNAs. According to the location of RNA-OUT/VPA1379, we also investigated if they were expressed during infection. We observed that the transcriptional level of VPA1379 was significantly increased, while RNA-OUT was decreased at three hours post-infection. We suggest that IS10 transcription increases in pandemic strains during infection, probably to favor IS10 transposition and improve their fitness when they are facing adverse conditions.
Collapse
Affiliation(s)
- Nicolás Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Sebastián Ramírez-Araya
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
- Departamento Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8320000, Chile.
| | - Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - David E Loyola
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| | - Víctor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Sede Providencia, Santiago 8320000, Chile.
| | - Leonardo Pavéz
- Instituto de Ciencias Naturales, Universidad de Las Américas, Santiago 8320000, Chile.
- Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago 8320000, Chile.
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Millenium nucleus in the Biology of Intestinal Microbiota, INTA, Universidad de Chile, Santiago 8320000, Chile.
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile.
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, DK-3000, 1353 Helsingør, Denmark.
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8320000, Chile.
| |
Collapse
|
13
|
Abstract
The study of bacteriophages (phages) and prophages has provided key insights into almost every cellular process as well as led to the discovery of unexpected new mechanisms and the development of valuable tools. This is exemplified for RNA-based regulation. For instance, the characterization and exploitation of the antiphage CRISPR (clustered regularly interspaced short palindromic repeat) systems is revolutionizing molecular biology. Phage-encoded proteins such as the RNA-binding MS2 protein, which is broadly used to isolate tagged RNAs, also have been developed as valuable tools. Hfq, the RNA chaperone protein central to the function of many base-pairing small RNAs (sRNAs), was first characterized as a bacterial host factor required for Qβ phage replication. The ongoing studies of RNAs are continuing to reveal regulatory connections between infecting phages, prophages, and bacteria and to provide novel insights. There are bacterial and prophage sRNAs that regulate prophage genes, which impact bacterial virulence as well as bacterial cell killing. Conversely, phage- and prophage-encoded sRNAs modulate the expression of bacterial genes modifying metabolism. An interesting subcategory of the prophage-encoded sRNAs are sponge RNAs that inhibit the activities of bacterial-encoded sRNAs. Phages also affect posttranscriptional regulation in bacteria through proteins that inhibit or alter the activities of key bacterial proteins involved in posttranscriptional regulation. However, what is most exciting about phage and prophage research, given the millions of phage-encoded genes that have not yet been characterized, is the vast potential for discovering new RNA regulators and novel mechanisms and for gaining insight into the evolution of regulatory RNAs.
Collapse
|
14
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Zhao X, Zhang Y, Huang X. Pathogenicity-island-encoded regulatory RNAs regulate bacterial virulence and pathogenesis. Microb Pathog 2018; 125:196-204. [PMID: 30227229 DOI: 10.1016/j.micpath.2018.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Bacterial regulatory RNAs (regRNAs) have been widely studied for decades and shown to be involved in various aspects of bacterial survival, including their virulence and pathogenesis. Recently, many regRNAs have been found to be encoded within bacterial pathogenicity islands (PAIs). These PAI-encoded regRNAs also play important regulatory roles in bacterial virulence and pathogenesis. In this review, we introduce the reported PAI-encoded regRNAs individually, focusing on their types, target genes, regulatory roles, regulatory mechanisms and significance. We also summarize the virulence and pathogenesis of the pathogens concerned.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
16
|
Cyclic di-GMP Positively Regulates DNA Repair in Vibrio cholerae. J Bacteriol 2018; 200:JB.00005-18. [PMID: 29610212 DOI: 10.1128/jb.00005-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
In Vibrio cholerae, high intracellular cyclic di-GMP (c-di-GMP) concentration are associated with a biofilm lifestyle, while low intracellular c-di-GMP concentrations are associated with a motile lifestyle. c-di-GMP also regulates other behaviors, such as acetoin production and type II secretion; however, the extent of phenotypes regulated by c-di-GMP is not fully understood. We recently determined that the sequence upstream of the DNA repair gene encoding 3-methyladenine glycosylase (tag) was positively induced by c-di-GMP, suggesting that this signaling system might impact DNA repair pathways. We identified a DNA region upstream of tag that is required for transcriptional induction by c-di-GMP. We further showed that c-di-GMP induction of tag expression was dependent on the c-di-GMP-dependent biofilm regulators VpsT and VpsR. In vitro binding assays and heterologous host expression studies show that VpsT acts directly at the tag promoter in response to c-di-GMP to induce tag expression. Last, we determined that strains with high c-di-GMP concentrations are more tolerant of the DNA-damaging agent methyl methanesulfonate. Our results indicate that the regulatory network of c-di-GMP in V. cholerae extends beyond biofilm formation and motility to regulate DNA repair through the VpsR/VpsT c-di-GMP-dependent cascade.IMPORTANCEVibrio cholerae is a prominent human pathogen that is currently causing a pandemic outbreak in Haiti, Yemen, and Ethiopia. The second messenger molecule cyclic di-GMP (c-di-GMP) mediates the transitions in V. cholerae between a sessile biofilm-forming state and a motile lifestyle, both of which are important during V. cholerae environmental persistence and human infections. Here, we report that in V. cholerae c-di-GMP also controls DNA repair. We elucidate the regulatory pathway by which c-di-GMP increases DNA repair, allowing this bacterium to tolerate high concentrations of mutagens at high intracellular levels of c-di-GMP. Our work suggests that DNA repair and biofilm formation may be linked in V. cholerae.
