1
|
Sloan MA, Scott A, Aghabi D, Mrvova L, Harding CR. Iron-mediated post-transcriptional regulation in Toxoplasma gondii. PLoS Pathog 2025; 21:e1012857. [PMID: 39899594 PMCID: PMC11801735 DOI: 10.1371/journal.ppat.1012857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2025] [Accepted: 12/21/2024] [Indexed: 02/05/2025] Open
Abstract
Iron is required to support almost all life; however, levels must be carefully regulated to maintain homeostasis. Although the obligate parasite Toxoplasma gondii requires iron, how it responds upon iron limitation has not been investigated. Here, we show that iron depletion triggers significant transcriptional changes in the parasite, including in iron-dependent pathways. We find that a subset of T. gondii transcripts contain stem-loop structures, which have been associated with post-transcriptional iron-mediated regulation in other cellular systems. We validate one of these (found in the 3' UTR of TGME49_261720) using a reporter cell line. We show that the presence of the stem-loop-containing UTR is sufficient to confer accumulation at the transcript and protein levels under low iron. This response is dose and time-dependent and is specific for iron. The accumulation of transcript is likely driven by an increased reporter mRNA stability under low iron. Interestingly, we find iron-mediated changes in mRNA stability in around 400 genes. To examine the potential mechanism of this stability, we tested aconitase interaction with mRNA in low iron and found 43 enriched transcripts, but no specific interaction with our reporter UTR. However, the endogenous UTR led to maintenance of protein levels and increased survival of the parasite under low iron. Our data demonstrate the existence of iron-mediated post-transcriptional regulation in Toxoplasma for the first time; and suggests iron-mediated regulation may be important to the parasite in low iron environments.
Collapse
Affiliation(s)
- Megan A. Sloan
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Adam Scott
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Dana Aghabi
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Lucia Mrvova
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Clare R. Harding
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Liang Q, Zhang S, Liu Z, Wang J, Yin H, Guan G, You C. Comparative genome-wide identification and characterization of SET domain-containing and JmjC domain-containing proteins in piroplasms. BMC Genomics 2024; 25:804. [PMID: 39187768 PMCID: PMC11346185 DOI: 10.1186/s12864-024-10731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND SET domain-containing histone lysine methyltransferases (HKMTs) and JmjC domain-containing histone demethylases (JHDMs) are essential for maintaining dynamic changes in histone methylation across parasite development and infection. However, information on the HKMTs and JHDMs in human pathogenic piroplasms, such as Babesia duncani and Babesia microti, and in veterinary important pathogens, including Babesia bigemina, Babesia bovis, Theileria annulata and Theileria parva, is limited. RESULTS A total of 38 putative KMTs and eight JHDMs were identified using a comparative genomics approach. Phylogenetic analysis revealed that the putative KMTs can be divided into eight subgroups, while the JHDMs belong to the JARID subfamily, except for BdJmjC1 (BdWA1_000016) and TpJmjC1 (Tp Muguga_02g00471) which cluster with JmjC domain only subfamily members. The motifs of SET and JmjC domains are highly conserved among piroplasm species. Interspecies collinearity analysis provided insight into the evolutionary duplication events of some SET domain and JmjC domain gene families. Moreover, relative gene expression analysis by RT‒qPCR demonstrated that the putative KMT and JHDM gene families were differentially expressed in different intraerythrocytic developmental stages of B. duncani, suggesting their role in Apicomplexa parasite development. CONCLUSIONS Our study provides a theoretical foundation and guidance for understanding the basic characteristics of several important piroplasm KMT and JHDM families and their biological roles in parasite differentiation.
Collapse
Affiliation(s)
- Qindong Liang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Shangdi Zhang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
| | - Zeen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China.
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China.
| |
Collapse
|
3
|
Jimenéz-Ruiz E, Li W, Meissner M. Where is the EXIT? Phenotypic screens for new egress factors in apicomplexan parasites. Mol Microbiol 2024; 121:359-367. [PMID: 37740453 DOI: 10.1111/mmi.15166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
Apicomplexans, such as Plasmodium and Toxoplasma are obligate intracellular parasites that invade, replicate and finally EXIT their host cell. During replication within a parasitophorous vacuole (PV), the parasites establish an extensive F-actin-containing network that connects individual parasites and is required for material exchange, recycling and the final steps of daughter cell assembly. After multiple rounds of replication, the parasites exit the host cell involving multiple signalling cascades, disassembly of the network, secretion of microneme proteins and activation of the acto-myosin motor. Blocking the host cell EXIT process leads to the formation of large PVs, making the screening for genes involved in exiting the cell relatively straightforward. Given that apicomplexans are highly diverse from other eukaryotes, approximately 30% of all genes are annotated as hypothetical, some apicomplexan-specific factors are likely to be critical during EXIT. This motivated several labs to design and perform forward genetic and phenotypic screens using various approaches, such as random insertion mutagenesis, temperature-sensitive mutants and, more recently, CRISPR/Cas9-mediated targeted editing and conditional mutagenesis. Here we will provide an overview of the technological developments over recent years and the most successful stories that led to the identification of new critical factors in Toxoplasma gondii.
Collapse
Affiliation(s)
- Elena Jimenéz-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Wei Li
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| |
Collapse
|
4
|
Pal J, Sharma V, Khanna A, Saha S. The SET7 protein of Leishmania donovani moderates the parasite's response to a hostile oxidative environment. J Biol Chem 2024; 300:105720. [PMID: 38311179 PMCID: PMC10907163 DOI: 10.1016/j.jbc.2024.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
SET domain proteins methylate specific lysines on proteins, triggering stimulation or repression of downstream processes. Twenty-nine SET domain proteins have been identified in Leishmania donovani through sequence annotations. This study initiates the first investigation into these proteins. We find LdSET7 is predominantly cytosolic. Although not essential, set7 deletion slows down promastigote growth and hypersensitizes the parasite to hydroxyurea-induced G1/S arrest. Intriguingly, set7-nulls survive more proficiently than set7+/+ parasites within host macrophages, suggesting that LdSET7 moderates parasite response to the inhospitable intracellular environment. set7-null in vitro promastigote cultures are highly tolerant to hydrogen peroxide (H2O2)-induced stress, reflected in their growth pattern, and no detectable DNA damage at H2O2 concentrations tested. This is linked to reactive oxygen species levels remaining virtually unperturbed in set7-nulls in response to H2O2 exposure, contrasting to increased reactive oxygen species in set7+/+ cells under similar conditions. In analyzing the cell's ability to scavenge hydroperoxides, we find peroxidase activity is not upregulated in response to H2O2 exposure in set7-nulls. Rather, constitutive basal levels of peroxidase activity are significantly higher in these cells, implicating this to be a factor contributing to the parasite's high tolerance to H2O2. Higher levels of peroxidase activity in set7-nulls are coupled to upregulation of tryparedoxin peroxidase transcripts. Rescue experiments using an LdSET7 mutant suggest that LdSET7 methylation activity is critical to the modulation of the cell's response to oxidative environment. Thus, LdSET7 tunes the parasite's behavior within host cells, enabling the establishment and persistence of infection without eradicating the host cell population it needs for survival.
Collapse
Affiliation(s)
- Jyoti Pal
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Varshni Sharma
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Arushi Khanna
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
5
|
Chan AW, Broncel M, Yifrach E, Haseley NR, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 2023; 12:RP85654. [PMID: 37933960 PMCID: PMC10629828 DOI: 10.7554/elife.85654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eden Yifrach
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Nicole R Haseley
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Elena Andree
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Shortt
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
6
|
Vigetti L, Tardieux I. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology. Biol Cell 2023; 115:e202300016. [PMID: 37227253 DOI: 10.1111/boc.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
The protozoa, Toxoplasma gondii and Plasmodium spp., are preeminent members of the Apicomplexa parasitic phylum in large part due to their public health and economic impact. Hence, they serve as model unicellular eukaryotes with which to explore the repertoire of molecular and cellular strategies that specific developmental morphotypes deploy to timely adjust to their host(s) in order to perpetuate. In particular, host tissue- and cell-invasive morphotypes termed zoites alternate extracellular and intracellular lifestyles, thereby sensing and reacting to a wealth of host-derived biomechanical cues over their partnership. In the recent years, biophysical tools especially related to real time force measurement have been introduced, teaching us how creative are these microbes to shape a unique motility system that powers fast gliding through a variety of extracellular matrices, across cellular barriers, in vascular systems or into host cells. Equally performant was this toolkit to start illuminating how parasites manipulate their hosting cell adhesive and rheological properties to their advantage. In this review, besides highlighting major discoveries along the way, we discuss the most promising development, synergy, and multimodal integration in active noninvasive force microscopy methods. These should in the near future unlock current limitations and allow capturing, from molecules to tissues, the many biomechanical and biophysical interplays over the dynamic host and microbe partnership.
