1
|
Kumar R, Kushawaha PK. Guanylate binding protein1 alters expression of the poly I: C induced cytokines/chemokines and MAP kinases in macrophages. Hum Immunol 2025; 86:111211. [PMID: 39642778 DOI: 10.1016/j.humimm.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Guanylate binding protein 1 (GBP1) is critical in the host's innate immune response against viral infections and inflammation. Therefore, this study explored the role of GBP1 poly I: C, a synthetic analog of double-stranded RNA that mimics viral infections-induced inflammation in macrophages. Stimulation of human macrophage THP-1 and mice macrophage RAW 264.7 cell lines with 1 μg/ml of poly I: C revealed differential expression patterns of GBP1 to GBP7. Further, to know the specific role of GBP1in poly I: C induced inflammation, GBP1 gene was silenced in these two macrophage cells using small interfering RNA (siRNA), leading to significant reductions in GBP1 mRNA and protein levels. Further, the expression of key cytokines (IFN-γ, TNF-α, IL-4, IL-10, and IL-12b) and chemokines (CXCL9, CXCL10, CXCL11) after poly I: C treatment resulted in altered cytokine and chemokine expression profiles. Additionally, increased phosphorylation of ERK1/2, p38, and STAT1 transcription factors was observed in GBP1 knockdown cells. No change in the expression level of c-Jun and NF-kB was observed in response to poly I: C in GBP1 silenced cells compared to control cells. These findings provide valuable insights into the crosstalk/connection of GBP1 in poly I: C-induced immune responses in macrophages.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India..
| |
Collapse
|
2
|
Ahmad F, Fatima N, Ahmad S, Upadhyay TK, Jain P, Saeed M, Ahmad I, Al-Keridis LA, Khubaib M, Sharma R. Treatment of Mycobacterium tuberculosis infected macrophages with Rifabutin loaded β-glucan microparticles induces macroautophagy mediated bacillary killing. Int J Biol Macromol 2024; 283:137256. [PMID: 39528171 DOI: 10.1016/j.ijbiomac.2024.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Tuberculosis (TB), attributable to Mycobacterium tuberculosis (M.tb.), constitutes a formidable global health challenge, particularly with the proliferation of multidrug-resistant (MDR-TB) strains. The efficacious clearance of M.tb. from host cells is imperative for mitigating infection and averting disease progression. Autophagy, an intricate cellular mechanism for degrading and recycling biomolecules, plays a pivotal role in the immune response to M.tb. by facilitating the degradation of intracellular pathogen through the formation of autophagosomes and their subsequent fusion with lysosomes. The present study elucidates the therapeutic efficacy of Rifabutin loaded YDGP (DYDGP) microparticles within M.tb.infected macrophage. Our results show that the administration of DYDGP improve the membrane integrity of macrophage infected with H37Rv as well as MDR strains, as compared to that of untreated controls at 30 min, 6 h and 24 h post-exposure time points. DCFHDA staining elucidated that DYDGP treatment significantly enhances intracellular reactive oxygen species (ROS) production compared to blank YDGP, even in the presence of NOX-2 inhibitors. Furthermore, DYDGP promotes the biogenesis of acidic vesicular organelles and phago-lysosomal maturation, as corroborated by acridine orange and Lysotracker Red staining. Immunofluorescence and dansylcadaverine dual staining data evidenced that DYDGP treatment enhances autophagosome formation, autophagy induction and LC3 puncta formation within M.tb. infected macrophage at both 30 min and 24 h post-exposure time points. Further, protein expression analyses demonstrated that DYDGP treatment enhances the expression levels of NOX-2 and LC3, thereby confirming autophagy induction within M.tb. infected macrophage. Antimycobacterial efficacy assessments revealed that DYDGP treatment engendered significant reductions in colony-forming units (CFUs) of H37Rv (64, 40, 19), MDR32420 (44, 35, 18), MDR32422 (44, 39, 21), and MDR32521 (38, 22, 18) after 30 min, 24 h, and 48 h, exposure respectively. These findings accentuate DYDGP's potential to substantially attenuate M.tb. burden, including the addressal of MDR strains, thereby positioning it as a promising adjunctive therapy for augmenting TB treatment.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, U.P., India; Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, U.P., India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Nida Fatima
- Department of Biosciences, Integral University, Lucknow 226026, U.P., India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, U.P., India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Parul Jain
- Department of Microbiology, King George Medical University, Lucknow 226003, U.P., India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 34464, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, U.P., India
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, U.P., India.