Collapse
|
17
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
18
|
Brosse A, Guillier M. Bacterial Small RNAs in Mixed Regulatory Networks. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0014-2017. [PMID: 29916348 PMCID: PMC11633589 DOI: 10.1128/microbiolspec.rwr-0014-2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/16/2022] Open
Abstract
Small regulatory RNAs are now recognized as key regulators of gene expression in bacteria. They accumulate under specific conditions, most often because their synthesis is directly controlled by transcriptional regulators, including but not limited to alternative sigma factors and response regulators of two-component systems. In turn, small RNAs regulate, mostly at the posttranscriptional level, expression of multiple genes, among which are genes encoding transcriptional regulators. Small RNAs are thus embedded in mixed regulatory circuits combining transcriptional and posttranscriptional controls, and whose properties are discussed here.
Collapse
Affiliation(s)
- Anaïs Brosse
- CNRS UMR8261, Associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Maude Guillier
- CNRS UMR8261, Associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| |
Collapse
|
19
|
Fakhry CT, Kulkarni P, Chen P, Kulkarni R, Zarringhalam K. Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach. BMC Genomics 2017; 18:645. [PMID: 28830349 PMCID: PMC5568370 DOI: 10.1186/s12864-017-4057-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Small RNAs (sRNAs) constitute an important class of post-transcriptional regulators that control critical cellular processes in bacteria. Recent research using high-throughput transcriptomic approaches has led to a dramatic increase in the discovery of bacterial sRNAs. However, it is generally believed that the currently identified sRNAs constitute a limited subset of the bacterial sRNA repertoire. In several cases, sRNAs belonging to a specific class are already known and the challenge is to identify additional sRNAs belonging to the same class. In such cases, machine-learning approaches can be used to predict novel sRNAs in a given class. METHODS In this work, we develop novel bioinformatics approaches that integrate sequence and structure-based features to train machine-learning models for the discovery of bacterial sRNAs. We show that features derived from recurrent structural motifs in the ensemble of low energy secondary structures can distinguish the RNA classes with high accuracy. RESULTS We apply this approach to predict new members in two broad classes of bacterial small RNAs: 1) sRNAs that bind to the RNA-binding protein RsmA/CsrA in diverse bacterial species and 2) sRNAs regulated by the master regulator of virulence, ToxT, in Vibrio cholerae. CONCLUSION The involvement of sRNAs in bacterial adaptation to changing environments is an increasingly recurring theme in current research in microbiology. It is likely that future research, combining experimental and computational approaches, will discover many more examples of sRNAs as components of critical regulatory pathways in bacteria. We have developed a novel approach for prediction of small RNA regulators in important bacterial pathways. This approach can be applied to specific classes of sRNAs for which several members have been identified and the challenge is to identify additional sRNAs.
Collapse
Affiliation(s)
- Carl Tony Fakhry
- Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Prajna Kulkarni
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Ping Chen
- Department of Engineering, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Rahul Kulkarni
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, 02125 MA USA
| |
Collapse
|
20
|
Abstract
Bacterial pathogens must endure or adapt to different environments and stresses during transmission and infection. Posttranscriptional gene expression control by regulatory RNAs, such as small RNAs and riboswitches, is now considered central to adaptation in many bacteria, including pathogens. The study of RNA-based regulation (riboregulation) in pathogenic species has provided novel insight into how these bacteria regulate virulence gene expression. It has also uncovered diverse mechanisms by which bacterial small RNAs, in general, globally control gene expression. Riboregulators as well as their targets may also prove to be alternative targets or provide new strategies for antimicrobials. In this article, we present an overview of the general mechanisms that bacteria use to regulate with RNA, focusing on examples from pathogens. In addition, we also briefly review how deep sequencing approaches have aided in opening new perspectives in small RNA identification and the study of their functions. Finally, we discuss examples of riboregulators in two model pathogens that control virulence factor expression or survival-associated phenotypes, such as stress tolerance, biofilm formation, or cell-cell communication, to illustrate how riboregulation factors into regulatory networks in bacterial pathogens.
Collapse
|
21
|
Grüll MP, Peña-Castillo L, Mulligan ME, Lang AS. Genome-wide identification and characterization of small RNAs in Rhodobacter capsulatus and identification of small RNAs affected by loss of the response regulator CtrA. RNA Biol 2017; 14:914-925. [PMID: 28296577 PMCID: PMC5546546 DOI: 10.1080/15476286.2017.1306175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are involved in the control of numerous cellular processes through various regulatory mechanisms, and in the past decade many studies have identified sRNAs in a multitude of bacterial species using RNA sequencing (RNA-seq). Here, we present the first genome-wide analysis of sRNA sequencing data in Rhodobacter capsulatus, a purple nonsulfur photosynthetic alphaproteobacterium. Using a recently developed bioinformatics approach, sRNA-Detect, we detected 422 putative sRNAs from R. capsulatus RNA-seq data. Based on their sequence similarity to sRNAs in a sRNA collection, consisting of published putative sRNAs from 23 additional bacterial species, and RNA databases, the sequences of 124 putative sRNAs were conserved in at least one other bacterial species; and, 19 putative sRNAs were assigned a predicted function. We bioinformatically characterized all putative sRNAs and applied machine learning approaches to calculate the probability of a nucleotide sequence to be a bona fide sRNA. The resulting quantitative model was able to correctly classify 95.2% of sequences in a validation set. We found that putative cis-targets for antisense and partially overlapping sRNAs were enriched with protein-coding genes involved in primary metabolic processes, photosynthesis, compound binding, and with genes forming part of macromolecular complexes. We performed differential expression analysis to compare the wild type strain to a mutant lacking the response regulator CtrA, an important regulator of gene expression in R. capsulatus, and identified 18 putative sRNAs with differing levels in the two strains. Finally, we validated the existence and expression patterns of four novel sRNAs by Northern blot analysis.