Collapse
Affiliation(s)
- Luis Vigetti
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| | - Isabelle Tardieux
- Team Biomechanics of Host-Parasite Interactions, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
Tengganu IF, Arias Padilla LF, Munera Lopez J, Liu J, Brown PT, Murray JM, Hu K. The cortical microtubules of Toxoplasma gondii underlie the helicity of parasite movement. J Cell Sci 2023; 136:jcs261270. [PMID: 37675776 PMCID: PMC10499027 DOI: 10.1242/jcs.261270] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Motility is essential for apicomplexan parasites to infect their hosts. In a three-dimensional (3D) environment, the apicomplexan parasite Toxoplasma gondii moves along a helical path. The cortical microtubules, which are ultra-stable and spirally arranged, have been considered to be a structure that guides the long-distance movement of the parasite. Here, we address the role of the cortical microtubules in parasite motility, invasion and egress by utilizing a previously generated mutant (dubbed 'TKO') in which these microtubules are destabilized in mature parasites. We found that the cortical microtubules in ∼80% of the non-dividing (i.e. daughter-free) TKO parasites are much shorter than normal. The extent of depolymerization was further exacerbated upon commencement of daughter formation or cold treatment, but parasite replication was not affected. In a 3D Matrigel matrix, the TKO mutant moved directionally over long distances, but along trajectories that were significantly more linear (i.e. less helical) than those of wild-type parasites. Interestingly, this change in trajectory did not impact either movement speed in the matrix or the speed and behavior of the parasite during entry into and egress from the host cell.
Collapse
Affiliation(s)
- Isadonna F. Tengganu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, ID 47405, USA
| | - Peter T. Brown
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ 85284, USA
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, AZ 85284, USA
| |
Collapse
|
8
|
Chan AW, Broncel M, Yifrach E, Haseley N, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523553. [PMID: 36712004 PMCID: PMC9882037 DOI: 10.1101/2023.01.11.523553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eden Yifrach
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nicole Haseley
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Elena Andree
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Tengganu IF, Padilla LFA, Lopez JM, Liu J, Brown PT, Murray JM, Hu K. The cortical microtubules of Toxoplasma gondii underlie the helicity of parasite movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.538011. [PMID: 37162829 PMCID: PMC10168230 DOI: 10.1101/2023.04.23.538011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Motility is essential for apicomplexan parasites to infect their hosts. In a three-dimensional (3-D) environment, the apicomplexan parasite Toxoplasma gondii moves along a helical path. The cortical microtubules, which are ultra-stable and spirally arranged, have been considered to be a structure that guides the long-distance movement of the parasite. Here we address the role of the cortical microtubules in parasite motility, invasion, and egress by utilizing a previously generated mutant (dubbed "TKO") in which these microtubules are destabilized in mature parasites. We found that the cortical microtubules in ~ 80% of the non-dividing (i.e. daughter-free) TKO parasites are much shorter than normal. The extent of depolymerization is further exacerbated upon commencement of daughter formation or cold treatment, but parasite replication is not affected. In a 3-D Matrigel matrix, the TKO mutant moves directionally over long distances, but along trajectories significantly more linear (i.e. less helical) than those of wild-type parasites. Interestingly, this change in trajectory does not impact either movement speed in the matrix or the speed and behavior of the parasite's entry into and egress from the host cell.
Collapse
|
10
|
Lysine Methyltransferase EhPKMT2 Is Involved in the In Vitro Virulence of Entamoeba histolytica. Pathogens 2023; 12:pathogens12030474. [PMID: 36986396 PMCID: PMC10058465 DOI: 10.3390/pathogens12030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Lysine methylation, a posttranslational modification catalyzed by protein lysine methyltransferases (PKMTs), is involved in epigenetics and several signaling pathways, including cell growth, cell migration and stress response, which in turn may participate in virulence of protozoa parasites. Entamoeba histolytica, the etiologic agent of human amebiasis, has four PKMTs (EhPKMT1 to EhPKMT4), but their role in parasite biology is unknown. Here, to obtain insight into the role of EhPKMT2, we analyzed its expression level and localization in trophozoites subjected to heat shock and during phagocytosis, two events that are related to amoeba virulence. Moreover, the effect of EhPKMT2 knockdown on those activities and on cell growth, migration and cytopathic effect was investigated. The results indicate that this enzyme participates in all these cellular events, suggesting that it could be a potential target for development of novel therapeutic strategies against amebiasis.
Collapse
|
11
|
Lyu C, Chen Y, Meng Y, Yang J, Ye S, Niu Z, EI-Debs I, Gupta N, Shen B. The Mitochondrial Pyruvate Carrier Coupling Glycolysis and the Tricarboxylic Acid Cycle Is Required for the Asexual Reproduction of Toxoplasma gondii. Microbiol Spectr 2023; 11:e0504322. [PMID: 36920199 PMCID: PMC10100952 DOI: 10.1128/spectrum.05043-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite capable of infecting humans and animals. The organism has extraordinary metabolic resilience that allows it to establish parasitism in varied nutritional milieus of diverse host cells. Our earlier work has shown that, despite flexibility in the usage of glucose and glutamine as the major carbon precursors, the production of pyruvate by glycolytic enzymes is central to the parasite's growth. Pyruvate is metabolized in a number of subcellular compartments, including the mitochondrion, apicoplast, and cytosol. With the objective of examining the mechanism and importance of the mitochondrial pool of pyruvate imported from the cytosol, we identified the conserved mitochondrial pyruvate carrier (MPC) complex, consisting of two subunits, MPC1 and MPC2, in T. gondii. The two parasite proteins could complement a yeast mutant deficient in growth on leucine and valine. Genetic ablation of either one or both subunits reduced the parasite's growth, mimicking the deletion of branched-chain ketoacid dehydrogenase (BCKDH), which has been reported to convert pyruvate into acetyl-coenzyme A (CoA) in the mitochondrion. Metabolic labeling of the MPC mutants by isotopic glucose revealed impaired synthesis of acetyl-CoA, correlating with a global decrease in carbon flux through glycolysis and the tricarboxylic acid (TCA) cycle. Disruption of MPC proteins exerted only a modest effect on the parasite's virulence in mice, further highlighting its metabolic flexibility. In brief, our work reveals the modus operandi of pyruvate transport from the cytosol to the mitochondrion in the parasite, providing the missing link between glycolysis and the TCA cycle in T. gondii. IMPORTANCE T. gondii is a zoonotic parasite capable of infecting many warm-blooded organisms, including humans. Among others, a feature that allows it to parasitize multiple hosts is its exceptional metabolic plasticity. Although T. gondii can utilize different carbon sources, pyruvate homeostasis is critical for parasite growth. Pyruvate is produced primarily in the cytosol but metabolized in other organelles, such as the mitochondrion and apicoplast. The mechanism of import and physiological significance of pyruvate in these organelles remains unclear. Here, we identified the transporter of cytosol-derived pyruvate into the mitochondrion and studied its constituent subunits and their relevance. Our results show that cytosolic pyruvate is a major source of acetyl-CoA in the mitochondrion and that the mitochondrial pyruvate transporter is needed for optimal parasite growth. The mutants lacking the transporter are viable and virulent in a mouse model, underscoring the metabolic plasticity in the parasite's mitochondrion.
