1
|
Cox JB, Nukui M, Murphy EA. Protein-S-nitrosylation of human cytomegalovirus pp65 reduces its ability to undermine cGAS. J Virol 2025; 99:e0048125. [PMID: 40243337 PMCID: PMC12090748 DOI: 10.1128/jvi.00481-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Post-translational modifications (PTMs) are key regulators of various processes important for cell survival. These modifications are critical for dealing with stress conditions, such as those observed in disease states, and during infections with various pathogens. We previously reported that during infection of primary dermal fibroblasts, multiple human cytomegalovirus (HCMV)-encoded proteins were post-translationally modified by the addition of a nitric oxide group to cysteine residues, a modification called protein-S-nitrosylation. For example, tegument protein pp71 is nitrosylated, diminishing its ability to inhibit STING, a protein necessary for DNA virus immune response. Herein, we report that an additional HCMV tegument protein, pp65, responsible for the inhibition of cGAS is also modified by protein-S-nitrosylation on two cysteine residues. Utilizing site-directed mutagenesis to generate recombinant viruses that encode a pp65 that cannot be protein-S-nitrosylated, we evaluated the impact of this PTM on viral replication and how the virus impacts the cGAS/STING pathway. We report that the nitrosylation of pp65 negatively impacts its ability to block cGAS enzymatic functions. pp65 protein-S-nitrosylation mutants demonstrated a decrease in cGAS/STING-induced IRF3 and TBK1 phosphorylation. Additionally, we observed a reduction in IFN-β1 secretion in NuFF-1 cells expressing a nitrosylation-resistant pp65. We report that HCMV expressing a protein-S-nitrosylation-deficient pp65 is resistant to the activation of cGAS in the infection of primary dermal fibroblasts. Our work suggests that nitrosylation of viral proteins may serve as a broadly neutralizing mechanism in HCMV infection. IMPORTANCE Post-translational modifications (PTM) are utilized by host cells to limit an invading pathogen's ability to establish a productive infection. A potent PTM, called protein-S-nitrosylation, has anti-bacterial and anti-viral properties. Increasing protein-S-nitrosylation with the addition of nitric oxide donor compounds reduced HCMV replication in fibroblasts and epithelial cells. We previously reported that protein-S-nitrosylation of HCMV pp71 limits its ability to inhibit STING. Herein, we report that the protein-S-nitrosylation of HCMV pp65 impacts its ability to limit cGAS activity, an additional protein important in regulating interferon response. Therapeutically, patients provided nitric oxide by inhalation reduced viral replication in coronavirus disease 2019, influenza, and even impacted bacterial growth within patients' lungs. It is thought that an increase in free nitric oxide increases the frequency of nitrosylated proteins. Understanding how protein-S-nitrosylation regulates a common DNA virus like HCMV will provide insights into the development of broadly neutralizing therapeutics in drug-resistant viral infections.
Collapse
Affiliation(s)
- Justin B. Cox
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Masatoshi Nukui
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Eain A. Murphy
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Ghosh A, Britto J, Chandran B, Roy A. IFI16 recruits HDAC1 and HDAC2 to deacetylate the Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA), facilitating latency. J Virol 2025; 99:e0154924. [PMID: 39927772 PMCID: PMC11915870 DOI: 10.1128/jvi.01549-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
IFI16 (interferon-γ-inducible protein 16) is an innate-immune DNA sensor that detects viral dsDNA in the nucleus. It also functions as an antiviral restriction factor, playing a crucial role in regulating the latency/lytic balance of several herpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV). We previously demonstrated that IFI16 achieves this by regulating the deposition of H3K9me3 marks on the KSHV genome. Here, we explored whether IFI16 impacts the KSHV latency/lytic balance through additional mechanisms. Our analysis of the IFI16 interactome revealed that IFI16 binds to the class-I HDACs, HDAC1 and HDAC2, and recruits them to the KSHV major latency protein, latency-associated nuclear antigen (LANA). Previous reports have suggested that LANA undergoes lysine acetylation through unknown mechanisms, which results in the loss of its ability to bind to the KSHV transactivator protein (RTA) promoter. However, how the LANA acetylation-deacetylation cycle is orchestrated and what effect this has on KSHV gene expression remains unknown. Here, we demonstrate that LANA, by default, undergoes post-translational acetylation, and during latency, IFI16 interacts with this acetylated LANA and recruits HDAC1/2 to it. This keeps LANA in a deacetylated form, competent in binding and repressing lytic promoters. However, during lytic reactivation, IFI16 is degraded via the proteasomal pathway, leading to the accumulation of acetylated LANA, which cannot bind to the RTA promoter. This results in the de-repression of the RTA and, subsequently, other lytic promoters, driving reactivation. These findings shed new light on the role of IFI16 in KSHV latency and suggest that KSHV utilizes the cellular IFI16-HDAC1/2 interaction to facilitate its latency. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesviruses etiologically associated with several human malignancies, including Kaposi's sarcoma, primary effusion B-cell lymphoma, and multicentric Castleman's disease. Understanding the molecular mechanisms governing the establishment and maintenance of latency in γ-herpesviruses is crucial because latency plays a pivotal role in oncogenesis and disease manifestation post-infection. Here, we have elucidated a new mechanism by which IFI16, a previously discovered antiviral restriction factor, is hijacked by KSHV to recruit class-I HDACs on latency-associated nuclear antigen (LANA), resulting in the latter's deacetylation. The acetylation status of LANA is critical for KSHV latency because it governs LANA's binding to the KSHV replication and transcription activator (RTA) promoter, an immediate-early gene crucial for lytic reactivation. Depletion of IFI16 results in the accumulation of acetylated LANA, which is incapable of maintaining latency. These newly discovered interactions between IFI16 and LANA and between IFI16 and HDAC1/2 enhance our understanding of KSHV latency regulations.
Collapse
Affiliation(s)
- Anandita Ghosh
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jeffrey Britto
- Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Bala Chandran
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Arunava Roy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Saha A, Ganguly A, Kumar A, Srivastava N, Pathak R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025; 14:129. [PMID: 40005506 PMCID: PMC11858160 DOI: 10.3390/pathogens14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Acute respiratory infections (ARIs) caused by viruses such as SARS-CoV-2, influenza viruses, and respiratory syncytial virus (RSV), pose significant global health challenges, particularly for the elderly and immunocompromised individuals. Substantial evidence indicates that acute viral infections can manipulate the host's epigenome through mechanisms like DNA methylation and histone modifications as part of the immune response. These epigenetic alterations can persist beyond the acute phase, influencing long-term immunity and susceptibility to subsequent infections. Post-infection modulation of the host epigenome may help distinguish infected from uninfected individuals and predict disease severity. Understanding these interactions is crucial for developing effective treatments and preventive strategies for viral ARIs. This review highlights the critical role of epigenetic modifications following viral ARIs in regulating the host's innate immune defense mechanisms. We discuss the implications of these modifications for diagnosing, preventing, and treating viral infections, contributing to the advancement of precision medicine. Recent studies have identified specific epigenetic changes, such as hypermethylation of interferon-stimulated genes in severe COVID-19 cases, which could serve as biomarkers for early detection and disease progression. Additionally, epigenetic therapies, including inhibitors of DNA methyltransferases and histone deacetylases, show promise in modulating the immune response and improving patient outcomes. Overall, this review provides valuable insights into the epigenetic landscape of viral ARIs, extending beyond traditional genetic perspectives. These insights are essential for advancing diagnostic techniques and developing innovative treatments to address the growing threat of emerging viruses causing ARIs globally.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India;
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India;
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
4
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Cai X, Padilla NT, Rosbe K, Tugizov SM. Breast milk induces the differentiation of monocytes into macrophages, promoting human cytomegalovirus infection. J Virol 2024; 98:e0117724. [PMID: 39194236 PMCID: PMC11406957 DOI: 10.1128/jvi.01177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus found in human breast milk that is frequently transmitted from HCMV-seropositive mothers to their infants during the postnatal period. Despite extensive research, the mechanisms underlying HCMV transmission from breast milk and the anatomical location at which virus transfer takes place remain unclear. Breast milk contains many uniquely differentiated macrophages that undergo specific morphological and functional modifications in the mammary gland during lactation. Although the existence of permissive HCMV infection in differentiated macrophages has been well-described, the role of breast milk in this process remains unknown. Herein, we report that exposure of isolated peripheral blood monocytes to breast milk induces their differentiation into macrophages that exhibit an M2 phenotype (CD14highCD163highCD68highCD206high) and promotes a productive and sustained HCMV infection. We also found that breast milk triggers macrophage proliferation and thus sustains a unique population of proliferating, long-lived, and HCMV-susceptible macrophages that are capable of ongoing production of infectious virions. These results suggest a mechanism that explains chronic HCMV shedding into the breast milk of postpartum seropositive mothers. We also found that HCMV virions released from breast milk-induced macrophages generate a productive infection in primary infant tonsil epithelial cells. Collectively, our results suggest that breast milk may facilitate HCMV transmission from mother to infant via the oropharyngeal mucosa. IMPORTANCE While human cytomegalovirus (HCMV) is frequently detected in the breast milk of HCMV-seropositive women and is often transmitted to infants via breastfeeding, the mechanisms by which this transmission occurs remain unclear. In this study, we modeled HCMV transmission at the oropharyngeal mucosa. We treated human monocytes with breast milk to mimic the lactating mammary gland microenvironment. We found that monocytes differentiated into macrophages with an M2 phenotype, which were highly permissive for HCMV. We also discovered that breast milk induces macrophage proliferation. Thus, exposure to breast milk increased the number of HCMV-susceptible macrophages and supported high levels of infectious HCMV. We found that HCMV virions released from breast milk-induced macrophages could infect primary infant tonsil epithelial cells. Collectively, these findings reveal the dual role of breast milk that induces the differentiation and proliferation of macrophages in the mammary gland and thus facilitates mother-to-child HCMV transmission at the oropharyngeal mucosa.
Collapse
Affiliation(s)
- Xiaodan Cai
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Nicole T. Padilla
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California–San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Serrero MC, Paludan SR. Restriction factors regulating human herpesvirus infections. Trends Immunol 2024; 45:662-677. [PMID: 39198098 DOI: 10.1016/j.it.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis. By integrating findings from human genetics, murine models, and cellular studies, this review provides a current view of RF control of herpesvirus infections. We also explore the regulation of RF expression, discuss the roles of RFs in diseases, and point towards their growing potential as candidate therapeutic targets.