Collapse
Affiliation(s)
- Marc P Grüll
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Lourdes Peña-Castillo
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada.,b Department of Computer Science , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Martin E Mulligan
- c Department of Biochemistry , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Andrew S Lang
- a Department of Biology , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
22
|
Pérez-Reytor D, Plaza N, Espejo RT, Navarrete P, Bastías R, Garcia K. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios. Front Microbiol 2017; 7:2160. [PMID: 28123382 PMCID: PMC5225090 DOI: 10.3389/fmicb.2016.02160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| | - Nicolás Plaza
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSan Miguel, Chile; Institute of Nutrition and Food Technology, University of ChileSantiago, Chile
| | - Romilio T Espejo
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Katherine Garcia
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| |
Collapse
|
23
|
Immunity Provided by an Outer Membrane Vesicle Cholera Vaccine Is Due to O-Antigen-Specific Antibodies Inhibiting Bacterial Motility. Infect Immun 2016; 85:IAI.00626-16. [PMID: 27795359 DOI: 10.1128/iai.00626-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/06/2016] [Indexed: 11/20/2022] Open
Abstract
An outer membrane vesicle (OMV)-based cholera vaccine is highly efficacious in preventing intestinal colonization in the suckling mouse model. Immunity from OMVs comes from immunoglobulin (Ig), particularly IgG, in the milk of mucosally immunized dams. Anti-OMV IgG renders Vibrio cholerae organisms immotile, thus they pass through the small intestine without colonizing. However, the importance of motility inhibition for protection and the mechanism by which motility is inhibited remain unclear. By using both in vitro and in vivo experiments, we found that IgG inhibits motility by specifically binding to the O-antigen of V. cholerae We demonstrate that the bivalent structure of IgG, although not required for binding to the O-antigen, is required for motility inhibition. Finally, we show using competition assays in suckling mice that inhibition of motility appears to be responsible for most, if not all, of the protection engendered by OMV vaccination, thus providing insight into the mechanism of immune protection.
Collapse
|
24
|
Fröhlich KS, Papenfort K. Interplay of regulatory RNAs and mobile genetic elements in enteric pathogens. Mol Microbiol 2016; 101:701-13. [DOI: 10.1111/mmi.13428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Kathrin S. Fröhlich
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology; Ludwig-Maximilians-University Munich; 82152 Martinsried Germany
| |
Collapse
|
25
|
Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization. PLoS Pathog 2016; 12:e1005570. [PMID: 27070545 PMCID: PMC4829181 DOI: 10.1371/journal.ppat.1005570] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023] Open
Abstract
The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR’s genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters. The transcription factor ToxR initiates a virulence regulatory cascade required for V. cholerae to express essential host colonization factors and cause disease. Genome-wide expression studies suggest that ToxR regulates many genes important for V. cholerae pathogenesis, yet our knowledge of the direct regulon controlled by ToxR is limited to just four genes. Here, we determine ToxR’s genome-wide DNA-binding profile and show that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors. Our results suggest that ToxR has gained regulatory control over important acquired elements that not only drive V. cholerae pathogenesis, but also define the major transitions of V. cholerae pandemic lineages. We demonstrate that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS for control of critical colonization functions. This regulatory interaction is the major role of ToxR in V. cholerae colonization, since deletion of hns abrogates the need for ToxR in V. cholerae host colonization. By comparing the genome-wide binding profiles of ToxR and other critical virulence regulators, we show that, despite similar predicted DNA binding requirements, ToxR is unique in its global control of progenitor-encoded and acquired genes. Our results suggest that factors in addition to primary DNA structure determine selection of ToxR binding sites.
Collapse
Affiliation(s)
- Misha I. Kazi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron R. Conrado
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alexandra R. Mey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Thébault P, Bourqui R, Benchimol W, Gaspin C, Sirand-Pugnet P, Uricaru R, Dutour I. Advantages of mixing bioinformatics and visualization approaches for analyzing sRNA-mediated regulatory bacterial networks. Brief Bioinform 2015; 16:795-805. [PMID: 25477348 PMCID: PMC4570199 DOI: 10.1093/bib/bbu045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/05/2014] [Indexed: 12/29/2022] Open
Abstract
The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA-mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA-mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks.
Collapse
|
27
|
Wang Y, Ke Y, Xu J, Wang L, Wang T, Liang H, Zhang W, Gong C, Yuan J, Zhuang Y, An C, Lei S, Du X, Wang Z, Li W, Yuan X, Huang L, Yang X, Chen Z. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis. Front Microbiol 2015; 6:164. [PMID: 25852653 PMCID: PMC4365724 DOI: 10.3389/fmicb.2015.00164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Yuehua Ke
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Jie Xu
- Laboratory of Clinical Immunology in Jiangsu Province, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Ligui Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Tongkun Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Hui Liang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Wei Zhang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Chunli Gong
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Jiuyun Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Yubin Zhuang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Chang An
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Shuangshuang Lei
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xinying Du
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Zhoujia Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Wenna Li
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xitong Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Liuyu Huang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xiaoli Yang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Zeliang Chen
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| |
Collapse
|
28
|
Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS One 2015; 10:e0118595. [PMID: 25739023 PMCID: PMC4349823 DOI: 10.1371/journal.pone.0118595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/21/2015] [Indexed: 12/18/2022] Open
Abstract
Wolbachia pipientis is an endosymbiotic bacterium that induces a wide range of effects in its insect hosts, including manipulation of reproduction and protection against pathogens. Little is known of the molecular mechanisms underlying the insect-Wolbachia interaction, though it is likely to be mediated via the secretion of proteins or other factors. There is an increasing amount of evidence that bacteria regulate many cellular processes, including secretion of virulence factors, using small non-coding RNAs (sRNAs), but sRNAs have not previously been described from Wolbachia. We have used two independent approaches, one based on comparative genomics and the other using RNA-Seq data generated for gene expression studies, to identify candidate sRNAs in Wolbachia. We experimentally characterized the expression of one of these candidates in four Wolbachia strains, and showed that it is differentially regulated in different host tissues and sexes. Given the roles played by sRNAs in other host-associated bacteria, the conservation of the candidate sRNAs between different Wolbachia strains, and the sex- and tissue-specific differential regulation we have identified, we hypothesise that sRNAs may play a significant role in the biology of Wolbachia, and in particular in its interactions with its host.