Collapse
Affiliation(s)
- Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, People’s Republic of China
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Yukun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yanan Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Issam EI-Debs
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-P), Hyderabad, India
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, People’s Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, People’s Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, People’s Republic of China
| |
Collapse
|
12
|
Haase R, Dos Santos Pacheco N, Soldati-Favre D. Nanoscale imaging of the conoid and functional dissection of its dynamics in Apicomplexa. Curr Opin Microbiol 2022; 70:102226. [PMID: 36332501 DOI: 10.1016/j.mib.2022.102226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
13
|
Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol 2022; 7:1777-1790. [DOI: 10.1038/s41564-022-01212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
|
14
|
Sawant M, Benamrouz-Vanneste S, Meloni D, Gantois N, Even G, Guyot K, Creusy C, Duval E, Wintjens R, Weitzman JB, Chabe M, Viscogliosi E, Certad G. Putative SET-domain methyltransferases in Cryptosporidium parvum and histone methylation during infection. Virulence 2022; 13:1632-1650. [PMID: 36097362 PMCID: PMC9487757 DOI: 10.1080/21505594.2022.2123363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cryptosporidium parvum is a leading cause of diarrhoeal illness worldwide being a significant threat to young children and immunocompromised patients, but the pathogenesis caused by this parasite remains poorly understood. C. parvum was recently linked with oncogenesis. Notably, the mechanisms of gene expression regulation are unexplored in Cryptosporidium and little is known about how the parasite impact host genome regulation. Here, we investigated potential histone lysine methylation, a dynamic epigenetic modification, during the life cycle of the parasite. We identified SET-domain containing proteins, putative lysine methyltransferases (KMTs), in the C. parvum genome and classified them phylogenetically into distinct subfamilies (namely CpSET1, CpSET2, CpSET8, CpKMTox and CpAKMT). Our structural analysis further characterized CpSET1, CpSET2 and CpSET8 as histone lysine methyltransferases (HKMTs). The expression of the CpSET genes varies considerably during the parasite life cycle and specific methyl-lysine antibodies showed dynamic changes in parasite histone methylation during development (CpSET1:H3K4; CpSET2:H3K36; CpSET8:H4K20). We investigated the impact of C. parvum infection on the host histone lysine methylation. Remarkably, parasite infection led to a considerable decrease in host H3K36me3 and H3K27me3 levels, highlighting the potential of the parasite to exploit the host epigenetic regulation to its advantage. This is the first study to describe epigenetic mechanisms occurring throughout the parasite life cycle and during the host–parasite interaction. A better understanding of histone methylation in both parasite and host genomes may highlight novel infection control strategies.
Collapse
Affiliation(s)
- Manasi Sawant
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Sadia Benamrouz-Vanneste
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Unité de Recherche Smart and Sustainable Cities, Faculté de Gestion, Economie et Sciences, Institut Catholique de Lille, France
| | - Dionigia Meloni
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Nausicaa Gantois
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Gaël Even
- Gènes Diffusion, F-59501 Douai, France.,PEGASE-Biosicences Plateforme d'Expertises Génomiques Appliquées aux Sciences Expérimentales, Institut Pasteur de Lille, F-59000 Lille, France
| | - Karine Guyot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille (GHICL), F-59000 Lille, France
| | - Erika Duval
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille (GHICL), F-59000 Lille, France
| | - René Wintjens
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development (RD3), Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Jonathan B Weitzman
- UMR7216 Epigenetics and Cell, Université Paris Cité, Fate, CNRS, F-75013 Paris, France
| | - Magali Chabe
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Eric Viscogliosi
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Gabriela Certad
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France.,Délégation à la Recherche Clinique et à l'Innovation, Groupement des Hôpitaux de l'Institut Catholique de Lille, F-59462 Lomme, France
| |
Collapse
|
15
|
Zhang J, Fan F, Zhang L, Shen B. Nuclear Factor AP2X-4 Governs the Expression of Cell Cycle- and Life Stage-Regulated Genes and is Critical for Toxoplasma Growth. Microbiol Spectr 2022; 10:e0012022. [PMID: 35735977 PMCID: PMC9430314 DOI: 10.1128/spectrum.00120-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous pathogen infecting one third of the world's population and diverse animals. It has a complex life cycle alternating among different developmental stages, which contributes to its transmission and pathogenesis. The parasite has a sophisticated gene regulation network that enables timely expression of genes at designated stages. However, little is known about the underlying regulatory mechanisms. Here, we identified an AP2 family transcription factor named TgAP2X-4, which was crucial for parasite growth during the acute infection stage. TgAP2X-4 deletion leads to reduced expression of many genes that are normally upregulated during the M phase of the cell cycle. These include genes that encode rhoptry neck proteins that are key for parasite invasion. As a result, the Δap2X-4 mutant displayed significantly decreased efficiency of host cell invasion. Transcriptomic analyses suggested that TgAP2X-4 also regulates a large group of genes that are typically induced during chronic infection, such as BAG1 and LDH2. Given the diverse impacts on gene expression, TgAP2X-4 inactivation results in severely impaired parasite growth, as well as drastic attenuation of parasite virulence and complete inability to form chronic infection. Therefore, TgAP2X-4 represents a candidate for antitoxoplasmic drug and vaccine designs. IMPORTANCE Toxoplasma gondii has a complicated gene regulation network that allows "just in time" expression of genes to cope with the physiological needs at each stage during the complex life cycle. However, how such regulation is achieved is largely unknown. Here, we identified a transcription factor named TgAP2X-4 that is critical for the growth and life cycle progression of the parasite. Detailed analyses found that TgAP2X-4 regulated the expression of many cell cycle-regulated genes, including a subset of rhoptry genes that were essential for the parasites to enter host cells. It also regulated the expression of many genes involved in the development of chronic infection. Because of the diverse impacts on gene expression, TgAP2X-4 inactivation caused reduced parasite growth in vitro and attenuated virulence in vivo. Therefore, it is a potential target for drug or vaccine designs against Toxoplasma infections.
Collapse
Affiliation(s)
- Jingwen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Fuqiang Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Lihong Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
16
|
Herneisen AL, Li ZH, Chan AW, Moreno SNJ, Lourido S. Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca 2+-responsive pathways. eLife 2022; 11:e80336. [PMID: 35976251 PMCID: PMC9436416 DOI: 10.7554/elife.80336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan Taxoplasma gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
17
|
Munera Lopez J, Tengganu IF, Liu J, Murray JM, Arias Padilla LF, Zhang Y, Brown PT, Florens L, Hu K. An apical protein, Pcr2, is required for persistent movement by the human parasite Toxoplasma gondii. PLoS Pathog 2022; 18:e1010776. [PMID: 35994509 PMCID: PMC9436145 DOI: 10.1371/journal.ppat.1010776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
The phylum Apicomplexa includes thousands of species of unicellular parasites that cause a wide range of human and animal diseases such as malaria and toxoplasmosis. To infect, the parasite must first initiate active movement to disseminate through tissue and invade into a host cell, and then cease moving once inside. The parasite moves by gliding on a surface, propelled by an internal cortical actomyosin-based motility apparatus. One of the most effective invaders in Apicomplexa is Toxoplasma gondii, which can infect any nucleated cell and any warm-blooded animal. During invasion, the parasite first makes contact with the host cell "head-on" with the apical complex, which features an elaborate cytoskeletal apparatus and associated structures. Here we report the identification and characterization of a new component of the apical complex, Preconoidal region protein 2 (Pcr2). Pcr2 knockout parasites replicate normally, but they are severely diminished in their capacity for host tissue destruction due to significantly impaired invasion and egress, two vital steps in the lytic cycle. When stimulated for calcium-induced egress, Pcr2 knockout parasites become active, and secrete effectors to lyse the host cell. Calcium-induced secretion of the major adhesin, MIC2, also appears to be normal. However, the movement of the Pcr2 knockout parasite is spasmodic, which drastically compromises egress. In addition to faulty motility, the ability of the Pcr2 knockout parasite to assemble the moving junction is impaired. Both defects likely contribute to the poor efficiency of invasion. Interestingly, actomyosin activity, as indicated by the motion of mEmerald tagged actin chromobody, appears to be largely unperturbed by the loss of Pcr2, raising the possibility that Pcr2 may act downstream of or in parallel with the actomyosin machinery.