| |
Collapse
|
3
|
Paul R, Chakrabarty A, Samanta S, Dey S, Pandey R, Maji S, Pezacki AT, Chang CJ, Datta R, Gupta A. Leishmania major-induced alteration of host cellular and systemic copper homeostasis drives the fate of infection. Commun Biol 2024; 7:1226. [PMID: 39349621 PMCID: PMC11442737 DOI: 10.1038/s42003-024-06716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/12/2024] [Indexed: 10/04/2024] Open
Abstract
Copper plays a key role in host-pathogen interaction. We find that during Leishmania major infection, the parasite-harboring macrophage regulates its copper homeostasis pathway in a way to facilitate copper-mediated neutralization of the pathogen. Copper-ATPase ATP7A transports copper to amastigote-harboring phagolysosomes to induce stress on parasites. Leishmania in order to evade the copper stress, utilizes a variety of manipulative measures to lower the host-induced copper stress. It induces deglycosylation and degradation of host-ATP7A and downregulation of copper importer, CTR1 by cysteine oxidation. Additionally, Leishmania induces CTR1 endocytosis that arrests copper uptake. In mouse model of infection, we report an increase in systemic bioavailable copper in infected animals. Heart acts as the major organ for diverting its copper reserves to systemic circulation to fight-off infection by downregulating its CTR1. Our study explores reciprocal mechanism of manipulation of host copper homeostasis pathway by macrophage and Leishmania to gain respective advantages in host-pathogen interaction.
Collapse
Affiliation(s)
- Rupam Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| | - Adrija Chakrabarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Suman Samanta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Swastika Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Aidan T Pezacki
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
4
|
Wang W, Mo W, Xiao X, Cai M, Feng S, Wang Y, Zhou D. Antibiotic-loaded lactoferrin nanoparticles as a platform for enhanced infection therapy through targeted elimination of intracellular bacteria. Asian J Pharm Sci 2024; 19:100926. [PMID: 39253610 PMCID: PMC11381595 DOI: 10.1016/j.ajps.2024.100926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 09/11/2024] Open
Abstract
Intracellular bacteria can multiply inside host cells and manipulate their biology, and the efficacy of traditional antibiotic drug therapy for intracellular bacteria is limited by inadequate drug accumulation. Fighting against these stealthy bacteria has been a long-standing challenge. Here, a system of stimuli-responsive lactoferrin (Lf) nanoparticles is prepared using protein self-assembly technology to deliver broad-spectrum antibiotic rifampicin (Rif) (Rif@Lf NPs) for enhanced infection therapy through targeted elimination of intracellular bacteria. Compared to Rif@BSA NPs, the Rif@Lf NPs can specifically target macrophages infected by bacteria, thus increasing the accumulation of Rif within macrophages. Subsequently, Rif@Lf NPs with positive surface charge further displayed targeted adherence to the bacteria within macrophages and released Rif rapidly in a redox-responsive manner. Combined with the antibacterial activities of Lf and Rif, the Rif@Lf NPs showed broad-spectrum antibiotic abilities to intracellular bacteria and biofilms. As a result, the Rif@Lf NPs with high safety exhibited excellent therapeutic efficacy in the disease models of subcutaneous infection, sepsis, and bacterial keratitis. Taken together, the antibiotic-loaded Lf nanoparticles present a promising platform to combat pathogen infections through targeted elimination of intracellular bacteria.