Collapse
Affiliation(s)
- Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus, Denmark.
| |
Collapse
|
7
|
Xu Y, Ding L, Zhang Y, Ren S, Li J, Liu F, Sun W, Chen Z, Yu J, Wu J. Research progress on the pattern recognition receptors involved in porcine reproductive and respiratory syndrome virus infection. Front Cell Infect Microbiol 2024; 14:1428447. [PMID: 39211800 PMCID: PMC11358126 DOI: 10.3389/fcimb.2024.1428447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases of pigs globally. The pathogen, porcine reproductive and respiratory syndrome virus (PRRSV), is an enveloped positive-stranded RNA virus, which is considered to be the key triggers for the activation of effective innate immunity through pattern recognition receptor (PRR)-dependent signaling pathways. Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs) and Cytoplasmic DNA receptors (CDRs) are used as PRRs to identify distinct but overlapping microbial components. The innate immune system has evolved to recognize RNA or DNA molecules from microbes through pattern recognition receptors (PRRs) and to induce defense response against infections, including the production of type I interferon (IFN-I) and inflammatory cytokines. However, PRRSV is capable of continuous evolution through gene mutation and recombination to evade host immune defenses and exploit host cell mechanisms to synthesize and transport its components, thereby facilitating successful infection and replication. This review presents the research progress made in recent years in the study of these PRRs and their associated adapters during PRRSV infection.
Collapse
Affiliation(s)
- Yulin Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs (MARA), Jinan, China
| |
Collapse
|
8
|
Sutter SO, Tobler K, Seyffert M, Lkharrazi A, Zöllig J, Schraner EM, Vogt B, Büning H, Fraefel C. Interferon-γ inducible factor 16 (IFI16) restricts adeno-associated virus type 2 (AAV2) transduction in an immune-modulatory independent way. J Virol 2024; 98:e0011024. [PMID: 38837381 PMCID: PMC11338077 DOI: 10.1128/jvi.00110-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
We determined the transcription profile of adeno-associated virus type 2 (AAV2)-infected primary human fibroblasts. Subsequent analysis revealed that cells respond to AAV infection through changes in several significantly affected pathways, including cell cycle regulation, chromatin modulation, and innate immune responses. Various assays were performed to validate selected differentially expressed genes and to confirm not only the quality but also the robustness of the raw data. One of the genes upregulated in AAV2-infected cells was interferon-γ inducible factor 16 (IFI16). IFI16 is known as a multifunctional cytosolic and nuclear innate immune sensor for double-stranded as well as single-stranded DNA, exerting its effects through various mechanisms, such as interferon response, epigenetic modifications, or transcriptional regulation. IFI16 thereby constitutes a restriction factor for many different viruses among them, as shown here, AAV2 and thereof derived vectors. Indeed, the post-transcriptional silencing of IFI16 significantly increased AAV2 transduction efficiency, independent of the structure of the virus/vector genome. We also show that IFI16 exerts its inhibitory effect on AAV2 transduction in an immune-modulatory independent way by interfering with Sp1-dependent transactivation of wild-type AAV2 and AAV2 vector promoters. IMPORTANCE Adeno-associated virus (AAV) vectors are among the most frequently used viral vectors for gene therapy. The lack of pathogenicity of the parental virus, the long-term persistence as episomes in non-proliferating cells, and the availability of a variety of AAV serotypes differing in their cellular tropism are advantageous features of this biological nanoparticle. To deepen our understanding of virus-host interactions, especially in terms of antiviral responses, we present here the first transcriptome analysis of AAV serotype 2 (AAV2)-infected human primary fibroblasts. Our findings indicate that interferon-γ inducible factor 16 acts as an antiviral factor in AAV2 infection and AAV2 vector-mediated cell transduction in an immune-modulatory independent way by interrupting the Sp1-dependent gene expression from viral or vector genomes.
Collapse
Affiliation(s)
| | - Kurt Tobler
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Michael Seyffert
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Anouk Lkharrazi
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Joël Zöllig
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | | | - Bernd Vogt
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| | - Hildegard Büning
- Institute of
Experimental Hematology, Hannover Medical
School, Hannover,
Germany
| | - Cornel Fraefel
- Institute of Virology,
University of Zurich,
Zurich, Switzerland
| |
Collapse
|
9
|
Justice JL, Reed TJ, Phelan B, Greco TM, Hutton JE, Cristea IM. DNA-PK and ATM drive phosphorylation signatures that antagonistically regulate cytokine responses to herpesvirus infection or DNA damage. Cell Syst 2024; 15:339-361.e8. [PMID: 38593799 PMCID: PMC11098675 DOI: 10.1016/j.cels.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-β expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
10
|
Shi X, Wei M, Feng Y, Yang Y, Zhang X, Chen H, Xing Y, Wang K, Wang W, Wang L, Wang A, Zhang G. IFI16 Positively Regulates RIG-I-Mediated Type I Interferon Production in a STING-Independent Manner. DNA Cell Biol 2024; 43:197-205. [PMID: 38466944 DOI: 10.1089/dna.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Previous studies have shown that interferon gene-stimulating protein (STING) is essential for IFN-γ-inducible protein 16 (IFI16) as the DNA sensor and RNA sensor to induce transcription of type I interferon (IFN-I) and is essential for IFI16 to synergize with DNA sensor GMP-AMP (cGAMP) synthase (cGAS) in induction of IFN-I transcription. While other and our previous studies have shown that IFI16 enhanced retinoic acid-inducible gene I (RIG-I)-, which was an RNA sensor, and mitochondrial antiviral signaling (MAVS)-, which was the adaptor protein of RIG-I, induced production of IFN-I, so we wonder whether IFI16 regulates the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-dependent manner. We used HEK 293T cells, which did not express endogenous STING and were unable to mount an innate immune response upon DNA transfection and found that IFI16 could enhance RIG-I- and MAVS-mediated induction of IFN-I in a STING-independent way. Furthermore, we found that upregulation of the expression of NF-kappa-B essential modulator (NEMO) by IFI16 was not the mechanism that IFI16 regulated the induction of IFN-I. In conclusion, we found that IFI16 regulated the signal pathway of RNA-RIG-I-MAVS-IFN-I in a STING-independent manner.
Collapse
Affiliation(s)
- Xibao Shi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Menglu Wei
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuwen Feng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuanhao Yang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xiaozhuan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hao Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuqi Xing
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Keqi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wensheng Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| |
Collapse
|
11
|
Raviola S, Griffante G, Iannucci A, Chandel S, Lo Cigno I, Lacarbonara D, Caneparo V, Pasquero S, Favero F, Corà D, Trisolini E, Boldorini R, Cantaluppi V, Landolfo S, Gariglio M, De Andrea M. Human cytomegalovirus infection triggers a paracrine senescence loop in renal epithelial cells. Commun Biol 2024; 7:292. [PMID: 38459109 PMCID: PMC10924099 DOI: 10.1038/s42003-024-05957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.
Collapse
Affiliation(s)
- Stefano Raviola
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Gloria Griffante
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Andrea Iannucci
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Shikha Chandel
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Irene Lo Cigno
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Lacarbonara
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Valeria Caneparo
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
| | - Selina Pasquero
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Francesco Favero
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Corà
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Elena Trisolini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Marisa Gariglio
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy.
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| |
Collapse
|
12
|
Costa B, Becker J, Krammer T, Mulenge F, Durán V, Pavlou A, Gern OL, Chu X, Li Y, Čičin-Šain L, Eiz-Vesper B, Messerle M, Dölken L, Saliba AE, Erhard F, Kalinke U. Human cytomegalovirus exploits STING signaling and counteracts IFN/ISG induction to facilitate infection of dendritic cells. Nat Commun 2024; 15:1745. [PMID: 38409141 PMCID: PMC10897438 DOI: 10.1038/s41467-024-45614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that in immunocompromised hosts can cause life-threatening disease. Studying HCMV-exposed monocyte-derived dendritic cells by single-cell RNA sequencing, we observe that most cells are entered by the virus, whereas less than 30% of them initiate viral gene expression. Increased viral gene expression is associated with activation of the stimulator of interferon genes (STING) that usually induces anti-viral interferon responses, and with the induction of several pro- (RHOB, HSP1A1, DNAJB1) and anti-viral (RNF213, TNFSF10, IFI16) genes. Upon progression of infection, interferon-beta but not interferon-lambda transcription is inhibited. Similarly, interferon-stimulated gene expression is initially induced and then shut off, thus further promoting productive infection. Monocyte-derived dendritic cells are composed of 3 subsets, with one being especially susceptible to HCMV. In conclusion, HCMV permissiveness of monocyte-derived dendritic cells depends on complex interactions between virus sensing, regulation of the interferon response, and viral gene expression.
Collapse
Grants
- 158989968 - SFB 900-B2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 398367752 - FOR 2830 Deutsche Forschungsgemeinschaft (German Research Foundation)
- EXC 2155 "RESIST" - Project ID 39087428 Deutsche Forschungsgemeinschaft (German Research Foundation)
- DO 1275/7-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- ER 927/2-1 - FOR2830 Deutsche Forschungsgemeinschaft (German Research Foundation)
- COALITION Niedersächsisches Ministerium für Wissenschaft und Kultur (Ministry for Science and Culture of Lower Saxony)
- Marie Skłodowska-Curie Actions Innovative Training Network (VIROINF: 955974) European Commission (EC)
- Marie Skłodowska-Curie Actions Innovative Training Network (VIROINF: 955974) European Commission (EC)
- 0703/68674/5/2017 Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (Bavarian Ministry of Economic Affairs and Media, Energy and Technology)
- 0703/89374/3/2017 Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (Bavarian Ministry of Economic Affairs and Media, Energy and Technology)
- 0703/68674/5/2017 Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (Bavarian Ministry of Economic Affairs and Media, Energy and Technology)
- 0703/89374/3/2017 Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (Bavarian Ministry of Economic Affairs and Media, Energy and Technology)
- 0703/68674/5/2017 Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (Bavarian Ministry of Economic Affairs and Media, Energy and Technology)
- 0703/89374/3/2017 Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (Bavarian Ministry of Economic Affairs and Media, Energy and Technology)
Collapse
Affiliation(s)
- Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Verónica Durán
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Xiaojing Chu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Yang Li
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luka Čičin-Šain
- Institute for Immune Aging and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
- Faculty for Informatics and Data Science, University of Regensburg, Regensburg, Germany.