Collapse
Affiliation(s)
- Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Isadonna F. Tengganu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Peter T. Brown
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution/School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
18
|
Boisard J, Duvernois-Berthet E, Duval L, Schrével J, Guillou L, Labat A, Le Panse S, Prensier G, Ponger L, Florent I. Marine gregarine genomes reveal the breadth of apicomplexan diversity with a partially conserved glideosome machinery. BMC Genomics 2022; 23:485. [PMID: 35780080 PMCID: PMC9250747 DOI: 10.1186/s12864-022-08700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.
Collapse
Affiliation(s)
- Julie Boisard
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France. .,Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Evelyne Duvernois-Berthet
- Département Adaptations du Vivant (AVIV), Physiologie Moléculaire et Adaptation (PhyMA UMR 7221 CNRS), Muséum national d'Histoire naturelle, CNRS, CP 32, 7 rue Cuvier, 75005, Paris, France
| | - Linda Duval
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Joseph Schrével
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Laure Guillou
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Sorbonne Université, 29680, Roscoff, France
| | - Amandine Labat
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France
| | - Sophie Le Panse
- Plateforme d'Imagerie Merimage, FR2424, Centre National de la Recherche Scientifique, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gérard Prensier
- Cell biology and Electron Microscopy Laboratory, François Rabelais University, 10 Boulevard Tonnellé, 3223 Cedex, Tours, BP, France
| | - Loïc Ponger
- Département Adaptations du Vivant (AVIV), Structure et instabilité des génomes (STRING UMR 7196 CNRS/INSERM U1154), Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| | - Isabelle Florent
- Département Adaptations du Vivant (AVIV), Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245 CNRS), Muséum National d'Histoire Naturelle, CNRS, CP 52, 57 rue Cuvier, 75231 Cedex 05, Paris, France.
| |
Collapse
|
19
|
Cheeseman K, Jannot G, Lourenço N, Villares M, Berthelet J, Calegari-Silva T, Hamroune J, Letourneur F, Rodrigues-Lima F, Weitzman JB. Dynamic methylation of histone H3K18 in differentiating Theileria parasites. Nat Commun 2021; 12:3221. [PMID: 34050145 PMCID: PMC8163883 DOI: 10.1038/s41467-021-23477-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leucocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) leads to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identify a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites.
Collapse
Affiliation(s)
- Kevin Cheeseman
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Guillaume Jannot
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Nelly Lourenço
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Marie Villares
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Jérémy Berthelet
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.,Université de Paris, Functional and Adaptive Biology, CNRS, Paris, France
| | | | | | | | | | | |
Collapse
|
20
|
Gubbels MJ, Coppens I, Zarringhalam K, Duraisingh MT, Engelberg K. The Modular Circuitry of Apicomplexan Cell Division Plasticity. Front Cell Infect Microbiol 2021; 11:670049. [PMID: 33912479 PMCID: PMC8072463 DOI: 10.3389/fcimb.2021.670049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
The close-knit group of apicomplexan parasites displays a wide variety of cell division modes, which differ between parasites as well as between different life stages within a single parasite species. The beginning and endpoint of the asexual replication cycles is a 'zoite' harboring the defining apical organelles required for host cell invasion. However, the number of zoites produced per division round varies dramatically and can unfold in several different ways. This plasticity of the cell division cycle originates from a combination of hard-wired developmental programs modulated by environmental triggers. Although the environmental triggers and sensors differ between species and developmental stages, widely conserved secondary messengers mediate the signal transduction pathways. These environmental and genetic input integrate in division-mode specific chromosome organization and chromatin modifications that set the stage for each division mode. Cell cycle progression is conveyed by a smorgasbord of positively and negatively acting transcription factors, often acting in concert with epigenetic reader complexes, that can vary dramatically between species as well as division modes. A unique set of cell cycle regulators with spatially distinct localization patterns insert discrete check points which permit individual control and can uncouple general cell cycle progression from nuclear amplification. Clusters of expressed genes are grouped into four functional modules seen in all division modes: 1. mother cytoskeleton disassembly; 2. DNA replication and segregation (D&S); 3. karyokinesis; 4. zoite assembly. A plug-and-play strategy results in the variety of extant division modes. The timing of mother cytoskeleton disassembly is hard-wired at the species level for asexual division modes: it is either the first step, or it is the last step. In the former scenario zoite assembly occurs at the plasma membrane (external budding), and in the latter scenario zoites are assembled in the cytoplasm (internal budding). The number of times each other module is repeated can vary regardless of this first decision, and defines the modes of cell division: schizogony, binary fission, endodyogeny, endopolygeny.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, United States
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
21
|
Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, Brady D, Ke H, Chelaghma S, Ferguson DJP, Eme L, Tewari R, Waller RF. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol 2021; 19:e3001081. [PMID: 33705380 PMCID: PMC7951837 DOI: 10.1371/journal.pbio.3001081] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jolien J. E. van Hooff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Uboldi AD, Wilde ML, Bader SM, Tonkin CJ. Environmental sensing and regulation of motility in Toxoplasma. Mol Microbiol 2020; 115:916-929. [PMID: 33278047 DOI: 10.1111/mmi.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Toxoplasma and other apicomplexan parasites undergo a unique form of cellular locomotion referred to as "gliding motility." Gliding motility is crucial for parasite survival as it powers tissue dissemination, host cell invasion and egress. Distinct environmental cues lead to activation of gliding motility and have become a prominent focus of recent investigation. Progress has been made toward understanding what environmental cues are sensed and how these signals are transduced in order to regulate the machinery and cellular events powering gliding motility. In this review, we will discuss new findings and integrate these into our current understanding to propose a model of how environmental sensing is achieved to regulate gliding motility in Toxoplasma. Collectively, these findings also have implications for the understanding of gliding motility across Apicomplexa more broadly.
Collapse
Affiliation(s)
- Alessandro D Uboldi
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mary-Louise Wilde
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie M Bader
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Disease and Immune Defense, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Barylyuk K, Koreny L, Ke H, Butterworth S, Crook OM, Lassadi I, Gupta V, Tromer E, Mourier T, Stevens TJ, Breckels LM, Pain A, Lilley KS, Waller RF. A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host Microbe 2020; 28:752-766.e9. [PMID: 33053376 PMCID: PMC7670262 DOI: 10.1016/j.chom.2020.09.011] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to highly specialized cell compartments and structures. These adaptations drive their recognition, nondestructive penetration, and elaborate reengineering of the host's cells to promote their growth, dissemination, and the countering of host defenses. The evolution of unique apicomplexan cellular compartments is concomitant with vast proteomic novelty. Consequently, half of apicomplexan proteins are unique and uncharacterized. Here, we determine the steady-state subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii. This provides unprecedented comprehensive molecular definition of these unicellular eukaryotes and their specialized compartments, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.