Collapse
Affiliation(s)
- Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanying Mo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xue Xiao
- Department of Ophthalmology & Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Manying Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Songfu Feng
- Department of Ophthalmology & Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Ophthalmology & Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Ophthalmology & Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Kumar R, Kushawaha PK. Interferon inducible guanylate-binding protein 1 modulates the lipopolysaccharide-induced cytokines/chemokines and mitogen-activated protein kinases in macrophages. Microbiol Immunol 2024; 68:185-195. [PMID: 38462687 DOI: 10.1111/1348-0421.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
Guanylate-binding proteins (GBPs) are a family of interferon (IFN)-inducible GTPases and play a pivotal role in the host immune response to microbial infections. These are upregulated in immune cells after recognizing the lipopolysaccharides (LPS), the major membrane component of Gram-negative bacteria. In the present study, the expression pattern of GBP1-7 was initially mapped in phorbol 12-myristate 13-acetate-differentiated human monocytes THP-1 and mouse macrophages RAW 264.7 cell lines stimulated with LPS. A time-dependent significant expression of GBP1-7 was observed in these cells. Moreover, among the various GBPs, GBP1 has emerged as a central player in regulating innate immunity and inflammation. Therefore, to study the specific role of GBP1 in LPS-induced inflammation, knockdown of the Gbp1 gene was carried out in both cells using small interfering RNA interference. Altered levels of different cytokines (interleukin [IL]-4, IL-10, IL-12β, IFN-γ, tumor necrosis factor-α), inducible nitric oxide synthase, histocompatibility 2, class II antigen A, protein kinase R, and chemokines (chemokine (C-X-C motif) ligand 9 [CXCL9], CXCL10, and CXCL11) in GBP1 knockdown cells were reported compared to control cells. Interestingly, the extracellular-signal-regulated kinase 1/2 mitogen-activated protein (MAP) kinases and signal transducer and activator of transcription 1 (STAT1) transcription factor levels were considerably induced in knockdown cells compared to the control cells. However, no change in the level of phosphorylated nuclear factor-kB, c-Jun, and p38 transcription factors was observed in GBP1 knockdown cells compared to the control cells. This study concludes that GBP1 may alter the expression of cytokines, chemokines, and effector molecules mediated by MAP kinases and STAT1 transcription factors.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Banerjee S, Gadpayle MP, Samanta S, Dutta P, Das S, Datta R, Maiti S. Role of Macrophage PIST Protein in Regulating Leishmania major Infection. ACS Infect Dis 2024; 10:1414-1428. [PMID: 38556987 DOI: 10.1021/acsinfecdis.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PDZ protein interacting specifically with Tc10 or PIST is a mammalian trans-Golgi resident protein that regulates subcellular sorting of plasma membrane receptors. PIST has recently emerged as a key player in regulating viral pathogenesis. Nevertheless, the involvement of PIST in parasitic infections remains unexplored. Leishmania parasites infiltrate their host macrophage cells through phagocytosis, where they subsequently multiply within the parasitophorous vacuole (PV). Host cell autophagy has been found to be important in regulating this parasite infection. Since PIST plays a pivotal role in triggering autophagy through the Beclin 1-PI3KC3 pathway, it becomes interesting to identify the status of PIST during Leishmania infection. We found that while macrophage cells are infected with Leishmania major (L. major), the expression of PIST protein remains unaltered; however, it traffics from the Golgi compartment to PV. Further, we identified that in L. major-infected macrophage cells, PIST associates with the autophagy regulatory protein Beclin 1 within the PVs; however, PIST does not interact with LC3. Reduction in PIST protein through siRNA silencing significantly increased parasite burden, whereas overexpression of PIST in macrophages restricted L. major infectivity. Together, our study reports that the macrophage PIST protein is essential in regulating L. major infectivity.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Mandip Pratham Gadpayle
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Suman Samanta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Priyanka Dutta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Swagata Das
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education & Research Kolkata (IISER-Kolkata), Mohanpur Campus, Kolkata, West Bengal 741 246, India
| |
Collapse
|
7
|
Challagundla N, Phadnis D, Gupta A, Agrawal-Rajput R. Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion. J Membr Biol 2023; 256:393-411. [PMID: 37938349 DOI: 10.1007/s00232-023-00296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Lipids are complex organic molecules that fulfill energy demands and sometimes act as signaling molecules. They are mostly found in membranes, thus playing an important role in membrane trafficking and protecting the cell from external dangers. Based on the composition of the lipids, their fluidity and charge, their interaction with embedded proteins vary greatly. Bacteria can hijack host lipids to satisfy their energy needs or to conceal themselves from host cells. Intracellular bacteria continuously exploit host, from their entry into host cells utilizing host lipid machinery to exiting through the cells. This acquisition of lipids from host cells helps in their disguise mechanism. The current review explores various mechanisms employed by the intracellular bacteria to manipulate and acquire host lipids. It discusses their role in manipulating host membranes and the subsequence impact on the host cells. Modulating these lipids in macrophages not only serve the purpose of the pathogen but also modulates the macrophage energy metabolism and functional state. Additionally, we have explored the intricate pathogenic relationship and the potential prospects of using this knowledge in lipid-based therapeutics to disrupt pathogen dominance.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Deepti Phadnis