Collapse
|
29
|
Mechanism for inhibition of Vibrio cholerae ToxT activity by the unsaturated fatty acid components of bile. J Bacteriol 2015; 197:1716-25. [PMID: 25733618 DOI: 10.1128/jb.02409-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/24/2015] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED The Gram-negative curved bacillus Vibrio cholerae causes the severe diarrheal illness cholera. During host infection, a complex regulatory cascade results in production of ToxT, a DNA-binding protein that activates the transcription of major virulence genes that encode cholera toxin (CT) and toxin-coregulated pilus (TCP). Previous studies have shown that bile and its unsaturated fatty acid (UFA) components reduce virulence gene expression and therefore are likely important signals upon entering the host. However, the mechanism for the bile-mediated reduction of TCP and CT expression has not been clearly defined. There are two likely hypotheses to explain this reduction: (i) UFAs decrease DNA binding by ToxT, or (ii) UFAs decrease dimerization of ToxT. The work presented here elucidates that bile or UFAs directly affect DNA binding by ToxT. UFAs, specifically linoleic acid, can enter V. cholerae when added exogenously and are present in the cytoplasm, where they can then interact with ToxT. Electrophoretic mobility shift assays (EMSAs) with ToxT and various virulence promoters in the presence or absence of UFAs showed a direct reduction in ToxT binding to DNA, even in promoters with only one ToxT binding site. Virstatin, a synthetic ToxT inhibitor, was previously shown to reduce ToxT dimerization. Here we show that virstatin affects DNA binding only at ToxT promoters with two binding sites, unlike linoleic acid, which affects ToxT binding promoters having either one or two ToxT binding sites. This suggests a mechanism in which UFAs, unlike virstatin, do not affect dimerization but affect monomeric ToxT binding to DNA. IMPORTANCE Vibrio cholerae must produce the major virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause cholera. CT and TCP production depends on ToxT, the major virulence transcription activator. ToxT activity is negatively regulated by unsaturated fatty acids (UFAs) present in the lumen of the upper small intestine. This study investigated the mechanism for inhibition of ToxT activity by UFAs and found that UFAs directly reduce specific ToxT binding to DNA at virulence promoters and subsequently reduce virulence gene expression. UFAs inhibit ToxT monomers from binding DNA. This differs from the inhibitory mechanism of a synthetic ToxT inhibitor, virstatin, which inhibits ToxT dimerization. Understanding the mechanisms for inhibition of virulence could lead to better cholera therapeutics.
Collapse
|
30
|
Zhu DQ, Liu F, Sun Y, Yang LM, Xin L, Meng XC. Genome-wide identification of small RNAs in Bifidobacterium animalis subsp. lactis KLDS 2.0603 and their regulation role in the adaption to gastrointestinal environment. PLoS One 2015; 10:e0117373. [PMID: 25706951 PMCID: PMC4338058 DOI: 10.1371/journal.pone.0117373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/21/2014] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Bifidobacteria are one of the predominant bacterial species in the human gastrointestinal tract (GIT) and play a vital role in the host's health by acting as probiotics. However, how they regulate themselves to adapt to GIT of their host remains unknown. METHODS Eighteen bifidobacterial strains were used to analyze their adaptive capacities towards simulated GIT environment. The strain with highest survival rate and adhesion ability was selected for comparative genome as well as transcriptomic analysis. RESULTS The Bifidobacterium animalis subsp. lactis KLDS 2.0603 strain was demonstrated to have the highest survival rate and adhesion ability in simulated GIT treatments. The comparative genome analysis revealed that the KLDS 2.0603 has most similar whole genome sequence compared with BB-12 strain. Eleven intergenic sRNAs were identified after genomes prediction and transcriptomic analysis of KLDS 2.0603. Transcriptomic analysis also showed that genes (mainly sRNAs targeted genes) and sRNAs were differentially expressed in different stress conditions, suggesting that sRNAs might play a crucial role in regulating genes involved in the stress resistance of this strain towards environmental changes. CONCLUSIONS This study first provided deep and comprehensive insights into the regulation of KLDS 2.0603 strain at transcription and post-transcription level towards environmental.
Collapse
Affiliation(s)
- De-Quan Zhu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Life Science, Jiamusi University, Jiamusi, People’s Republic of China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yu Sun
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Li-Mei Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Li Xin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People’s Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
31
|
Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci U S A 2015; 112:E766-75. [PMID: 25646441 DOI: 10.1073/pnas.1500203112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing (QS) is a process of cell-to-cell communication that enables bacteria to transition between individual and collective lifestyles. QS controls virulence and biofilm formation in Vibrio cholerae, the causative agent of cholera disease. Differential RNA sequencing (RNA-seq) of wild-type V. cholerae and a locked low-cell-density QS-mutant strain identified 7,240 transcriptional start sites with ∼ 47% initiated in the antisense direction. A total of 107 of the transcripts do not appear to encode proteins, suggesting they specify regulatory RNAs. We focused on one such transcript that we name VqmR. vqmR is located upstream of the vqmA gene encoding a DNA-binding transcription factor. Mutagenesis and microarray analyses demonstrate that VqmA activates vqmR transcription, that vqmR encodes a regulatory RNA, and VqmR directly controls at least eight mRNA targets including the rtx (repeats in toxin) toxin genes and the vpsT transcriptional regulator of biofilm production. We show that VqmR inhibits biofilm formation through repression of vpsT. Together, these data provide to our knowledege the first global annotation of the transcriptional start sites in V. cholerae and highlight the importance of posttranscriptional regulation for collective behaviors in this human pathogen.