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany.
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
14
|
Azumi Y, Koma YI, Tsukamoto S, Kitamura Y, Ishihara N, Yamanaka K, Nakanishi T, Miyako S, Urakami S, Tanigawa K, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. IFI16 Induced by Direct Interaction between Esophageal Squamous Cell Carcinomas and Macrophages Promotes Tumor Progression via Secretion of IL-1α. Cells 2023; 12:2603. [PMID: 37998338 PMCID: PMC10670642 DOI: 10.3390/cells12222603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tumor-associated macrophages (TAMs), one of the major components of the tumor microenvironment, contribute to the progression of esophageal squamous cell carcinoma (ESCC). We previously established a direct co-culture system of human ESCC cells and macrophages and reported the promotion of malignant phenotypes, such as survival, growth, and migration, in ESCC cells. These findings suggested that direct interactions between cancer cells and macrophages contribute to the malignancy of ESCC, but its underlying mechanisms remain unclear. In this study, we compared the expression levels of the interferon-induced genes between mono- and co-cultured ESCC cells using a cDNA microarray and found that interferon-inducible protein 16 (IFI16) was most significantly upregulated in co-cultured ESCC cells. IFI16 knockdown suppressed malignant phenotypes and also decreased the secretion of interleukin-1α (IL-1α) from ESCC cells. Additionally, recombinant IL-1α enhanced malignant phenotypes of ESCC cells through the Erk and NF-κB signaling. Immunohistochemistry revealed that high IFI16 expression in human ESCC tissues tended to be associated with disease-free survival and was significantly associated with tumor depth, lymph node metastasis, and macrophage infiltration. The results of this study reveal that IFI16 is involved in ESCC progression via IL-1α and imply the potential of IFI16 as a novel prognostic factor for ESCC.
Collapse
Affiliation(s)
- Yuki Azumi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yu Kitamura
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Shoji Miyako
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Tanigawa
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshihiro Kakeji
- Division of Gastro-Intestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.K.); (K.T.); (Y.K.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (Y.A.); (S.T.); (N.I.); (K.Y.); (T.N.); (S.M.); (S.U.); (T.K.); (M.N.); (M.S.); (H.Y.)
| |
Collapse
|
15
|
Sodroski CN, Knipe DM. Nuclear interferon-stimulated gene product maintains heterochromatin on the herpes simplex viral genome to limit lytic infection. Proc Natl Acad Sci U S A 2023; 120:e2310996120. [PMID: 37883416 PMCID: PMC10636318 DOI: 10.1073/pnas.2310996120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
Interferons (IFN) are expressed in and secreted from cells in response to virus infection, and they induce the expression of a variety of genes called interferon-stimulated genes (ISGs) in infected and surrounding cells to block viral infection and limit spread. The mechanisms of action of a number of cytoplasmic ISGs have been well defined, but little is known about the mechanism of action of nuclear ISGs. Constitutive levels of nuclear interferon-inducible protein 16 (IFI16) serve to induce innate signaling and epigenetic silencing of herpes simplex virus (HSV), but only when the HSV infected cell protein 0 (ICP0) E3 ligase, which promotes IFI16 degradation, is inactivated. In this study, we found that following IFN induction, the pool of IFI16 within the infected cell remains high and can restrict wild-type viral gene expression and replication due to both the induced levels of IFI16 and the IFI16-mediated repression of ICP0 levels. Restriction of viral gene expression is achieved by IFI16 promoting the maintenance of heterochromatin on the viral genome, which silences it epigenetically. These results indicate that a nuclear ISG can restrict gene expression and replication of a nuclear DNA virus by maintaining or preventing the removal of repressive heterochromatin associated with the viral genome.
Collapse
Affiliation(s)
- Catherine N. Sodroski
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Program in Virology, Harvard Medical School, Boston, MA02115
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Program in Virology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
16
|
Jin X, Wang W, Zhao X, Jiang W, Shao Q, Chen Z, Huang C. The battle between the innate immune cGAS-STING signaling pathway and human herpesvirus infection. Front Immunol 2023; 14:1235590. [PMID: 37600809 PMCID: PMC10433641 DOI: 10.3389/fimmu.2023.1235590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The incidence of human herpesvirus (HHVs) is gradually increasing and has affected a wide range of population. HHVs can result in serious consequences such as tumors, neonatal malformations, sexually transmitted diseases, as well as pose an immense threat to the human health. The cGAS-STING pathway is one of the innate immune pattern-recognition receptors discovered recently. This article discusses the role of the cGAS-STING pathway in human diseases, especially in human herpesvirus infections, as well as highlights how these viruses act on this pathway to evade the host immunity. Moreover, the author provides a comprehensive overview of modulators of the cGAS-STING pathway. By focusing on the small molecule compounds based on the cGAS-STING pathway, novel targets and concepts have been proposed for the development of antiviral drugs and vaccines, while also providing a reference for the investigation of disease models related to the cGAS-STING pathway. HHV is a double-stranded DNA virus that can trigger the activation of intracellular DNA sensor cGAS, after which the host cells initiate a cascade of reactions that culminate in the secretion of type I interferon to restrict the viral replication. Meanwhile, the viral protein can interact with various molecules in the cGAS-STING pathway. Viruses can evade immune surveillance and maintain their replication by inhibiting the enzyme activity of cGAS and reducing the phosphorylation levels of STING, TBK1 and IRF3 and suppressing the interferon gene activation. Activators and inhibitors of the cGAS-STING pathway have yielded numerous promising research findings in vitro and in vivo pertaining to cGAS/STING-related disease models. However, there remains a dearth of small molecule modulators that have been successfully translated into clinical applications, which serves as a hurdle to be overcome in the future.
Collapse
Affiliation(s)
- Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Baran M, Feriotti C, McGinley A, Carlile SR, Jiang Z, Calderon-Gonzalez R, Dumigan A, Sá-Pessoa J, Sutton CE, Kearney J, McLoughlin RM, Mills KHG, Fitzgerald KA, Bengeochea JA, Bowie AG. PYHIN protein IFI207 regulates cytokine transcription and IRF7 and contributes to the establishment of K. pneumoniae infection. Cell Rep 2023; 42:112341. [PMID: 37018072 DOI: 10.1016/j.celrep.2023.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
PYHIN proteins AIM2 and IFI204 sense pathogen DNA, while other PYHINs have been shown to regulate host gene expression through as-yet unclear mechanisms. We characterize mouse PYHIN IFI207, which we find is not involved in DNA sensing but rather is required for cytokine promoter induction in macrophages. IFI207 co-localizes with both active RNA polymerase II (RNA Pol II) and IRF7 in the nucleus and enhances IRF7-dependent gene promoter induction. Generation of Ifi207-/- mice shows no role for IFI207 in autoimmunity. Rather, IFI207 is required for the establishment of a Klebsiella pneumoniae lung infection and for Klebsiella macrophage phagocytosis. These insights into IFI207 function illustrate that PYHINs can have distinct roles in innate immunity independent of DNA sensing and highlight the need to better characterize the whole mouse locus, one gene at a time.
Collapse
Affiliation(s)
- Marcin Baran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Claudia Feriotti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Aoife McGinley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Simon R Carlile
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Zhaozhao Jiang
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo Calderon-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Caroline E Sutton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Jay Kearney
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland
| | - Katherine A Fitzgerald
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jose A Bengeochea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, 97 Lisburn Road, Belfast, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 Dublin, Ireland.
| |
Collapse
|
18
|
Sirt1 Negatively Regulates Cellular Antiviral Responses by Preventing the Cytoplasmic Translocation of Interferon-Inducible Protein 16 in Human Cells. J Virol 2023; 97:e0197522. [PMID: 36749073 PMCID: PMC9973000 DOI: 10.1128/jvi.01975-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interferon-inducible protein 16 (IFI16) plays a critical role in antiviral innate immune responses against DNA viruses. Although the acetylation of IFI16 is crucial to its cytoplasmic translocation and downstream signal transduction, the regulation of IFI16 acetylation remains unclear. In this study, we demonstrated that the NAD-dependent deacetylase silent information regulatory 1 (Sirtuin1, Sirt1) interacted with IFI16 and decreased the acetylation of IFI16, resulting in the inhibition of IFI16 cytoplasmic localization and antiviral responses against DNA virus and viral DNA in human cells. Meantime, Sirt1 could not inhibit RNA virus-triggered signal transduction. Interestingly, even p204, the murine ortholog of human IFI16, barely interacted with Sirt1. Thus, Sirt1 could not negatively regulate the acetylation of p204 and subsequent signal transduction upon herpes simplex virus 1 (HSV-1) infection in mouse cells. Taken together, our research work showed a new mechanism by which Sirt1 manipulated IFI16-mediated host defense. Our study also demonstrated a difference in the regulation of antiviral host defense between humans and mice, which might be considered in preclinical studies for antiviral treatment. IMPORTANCE DNA viruses, such as hepatitis B virus (HBV), human papillomavirus (HPV), human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and herpes simplex virus (HSV), can cause a wide range of diseases and are considered a global threat to human health. Interferon-inducible protein 16 (IFI16) binds virus DNA and triggers antiviral innate immune responses to restrict viral infection. In this study, we identified that silent information regulatory 1 (Sirtuin1, Sirt1) interacted with IFI16 and regulated IFI16-mediated innate host defense. Therefore, the activator or inhibitor of Sirt1 may have the potential to be used as a novel strategy to treat DNA virus-associated diseases. We also found that Sirt1 barely interacted with p204, the murine ortholog of human IFI16, and could not negatively regulate innate immune responses upon HSV-1 infection in mouse cells. This difference between humans and mice in the regulation of antiviral host defense might be considered in preclinical studies for antiviral treatment.
Collapse
|
19
|
Zhang P, Pan S, Yuan S, Shang Y, Shu H. Abnormal glucose metabolism in virus associated sepsis. Front Cell Infect Microbiol 2023; 13:1120769. [PMID: 37124033 PMCID: PMC10130199 DOI: 10.3389/fcimb.2023.1120769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Sepsis is identified as a potentially lethal organ impairment triggered by an inadequate host reaction to infection (Sepsis-3). Viral sepsis is a potentially deadly organ impairment state caused by the host's inappropriate reaction to a viral infection. However, when a viral infection occurs, the metabolism of the infected cell undergoes a variety of changes that cause the host to respond to the infection. But, until now, little has been known about the challenges faced by cellular metabolic alterations that occur during viral infection and how these changes modulate infection. This study concentrates on the alterations in glucose metabolism during viral sepsis and their impact on viral infection, with a view to exploring new potential therapeutic targets for viral sepsis.