Collapse
Affiliation(s)
| | - Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Simon Butterworth
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Oliver M Crook
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK; MRC Biostatistics Unit, Cambridge Institute for Public Health, Cambridge CB2 0SR, UK
| | - Imen Lassadi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Vipul Gupta
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Eelco Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Tobias Mourier
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK
| | - Arnab Pain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Global Station for Zoonosis Control, Gi-CoRE, Hokkaido University, Sapporo 060-0808, Japan; Nuffield Division of Clinical Laboratory Sciences (NDCLS), University of Oxford, Oxford OX3 9DU, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB20 0AW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
24
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Dos Santos Pacheco N, Tosetti N, Koreny L, Waller RF, Soldati-Favre D. Evolution, Composition, Assembly, and Function of the Conoid in Apicomplexa. Trends Parasitol 2020; 36:688-704. [DOI: 10.1016/j.pt.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
|
26
|
Venugopal K, Chehade S, Werkmeister E, Barois N, Periz J, Lafont F, Tardieux I, Khalife J, Langsley G, Meissner M, Marion S. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathog 2020; 16:e1008106. [PMID: 32463830 PMCID: PMC7255593 DOI: 10.1371/journal.ppat.1008106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of dense granules and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile and invading parasites suggesting that apically polarized Rab11A-dependent delivery of cargo regulates early secretory events during parasite entry into host cells. Toxoplasma gondii (T. gondii) is a highly prevalent parasite infecting a wide range of animals as well as humans. T. gondii secretes numerous virulent factors contained in specific organelles, termed the rhoptries, micronemes and dense granules. These factors are released upon host cell recognition and enable parasite invasion and subsequent development into an intracellular vacuole. In particular, dense granules contain critical effectors that modulate intrinsic defenses of infected host cells ensuring parasite survival and dissemination. The mechanisms regulating dense granule secretion have not been elucidated. In this study, we unraveled a novel role for the T. gondii GTPase Rab11A in promoting dense granule transport along the parasite cytoskeleton and their content release into the vacuolar space during parasite replication. We also found that T. gondii Rab11A regulates extracellular parasite motility and adhesion to host cells suggesting a broader role in distinct secretory pathways essential for parasite virulence.
Collapse
Affiliation(s)
- Kannan Venugopal
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Sylia Chehade
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Javier Periz
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes—Sorbonne Paris Cité, France, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Markus Meissner
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
27
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog 2020; 16:e1008586. [PMID: 32453782 PMCID: PMC7274473 DOI: 10.1371/journal.ppat.1008586] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The murine innate immune response against Toxoplasma gondii is predominated by the interaction of TLR11/12 with Toxoplasma profilin. However, mice lacking Tlr11 or humans, who do not have functional TLR11 or TLR12, still elicit a strong innate immune response upon Toxoplasma infection. The parasite factors that determine this immune response are largely unknown. Herein, we investigated two dense granule proteins (GRAs) secreted by Toxoplasma, GRA15 and GRA24, for their role in stimulating the innate immune response in Tlr11-/- mice and in human cells, which naturally lack TLR11/TLR12. Our results show that GRA15 and GRA24 synergistically shape the early immune response and parasite virulence in Tlr11-/- mice, with GRA15 as the predominant effector. Nevertheless, acute virulence in Tlr11-/- mice is still dominated by allelic combinations of ROP18 and ROP5, which are effectors that determine evasion of the immunity-related GTPases. In human macrophages, GRA15 and GRA24 play a major role in the induction of IL12, IL18 and IL1β secretion. We further show that GRA15/GRA24-mediated IL12, IL18 and IL1β secretion activates IFNγ secretion by peripheral blood mononuclear cells (PBMCs), which controls Toxoplasma proliferation. Taken together, our study demonstrates the important role of GRA15 and GRA24 in activating the innate immune response in hosts lacking TLR11.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Tosetti N, Dos Santos Pacheco N, Bertiaux E, Maco B, Bournonville L, Hamel V, Guichard P, Soldati-Favre D. Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii. eLife 2020; 9:56635. [PMID: 32379047 PMCID: PMC7228768 DOI: 10.7554/elife.56635] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eloïse Bertiaux
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorène Bournonville
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Alama-Bermejo G, Holzer AS, Bartholomew JL. Myxozoan Adhesion and Virulence: Ceratonova shasta on the Move. Microorganisms 2019; 7:E397. [PMID: 31561529 PMCID: PMC6843538 DOI: 10.3390/microorganisms7100397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023] Open
Abstract
Motility factors are fundamental for parasite invasion, migration, proliferation and immune evasion and thus can influence parasitic disease pathogenesis and virulence. Salmonid enteronecrosis is caused by a myxozoan (Phylum Cnidarian) parasite, Ceratonova shasta. Three parasite genotypes (0, I, II) occur, with varying degrees of virulence in its host, making it a good model for examining the role of motility in virulence. We compare C. shasta cell motility between genotypes and describe how the cellular protrusions interact with the host. We support these observations with motility gene expression analyses. C. shasta stages can move by single or combined used of filopodia, lamellipodia and blebs, with different behaviors such as static adhesion, crawling or blebbing, some previously unobserved in myxozoans. C. shasta stages showed high flexibility of switching between different morphotypes, suggesting a high capacity to adapt to their microenvironment. Exposure to fibronectin showed that C. shasta stages have extraordinary adhesive affinities to glycoprotein components of the extracellular matrix (ECM). When comparing C. shasta genotypes 0 (low virulence, no mortality) and IIR (high virulence, high mortality) infections in rainbow trout, major differences were observed with regard to their migration to the target organ, gene expression patterns and proliferation rate in the host. IIR is characterized by rapid multiplication and fast amoeboid bleb-based migration to the gut, where adhesion (mediated by integrin-β and talin), ECM disruption and virulent systemic dispersion of the parasite causes massive pathology. Genotype 0 is characterized by low proliferation rates, slow directional and early adhesive migration and localized, non-destructive development in the gut. We conclude that parasite adhesion drives virulence in C. shasta and that effectors, such as integrins, reveal themselves as attractive therapeutic targets in a group of parasites for which no effective treatments are known.
Collapse
Affiliation(s)
- Gema Alama-Bermejo
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS-CCT CONICET-CENPAT), 8520 San Antonio Oeste, Argentina.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic.
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
30
|
Engelberg K, Chen CT, Bechtel T, Sánchez Guzmán V, Drozda AA, Chavan S, Weerapana E, Gubbels MJ. The apical annuli of Toxoplasma gondii are composed of coiled-coil and signalling proteins embedded in the inner membrane complex sutures. Cell Microbiol 2019; 22:e13112. [PMID: 31470470 DOI: 10.1111/cmi.13112] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
The apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1-5), Centrin2, and an apical annuli methyltransferase. Moreover, inner membrane complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures. Super-resolution microscopy identified a concentric organisation comprising four rings with diameters ranging from 200 to 400 nm. The high prevalence of domain signatures shared with centrosomal proteins in the AAPs together with Centrin2 suggests that the annuli are related and/or derived from the centrosomes. Phylogenetic analysis revealed that the AAPs are conserved narrowly in coccidian, apicomplexan parasites that multiply by an internal budding mechanism. This suggests a role in replication, for example, to provide pores in the mother IMC permitting exchange of building blocks and waste products. However, presence of multiple signalling domains and proteins are suggestive of additional functions. Knockout of AAP4, the most conserved compound forming the largest ring-like structure, modestly decreased parasite fitness in vitro but had no significant impact on acute virulence in vivo. In conclusion, the apical annuli are composed of coiled-coil and signalling proteins assembled in a pore-like structure crossing the IMC barrier maintained during internal budding.
Collapse
Affiliation(s)
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Precision Medicine Center, Department of Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tyler Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Victoria Sánchez Guzmán
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - Suyog Chavan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| |
Collapse
|
31
|
Leung JM, Liu J, Wetzel LA, Hu K. Centrin2 from the human parasite Toxoplasma gondii is required for its invasion and intracellular replication. J Cell Sci 2019; 132:jcs.228791. [PMID: 31182647 DOI: 10.1242/jcs.228791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Centrins are EF-hand containing proteins ubiquitously found in eukaryotes and are key components of centrioles/basal bodies as well as certain contractile fibers. We previously identified three centrins in the human parasite Toxoplasma gondii, all of which localized to the centrioles. However, one of them, T. gondii (Tg) Centrin2 (CEN2), is also targeted to structures at the apical and basal ends of the parasite, as well as to annuli at the base of the apical cap of the membrane cortex. The role(s) that CEN2 play in these locations were unknown. Here, we report the functional characterization of CEN2 using a conditional knockdown method that combines transcriptional and protein stability control. The knockdown resulted in an ordered loss of CEN2 from its four compartments, due to differences in incorporation kinetics and structural inheritance over successive generations. This was correlated with a major invasion deficiency at early stages of CEN2 knockdown, and replication defects at later stages. These results indicate that CEN2 is incorporated into multiple cytoskeletal structures to serve distinct functions that are required for parasite survival.