Collapse
|
32
|
Thomson JJ, Plecha SC, Withey JH. A small unstructured region in Vibrio cholerae ToxT mediates the response to positive and negative effectors and ToxT proteolysis. J Bacteriol 2015; 197:654-68. [PMID: 25422303 PMCID: PMC4285994 DOI: 10.1128/jb.02068-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/14/2014] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. The production of the virulence factors that are required for human disease is controlled by a complex network of transcriptional and posttranscriptional regulators. ToxT is the transcription regulator that directly controls the production of the two major virulence factors, toxin-coregulated pilus (TCP) and cholera toxin (CT). The solved crystal structure of ToxT revealed an unstructured region in the N-terminal domain between residues 100 and 110. This region and the surrounding amino acids have been previously implicated in ToxT proteolysis, resistance to inhibition by negative effectors, and ToxT dimerization. To better characterize this region, site-directed mutagenesis was performed to assess the effects on ToxT proteolysis and bile sensitivity. This analysis identified specific mutations within this unstructured region that prevent ToxT proteolysis and other mutations that reduce inhibition by bile and unsaturated fatty acids. In addition, we found that mutations that affect the sensitivity of ToxT to bile also affect the sensitivity of ToxT to its positive effector, bicarbonate. These results suggest that a small unstructured region in the ToxT N-terminal domain is involved in multiple aspects of virulence gene regulation and response to human host signals.
Collapse
Affiliation(s)
- Joshua J Thomson
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sarah C Plecha
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
33
|
Tsai CH, Liao R, Chou B, Palumbo M, Contreras LM. Genome-wide analyses in bacteria show small-RNA enrichment for long and conserved intergenic regions. J Bacteriol 2015; 197:40-50. [PMID: 25313390 PMCID: PMC4288687 DOI: 10.1128/jb.02359-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022] Open
Abstract
Interest in finding small RNAs (sRNAs) in bacteria has significantly increased in recent years due to their regulatory functions. Development of high-throughput methods and more sophisticated computational algorithms has allowed rapid identification of sRNA candidates in different species. However, given their various sizes (50 to 500 nucleotides [nt]) and their potential genomic locations in the 5' and 3' untranslated regions as well as in intergenic regions, identification and validation of true sRNAs have been challenging. In addition, the evolution of bacterial sRNAs across different species continues to be puzzling, given that they can exert similar functions with various sequences and structures. In this study, we analyzed the enrichment patterns of sRNAs in 13 well-annotated bacterial species using existing transcriptome and experimental data. All intergenic regions were analyzed by WU-BLAST to examine conservation levels relative to species within or outside their genus. In total, more than 900 validated bacterial sRNAs and 23,000 intergenic regions were analyzed. The results indicate that sRNAs are enriched in intergenic regions, which are longer and more conserved than the average intergenic regions in the corresponding bacterial genome. We also found that sRNA-coding regions have different conservation levels relative to their flanking regions. This work provides a way to analyze how noncoding RNAs are distributed in bacterial genomes and also shows conserved features of intergenic regions that encode sRNAs. These results also provide insight into the functions of regions surrounding sRNAs and into optimization of RNA search algorithms.
Collapse
Affiliation(s)
- Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Rick Liao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Brendan Chou
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, USA
| | - Michael Palumbo
- Computational Biology and Statistics, Wadsworth Center, Albany, New York, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
34
|
Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters. J Bacteriol 2014; 196:3872-80. [PMID: 25182489 DOI: 10.1128/jb.01824-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for the production of the diarrhea-inducing cholera toxin (CT) and the major colonization factor, toxin coregulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is responsible for the activation of accessory virulence genes, such as aldA, tagA, acfA, acfD, tcpI, and tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, which enhances the ability of ToxT to activate production of CT and TCP. The work presented here further elucidates the mechanism for the enhancement of ToxT activity by bicarbonate. Bicarbonate was found to increase the activation of ToxT-dependent accessory virulence promoters in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, where it positively affects ToxT activity by increasing DNA binding affinity for the virulence gene promoters that ToxT activates regardless of toxbox configuration. The increase in ToxT binding affinity in the presence of bicarbonate explains the elevated level of virulence gene transcription.
Collapse
|
35
|
Fu Y, Waldor MK, Mekalanos JJ. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe 2014; 14:652-63. [PMID: 24331463 DOI: 10.1016/j.chom.2013.11.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/09/2013] [Accepted: 10/25/2013] [Indexed: 02/08/2023]
Abstract
Analysis of genes required for host infection will provide clues to the drivers of evolutionary fitness of pathogens like Vibrio cholerae, a mounting threat to global heath. We used transposon insertion site sequencing (Tn-seq) to comprehensively assess the contribution of nearly all V. cholerae genes toward growth in the infant rabbit intestine. Four hundred genes were identified as critical to V. cholerae in vivo fitness. These included most known colonization factors and several new genes affecting the bacterium's metabolic properties, resistance to bile, and ability to synthesize cyclic AMP-GMP. Notably, a mutant carrying an insertion in tsiV3, encoding immunity to a bacteriocidal type VI secretion system (T6SS) effector VgrG3, exhibited a colonization defect. The reduced in vivo fitness of tsiV3 mutants depends on their cocolonization with bacterial cells carrying an intact T6SS locus and VgrG3 gene, suggesting that the V. cholerae T6SS is functional and mediates antagonistic interbacterial interactions during infection.