Collapse
Affiliation(s)
| | | | | | - You Shang
- *Correspondence: Huaqing Shu, ; You Shang,
| | | |
Collapse
|
20
|
Transcriptomic analysis of the innate immune response to in vitro transfection of plasmid DNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:43-56. [PMID: 36618265 PMCID: PMC9800263 DOI: 10.1016/j.omtn.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The innate immune response to cytosolic DNA is intended to protect the host from viral infections, but it can also inhibit the delivery and expression of therapeutic transgenes in gene and cell therapies. The goal of this work was to use mRNA sequencing to identify genes that may influence transfection efficiency in four different cell types (PC-3, Jurkat, HEK-293T, and primary T cells). The highest transfection efficiency was observed in HEK-293T cells, which upregulated only 142 genes with no known antiviral functions after transfection with lipofectamine. Lipofection upregulated 1,057 cytokine-stimulated genes (CSGs) in PC-3 cells, which exhibited a significantly lower transfection efficiency. However, when PC-3 cells were transfected in serum-containing media or electroporated, the observed transfection efficiencies were significantly higher while the expression levels of cytokines and CSGs decreased. In contrast, lipofection of Jurkat and primary T cells only upregulated a few genes, but several of the antiviral CSGs that were absent in HEK-293T cells and upregulated in PC-3 cells were observed to be constitutively expressed in T cells, which may explain the relatively low Lipofection efficiencies observed with T cells (8%-21% GFP+). Indeed, overexpression of one CSG (IFI16) significantly decreased transfection efficiency in HEK-293T cells.
Collapse
|
21
|
Justice JL, Cristea IM. Nuclear antiviral innate responses at the intersection of DNA sensing and DNA repair. Trends Microbiol 2022; 30:1056-1071. [PMID: 35641341 PMCID: PMC9560981 DOI: 10.1016/j.tim.2022.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/13/2023]
Abstract
The coevolution of vertebrate and mammalian hosts with DNA viruses has driven the ability of host cells to distinguish viral from cellular DNA in the nucleus to induce intrinsic immune responses. Concomitant viral mechanisms have arisen to inhibit DNA sensing. At this virus-host interface, emerging evidence links cytokine responses and cellular homeostasis pathways, particularly the DNA damage response (DDR). Nuclear DNA sensors, such as the interferon (IFN)-γ inducible protein 16 (IFI16), functionally intersect with the DDR regulators ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK). Here, we discuss accumulating knowledge for the DDR-innate immunity signaling axis. Through the lens of this infection-driven signaling axis, we present host and viral molecular strategies acquired to regulate autoinflammation and antiviral responses.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
22
|
Guy C, Bowie AG. Recent insights into innate immune nucleic acid sensing during viral infection. Curr Opin Immunol 2022; 78:102250. [PMID: 36209576 DOI: 10.1016/j.coi.2022.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Recent advances in our understanding of nucleic acid pattern-recognition receptor (PRR) sensing of viruses have revealed a previously unappreciated level of complexity of the host antiviral response. As well as direct recognition of viral nucleic acid by PRRs, viruses also induce the release of host nucleic acid from the nucleus and mitochondria into the cytosol, which boosts nucleic acid activation of antiviral PRRs. Crosstalk and cooperation between DNA- and RNA-recognition signaling pathways has also been revealed, as has direct restriction of viral genomes in an interferon-independent manner by PRRs, and new roles for inflammasomes in sensing viral nucleic acid. Further, newly identified viral-evasion strategies targeting PRR pathways emphasize the importance of nucleic acid detection during viral infection at the host-pathogen innate immune interface.
Collapse
Affiliation(s)
- Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
23
|
Xu H, Li X, Rousseau BA, Akinyemi IA, Frey TR, Zhou K, Droske LE, Mitchell JA, McIntosh MT, Bhaduri-McIntosh S. IFI16 Partners with KAP1 to Maintain Epstein-Barr Virus Latency. J Virol 2022; 96:e0102822. [PMID: 35969079 PMCID: PMC9472614 DOI: 10.1128/jvi.01028-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses establish latency to ensure permanent residence in their hosts. Upon entry into a cell, these viruses are rapidly silenced by the host, thereby limiting the destructive viral lytic phase while allowing the virus to hide from the immune system. Notably, although the establishment of latency by the oncogenic herpesvirus Epstein-Barr virus (EBV) requires the expression of viral latency genes, latency can be maintained with a negligible expression of viral genes. Indeed, in several herpesviruses, the host DNA sensor IFI16 facilitated latency via H3K9me3 heterochromatinization. This silencing mark is typically imposed by the constitutive heterochromatin machinery (HCM). The HCM, in an antiviral role, also silences the lytic phase of EBV and other herpes viruses. We investigated if IFI16 restricted EBV lytic activation by partnering with the HCM and found that IFI16 interacted with core components of the HCM, including the KRAB-associated protein 1 (KAP1) and the site-specific DNA binding KRAB-ZFP SZF1. This partnership silenced the EBV lytic switch protein ZEBRA, encoded by the BZLF1 gene, thereby favoring viral latency. Indeed, IFI16 contributed to H3K9 trimethylation at lytic genes of all kinetic classes. In defining topology, we found that IFI16 coenriched with KAP1 at the BZLF1 promoter, and while IFI16 and SZF1 were each adjacent to KAP1 in latent cells, IFI16 and SZF1 were not. Importantly, we also found that disruption of latency involved rapid downregulation of IFI16 transcription. These findings revealed a previously unknown partnership between IFI16 and the core HCM that supports EBV latency via antiviral heterochromatic silencing. IMPORTANCE The interferon-gamma inducible protein 16 (IFI16) is a nuclear DNA sensor that mediates antiviral responses by activating the inflammasome, triggering an interferon response, and silencing lytic genes of herpesviruses. The last, which helps maintain latency of the oncoherpesvirus Epstein-Barr virus (EBV), is accomplished via H3K9me3 heterochromatinization through unknown mechanisms. Here, we report that IFI16 physically partners with the core constitutive heterochromatin machinery to silence the key EBV lytic switch protein, thereby ensuring continued viral latency in B lymphocytes. We also find that disruption of latency involves rapid transcriptional downregulation of IFI16. These findings point to hitherto unknown physical and functional partnerships between a well-known antiviral mechanism and the core components of the constitutive heterochromatin machinery.
Collapse
Affiliation(s)
- Huanzhou Xu
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Beth A. Rousseau
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ibukun A. Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Tiffany R. Frey
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Kevin Zhou
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Lauren E. Droske
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Jennifer A. Mitchell
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Michael T. McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
25
|
Bodro M, Cervera C, Linares L, Suárez B, Llopis J, Sanclemente G, Casadó-Llombart S, Fernández-Ruiz M, Fariñas MC, Cantisan S, Montejo M, Cordero E, Oriol I, Marcos MA, Lozano F, Moreno A. Polygenic Innate Immunity Score to Predict the Risk of Cytomegalovirus Infection in CMV D+/R- Transplant Recipients. A Prospective Multicenter Cohort Study. Front Immunol 2022; 13:897912. [PMID: 36016941 PMCID: PMC9397545 DOI: 10.3389/fimmu.2022.897912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Several genetic polymorphisms of the innate immune system have been described to increase the risk of cytomegalovirus (CMV) infection in transplant patients. The aim of this study was to assess the impact of a polygenic score to predict CMV infection and disease in high risk CMV transplant recipients (heart, liver, kidney or pancreas). On hundred and sixteen CMV-seronegative recipients of grafts from CMV-seropositive donors undergoing heart, liver, and kidney or pancreas transplantation from 7 centres were prospectively included for this purpose during a 2-year period. All recipients received 100-day prophylaxis with valganciclovir. CMV infection occurred in 61 patients (53%) at 163 median days from transplant, 33 asymptomatic replication (28%) and 28 CMV disease (24%). Eleven patients (9%) had recurrent CMV infection. Clinically and/or functionally relevant single nucleotide polymorphisms (SNPs) from TLR2, TLR3, TLR4, TLR7, TLR9, AIM2, MBL2, IL28, IFI16, MYD88, IRAK2 and IRAK4 were assessed by real time polymerase chain reaction (RT-PCR) or sequence-based typing (PCR-SBT). A polygenic score including the TLR4 (rs4986790/rs4986791), TLR9 (rs3775291), TLR3 (rs3775296), AIM2 (rs855873), TLR7 (rs179008), MBL (OO/OA/XAO), IFNL3/IL28B (rs12979860) and IFI16 (rs6940) SNPs was built based on the risk of CMV infection and disease. The CMV score predicted the risk of CMV disease with an AUC of the model of 0.68, with sensitivity and specificity of 64.3 and 71.6%, respectively. Even though further studies are needed to validate this score, its use would represent an effective model to develop more robust scores predicting the risk of CMV disease in donor/recipient mismatch (D+/R-) transplant recipients.