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Aakriti Gupta
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
8
|
De-Leon-Lopez YS, Thompson ME, Kean JJ, Flaherty RA. The PI3K-Akt pathway is a multifaceted regulator of the macrophage response to diverse group B Streptococcus isolates. Front Cell Infect Microbiol 2023; 13:1258275. [PMID: 37928185 PMCID: PMC10622663 DOI: 10.3389/fcimb.2023.1258275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Group B Streptococcus (GBS), also known as Streptococcus agalactiae, is a common member of the microbial flora in healthy individuals. However, problems may arise when GBS-colonized mothers become pregnant. GBS may be transferred from a colonized mother to her newborn or developing fetus, which may result in complications such as miscarriage, pre-term birth, meningitis, pneumonia, or sepsis. Macrophages play an especially important role in the fetal and newborn response to GBS due to the limited development of the adaptive immune system early in life. The goal of this study was to expand what is currently known about how GBS manipulates macrophage cell signaling to evade the immune system and cause disease. To this end, we investigated whether the PI3K-Akt pathway was involved in several key aspects of the macrophage response to GBS. We explored whether certain GBS strains, such as sequence type (ST)-17 strains, rely on this pathway for the more rapid macrophage uptake they induce compared to other GBS strains. Our findings suggest that this pathway is, indeed, important for macrophage uptake of GBS. Consistent with these findings, we used immunofluorescence microscopy to demonstrate that more virulent strains of GBS induce more actin projections in macrophages than less virulent strains. Additionally, we explored whether PI3K-Akt signaling impacted the ability of GBS to survive within macrophages after phagocytosis and whether this pathway influenced the survival rate of macrophages themselves following GBS infection. The PI3K-Akt pathway was found to promote the survival of both macrophages and intracellular GBS following infection. We also observed that inhibition of the PI3K-Akt pathway significantly reduced GBS-mediated activation of NFκB, which is a key regulator of cell survival and inflammatory responses. Overall, these insights into strain-dependent GBS-mediated manipulation of the PI3K-Akt pathway and its downstream targets in infected macrophages may provide new insights for the development of diagnostic and therapeutic tools to combat severe GBS disease.
Collapse
Affiliation(s)
| | | | | | - Rebecca A. Flaherty
- Department of Biology and Health Science, Aquinas College, Grand Rapids, MI, United States
| |
Collapse
|
9
|
Yadav S, Dalai P, Gowda S, Nivsarkar M, Agrawal-Rajput R. Azithromycin alters Colony Stimulating Factor-1R (CSF-1R) expression and functional output of murine bone marrow-derived macrophages: A novel report. Int Immunopharmacol 2023; 123:110688. [PMID: 37499396 DOI: 10.1016/j.intimp.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPβ, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1β) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1β, decreased TGF-β release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-β, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Sharath Gowda
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Reena Agrawal-Rajput
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
10
|
Jambhrunkar M, Maghrebi S, Doddakyathanahalli D, Wignall A, Prestidge CA, Bremmell KE. Mesoporous Organosilica Nanoparticles to Fight Intracellular Staphylococcal Aureus Infections in Macrophages. Pharmaceutics 2023; 15:pharmaceutics15041037. [PMID: 37111523 PMCID: PMC10146421 DOI: 10.3390/pharmaceutics15041037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Intracellular bacteria are inaccessible and highly tolerant to antibiotics, hence are a major contributor to the global challenge of antibiotic resistance and recalcitrant clinical infections. This, in tandem with stagnant antibacterial discovery, highlights an unmet need for new delivery technologies to treat intracellular infections more effectively. Here, we compare the uptake, delivery, and efficacy of rifampicin (Rif)-loaded mesoporous silica nanoparticles (MSN) and organo-modified (ethylene-bridged) MSN (MON) as an antibiotic treatment against small colony variants (SCV) Staphylococcus aureus (SA) in murine macrophages (RAW 264.7). Macrophage uptake of MON was five-fold that of equivalent sized MSN and without significant cytotoxicity on human embryonic kidney cells (HEK 293T) or RAW 264.7 cells. MON also facilitated increased Rif loading with sustained release, and seven-fold increased Rif delivery to infected macrophages. The combined effects of increased uptake and intracellular delivery of Rif by MON reduced the colony forming units of intracellular SCV-SA 28 times and 65 times compared to MSN-Rif and non-encapsulated Rif, respectively (at a dose of 5 µg/mL). Conclusively, the organic framework of MON offers significant advantages and opportunities over MSN for the treatment of intracellular infections.