Collapse
Affiliation(s)
- Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; College of Life Science, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Disease, Brigham & Women's Hospital, and Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Vercruysse M, Köhrer C, Davies BW, Arnold MFF, Mekalanos JJ, RajBhandary UL, Walker GC. The highly conserved bacterial RNase YbeY is essential in Vibrio cholerae, playing a critical role in virulence, stress regulation, and RNA processing. PLoS Pathog 2014; 10:e1004175. [PMID: 24901994 PMCID: PMC4047096 DOI: 10.1371/journal.ppat.1004175] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3′ end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3′ end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes. Bacteria adapt and survive unfavorable environments by quickly changing their gene expression and physiology, for example as pathogens do during infection of host cells. Gene expression is often determined by RNA turnover, a balance between transcription and RNA decay carried out by multiple RNases. The recently identified RNase YbeY was shown in E. coli to participate in rRNA maturation and 70 S ribosome quality control, however YbeY's roles in other organisms and the extent of functional conservation is unknown. Here, we show that YbeY is an essential RNase in the pathogen Vibrio cholerae, critical for cell fitness and general stress tolerance. We demonstrate that YbeY is crucial for 16 S rRNA 3′ end maturation, assembly of functional 70 S ribosomes and ribosome quality control. Moreover, YbeY regulates virulence-associated small RNAs and its depletion leads to an overall reduction in pathogenesis, exemplified by significantly decreased biofilm formation, mouse colonization and cholera toxin production. We also show that YbeY belongs to a minimal core set of RNases essential in most representative pathogens. The multifaceted roles of YbeY in several essential cellular processes and its highly conserved function across bacterial species, suggest that YbeY could be an attractive new antimicrobial target.
Collapse
Affiliation(s)
- Maarten Vercruysse
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Markus F. F. Arnold
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John J. Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachussets, United States of America
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Zeng Q, Sundin GW. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genomics 2014; 15:414. [PMID: 24885615 PMCID: PMC4070566 DOI: 10.1186/1471-2164-15-414] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Erwinia amylovora is a phytopathogenic bacterium and causal agent of fire blight disease in apples and pears. Although many virulence factors have been characterized, the coordination of expression of these virulence factors in E. amylovora is still not clear. Regulatory small RNAs (sRNAs) are important post-transcriptional regulatory components in bacteria. A large number of sRNAs require the RNA chaperone Hfq for both stability and functional activation. In E. amylovora, Hfq was identified as a major regulator of virulence and various virulence traits. However, information is still lacking about Hfq-dependent sRNAs on a genome scale, including the virulence regulatory functions of these sRNAs in E. amylovora. RESULTS Using both an RNA-seq analysis and a Rho-independent terminator search, 40 candidate Hfq-dependent sRNAs were identified in E. amylovora. The expression and sizes of 12 sRNAs and the sequence boundaries of seven sRNAs were confirmed by Northern blot and 5' RACE assay respectively. Sequence conservation analysis identified sRNAs conserved only in the Erwinia genus as well as E. amylovora species-specific sRNAs. In addition, a dynamic re-patterning of expression of Hfq-dependent sRNAs was observed at 6 and 12 hours after induction in Hrp-inducing minimal medium. Furthermore, sRNAs that control virulence traits were characterized, among which ArcZ positively controls the type III secretion system (T3SS), amylovoran exopolysaccahride production, biofilm formation, and motility, and negatively modulates attachment while RmaA (Hrs6) and OmrAB both negatively regulate amylovoran production and positively regulate motility. CONCLUSIONS This study has significantly enhanced our understanding of the Hfq-dependent sRNAs in E. amylovora at the genome level. The identification of multiple virulence-regulating sRNAs also suggests that post-transcriptional regulation by sRNAs may play a role in the deployment of virulence factors needed during varying stages of pathogenesis during host invasion by E. amylovora.
Collapse
Affiliation(s)
- Quan Zeng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
38
|
Michaux C, Verneuil N, Hartke A, Giard JC. Physiological roles of small RNA molecules. MICROBIOLOGY-SGM 2014; 160:1007-1019. [PMID: 24694375 DOI: 10.1099/mic.0.076208-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Unlike proteins, RNA molecules have emerged lately as key players in regulation in bacteria. Most reviews hitherto focused on the experimental and/or in silico methods used to identify genes encoding small RNAs (sRNAs) or on the diverse mechanisms of these RNA regulators to modulate expression of their targets. However, less is known about their biological functions and their implications in various physiological responses. This review aims to compile what is known presently about the diverse roles of sRNA transcripts in the regulation of metabolic processes, in different growth conditions, in adaptation to stress and in microbial pathogenesis. Several recent studies revealed that sRNA molecules are implicated in carbon metabolism and transport, amino acid metabolism or metal sensing. Moreover, regulatory RNAs participate in cellular adaptation to environmental changes, e.g. through quorum sensing systems or development of biofilms, and analyses of several sRNAs under various physiological stresses and culture conditions have already been performed. In addition, recent experiments performed with Gram-positive and Gram-negative pathogens showed that regulatory RNAs play important roles in microbial virulence and during infection. The combined results show the diversity of regulation mechanisms and physiological processes in which sRNA molecules are key actors.