Collapse
Affiliation(s)
- Marta Bodro
- Infectious Diseases Department, Hospital Clinic de Barcelona - Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- *Correspondence: Marta Bodro,
| | - Carlos Cervera
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Laura Linares
- Infectious Diseases Department, Hospital Clinic de Barcelona - Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Belén Suárez
- Immunology Department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jaume Llopis
- Infectious Diseases Department, Hospital Clinic de Barcelona - Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Gemma Sanclemente
- Infectious Diseases Department, Hospital Clinic de Barcelona - Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors of the Innate and Adaptive Sistems, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario Fernández-Ruiz
- Hospital Universitario “12 de Octubre”, Instituto de Investigación Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - María Carmen Fariñas
- University Hospital “Marqués de Valdecilla”, Instituto de Investigación “Marqués de Valdecilla” (IDIVAL), University of Cantabria, Santander, Spain
| | - Sara Cantisan
- Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Miguel Montejo
- Hospital Universitario Cruces, Barakaldo, Universidad del País Vasco, Bilbao, Spain
| | - Elisa Cordero
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío and Virgen Macarena University Hospitals/CSIC/University of Seville, Seville, Spain
- Department of Medicine, University of Seville, Seville, Spain
| | - Isabel Oriol
- University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - María Angeles Marcos
- Infectious Diseases Department, Hospital Clinic de Barcelona - Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Francisco Lozano
- Immunology Department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
- Immunoreceptors of the Innate and Adaptive Sistems, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biomedicine Department, University of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Department, Hospital Clinic de Barcelona - Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
26
|
Zhang M, Lu C, Su L, Long F, Yang X, Guo X, Song G, An T, Chen W, Chen J. Toosendanin activates caspase-1 and induces maturation of IL-1β to inhibit type 2 porcine reproductive and respiratory syndrome virus replication via an IFI16-dependent pathway. Vet Res 2022; 53:61. [PMID: 35906635 PMCID: PMC9334981 DOI: 10.1186/s13567-022-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent and endemic swine pathogen which causes significant economic losses in the global swine industry. Multiple vaccines have been developed to prevent PRRSV infection. However, they provide limited protection. Moreover, no effective therapeutic drugs are yet available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. Here we report that Toosendanin (TSN), a tetracyclic triterpene found in the bark or fruits of Melia toosendan Sieb. et Zucc., strongly suppressed type 2 PRRSV replication in vitro in Marc-145 cells and ex vivo in primary porcine alveolar macrophages (PAMs) at sub-micromolar concentrations. The results of transcriptomics revealed that TSN up-regulated the expression of IFI16 in Marc-145 cells. Furthermore, we found that IFI16 silencing enhanced the replication of PRRSV in Marc-145 cells and that the anti-PRRSV activity of TSN was dampened by IFI16 silencing, suggesting that the inhibition of TSN against PRRSV replication is IFI16-dependent. In addition, we showed that TSN activated caspase-1 and induced maturation of IL-1β in an IFI16-dependent pathway. To verify the role of IL-1β in PRRSV infection, we analyzed the effect of exogenous rmIL-1β on PRRSV replication, and the results showed that exogenous IL-1β significantly inhibited PRRSV replication in Marc-145 cells and PAMs in a dose-dependent manner. Altogether, our findings indicate that TSN significantly inhibits PRRSV replication at very low concentrations (EC50: 0.16–0.20 μM) and may provide opportunities for developing novel anti-PRRSV agents.
Collapse
Affiliation(s)
- Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chunni Lu
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Monash University, Clayton, VIC, 3168, Australia
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feixiang Long
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofeng Guo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health. Curr Top Behav Neurosci 2022; 61:181-214. [PMID: 35871707 DOI: 10.1007/7854_2022_376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a major modulator of the immune system leading to long-term changes in T-lymphocytes, macrophages, and natural killer (NK) cells among others. Perhaps because of this immunomodulatory capacity, HCMV infection has been linked with a host of deleterious effects including accelerated immune aging (premature mortality, increased expression of immunosenescence-linked markers, telomere shortening, speeding-up of epigenetic "clocks"), decreased vaccine immunogenicity, and greater vulnerability to infectious diseases (e.g., tuberculosis) or infectious disease-associated pathology (e.g., HIV). Perhaps not surprisingly given the long co-evolution between HCMV and humans, the virus has also been associated with beneficial effects, such as increased vaccine responsiveness, heterologous protection against infections, and protection against relapse in the context of leukemia. Here, we provide an overview of this literature. Ultimately, we focus on one other deleterious effect of HCMV, namely the emerging literature suggesting that HCMV plays a pathophysiological role in psychiatric illness, particularly depression and schizophrenia. We discuss this literature through the lens of psychological stress and inflammation, two well-established risk factors for psychiatric illness that are also known to predispose to reactivation of HCMV.
Collapse
|
28
|
The Nuclear DNA Sensor IFI16 Indiscriminately Binds to and Diminishes Accessibility of the HSV-1 Genome to Suppress Infection. mSystems 2022; 7:e0019822. [PMID: 35575489 PMCID: PMC9239196 DOI: 10.1128/msystems.00198-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human cells identify invading pathogens and activate immune signaling pathways through a wide array of pattern recognition receptors, including DNA sensors. The interferon-inducible protein 16 (IFI16) is a nuclear DNA sensor that recognizes double-stranded DNA from a number of viral sources, including genomes of nuclear-replicating viruses. Among these is the prevalent human pathogen herpes simplex virus 1 (HSV-1). Upon binding to the HSV-1 DNA genome, IFI16 both induces antiviral cytokine expression and suppresses virus gene expression. Here, we used a multiomics approach of DNA sequencing techniques paired with targeted mass spectrometry to obtain an extensive view of the interaction between IFI16 and the HSV-1 genome and how this binding affects the viral DNA structure and protein expression. Through chromatin immunoaffinity purification coupled with next-generation DNA sequencing (ChIP-seq), we found that IFI16 binds to the HSV-1 genome in a sequence-independent manner while simultaneously exhibiting broad enrichment at two loci: UL30, the viral DNA polymerase gene, and US1 to US7. The assay for transposase-accessible chromatin with sequencing (ATAC-seq) revealed that these two regions are among the most accessible stretches of DNA on the genome, thereby facilitating IFI16 binding. Accessibility of the entire HSV-1 genome is elevated upon IFI16 knockout, indicating that expression of IFI16 globally induces chromatinization of viral DNA. Deletion of IFI16 also results in a global increase in the expression of HSV-1 proteins, as measured by parallel reaction monitoring-mass spectrometry of viral proteins representing 80% of the HSV-1 genome. Altogether, we demonstrate that IFI16 interacts with the HSV-1 genome in a sequence-independent manner, coordinating epigenetic silencing of the viral genome and decreasing protein expression and virus replication. IMPORTANCE Mammalian host defense against viral infection includes broad-acting cellular restriction factors, as well as effectors of intrinsic and innate immunity. IFI16 is a critical nuclear host defense factor and intrinsic immune protein involved in binding viral DNA genomes, thereby repressing the replication of nucleus-replicating viruses, including the human herpes simplex virus 1. What has remained unclear is where on the viral genome IFI16 binds and how binding affects both viral DNA structural accessibility and viral protein expression. Our study provides a global view of where and how a nuclear restriction factor of DNA viruses associates with viral genomes to exert antiviral functions during early stages of an acute virus infection. Our study can additionally serve as a systems-level model to evaluate nuclear DNA sensor interactions with viral genomes, as well as the antiviral outcomes of transcriptionally silencing pathogen-derived DNA.
Collapse
|
29
|
Liu L, Xie S, Li C, Guo Y, Liu X, Zhao X, Li Q, Du W. IFI16 induces inflammation in hepatitis B virus-associated glomerulonephritis by regulating the Caspase-1/ IL-1 ß pathway. Diagn Pathol 2022; 17:39. [PMID: 35459254 PMCID: PMC9034479 DOI: 10.1186/s13000-022-01220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Aims and background IFI16 plays an important role in innate immunity against invasive microbial infection by sensing double-stranded DNA viruses due to caspase-1-dependent inflammasome activation and subsequent maturation and secretion of IL-1β. However, the role of IFI16 in regulating the immune response to viruses in Hepatitis B Virus-Associated Glomerulonephritis (HBV-GN), especially in sensing hepatitis B virus (HBV), has not been determined. In this study, we investigated the inflammatory role of IFI16 in HBV-GN. Methods A total 75 kidney tissue including 50 HBV-GN and 25 chronic glomerulonephritis (CCN) were collected to determine the expression of IFI16, Caspase-1 and IL-1β using immunohistochemistry (IHC), then the correlation between them was analyzed. In vitro, the primary human glomerular mesangial (HGM) cells and HEK-293 T cell lines were used in this study. The cell lines were both co-transfected with HBVDNA and overexpression or silencing IFI16. Quantitative Real-time PCR and western blotting were used to determine the expression of IFI16, Caspase-1 and IL-1β. Results IFI16 expression in HBV-GN biopsies (80.0%) was significantly higher than in CGN (24.0%) and positively correlated with HBVDNA,caspase-1 and IL-1β expression in HBV-GN. Meanwhile, over expression of IFI16 increased caspase-1 and IL-1β expression in HBV-infected HGM and HEK-293 T cell lines, knockdown of IFI16 mRNA by siRNA resulted in downregulation of the caspase-1 and IL-1β expression in both cell lines. Conclusions The elevation of IFI16 during HBV infection or replication may contribute to renal damage due to inflammation, thus providing a putative therapeutic target and a new avenue for researching the pathogenesis of HBV-GN.
Collapse
Affiliation(s)
- Li Liu
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China
| | - Shuangshuang Xie
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China
| | - Cheng Li
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China
| | - Yue Guo
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China
| | - Xiaoyan Liu
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China
| | - Xiuhua Zhao
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China
| | - Qiang Li
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China
| | - Wenjun Du
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shandong University, Jinan, 250000, China.
| |
Collapse
|
30
|
Abstract
Cellular lipid metabolism plays a pivotal role in human cytomegalovirus (HCMV) infection, as increased lipogenesis in HCMV-infected cells favors the envelopment of newly synthesized viral particles. As all cells are equipped with restriction factors (RFs) able to exert a protective effect against invading pathogens, we asked whether a similar defense mechanism would also be in place to preserve the metabolic compartment from HCMV infection. Here, we show that gamma interferon (IFN-γ)-inducible protein 16 (IFI16), an RF able to block HCMV DNA synthesis, can also counteract HCMV-mediated metabolic reprogramming in infected primary human foreskin fibroblasts (HFFs), thereby limiting virion infectivity. Specifically, we find that IFI16 downregulates the transcriptional activation of the glucose transporter 4 (GLUT4) through cooperation with the carbohydrate-response element-binding protein (ChREBP), thereby reducing HCMV-induced transcription of lipogenic enzymes. The resulting decrease in glucose uptake and consumption leads to diminished lipid synthesis, which ultimately curbs the de novo formation of enveloped viral particles in infected HFFs. Consistently, untargeted lipidomic analysis shows enhanced cholesteryl ester levels in IFI16 KO versus wild-type (WT) HFFs. Overall, our data unveil a new role of IFI16 in the regulation of glucose and lipid metabolism upon HCMV replication and uncover new potential targets for the development of novel antiviral therapies.