Collapse
Affiliation(s)
- Manasi Jambhrunkar
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sajedeh Maghrebi
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Divya Doddakyathanahalli
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Anthony Wignall
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
11
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
12
|
Kumar R, Kushawaha PK. Interferon inducible guanylate binding protein 1 restricts the growth of Leishmania donovani by modulating the level of cytokines/chemokines and MAP kinase transcription factors. Microb Pathog 2022; 168:105568. [DOI: 10.1016/j.micpath.2022.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
|
13
|
Rozas-Serri M. Why Does Piscirickettsia salmonis Break the Immunological Paradigm in Farmed Salmon? Biological Context to Understand the Relative Control of Piscirickettsiosis. Front Immunol 2022; 13:856896. [PMID: 35386699 PMCID: PMC8979166 DOI: 10.3389/fimmu.2022.856896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022] Open
Abstract
Piscirickettsiosis (SRS) has been the most important infectious disease in Chilean salmon farming since the 1980s. It was one of the first to be described, and to date, it continues to be the main infectious cause of mortality. How can we better understand the epidemiological situation of SRS? The catch-all answer is that the Chilean salmon farming industry must fight year after year against a multifactorial disease, and apparently only the environment in Chile seems to favor the presence and persistence of Piscirickettsia salmonis. This is a fastidious, facultative intracellular bacterium that replicates in the host’s own immune cells and antigen-presenting cells and evades the adaptive cell-mediated immune response, which is why the existing vaccines are not effective in controlling it. Therefore, the Chilean salmon farming industry uses a lot of antibiotics—to control SRS—because otherwise, fish health and welfare would be significantly impaired, and a significantly higher volume of biomass would be lost per year. How can the ever-present risk of negative consequences of antibiotic use in salmon farming be balanced with the productive and economic viability of an animal production industry, as well as with the care of the aquatic environment and public health and with the sustainability of the industry? The answer that is easy, but no less true, is that we must know the enemy and how it interacts with its host. Much knowledge has been generated using this line of inquiry, however it remains insufficient. Considering the state-of-the-art summarized in this review, it can be stated that, from the point of view of fish immunology and vaccinology, we are quite far from reaching an effective and long-term solution for the control of SRS. For this reason, the aim of this critical review is to comprehensively discuss the current knowledge on the interaction between the bacteria and the host to promote the generation of more and better measures for the prevention and control of SRS.
Collapse
|
14
|
Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. Eur J Pharm Biopharm 2022; 174:111-130. [DOI: 10.1016/j.ejpb.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
15
|
Huang C, Du J, Ji B, Gong S, Geng C, Miao Y, Shen Q, Gu W, Wang L, Meng Q. The Eriocheir sinensis calcium/calmodulin-dependent protein kinase II activates apoptosis to resist Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2022; 121:223-231. [PMID: 34986398 DOI: 10.1016/j.fsi.2021.12.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II is a downstream mediator of calcium signalling and participates in the regulation of various cellular physiological functions. In previous studies, the expression of Eriocheir sinensis CaMKII (EsCaMKII) was significantly decreased in the thoracic ganglion after Spiroplasma eriocheiris infection, as shown using TMT-based quantitative proteomic analysis; however, the specific functions of EsCaMKII are still unclear. In this study, the full-length cDNA of EsCaMKII was 3314 bp long, consisting of a 1605 bp open reading frame encoding a protein of 535 amino acids, including a 258 aa serine/threonine protein kinase catalytic domain (EsCaMKII-CD). EsCaMKII is highly transcribed in haemocytes, nerves (thoracic ganglion), gills, and muscles, but lowly transcribed in the hepatopancreas, heart, and intestines. The transcription levels of EsCaMKII were altered in E. sinensis haemocytes after S. eriocheiris infection. After the over-expression of EsCaMKII-CD in RAW264.7 cells, the apoptosis rate of RAW264.7 cells was significantly increased. After the over-expression of EsCaMKII-CD, the morphology of RAW264.7 cells became worse after being infected with S. eriocheiris. Meanwhile, the copy number of S. eriocheiris in RAW264.7 cells was significantly decreased. From 48 h to 96 h after EsCaMKII RNA interference, the transcription levels of EsCaMKII decreased significantly. The transcription of apoptosis genes and cell apoptosis were also inhibited in haemocytes after EsCaMKII RNAi. The knockdown of EsCaMKII by RNAi resulted in significant increases in the copy number of S. eriocheiris and in the mortality of crabs during S. eriocheiris infection. These results indicate that EsCaMKII could promote the apoptosis of E. sinensis and enhance its ability to resist S. eriocheiris infection.