Collapse
Affiliation(s)
- Charlotte Michaux
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence, Université de Caen, 14032 Caen, France
| | - Nicolas Verneuil
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence, Université de Caen, 14032 Caen, France
| | - Axel Hartke
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence, Université de Caen, 14032 Caen, France
| | | |
Collapse
|
39
|
Nguyen AN, Jacq A. Small RNAs in the Vibrionaceae: an ocean still to be explored. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:381-92. [PMID: 24458378 DOI: 10.1002/wrna.1218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/09/2022]
Abstract
In bacteria, the discovery of noncoding small RNAs (sRNAs) as modulators of gene expression in response to environmental signals has brought new insights into bacterial gene regulation, including control of pathogenicity. The Vibrionaceae constitute a family of marine bacteria of which many are responsible for infections affecting not only humans, such as Vibrio cholerae but also fish and marine invertebrates, representing the major cause of mortality in farmed marine species. They are able to colonize many habitats, existing as planktonic forms, in biofilms or associated with various hosts. This high adaptability is linked to their capacity to generate genetic diversity, in part through lateral gene transfer, but also by varying gene expression control. In the recent years, several major studies have illustrated the importance of small regulatory sRNAs in the Vibrionaceae for the control of pathogenicity and adaptation to environment and nutrient sources such as chitin, especially in V. cholerae and Vibrio harveyi. The existence of a complex regulatory network controlled by quorum sensing has been demonstrated in which sRNAs play central roles. This review covers major advances made in the discovery and elucidation of functions of Vibrionaceae sRNAs within the last 10 years.
Collapse
Affiliation(s)
- An Ngoc Nguyen
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
40
|
Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 2013; 3:a010298. [PMID: 24003243 DOI: 10.1101/cshperspect.a010298] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate after host infection. Regulatory RNAs are now recognized as important components of these networks, and their study may not only identify new approaches to combat infectious diseases but also reveal new general control mechanisms involved in bacterial gene expression. In this review, we illustrate the diversity of regulatory RNAs in bacterial pathogens, their mechanism of action, and how they can be integrated into the regulatory circuits that govern virulence-factor production.
Collapse
Affiliation(s)
- Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, F-67084 Strasbourg, France
| | | | | | | |
Collapse
|
41
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 626] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Toffano-Nioche C, Nguyen AN, Kuchly C, Ott A, Gautheret D, Bouloc P, Jacq A. Transcriptomic profiling of the oyster pathogen Vibrio splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the Vibrio genus. RNA (NEW YORK, N.Y.) 2012; 18:2201-2219. [PMID: 23097430 PMCID: PMC3504672 DOI: 10.1261/rna.033324.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
Work in recent years has led to the recognition of the importance of small regulatory RNAs (sRNAs) in bacterial regulation networks. New high-throughput sequencing technologies are paving the way to the exploration of an expanding sRNA world in nonmodel bacteria. In the Vibrio genus, compared to the enterobacteriaceae, still a limited number of sRNAs have been characterized, mostly in Vibrio cholerae, where they have been shown to be important for virulence, as well as in Vibrio harveyi. In addition, genome-wide approaches in V. cholerae have led to the discovery of hundreds of potential new sRNAs. Vibrio splendidus is an oyster pathogen that has been recently associated with massive mortality episodes in the French oyster growing industry. Here, we report the first RNA-seq study in a Vibrio outside of the V. cholerae species. We have uncovered hundreds of candidate regulatory RNAs, be it cis-regulatory elements, antisense RNAs, and trans-encoded sRNAs. Conservation studies showed the majority of them to be specific to V. splendidus. However, several novel sRNAs, previously unidentified, are also present in V. cholerae. Finally, we identified 28 trans sRNAs that are conserved in all the Vibrio genus species for which a complete genome sequence is available, possibly forming a Vibrio "sRNA core."
Collapse
Affiliation(s)
- Claire Toffano-Nioche
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - An N. Nguyen
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - Claire Kuchly
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - Alban Ott
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - Daniel Gautheret
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - Philippe Bouloc
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | - Annick Jacq
- Institut de Génétique et Microbiologie, CNRS/UMR 8621, IFR115, Université Paris-Sud, Bâtiment 400, 91405 Orsay Cedex, France
| |
Collapse
|
43
|
Roux N, Spagnolo J, de Bentzmann S. Neglected but amazingly diverse type IVb pili. Res Microbiol 2012; 163:659-73. [PMID: 23103334 DOI: 10.1016/j.resmic.2012.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/19/2012] [Indexed: 01/12/2023]
Abstract
This review provides an overview of current knowledge concerning type IVb pili in Gram-negative bacteria. The number of these pili identified is steadily increasing with genome sequencing and mining studies, but studies of these pili are somewhat uneven, because their expression is tightly regulated and the signals or regulators controlling expression need to be identified. However, as illustrated here, they have a number of interesting functional, assembly-related and regulatory features.
Collapse
Affiliation(s)
- Nicolas Roux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255 - Aix Marseille University, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402, cédex 20, Marseille, France
| | | | | |
Collapse
|
44
|
Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 2012; 8:e1002917. [PMID: 23028317 PMCID: PMC3441752 DOI: 10.1371/journal.ppat.1002917] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 08/05/2012] [Indexed: 02/05/2023] Open
Abstract
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.
Collapse
Affiliation(s)
- Kimberley D. Seed
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Shah M. Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Klein C, Marino A, Sagot MF, Vieira Milreu P, Brilli M. Structural and dynamical analysis of biological networks. Brief Funct Genomics 2012; 11:420-33. [PMID: 22908211 DOI: 10.1093/bfgp/els030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biological networks are currently being studied with approaches derived from the mathematical and physical sciences. Their structural analysis enables to highlight nodes with special properties that have sometimes been correlated with the biological importance of a gene or a protein. However, biological networks are dynamic both on the evolutionary time-scale, and on the much shorter time-scale of physiological processes. There is therefore no unique network for a given cellular process, but potentially many realizations, each with different properties as a consequence of regulatory mechanisms. Such realizations provide snapshots of a same network in different conditions, enabling the study of condition-dependent structural properties. True dynamical analysis can be obtained through detailed mathematical modeling techniques that are not easily scalable to full network models.