Collapse
|
31
|
Sadanari H, Takemoto M, Ishida T, Otagiri H, Daikoku T, Murayama T, Kusano S. The Interferon-Inducible Human PLSCR1 Protein Is a Restriction Factor of Human Cytomegalovirus. Microbiol Spectr 2022; 10:e0134221. [PMID: 35138119 PMCID: PMC8826943 DOI: 10.1128/spectrum.01342-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Human phospholipid scramblase 1 (PLSCR1) is strongly expressed in response to interferon (IFN) treatment and viral infection, and it has been suggested to play an important role in IFN-dependent antiviral responses. In this study, we showed that the levels of human cytomegalovirus (HCMV) plaque formation in OUMS-36T-3 (36T-3) cells with high basal expression of PLSCR1 were significantly lower than those in human embryonic lung (HEL) cells with low basal expression of PLSCR1. In addition, the levels of HCMV plaque formation and replication in PLSCR1-knockout (KO) 36T-3 cells were significantly higher than those in parental 36T-3 cells and were comparable to those in HEL cells. Furthermore, compared to that in PLSCR1-KO cells, the expression of HCMV major immediate early (MIE) proteins was repressed and/or delayed in parental 36T-3 cells after HCMV infection. We also showed that PLSCR1 expression decreased the levels of the cAMP-responsive element (CRE)-binding protein (CREB)•HCMV immediate early protein 2 (IE2) and CREB-binding protein (CBP)•IE2 complexes, which have been suggested to play important roles in the IE2-mediated transactivation of the viral early promoter through interactions with CREB, CBP, and IE2. Interestingly, PLSCR1 expression repressed CRE- and HCMV MIE promoter-regulated reporter gene activities. These observations reveal, for the first time, that PLSCR1 negatively regulates HCMV replication by repressing the transcription from viral MIE and early promoters, and that PLSCR1 expression may contribute to the IFN-mediated suppression of HCMV infection. IMPORTANCE Because several IFN-stimulated genes (ISGs) have been reported to suppress HCMV replication, HCMV replication is thought to be regulated by an IFN-mediated host defense mechanism, but the mechanism remains unclear. PLSCR1 expression is induced in response to viral infection and IFN treatment, and PLSCR1 has been reported to play an important role in IFN-dependent antiviral responses. Here, we demonstrate that HCMV plaque formation and major immediate early (MIE) gene expression are significantly increased in PLSCR1-KO human fibroblast cells. PLSCR1 reduces levels of the CREB•IE2 and CBP•IE2 complexes, which have been suggested to play important roles in HCMV replication through its interactions with CREB, CBP, and IE2. In addition, PLSCR1 expression represses transcription from the HCMV MIE promoter. Our results indicate that PLSCR1 plays important roles in the suppression of HCMV replication in the IFN-mediated host defense system.
Collapse
Affiliation(s)
- Hidetaka Sadanari
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, Japan
| | - Masaya Takemoto
- Research Center for Pharmaceutical Education, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, Japan
| | - Tomoki Ishida
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, Japan
| | - Hikaru Otagiri
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, Japan
| | - Tohru Daikoku
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, Japan
| | - Tsugiya Murayama
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, Japan
| | - Shuichi Kusano
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
32
|
Singh DK, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger LS, Artyomov MN, Khader SA, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nat Commun 2022; 13:679. [PMID: 35115549 PMCID: PMC8814034 DOI: 10.1038/s41467-022-28315-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Aladyeva
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Ekaterina Esaulova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Amanda Swain
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, 70433, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Maxim N Artyomov
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA.
| |
Collapse
|
33
|
Tyl MD, Betsinger CN, Cristea IM. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr Opin Virol 2022; 52:135-147. [PMID: 34923282 PMCID: PMC8844139 DOI: 10.1016/j.coviro.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a pervasive β-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA,Corresponding author and lead contact: Ileana M. Cristea, 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
34
|
Fan X, Jiao L, Jin T. Activation and Immune Regulation Mechanisms of PYHIN Family During Microbial Infection. Front Microbiol 2022; 12:809412. [PMID: 35145495 PMCID: PMC8822057 DOI: 10.3389/fmicb.2021.809412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The innate immune system defenses against pathogen infections via patten-recognition receptors (PRRs). PRRs initiate immune responses by recognizing pathogen-associated molecular patterns (PAMPs), including peptidoglycan, lipopolysaccharide, and nucleic acids. Several nucleic acid sensors or families have been identified, such as RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), cyclic GMP-AMP synthase (cGAS), and PYHIN family receptors. In recent years, the PYHIN family cytosolic DNA receptors have increased attention because of their important roles in initiating innate immune responses. The family members in humans include Absent in melanoma 2 (AIM2), IFN-γ inducible protein 16 (IFI16), interferon-inducible protein X (IFIX), and myeloid cell nuclear differentiation antigen (MNDA). The PYHIN family members are also identified in mice, including AIM2, p202, p203, p204, and p205. Herein, we summarize recent advances in understanding the activation and immune regulation mechanisms of the PYHIN family during microbial infection. Furthermore, structural characterizations of AIM2, IFI16, p202, and p204 provide more accurate insights into the signaling mechanisms of PYHIN family receptors. Overall, the molecular details will facilitate the development of reagents to defense against viral infections.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Molecular and Translational Medicine, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lianying Jiao,
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Tengchuan Jin,
| |
Collapse
|
35
|
Gu L, Casserly D, Brady G, Carpenter S, Bracken AP, Fitzgerald KA, Unterholzner L, Bowie AG. Myeloid cell nuclear differentiation antigen controls the pathogen-stimulated type I interferon cascade in human monocytes by transcriptional regulation of IRF7. Nat Commun 2022; 13:14. [PMID: 35013241 PMCID: PMC8748983 DOI: 10.1038/s41467-021-27701-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Type I interferons (IFNs) are critical for anti-viral responses, and also drive autoimmunity when dysregulated. Upon viral sensing, monocytes elicit a sequential cascade of IFNβ and IFNα production involving feedback amplification, but how exactly this cascade is regulated in human cells is incompletely understood. Here we show that the PYHIN protein myeloid cell nuclear differentiation antigen (MNDA) is required for IFNα induction in monocytes. Unlike other PYHINs, this is not due to a pathogen sensing role, but rather MNDA regulated expression of IRF7, a transcription factor essential for IFNα induction. Mechanistically, MNDA is required for recruitment of STAT2 and RNA polymerase II to the IRF7 gene promoter, and in fact MNDA is itself recruited to the IRF7 promoter after type I IFN stimulation. These data implicate MNDA as a critical regulator of the type I IFN cascade in human myeloid cells and reveal a new role for human PYHINs in innate immune gene induction. The interferon response is a critical component of the innate immune response. Here the authors implicate MNDA in the regulation of type I interferon responses to pathogen infection.
Collapse
Affiliation(s)
- Lili Gu
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - David Casserly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Gareth Brady
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Susan Carpenter
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Katherine A Fitzgerald
- Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Leonie Unterholzner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
36
|
Karlebach G, Aronow B, Baylin SB, Butler D, Foox J, Levy S, Meydan C, Mozsary C, Saravia-Butler AM, Taylor DM, Wurtele E, Mason CE, Beheshti A, Robinson PN. Betacoronavirus-specific alternate splicing. Genomics 2022; 114:110270. [PMID: 35074468 PMCID: PMC8782732 DOI: 10.1016/j.ygeno.2022.110270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2021] [Accepted: 01/16/2022] [Indexed: 11/04/2022]
Abstract
Viruses can subvert a number of cellular processes including splicing in order to block innate antiviral responses, and many viruses interact with cellular splicing machinery. SARS-CoV-2 infection was shown to suppress global mRNA splicing, and at least 10 SARS-CoV-2 proteins bind specifically to one or more human RNAs. Here, we investigate 17 published experimental and clinical datasets related to SARS-CoV-2 infection, datasets from the betacoronaviruses SARS-CoV and MERS, as well as Streptococcus pneumonia, HCV, Zika virus, Dengue virus, influenza H3N2, and RSV. We show that genes showing differential alternative splicing in SARS-CoV-2 have a similar functional profile to those of SARS-CoV and MERS and affect a diverse set of genes and biological functions, including many closely related to virus biology. Additionally, the differentially spliced transcripts of cells infected by coronaviruses were more likely to undergo intron-retention, contain a pseudouridine modification, and have a smaller number of exons as compared with differentially spliced transcripts in the control groups. Viral load in clinical COVID-19 samples was correlated with isoform distribution of differentially spliced genes. A significantly higher number of ribosomal genes are affected by differential alternative splicing and gene expression in betacoronavirus samples, and the betacoronavirus differentially spliced genes are depleted for binding sites of RNA-binding proteins. Our results demonstrate characteristic patterns of differential splicing in cells infected by SARS-CoV-2, SARS-CoV, and MERS. The alternative splicing changes observed in betacoronaviruses infection potentially modify a broad range of cellular functions, via changes in the functions of the products of a diverse set of genes involved in different biological processes.
Collapse
|
37
|
Manska S, Rossetto CC. Identification of cellular proteins associated with human cytomegalovirus (HCMV) DNA replication suggests novel cellular and viral interactions. Virology 2022; 566:26-41. [PMID: 34861458 PMCID: PMC8720285 DOI: 10.1016/j.virol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Upon entry of Human cytomegalovirus (HCMV) into the host cell, the viral genome is transported to the nucleus where it serves as a template for transcription and genome replication. Production of new viral genomes is a coordinated effort between viral and cellular proteins. While the core replication proteins are encoded by the virus, additional cellular proteins support the process of genome synthesis. We used accelerated native isolation of proteins on nascent DNA (aniPOND) to study protein dynamics on nascent viral DNA during HCMV infection. Using this method, we identified specific viral and cellular proteins that are associated with nascent viral DNA. These included transcription factors, transcriptional regulators, DNA damage and repair factors, and chromatin remodeling complexes. The association of these identified proteins with viral DNA was confirmed by immunofluorescent imaging, chromatin-immunoprecipitation analyses, and shRNA knockdown experiments. These data provide evidence for the requirement of cellular factors involved in HCMV replication.