Collapse
Affiliation(s)
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Laura A Wetzel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
32
|
Tosetti N, Dos Santos Pacheco N, Soldati-Favre D, Jacot D. Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii. eLife 2019; 8:e42669. [PMID: 30753127 PMCID: PMC6372287 DOI: 10.7554/elife.42669] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii possesses a limited set of actin-regulatory proteins and relies on only three formins (FRMs) to nucleate and polymerize actin. We combined filamentous actin (F-actin) chromobodies with gene disruption to assign specific populations of actin filaments to individual formins. FRM2 localizes to the apical juxtanuclear region and participates in apicoplast inheritance. Restricted to the residual body, FRM3 maintains the intravacuolar cell-cell communication. Conoidal FRM1 initiates a flux of F-actin crucial for motility, invasion and egress. This flux depends on myosins A and H and is controlled by phosphorylation via PKG (protein kinase G) and CDPK1 (calcium-dependent protein kinase 1) and by methylation via AKMT (apical lysine methyltransferase). This flux is independent of microneme secretion and persists in the absence of the glideosome-associated connector (GAC). This study offers a coherent model of the key players controlling actin polymerization, stressing the importance of well-timed post-translational modifications to power parasite motility.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| | | | | | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
33
|
Pivovarova Y, Liu J, Lesigang J, Koldyka O, Rauschmeier R, Hu K, Dong G. Structure of a Novel Dimeric SET Domain Methyltransferase that Regulates Cell Motility. J Mol Biol 2018; 430:4209-4229. [PMID: 30148980 PMCID: PMC7141177 DOI: 10.1016/j.jmb.2018.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 11/21/2022]
Abstract
Lysine methyltransferases (KMTs) were initially associated with transcriptional control through their methylation of histones and other nuclear proteins, but have since been found to regulate many other cellular activities. The apical complex lysine (K) methyltransferase (AKMT) of the human parasite Toxoplasma gondii was recently shown to play a critical role in regulating cellular motility. Here we report a 2.1-Å resolution crystal structure of the conserved and functional C-terminal portion (aa289-709) of T. gondii AKMT. AKMT dimerizes via a unique intermolecular interface mediated by the C-terminal tetratricopeptide repeat-like domain together with a specific zinc-binding motif that is absent from all other KMTs. Disruption of AKMT dimerization impaired both its enzyme activity and parasite egress from infected host cells in vivo. Structural comparisons reveal that AKMT is related to the KMTs in the SMYD family, with, however, a number of distinct structural features in addition to the unusual dimerization interface. These features are conserved among the apicomplexan parasites and their free-living relatives, but not found in any known KMTs in animals. AKMT therefore is the founding member of a new subclass of KMT that has important implications for the evolution of the apicomplexans.
Collapse
Affiliation(s)
- Yulia Pivovarova
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Johannes Lesigang
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | | | - Rene Rauschmeier
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Gang Dong
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
34
|
Caldas LA, de Souza W. A Window to Toxoplasma gondii Egress. Pathogens 2018; 7:pathogens7030069. [PMID: 30110938 PMCID: PMC6161258 DOI: 10.3390/pathogens7030069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022] Open
Abstract
The Toxoplasma gondii cellular cycle has been widely studied in many lifecycle stages; however, the egress event still is poorly understood even though different types of molecules were shown to be involved. Assuming that there is no purpose or intentionality in biological phenomena, there is no such question as “Why does the parasite leaves the host cell”, but “Under what conditions and how?”. In this review we aimed to summarize current knowledge concerning T. gondii egress physiology (signalling pathways), structures, and route.
Collapse
Affiliation(s)
- Lucio Ayres Caldas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
35
|
Xia N, Zhou T, Liang X, Ye S, Zhao P, Yang J, Zhou Y, Zhao J, Shen B. A Lactate Fermentation Mutant of Toxoplasma Stimulates Protective Immunity Against Acute and Chronic Toxoplasmosis. Front Immunol 2018; 9:1814. [PMID: 30147689 PMCID: PMC6096001 DOI: 10.3389/fimmu.2018.01814] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii is an important zoonotic pathogen infecting one-third of the world’s population and numerous animals, causing significant healthcare burden and socioeconomic problems. Vaccination is an efficient way to reduce global sero-prevalence, however, ideal vaccines are not yet available. We recently discovered that the Toxoplasma mutant lacking both lactate dehydrogenases LDH1 and LDH2 (Δldh) grew well in vitro but was unable to propagate in mice, making it a good live vaccine candidate. Here, we tested the protection efficacy of ME49 Δldh using a mouse model. Vaccinated mice were efficiently protected from the lethal challenge of a variety of wild-type strains, including type 1 strain RH, type 2 strain ME49, type 3 strain VEG, and a field isolate of Chinese 1. The protection efficacies of a single vaccination were nearly 100% for most cases and it worked well against the challenges of both tachyzoites and tissue cysts. Re-challenging parasites were unable to propagate in vaccinated mice, nor did they make tissue cysts. High levels of Toxoplasma-specific IgG were produced 30 days after immunization and stayed high during the whole tests (at least 125 days). However, passive immunization of naïve mice with sera from vaccinated mice did reduce parasite propagation, but the overall protection against parasite infections was rather limited. On the other hand, Δldh immunization evoked elevated levels of Th1 cytokines like INF-γ and IL-12, at early time points. In addition, splenocytes extracted from immunized mice were able to induce quick and robust INF-γ and other pro-inflammatory cytokine production upon T. gondii antigen stimulation. Together these results suggest that cellular immune responses are the main contributors to the protective immunity elicited by Δldh vaccination, and humoral immunity also contributes partially. We also generated uracil auxotrophic mutants in ME49 and compared their immune protection efficiencies to the Δldh mutants. The results showed that these two types of mutants have similar properties as live vaccine candidates. Taken together, these results suggest that mutants lacking LDH were severely attenuated in virulence but were able to induce strong anti-toxoplasma immune responses, therefore are good candidates for live vaccines.
Collapse
Affiliation(s)
- Ningbo Xia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Taifang Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Shu Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Hubei Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, China
| |
Collapse
|
36
|
Abstract
Toxoplasma gondii is a common veterinary and human pathogen that persists as latent bradyzoite forms within infected hosts. The ability of the parasite to interconvert between tachyzoite and bradyzoite is key for pathogenesis of toxoplasmosis, particularly in immunocompromised individuals. The transition between tachyzoites and bradyzoites is epigenetically regulated and coupled to the cell cycle. Recent epigenomic studies have begun to elucidate the chromatin states associated with developmental switches in T. gondii. Evidence is also emerging that AP2 transcription factors both activate and repress the bradyzoite developmental program. Further studies are needed to understand the mechanisms by which T. gondii transduces environmental signals to coordinate the epigenetic and transcriptional machinery that are responsible for tachyzoite-bradyzoite interconversion.
Collapse
Affiliation(s)
- Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA;
| |
Collapse
|
37
|
Radke JB, Worth D, Hong D, Huang S, Sullivan WJ, Wilson EH, White MW. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathog 2018; 14:e1007035. [PMID: 29718996 PMCID: PMC5951591 DOI: 10.1371/journal.ppat.1007035] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/14/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. The Toxoplasma biology that underlies the establishment of a chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite-tissue cyst stage. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control formation of the tissue cyst is still poorly understood. A fundamental feature of tissue cyst formation is the expression of bradyzoite-specific genes. Here we show the transcription factor AP2IV-4 directly silences bradyzoite mRNA and protein expression in the acute tachyzoite stage demonstrating that developmental control of tissue cyst formation is as much about when not to express bradyzoite genes as it is about when to activate them. Losing the suppression of bradyzoite gene expression in the acute tachyzoite stage caused by deleting AP2IV-4 blocked the establishment of chronic disease in healthy animals via increased protective immunity suggesting a possible strategy for preventing chronic Toxoplasma infections.