Collapse
|
46
|
Gómez-Lozano M, Marvig RL, Molin S, Long KS. Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa. Environ Microbiol 2012; 14:2006-16. [PMID: 22533370 DOI: 10.1111/j.1462-2920.2012.02759.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacterial small regulatory RNAs (sRNAs) function in post-transcriptional control of gene expression and control a variety of processes including metabolic reactions, stress responses and pathogenesis in response to environmental signals. A variety of approaches have been used previously to identify 44 sRNAs in the opportunistic human pathogen Pseudomonas aeruginosa. In this work, RNA sequencing (RNA-seq) is used to identify novel transcripts in P.aeruginosa involving a combination of three different sequencing libraries. Almost all known sRNAs and over 500 novel intergenic sRNAs are identified with this approach. Although the use of three libraries increased the number of novel transcripts identified, there were significant differences in the subset of transcripts detected in each library, underscoring the importance of library preparation strategy and relative sRNA abundance for successful sRNA detection. Nearly 90% of the novel sRNAs have no orthologous bacterial sequences outside of P.aeruginosa, supporting a limited degree of sequence conservation and rapid evolution of sRNAs at the species level. We anticipate that the data will be useful for the study of regulatory sRNAs in bacteria and that the approach described here may be applied to identify sRNAs in any bacterium under different growth and stress conditions.
Collapse
Affiliation(s)
- María Gómez-Lozano
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
47
|
Davies BW, Bogard RW, Young TS, Mekalanos JJ. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 2012; 149:358-70. [PMID: 22500802 PMCID: PMC3620040 DOI: 10.1016/j.cell.2012.01.053] [Citation(s) in RCA: 345] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/08/2011] [Accepted: 01/18/2012] [Indexed: 12/23/2022]
Abstract
The function of the Vibrio 7(th) pandemic island-1 (VSP-1) in cholera pathogenesis has remained obscure. Utilizing chromatin immunoprecipitation sequencing and RNA sequencing to map the regulon of the master virulence regulator ToxT, we identify a TCP island-encoded small RNA that reduces the expression of a previously unrecognized VSP-1-encoded transcription factor termed VspR. VspR modulates the expression of several VSP-1 genes including one that encodes a novel class of di-nucleotide cyclase (DncV), which preferentially synthesizes a previously undescribed hybrid cyclic AMP-GMP molecule. We show that DncV is required for efficient intestinal colonization and downregulates V. cholerae chemotaxis, a phenotype previously associated with hyperinfectivity. This pathway couples the actions of previously disparate genomic islands, defines VSP-1 as a pathogenicity island in V. cholerae, and implicates its occurrence in 7(th) pandemic strains as a benefit for host adaptation through the production of a regulatory cyclic di-nucleotide.
Collapse
Affiliation(s)
- Bryan W. Davies
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Ryan W. Bogard
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Travis S. Young
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - John J. Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
48
|
Bardill JP, Hammer BK. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biol 2012; 9:392-401. [PMID: 22546941 DOI: 10.4161/rna.19975] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the waterborne bacterium responsible for worldwide outbreaks of the acute, potentially fatal cholera diarrhea. The primary factors this human pathogen uses to cause the disease are controlled by a complex regulatory program linking extracellular signaling inputs to changes in expression of several critical virulence genes. Recently it has been uncovered that many non-coding regulatory sRNAs are important components of the V. cholerae virulence regulon. Most of these sRNAs appear to require the RNA-binding protein, Hfq, to interact with and alter the expression of target genes, while a few sRNAs appear to function by an Hfq-independent mechanism. Direct base-pairing between the sRNAs and putative target mRNAs has been shown in a few cases but the extent of each sRNAs regulon is not fully known. Genetic and biochemical methods, coupled with computational and genomics approaches, are being used to validate known sRNAs and also to identify many additional putative sRNAs that may play a role in the pathogenic lifestyle of V. cholerae.
Collapse
Affiliation(s)
- J Patrick Bardill
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
49
|
Olsen RJ, Long SW, Musser JM. Bacterial genomics in infectious disease and the clinical pathology laboratory. Arch Pathol Lab Med 2012; 136:1414-22. [PMID: 22439809 DOI: 10.5858/arpa.2012-0025-ra] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Throughout history, technologic advancements have fueled the engine of innovation, which, in turn, has driven discovery. Accordingly, recent advancements in DNA sequencing technology are revolutionizing bacterial genomics. OBJECTIVE To review important developments from the literature. The current state of bacterial genomics, with an emphasis on human pathogens and the clinical pathology laboratory, will be discussed. DATA SOURCES A comprehensive review was performed of the relevant literature indexed in PubMed (National Library of Medicine) and referenced medical texts. CONCLUSIONS Many important discoveries bearing on infectious disease research and pathology laboratory practice have been achieved through whole-genome sequencing strategies. Bacterial genomics has improved our understanding of molecular pathogenesis, host-pathogen interactions, and antibiotic-resistance mechanisms. Bacterial genomics has also facilitated the study of population structures, epidemics and outbreaks, and newly identified pathogens. Many opportunities now exist for clinical pathologists to contribute to bacterial genomics, including in the design of new diagnostic tests, therapeutic agents, and vaccines.
Collapse
Affiliation(s)
- Randall J Olsen
- Department of Pathology and Genomic Medicine, The Methodist Hospital System, Houston, TX 77030, USA.
| | | | | |
Collapse
|