Collapse
Affiliation(s)
- Chen Huang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Bairu Ji
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Sinan Gong
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Chao Geng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Yanyang Miao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Qingchun Shen
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Li Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China.
| |
Collapse
|
16
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
17
|
Paul R, Banerjee S, Sen S, Dubey P, Maji S, Bachhawat AK, Datta R, Gupta A. A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival. J Biol Chem 2021; 298:101539. [PMID: 34958799 PMCID: PMC8800121 DOI: 10.1016/j.jbc.2021.101539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Copper (Cu) is essential for all life forms; however, in excess, it becomes toxic. Toxic properties of Cu are known to be utilized by host species against various pathogenic invasions. Leishmania, in both free-living and intracellular forms, exhibits appreciable tolerance toward Cu stress. While determining the mechanism of Cu-stress evasion employed by Leishmania, we identified and characterized a hitherto unknown Cu-ATPase in Leishmania major and established its role in parasite survival in host macrophages. This novel L. major Cu-ATPase, LmATP7, exhibits homology with its orthologs at multiple motifs. In promastigotes, LmATP7 primarily localized at the plasma membrane. We also show that LmATP7 exhibits Cu-dependent expression patterns and complements Cu transport in a Cu-ATPase-deficient yeast strain. Promastigotes overexpressing LmATP7 exhibited higher survival upon Cu stress, indicating efficacious Cu export compared with Wt and heterozygous LmATP7 knockout parasites. We further explored macrophage–Leishmania interactions with respect to Cu stress. We found that Leishmania infection triggers upregulation of major mammalian Cu exporter, ATP7A, in macrophages, and trafficking of ATP7A from the trans-Golgi network to endolysosomes in macrophages harboring amastigotes. Simultaneously, in Leishmania, we observed a multifold increase in LmATP7 transcripts as the promastigote becomes established in macrophages and morphs to the amastigote form. Finally, overexpressing LmATP7 in parasites increases amastigote survivability within macrophages, whereas knocking it down reduces survivability drastically. Mice injected in their footpads with an LmATP7-overexpressing strain showed significantly larger lesions and higher amastigote loads as compared with controls and knockouts. These data establish the role of LmATP7 in parasite infectivity and intramacrophagic survivability.
Collapse
Affiliation(s)
- Rupam Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Samarpita Sen
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Pratiksha Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81, Manauli, PO, Sahibzada Ajit Singh Nagar, Punjab-140306, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Anand K Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81, Manauli, PO, Sahibzada Ajit Singh Nagar, Punjab-140306, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India.
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India.
| |
Collapse
|
18
|
Magryś A, Bogut A. MicroRNA hsa-let-7a facilitates staphylococcal small colony variants survival in the THP-1 macrophages by reshaping inflammatory responses. Int J Med Microbiol 2021; 311:151542. [PMID: 34864353 DOI: 10.1016/j.ijmm.2021.151542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Recent studies have provided emerging evidence of the critical involvement of microRNAs in host immune defence against bacterial infection and that likewise the expression of the miRNAs is profoundly impacted by a variety of pathogens to subvert the immune response. Here, we report the role of hsa-let-7a miRNA in response to Staphylococcus epidermidis Small Colony Variants infection. We also assessed whether the expression levels of inflammatory cytokines associated with the hsa-let-7a are manipulated by the pathogen and the effect of the IFN-γ priming on the expression of hsa-let-7a and the fate of SCVs/WTs in infected macrophages. A striking observation was the downregulation of the let-7a miRNA upon challenge of the THP-1 activated cells with the SCV isolates while no significant changes in expression were noticed after the infection of macrophages with their WT counterparts. Staphylococcus epidermidis WT and SCV strains were found to invade and survive in macrophages. A significant reduction in bacterial load for both phenotypes was observed in macrophages treated with let-7a mimic compared to untreated ones. Survival of WTs was augmented in cells treated with the inhibitor in 4 out of 5 strains as compared to the number of bacteria recovered from non-transfected cells. At the same time, let-7a inhibitor did not influence on the survival of SCVs in macrophages as their number was comparable to number recovered from non-transfected cells. When the ratio of both let-7a cytokine targets was compared, anti-inflammatory IL-10 cytokine was induced by SCVs predominantly, while the macrophage challenge with WTs was characterized by the inflammatory cytokine profile with high IL-6 and low IL-10 production. Moreover, the balance between pro-inflammatory and anti-inflammatory cytokines has been expectedly retrieved when macrophages were transfected with let-7a mimic before infection with WT or SCV strains. The results also show that IFN-γ likely regulates the macrophage environment contributing to the inflammatory response and elimination of bacteria from intracellular milieu by augmenting the synthesis of pro-inflammatory cytokines and supressing the anti-inflammatory IL-10. Our work has shown that SCVs have the potential to regulate the let-7a miRNA to balance the pro-inflammatory IL-6 with anti-inflammatory IL-10 and this mechanism is one of the ways in a complex regulatory network adopted by SCVs to promote their survival.