Collapse
Affiliation(s)
- Joshua B. Radke
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - David Hong
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Sherri Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - William J. Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States of America
| | - Michael W. White
- Department of Global Health, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
38
|
A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nat Commun 2017; 8:2236. [PMID: 29269729 PMCID: PMC5740107 DOI: 10.1038/s41467-017-02341-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as Toxoplasma gondii, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in T. gondii and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites. Apicomplexan parasites such as Toxoplasma gondii possess a tubulin-rich structure called the conoid. Here, Long et al. identify a conoid protein that interacts with motor and structural proteins and is required for structural integrity of the conoid, parasite motility, and host cell invasion.
Collapse
|
39
|
Yakubu RR, Weiss LM, Silmon de Monerri NC. Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. Mol Microbiol 2017; 107:1-23. [PMID: 29052917 DOI: 10.1111/mmi.13867] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022]
Abstract
Parasites of the Apicomplexa phylum, such as Plasmodium spp. and Toxoplasma gondii, undergo complex life cycles involving multiple stages with distinct biology and morphologies. Post-translational modifications (PTMs), such as phosphorylation, acetylation and glycosylation, regulate numerous cellular processes, playing a role in every aspect of cell biology. PTMs can occur on proteins at any time in their lifespan and through alterations of target protein activity, localization, protein-protein interactions, among other functions, dramatically increase proteome diversity and complexity. In addition, PTMs can be induced or removed on changes in cellular environment and state. Thus, PTMs are likely to be key regulators of developmental transitions, biology and pathogenesis of apicomplexan parasites. In this review we examine the roles of PTMs in both parasite-specific and conserved eukaryotic processes, and the potential crosstalk between PTMs, that together regulate the intricate lives of these protozoa.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| | - Natalie C Silmon de Monerri
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10128, USA
| |
Collapse
|
40
|
|
41
|
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii. PLoS Pathog 2017; 13:e1006379. [PMID: 28475612 PMCID: PMC5435356 DOI: 10.1371/journal.ppat.1006379] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion. One of the most common motifs that binds calcium to transduce intracellular signals is called an EF hand- named after the globular domain structure first characterized in ovalbumin. A conserved cluster of four EF hands, each of which that binds one calcium atom, is a conserved feature of calmodulin, centrins, and calmodulin-like proteins, including myosin light chains. Although the presence of EF hands is predictive of calcium binding, it alone does not allow classification of biological function as this set of conserved proteins have very diverse functions. Here we used modified editing procedures based on CRISPR/Cas9 combined with a plant-like degradation system to define the roles of three calmodulin-like proteins in T. gondii. These proteins all localized to a specialized apical structure called the conoid where they overlap with the motor protein called MyoH. Additionally, biochemical and genetic studies suggest they coordinately regulate cell invasion. These new genomic editing tools, combined with an efficient system for protein degradation, expand the functional tool kit for an analysis of essential genes and proteins in T. gondii.
Collapse
|
42
|
Leung JM, He Y, Zhang F, Hwang YC, Nagayasu E, Liu J, Murray JM, Hu K. Stability and function of a putative microtubule-organizing center in the human parasite Toxoplasma gondii. Mol Biol Cell 2017; 28:1361-1378. [PMID: 28331073 PMCID: PMC5426850 DOI: 10.1091/mbc.e17-01-0045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
KinesinA and APR1 maintain the stability of the apical polar ring, a putative organizing center for the 22 cortical microtubules of Toxoplasma. Parasites lacking these two proteins are defective in invasion, motility, secretion, and growth but can still make 22 cortical microtubules, suggesting that ring stability is not tightly coupled to templating. The organization of the microtubule cytoskeleton is dictated by microtubule nucleators or organizing centers. Toxoplasma gondii, an important human parasite, has an array of 22 regularly spaced cortical microtubules stemming from a hypothesized organizing center, the apical polar ring. Here we examine the functions of the apical polar ring by characterizing two of its components, KinesinA and APR1, and show that its putative role in templating can be separated from its mechanical stability. Parasites that lack both KinesinA and APR1 (ΔkinesinAΔapr1) are capable of generating 22 cortical microtubules. However, the apical polar ring is fragmented in live ΔkinesinAΔapr1 parasites and is undetectable by electron microscopy after detergent extraction. Disintegration of the apical polar ring results in the detachment of groups of microtubules from the apical end of the parasite. These structural defects are linked to a diminished ability of the parasite to move and invade host cells, as well as decreased secretion of effectors important for these processes. Together the findings demonstrate the importance of the structural integrity of the apical polar ring and the microtubule array in the Toxoplasma lytic cycle, which is responsible for massive tissue destruction in acute toxoplasmosis.
Collapse
Affiliation(s)
| | - Yudou He
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | | | - Eiji Nagayasu
- Department of Infectious Diseases, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - John M Murray
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
43
|
Stadler RV, White LA, Hu K, Helmke BP, Guilford WH. Direct measurement of cortical force generation and polarization in a living parasite. Mol Biol Cell 2017; 28:1912-1923. [PMID: 28209732 PMCID: PMC5541842 DOI: 10.1091/mbc.e16-07-0518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/19/2017] [Accepted: 02/10/2017] [Indexed: 02/04/2023] Open
Abstract
Apicomplexa is a large phylum of intracellular parasites that are notable for the diseases they cause, including toxoplasmosis, malaria, and cryptosporidiosis. A conserved motile system is critical to their life cycles and drives directional gliding motility between cells, as well as invasion of and egress from host cells. However, our understanding of this system is limited by a lack of measurements of the forces driving parasite motion. We used a laser trap to measure the function of the motility apparatus of living Toxoplasma gondii by adhering a microsphere to the surface of an immobilized parasite. Motion of the microsphere reflected underlying forces exerted by the motile apparatus. We found that force generated at the parasite surface begins with no preferential directionality but becomes directed toward the rear of the cell after a period of time. The transition from nondirectional to directional force generation occurs on spatial intervals consistent with the lateral periodicity of structures associated with the membrane pellicle and is influenced by the kinetics of actin filament polymerization and cytoplasmic calcium. A lysine methyltransferase regulates both the magnitude and polarization of the force. Our work provides a novel means to dissect the motile mechanisms of these pathogens.
Collapse
Affiliation(s)
- Rachel V Stadler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Lauren A White
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Brian P Helmke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - William H Guilford
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
44
|
Nagayasu E, Hwang YC, Liu J, Murray JM, Hu K. Loss of a doublecortin (DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion. Mol Biol Cell 2017; 28:411-428. [PMID: 27932494 PMCID: PMC5341725 DOI: 10.1091/mbc.e16-08-0587] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
The ∼6000 species in phylum Apicomplexa are single-celled obligate intracellular parasites. Their defining characteristic is the apical complex-membranous and cytoskeletal elements at the apical end of the cell that participate in host-cell invasion. The apical complex of Toxoplasma gondii and some other apicomplexans includes a cone-shaped assembly, the conoid, which in T. gondii comprises 14 spirally arranged fibers that are nontubular polymers of tubulin. The tubulin dimers of the conoid fibers make canonical microtubules elsewhere in the same cell, suggesting that nontubulin protein dictates their special arrangement in the conoid fibers. One candidate for this role is TgDCX, which has a doublecortin (DCX) domain and a TPPP/P25-α domain, both of which are known modulators of tubulin polymer structure. Loss of TgDCX radically disrupts the structure of the conoid, severely impairs host-cell invasion, and slows growth. Both the conoid structural defects and the impaired invasion of TgDCX-null parasites are corrected by reintroduction of a TgDCX coding sequence. The nontubular polymeric form of tubulin found in the conoid is not found in the host cell, suggesting that TgDCX may be an attractive target for new parasite-specific chemotherapeutic agents.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - John M Murray
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
45
|
Shen B, Brown K, Long S, Sibley LD. Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii. Methods Mol Biol 2017; 1498:79-103. [PMID: 27709570 DOI: 10.1007/978-1-4939-6472-7_6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Efficient and site-specific alteration of the genome is key to decoding and altering the genomic information of an organism. Over the last couple of years, the RNA-guided Cas9 nucleases derived from the prokaryotic type 2 CRISPR (clustered regularly interspaced short palindromic repeats) systems have drastically improved our ability to engineer the genomes of a variety of organisms including Toxoplasma gondii. In this chapter, we describe detailed protocols for using the CRISPR/Cas9 system adapted from Streptococcus pyogenes to perform efficient genetic manipulations in T. gondii such as gene disruption, gene tagging and genetic complementation. The technical details of the strategy, including CRISPR plasmid construction, target construct generation, parasite transfection and positive clone identification are also provided. These methods are easy to customize to any gene of interest (GOI) and will greatly accelerate studies on this important pathogen.