Collapse
Affiliation(s)
- Salomé Manska
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA
| | - Cyprian C. Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA,Correspondence to: Cyprian C. Rossetto, Ph.D.
| |
Collapse
|
38
|
Azad T, Janse van Rensburg HJ, Morgan J, Rezaei R, Crupi MJF, Chen R, Ghahremani M, Jamalkhah M, Forbes N, Ilkow C, Bell JC. Luciferase-Based Biosensors in the Era of the COVID-19 Pandemic. ACS NANOSCIENCE AU 2021; 1:15-37. [PMID: 37579261 PMCID: PMC8370122 DOI: 10.1021/acsnanoscienceau.1c00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Luciferase-based biosensors have a wide range of applications and assay formats, including their relatively recent use in the study of viruses. Split luciferase, bioluminescence resonance energy transfer, circularly permuted luciferase, cyclic luciferase, and dual luciferase systems have all been used to interrogate the structure and function of prominent viruses infecting humans, animals, and plants. The utility of these assays is demonstrated by numerous studies which have not only successfully characterized interactions between viral and host cell proteins but that have also used these systems to identify viral inhibitors. In the present COVID-19 pandemic, luciferase-based biosensors are already playing a critical role in the study of the culprit virus SARS-CoV-2 as well as in the development of serological assays and drug development via high-throughput screening. In this review paper, we provide a summary of existing luciferase-based biosensors and their applications in virology.
Collapse
Affiliation(s)
- Taha Azad
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | | | - Jessica Morgan
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Reza Rezaei
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mathieu J. F. Crupi
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Rui Chen
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mina Ghahremani
- Canada
Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Monire Jamalkhah
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nicole Forbes
- Centre
for Communicable Diseases and Infection Control, Public Health Agency of Canada, Ottawa K2E 1B6, Canada
| | - Carolina Ilkow
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - John C. Bell
- Centre
for Innovative Cancer Research, Ottawa Hospital
Research Institute, Ottawa K1H 8L6, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
39
|
Singh D, Aladyeva E, Das S, Singh B, Esaulova E, Swain A, Ahmed M, Cole J, Moodley C, Mehra S, Schlesinger L, Artyomov M, Khader S, Kaushal D. Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. RESEARCH SQUARE 2021:rs.3.rs-664507. [PMID: 34282414 PMCID: PMC8288154 DOI: 10.21203/rs.3.rs-664507/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. While studies have reported immune profiling using single cell RNA sequencing in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. We performed longitudinal single-cell RNA sequencing of bronchoalveolar lavage (BAL) cell suspensions from adult rhesus macaques infected with SARS-CoV-2 (n=6) to delineate the early dynamics of immune cells changes. The bronchoalveolar compartment exhibited dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi) (peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline). We observed the accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I IFN response was highly induced in the plasmacytoid dendritic cells. The presence of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin converting enzyme 2 (ACE2) expression was also observed. These macrophages were significantly recruited to the lungs of macaques at 3dpi and harbored SARS-CoV-2, while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery. The recruitment of a myeloid cell-mediated Type I IFN response is associated with the rapid clearance of SARS-CoV-2 infection in macaques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Larry Schlesinger
- Southwest National Primate Research Center Texas Biomedical Research Institute
| | | | | | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute
| |
Collapse
|
40
|
Karlebach G, Aronow B, Baylin SB, Butler D, Foox J, Levy S, Meydan C, Mozsary C, Saravia-Butler AM, Taylor DM, Wurtele E, Mason CE, Beheshti A, Robinson PN. Betacoronavirus-specific alternate splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34230929 PMCID: PMC8259905 DOI: 10.1101/2021.07.02.450920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses can subvert a number of cellular processes in order to block innate antiviral responses, and many viruses interact with cellular splicing machinery. SARS-CoV-2 infection was shown to suppress global mRNA splicing, and at least 10 SARS-CoV-2 proteins bind specifically to one or more human RNAs. Here, we investigate 17 published experimental and clinical datasets related to SARS-CoV-2 infection as well as datasets from the betacoronaviruses SARS-CoV and MERS as well as Streptococcus pneumonia, HCV, Zika virus, Dengue virus, influenza H3N2, and RSV. We show that genes showing differential alternative splicing in SARS-CoV-2 have a similar functional profile to those of SARS-CoV and MERS and affect a diverse set of genes and biological functions, including many closely related to virus biology. Additionally, the differentially spliced transcripts of cells infected by coronaviruses were more likely to undergo intron-retention, contain a pseudouridine modification and a smaller number of exons than differentially spliced transcripts in the control groups. Viral load in clinical COVID-19 samples was correlated with isoform distribution of differentially spliced genes. A significantly higher number of ribosomal genes are affected by DAS and DGE in betacoronavirus samples, and the betacoronavirus differentially spliced genes are depleted for binding sites of RNA-binding proteins. Our results demonstrate characteristic patterns of differential splicing in cells infected by SARS-CoV-2, SARS-CoV, and MERS, potentially modifying a broad range of cellular functions and affecting a diverse set of genes and biological functions.
Collapse
|
41
|
Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Biolatti M, Salinger AJ, Mondal S, Thompson PR, Weerapana E, Lebbink RJ, Soppe JA, Stamminger T, Girault V, Pichlmair A, Oroszlán G, Coen DM, De Andrea M, Landolfo S. Human cytomegalovirus-induced host protein citrullination is crucial for viral replication. Nat Commun 2021; 12:3910. [PMID: 34162877 PMCID: PMC8222335 DOI: 10.1038/s41467-021-24178-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
Citrullination is the conversion of arginine-to-citrulline by protein arginine deiminases (PADs), whose dysregulation is implicated in the pathogenesis of various types of cancers and autoimmune diseases. Consistent with the ability of human cytomegalovirus (HCMV) to induce post-translational modifications of cellular proteins to gain a survival advantage, we show that HCMV infection of primary human fibroblasts triggers PAD-mediated citrullination of several host proteins, and that this activity promotes viral fitness. Citrullinome analysis reveals significant changes in deimination levels of both cellular and viral proteins, with interferon (IFN)-inducible protein IFIT1 being among the most heavily deiminated one. As genetic depletion of IFIT1 strongly enhances HCMV growth, and in vitro IFIT1 citrullination impairs its ability to bind to 5’-ppp-RNA, we propose that viral-induced IFIT1 citrullination is a mechanism of HCMV evasion from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection. Citrullination is a posttranslational modification of arginines. Here, the authors show that HCMV infection increases citrullination of host and virus proteins to promote infection and that citrullinated interferon-inducible protein IFIT1 is impaired in RNA binding, as a potential mechanism of evasion.
Collapse
Affiliation(s)
- Gloria Griffante
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ari J Salinger
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA.,Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, USA
| | | | - Robert J Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jasper A Soppe
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Virginie Girault
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Gábor Oroszlán
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Donald M Coen
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy. .,CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy.
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
42
|
The DNA Sensor IFIX Drives Proteome Alterations To Mobilize Nuclear and Cytoplasmic Antiviral Responses, with Its Acetylation Acting as a Localization Toggle. mSystems 2021; 6:e0039721. [PMID: 34156286 PMCID: PMC8269231 DOI: 10.1128/msystems.00397-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA sensors are critical components of innate immunity that enable cells to recognize infection by pathogens with DNA genomes. The interferon-inducible protein X (IFIX), a member of the PYHIN protein family, is a DNA sensor capable of promoting immune signaling after binding to double-stranded DNA (dsDNA) within either the nucleus or cytoplasm. Here, we investigate the impact of IFIX on the cellular proteome upon introduction of foreign DNA to the nucleus or the cytoplasm as well as regulatory hubs that control IFIX subcellular localization. Using quantitative mass spectrometry, we define the effect of CRISPR-mediated IFIX knockout on nuclear and cytoplasmic proteomes in fibroblasts. Proteomes are probed in response to either nuclear viral DNA, during herpes simplex virus 1 (HSV-1) infection, or cytoplasmic viral DNA, following transfection with dsDNA derived from vaccinia virus (VACV 70-mer). We show that IFIX broadly impacts nuclear and cytoplasmic proteomes, inducing alterations in the abundances of immune signaling, DNA damage response, and vesicle-mediated transport proteins. To characterize IFIX properties that regulate its localization during DNA sensing, we perform deletion and mutagenesis assays. We find that IFIX contains a multipartite nuclear localization signal (NLS) and highlight the main contributing motif for its nuclear localization. Using immunoaffinity purification, we identify IFIX acetylation and phosphorylation sites. Mutations to acetyl or charge mimics demonstrate that K138 acetylation, positioned within the NLS, affects nuclear localization. Altogether, our study establishes a mechanism regulating IFIX subcellular localization and contextualizes this localization with the involvement of IFIX in host cell responses to pathogenic DNA. IMPORTANCE Mammalian cells must be able to detect and respond to invading pathogens to prevent the spread of infection. DNA sensors, such as IFIX, are proteins that bind to pathogen-derived double-stranded DNA and induce antiviral cytokine expression. Here, we characterize the host proteome changes that require IFIX during both viral infection and DNA transfection. We show IFIX mobilizes numerous pathways and proteome alterations within the nucleus and the cytoplasm, pointing to a multifunctional protein with roles in immune signaling, DNA damage response, and transcriptional regulation. We next interrogate the IFIX domains required for nuclear localization, discovering its regulation via a multipartite nuclear localization motif. The acetylation of this motif promotes IFIX cytoplasmic localization, in agreement with its detection of pathogenic DNA in both the nucleus and the cytoplasm. This study established NLS acetylation as a conserved mechanism for regulating the localization of nuclear DNA sensors from the PYHIN family of proteins.