Collapse
Affiliation(s)
- Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, Poland.
| | - Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, Poland
| |
Collapse
|
19
|
Rossi DC, Figueroa JAL, Buesing WR, Candor K, Blancett LT, Evans HM, Lenchitz R, Crowther BL, Elsegeiny W, Williamson PR, Rupp J, Deepe GS. A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis. J Clin Invest 2021; 131:e147268. [PMID: 34237029 DOI: 10.1172/jci147268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/06/2021] [Indexed: 01/01/2023] Open
Abstract
Macrophages deploy numerous strategies to combat invasion by microbes. One tactic is to restrict acquisition of diverse nutrients, including trace metals, a process termed nutritional immunity. Intracellular pathogens adapt to a resource-poor environment by marshaling mechanisms to harvest nutrients. Carbon acquisition is crucial for pathogen survival; compounds that reduce availability are a potential strategy to control intracellular replication. Treatment of macrophages with the glucose analog 2-deoxy-D-glucose (2-DG) armed phagocytes to eliminate the intracellular fungal pathogen Histoplasma capsulatum in vitro and in vivo. Killing did not rely on altering access to carbon-containing molecules or changes in ATP, ER stress, or autophagy. Unexpectedly, 2-DG undermined import of exogenous zinc into macrophages, decreasing the quantity of cytosolic and phagosomal zinc. The fungus perished as a result of zinc starvation. This change in metal ingress was not ascribed to a defect in a single importer; rather, there was a collective impairment in transporter activity. This effect promoted the antifungal machinery of macrophages and expanded the complexity of 2-DG activities far beyond manipulating glycolysis. Mechanistic metabolic studies employing 2-DG will have to consider its effect on zinc transport. Our preclinical data support consideration of this agent as a possible adjunctive therapy for histoplasmosis.
Collapse
Affiliation(s)
- Diego Cp Rossi
- Division of Infectious Diseases, College of Medicine and
| | - Julio A Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Kathleen Candor
- Division of Infectious Diseases, College of Medicine and.,University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA.,Immunology Graduate Program and
| | | | | | - Rena Lenchitz
- Division of Infectious Diseases, College of Medicine and
| | - Bradford L Crowther
- Division of Infectious Diseases, College of Medicine and.,Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Waleed Elsegeiny
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, German Center for Infection Research, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine and
| |
Collapse
|
20
|
Bogut A, Magryś A. The road to success of coagulase-negative staphylococci: clinical significance of small colony variants and their pathogenic role in persistent infections. Eur J Clin Microbiol Infect Dis 2021; 40:2249-2270. [PMID: 34296355 PMCID: PMC8520507 DOI: 10.1007/s10096-021-04315-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023]
Abstract
Bacterial small colony variants represent an important aspect of bacterial variability. They are naturally occurring microbial subpopulations with distinctive phenotypic and pathogenic traits, reported for many clinically important bacteria. In clinical terms, SCVs tend to be associated with persistence in host cells and tissues and are less susceptible to antibiotics than their wild-type (WT) counterparts. The increased tendency of SCVs to reside intracellularly where they are protected against the host immune responses and antimicrobial drugs is one of the crucial aspects linking SCVs to recurrent or chronic infections, which are difficult to treat. An important aspect of the SCV ability to persist in the host is the quiescent metabolic state, reduced immune response and expression a changed pattern of virulence factors, including a reduced expression of exotoxins and an increased expression of adhesins facilitating host cell uptake. The purpose of this review is to describe in greater detail the currently available data regarding CoNS SCV and, in particular, their clinical significance and possible mechanisms by which SCVs contribute to the pathogenesis of the chronic infections. It should be emphasized that in spite of an increasing clinical significance of this group of staphylococci, the number of studies unraveling the mechanisms of CoNS SCVs formation and their impact on the course of the infectious process is still scarce, lagging behind the studies on S. aureus SCVs.