Collapse
Affiliation(s)
- Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kevin Brown
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Shaojun Long
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
46
|
Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion. Cell Host Microbe 2016; 20:731-743. [PMID: 27978434 DOI: 10.1016/j.chom.2016.10.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/16/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
Apicomplexa exhibit a unique form of substrate-dependent gliding motility central for host cell invasion and parasite dissemination. Gliding is powered by rearward translocation of apically secreted transmembrane adhesins via their interaction with the parasite actomyosin system. We report a conserved armadillo and pleckstrin homology (PH) domain-containing protein, termed glideosome-associated connector (GAC), that mediates apicomplexan gliding motility, invasion, and egress by connecting the micronemal adhesins with the actomyosin system. TgGAC binds to and stabilizes filamentous actin and specifically associates with the transmembrane adhesin TgMIC2. GAC localizes to the apical pole in invasive stages of Toxoplasma gondii and Plasmodium berghei, and apical positioning of TgGAC depends on an apical lysine methyltransferase, TgAKMT. GAC PH domain also binds to phosphatidic acid, a lipid mediator associated with microneme exocytosis. Collectively, these findings indicate a central role for GAC in spatially and temporally coordinating gliding motility and invasion.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Isa Pires
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Jessica Stock
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Arnault Graindorge
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Yu-Fu Hung
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Huijong Han
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| |
Collapse
|
47
|
Teh AY, Amerizadeh A, Osman S, Yunus MH, Noordin R. Identification, production and assessment of two Toxoplasma gondii recombinant proteins for use in a Toxoplasma IgG avidity assay. Pathog Glob Health 2016; 110:277-286. [PMID: 27697019 DOI: 10.1080/20477724.2016.1238186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The IgG avidity assay is an important tool in the management of suspected toxoplasmosis in pregnant women. This study aimed to produce new Toxoplasma gondii recombinant proteins and to assess their usefulness in an IgG avidity assay. Toxoplasma positive and negative serum samples were used, the former were categorized into low (LGA) and high (HGA) IgG avidity samples. Immunoblots were performed on 30 T. gondii cDNA clones to determine the reactivity and IgG avidity to the expressed proteins. Two of the clones were found to have diagnostic potential and were analyzed further; AG12b encoded T. gondii apical complex lysine methyltransferase (AKMT) protein and AG18 encoded T. gondii forkhead-associated (FHA) domain-containing protein. The His-tagged recombinant proteins, rAG12b and rAG18, were expressed and tested with LGA and HGA samples using an IgG avidity western blot and ELISA. With the IgG avidity western blot, rAG12b identified 86.4% of LGA and 90.9% of HGA samples, whereas rAG18 identified 81.8% of both LGA and HGA samples. With the IgG avidity ELISA, rAG12b identified 86.4% of both LGA and HGA samples, whereas rAG18 identified 77.3% of LGA and 86.4% of HGA serum samples. This study showed that the recombinant antigens were able to differentiate low avidity and high avidity serum samples, suggesting that they are potential candidates for use in the Toxoplasma IgG avidity assay.
Collapse
Affiliation(s)
- Ai Ying Teh
- a Institute for Research in Molecular Medicine , Universiti Sains Malaysia , Penang , Malaysia
| | - Atefeh Amerizadeh
- a Institute for Research in Molecular Medicine , Universiti Sains Malaysia , Penang , Malaysia
| | - Sabariah Osman
- a Institute for Research in Molecular Medicine , Universiti Sains Malaysia , Penang , Malaysia
| | - Muhammad Hafiznur Yunus
- a Institute for Research in Molecular Medicine , Universiti Sains Malaysia , Penang , Malaysia
| | - Rahmah Noordin
- a Institute for Research in Molecular Medicine , Universiti Sains Malaysia , Penang , Malaysia
| |
Collapse
|
48
|
Heaslip AT, Nelson SR, Warshaw DM. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Mol Biol Cell 2016; 27:2080-9. [PMID: 27146112 PMCID: PMC4927281 DOI: 10.1091/mbc.e15-12-0824] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/26/2016] [Indexed: 11/18/2022] Open
Abstract
The survival of Toxoplasma gondii within its host cell requires protein release from vesicles, called dense granules (DGs). Through imaging of the motions of DGs in live intracellular parasites, it is shown that DG transport is dependent on F-actin and a class 27 myosin, TgMyoF, thus uncovering new critical roles for these essential proteins in the parasite’s lytic cycle. The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite’s intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein–tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen.
Collapse
Affiliation(s)
- Aoife T Heaslip
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
49
|
Kuchipudi A, Arroyo-Olarte RD, Hoffmann F, Brinkmann V, Gupta N. Optogenetic monitoring identifies phosphatidylthreonine-regulated calcium homeostasis in Toxoplasma gondii. MICROBIAL CELL 2016; 3:215-223. [PMID: 28357357 PMCID: PMC5349149 DOI: 10.15698/mic2016.05.500] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite, which inflicts acute as well as chronic infections in a wide range of warm-blooded vertebrates. Our recent work has demonstrated the natural occurrence and autonomous synthesis of an exclusive lipid phosphatidylthreonine in T. gondii. Targeted gene disruption of phosphatidylthreonine synthase impairs the parasite virulence due to unforeseen attenuation of the consecutive events of motility, egress and invasion. However, the underlying basis of such an intriguing phenotype in the parasite mutant remains unknown. Using an optogenetic sensor (gene-encoded calcium indicator, GCaMP6s), we show that loss of phosphatidylthreonine depletes calcium stores in intracellular tachyzoites, which leads to dysregulation of calcium release into the cytosol during the egress phase of the mutant. Consistently, the parasite motility and egress phenotypes in the mutant can be entirely restored by ionophore-induced mobilization of calcium. Collectively, our results suggest a novel regulatory function of phosphatidylthreonine in calcium signaling of a prevalent parasitic protist. Moreover, our application of an optogenetic sensor to monitor subcellular calcium in a model intracellular pathogen exemplifies its wider utility to other entwined systems.
Collapse
Affiliation(s)
| | | | | | | | - Nishith Gupta
- Humboldt University, Berlin, Germany.,Max-Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
50
|
Analysis of Noncanonical Calcium-Dependent Protein Kinases in Toxoplasma gondii by Targeted Gene Deletion Using CRISPR/Cas9. Infect Immun 2016; 84:1262-1273. [PMID: 26755159 DOI: 10.1128/iai.01173-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are expanded in apicomplexan parasites, especially in Toxoplasma gondii where 14 separate genes encoding these enzymes are found. Although previous studies have shown that several CDPKs play a role in controlling invasion, egress, and cell division in T. gondii, the roles of most of these genes are unexplored. Here we developed a more efficient method for gene disruption using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) that was modified to completely delete large, multiexonic genes from the genome and to allow serial replacement by recycling of the selectable marker using Cre-loxP. Using this system, we generated a total of 24 mutants in type 1 and 2 genetic backgrounds to ascertain the functions of noncanonical CDPKs. Remarkably, although we were able to confirm the essentiality of CDPK1 and CDPK7, the majority of CDPKs had no discernible phenotype for growth in vitro or infection in the mouse model. The exception to this was CDPK6, loss of which leads to reduced plaquing, fitness defect in a competition assay, and reduced tissue cyst formation in chronically infected mice. Our findings highlight the utility of CRISPR/Cas9 for rapid serial gene deletion and also suggest that additional models are needed to reveal the functions of many genes in T. gondii.
Collapse
|