Collapse
|
43
|
Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun 2021; 12:3101. [PMID: 34035300 PMCID: PMC8149644 DOI: 10.1038/s41467-021-23452-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/28/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction and lysosomal dysfunction have been implicated in Parkinson's disease (PD), but the links between these dysfunctions in PD pathogenesis are still largely unknown. Here we report that cytosolic dsDNA of mitochondrial origin escaping from lysosomal degradation was shown to induce cytotoxicity in cultured cells and PD phenotypes in vivo. The depletion of PINK1, GBA and/or ATP13A2 causes increases in cytosolic dsDNA of mitochondrial origin and induces type I interferon (IFN) responses and cell death in cultured cell lines. These phenotypes are rescued by the overexpression of DNase II, a lysosomal DNase that degrades discarded mitochondrial DNA, or the depletion of IFI16, which acts as a sensor for cytosolic dsDNA of mitochondrial origin. Reducing the abundance of cytosolic dsDNA by overexpressing human DNase II ameliorates movement disorders and dopaminergic cell loss in gba mutant PD model zebrafish. Furthermore, IFI16 and cytosolic dsDNA puncta of mitochondrial origin accumulate in the brain of patients with PD. These results support a common causative role for the cytosolic leakage of mitochondrial DNA in PD pathogenesis.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan. .,Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Noriko Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
44
|
Kasuga Y, Zhu B, Jang KJ, Yoo JS. Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 2021; 53:723-736. [PMID: 33953325 PMCID: PMC8099713 DOI: 10.1038/s12276-021-00602-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of the host defense program against pathogens and harmful substances. Antiviral innate immune responses can be triggered by multiple cellular receptors sensing viral components. The activated innate immune system produces interferons (IFNs) and cytokines that perform antiviral functions to eliminate invading viruses. Coronaviruses are single-stranded, positive-sense RNA viruses that have a broad range of animal hosts. Coronaviruses have evolved multiple means to evade host antiviral immune responses. Successful immune evasion by coronaviruses may enable the viruses to adapt to multiple species of host organisms. Coronavirus transmission from zoonotic hosts to humans has caused serious illnesses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease-2019 (COVID-19), resulting in global health and economic crises. In this review, we summarize the current knowledge of the mechanisms underlying host sensing of and innate immune responses against coronavirus invasion, as well as host immune evasion strategies of coronaviruses. Understanding how the innate immune system senses coronaviruses and how coronaviruses can escape detection could provide novel approaches to tackle infections. Coronaviruses, including SARS-CoV-2, constantly evolve to manipulate, obstruct and evade host immune responses. A team led by Ji-Seung Yoo, Hokkaido University, Sapporo, Japan, reviewed understanding of innate immune responses to coronaviruses and viral evasion strategies. Two major receptor families recognise RNA viruses upon infection, but how they respond to SARS-CoV-2 is unclear. One receptor, TLR7, plays a critical role in sensing coronavirus infections, and mutations in the TLR7 gene are associated with severe illness and mortality in young Covid-19 patients. Activating host TLR pathways may prove a useful therapeutic approach. Further in-depth investigations are needed into specific coronavirus proteins and viral mechanisms that suppress host immunity.
Collapse
Affiliation(s)
- Yusuke Kasuga
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Baohui Zhu
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
45
|
Guinea pig cytomegalovirus protective T cell antigen GP83 is a functional pp65 homolog for innate immune evasion and pentamer dependent virus tropism. J Virol 2021; 95:JVI.00324-21. [PMID: 33658350 PMCID: PMC8139670 DOI: 10.1128/jvi.00324-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The guinea pig is the only small animal model for congenital CMV but requires species-specific guinea pig cytomegalovirus (GPCMV). Tegument protein GP83 is the presumed homolog of HCMV pp65 but gene duplication in the UL82-UL84 homolog locus in various animal CMV made it unclear if GP83 was a functional homolog. A GP83 null deletion mutant GPCMV (GP83dPC+) generated in the backdrop of glycoprotein pentamer complex (PC) positive virus, required for non-fibroblast infection, had normal growth kinetics on fibroblasts but was highly impaired on epithelial and trophoblast cells. GP83dPC+ virus was highly sensitive to IFN-I suggesting GP83 had an innate immune evasion function. GP83 interacted with cellular DNA sensors guinea pig IFI16 and cGAS indicating a role in the cGAS/STING pathway. Ectopically expressed GP83 in trophoblast cells restored GP83dPC+ virus growth. Additionally, mutant virus growth was restored in epithelial cells by expression of bovine viral diarrhea virus (BVDV) NPRO protein targeting IRF3 as part of the cGAS/STING pathway or alternatively by expression of fibroblast cell receptor PDGFRA. HCMV pp65 is a T cell target antigen and a recombinant adenovirus encoding GP83 was evaluated as a vaccine. In GPCMV challenge studies, vaccinated animals had varying levels of protection against wild type virus with a protective response against 22122 prototype strain but little protection against a novel clinical strain of GPCMV (TAMYC), despite 100% identity in GP83 protein sequences. Overall, GP83 is a functional pp65 homolog with novel importance for epithelial cell infection but a GP83 T cell response provides limited vaccine efficacy.ImportanceCongenital CMV (cCMV) is a leading cause of cognitive impairment and deafness in newborns and a vaccine is a high priority. The guinea pig is the only small animal model for cCMV but requires guinea pig cytomegalovirus (GPCMV). The translational impact of GPCMV research is potentially reduced if the virus does not encode functional HCMV homolog proteins. This study demonstrates that tegument protein GP83 (pp65 homolog) is involved in innate immune evasion and highly important for infection of non-fibroblast cells via the viral glycoprotein pentamer complex (PC)-dependent endocytic entry pathway. The PC pathway is highly significant for virus dissemination and disease in the host, including cCMV. A GP83 candidate Ad-vaccine strategy in animals induced a cell-mediated response but failed to provide cross strain protection against a novel clinical strain of GPCMV. Results suggest that the pp65 antigen provides very limited efficacy as a stand-alone vaccine, especially in cross strain protection.
Collapse
|
46
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|
47
|
Intrinsic Immune Mechanisms Restricting Human Cytomegalovirus Replication. Viruses 2021; 13:v13020179. [PMID: 33530304 PMCID: PMC7911179 DOI: 10.3390/v13020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular restriction factors (RFs) act as important constitutive innate immune barriers against viruses. In 2006, the promyelocytic leukemia protein was described as the first RF against human cytomegalovirus (HCMV) infection which is antagonized by the viral immediate early protein IE1. Since then, at least 15 additional RFs against HCMV have been identified, including the chromatin regulatory protein SPOC1, the cytidine deaminase APOBEC3A and the dNTP triphosphohydrolase SAMHD1. These RFs affect distinct steps of the viral replication cycle such as viral entry, gene expression, the synthesis of progeny DNA or egress. This review summarizes our current knowledge on intrinsic immune mechanisms restricting HCMV replication as well as on the viral strategies to counteract the inhibitory effects of RFs. Detailed knowledge on the interplay between host RFs and antagonizing viral factors will be fundamental to develop new approaches to combat HCMV infection.
Collapse
|
48
|
Spivack K, Muzzelo C, Hall M, Warga E, Neely C, Slepian H, Cunningham A, Tucker M, Elmer J. Enhancement of transgene expression by the β-catenin inhibitor iCRT14. Plasmid 2021; 114:102556. [PMID: 33472046 DOI: 10.1016/j.plasmid.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
The innate immune response is an essential defense mechanism that allows cells to detect pathogen-associated molecular patterns (PAMPs) like endotoxin or cytosolic DNA and then induce the expression of defensive genes that restrict the replication of viruses and other pathogens. However, the therapeutic DNA used in some gene therapy treatments can also trigger the innate immune response, which activates host cell genes that may inhibit transgene expression. The goal of this study was to enhance transgene expression by inhibiting key components of the innate immune response with small molecule inhibitors (iCRT14, curcumin, Amlexanox, H-151, SC-514, & VX-702). Most of the inhibitors significantly increased transgene (luciferase) expression at least 2-fold, but the β-catenin/TCF4 inhibitor iCRT14 showed the highest enhancement (16 to 35-fold) in multiple cell lines (PC-3, MCF7, & MB49) without significantly decreasing cellular proliferation. Alternatively, cloning a β-catenin/TCF4 binding motif (TCAAAG) into the EF1α promoter also enhanced transgene expression up to 8-fold. To further investigate the role of β-catenin/TCF4 in transgene expression, mRNA-sequencing experiments were conducted to identify host cell genes that were upregulated following transfection with PEI but down-regulated after the addition of iCRT14. As expected, transfection with plasmid DNA activated the innate immune response and upregulated hundreds (687) of defensive genes, but only 7 of those genes were down-regulated in the presence of iCRT14 (e.g., PTGS2 & PLA1A). Altogether, these results show that transgene expression can be enhanced by inhibiting the innate immune response with SMIs like iCRT14, which inhibits β-catenin/TCF4 to prevent the expression of specific host cell genes.
Collapse
Affiliation(s)
- Kyle Spivack
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Christine Muzzelo
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Matthew Hall
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Eric Warga
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Christopher Neely
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Holly Slepian
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Alyssa Cunningham
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Matthew Tucker
- Villanova University, Department of Chemical & Biological Engineering, United States
| | - Jacob Elmer
- Villanova University, Department of Chemical & Biological Engineering, United States.
| |
Collapse
|
49
|
Sauter D, Kirchhoff F. Evolutionary conflicts and adverse effects of antiviral factors. eLife 2021; 10:e65243. [PMID: 33450175 PMCID: PMC7811402 DOI: 10.7554/elife.65243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human cells are equipped with a plethora of antiviral proteins protecting them against invading viral pathogens. In contrast to apoptotic or pyroptotic cell death, which serves as ultima ratio to combat viral infections, these cell-intrinsic restriction factors may prevent or at least slow down viral spread while allowing the host cell to survive. Nevertheless, their antiviral activity may also have detrimental effects on the host. While the molecular mechanisms underlying the antiviral activity of restriction factors are frequently well investigated, potential undesired effects of their antiviral functions on the host cell are hardly explored. With a focus on antiretroviral proteins, we summarize in this review how individual restriction factors may exert adverse effects as trade-off for efficient defense against attacking pathogens.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital TübingenTübingenGermany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
| |
Collapse
|
50
|
Zhang F, Yuan Y, Ma F. Function and Regulation of Nuclear DNA Sensors During Viral Infection and Tumorigenesis. Front Immunol 2021; 11:624556. [PMID: 33505405 PMCID: PMC7829187 DOI: 10.3389/fimmu.2020.624556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
IFI16, hnRNPA2B1, and nuclear cGAS are nuclear-located DNA sensors that play important roles in initiating host antiviral immunity and modulating tumorigenesis. IFI16 triggers innate antiviral immunity, inflammasome, and suppresses tumorigenesis by recognizing double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), damaged nuclear DNA, or cooperatively interacting with multiple tumor suppressors such as p53 and BRCA1. hnRNPA2B1 initiates interferon (IFN)-α/β production and enhances STING-dependent cytosolic antiviral signaling by directly binding viral dsDNA from invaded viruses and facilitating N6 -methyladenosine (m6A) modification of cGAS, IFI16, and STING mRNAs. Nuclear cGAS is recruited to double-stranded breaks (DSBs), suppresses DNA repair, and promotes tumorigenesis. This review briefly describes the nuclear functions of IFI16, hnRNPA2B1, and cGAS, and summarizes the transcriptional, post-transcriptional, and post-translational regulation of these nuclear DNA sensors.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yi Yuan
- Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine of Tongji University, Shanghai, China
| | - Feng Ma
- Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|