Collapse
Affiliation(s)
- Agnieszka Bogut
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland
| | - Agnieszka Magryś
- Chair and Department of Medical Microbiology, Medical University of Lublin, ul. Chodźki 1, 20-093, Lublin, Poland.
| |
Collapse
|
21
|
Cortés HD, Gómez FA, Marshall SH. The Phagosome-Lysosome Fusion Is the Target of a Purified Quillaja saponin Extract (PQSE) in Reducing Infection of Fish Macrophages by the Bacterial Pathogen Piscirickettsia salmonis. Antibiotics (Basel) 2021; 10:antibiotics10070847. [PMID: 34356768 PMCID: PMC8300623 DOI: 10.3390/antibiotics10070847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Piscirickettsia salmonis, the etiological agent of Piscirickettsiosis, is a Gram-negative and facultative intracellular pathogen that has affected the Chilean salmon industry since 1989. The bacterium is highly aggressive and can survive and replicate within fish macrophages using the Dot/Icm secretion system to evade the host’s immune response and spread systemically. To date, no efficient control measures have been developed for this disease; therefore, the producers use large amounts of antibiotics to control this pathogen. In this frame, this work has focused on evaluating the use of saponins from Quillaja saponaria as a new alternative to control the Piscirickettsiosis. It has been previously reported that purified extract of Q. saponaria (PQSE) displays both antimicrobial activity against pathogenic bacteria and viruses and adjuvant properties. Our results show that PQSE does not present antimicrobial activity against P. salmonis, although it reduces P. salmonis infection in an in vitro model, promoting the phagosome–lysosome fusion. Additionally, we demonstrate that PQSE modulates the expression of IL-12 and IL-10 in infected cells, promoting the immune response against the pathogen and reducing the expression of pathogen virulence genes. These results together strongly argue for specific anti-invasion and anti-intracellular replication effects induced by the PQSE in macrophages.
Collapse
|
22
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
23
|
Jati S, Sengupta S, Sen M. Wnt5A-Mediated Actin Organization Regulates Host Response to Bacterial Pathogens and Non-Pathogens. Front Immunol 2021; 11:628191. [PMID: 33664738 PMCID: PMC7921742 DOI: 10.3389/fimmu.2020.628191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
Wnt5A signaling facilitates the killing of several bacterial pathogens, but not the non-pathogen E. coli DH5α. The basis of such pathogen vs. non-pathogen distinction is unclear. Accordingly, we analyzed the influence of Wnt5A signaling on pathogenic E. coli K1 in relation to non-pathogenic E. coli K12-MG1655 and E. coli DH5α eliminating interspecies variability from our study. Whereas cell internalized E. coli K1 disrupted cytoskeletal actin organization and multiplied during Wnt5A depletion, rWnt5A mediated activation revived cytoskeletal actin assembly facilitating K1 eradication. Cell internalized E. coli K12-MG1655 and E. coli DH5α, which did not perturb actin assembly appreciably, remained unaffected by rWnt5A treatment. Phagosomes prepared separately from Wnt5A conditioned medium treated K1 and K12-MG1655 infected macrophages revealed differences in the relative levels of actin and actin network promoting proteins, upholding that the Wnt5A-Actin axis operates differently for internalized pathogen and non-pathogen. Interestingly, exposure of rWnt5A treated K1 and K12-MG1655/DH5α infected macrophages to actin assembly inhibitors reversed the scenario, blocking killing of K1, yet promoting killing of both K12-MG1655 and DH5α. Taken together, our study illustrates that the state of activation of the Wnt5A/Actin axis in the context of the incumbent bacteria is crucial for directing host response to infection.
Collapse
Affiliation(s)
- Suborno Jati
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Soham Sengupta
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Malini Sen
- Division of Cancer Biology and Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
24
|
Single-cell RNA-seq reveals CD16 - monocytes as key regulators of human monocyte transcriptional response to Toxoplasma. Sci Rep 2020; 10:21047. [PMID: 33273621 PMCID: PMC7713135 DOI: 10.1038/s41598-020-78250-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Monocytes are among the major myeloid cells that respond to Toxoplasma, a ubiquitous foodborne that infects ≥ 1 billion people worldwide, in human peripheral blood. As such, a molecular understanding of human monocyte-Toxoplasma interactions can expedite the development of novel human toxoplasmosis control strategies. Current molecular studies on monocyte-Toxoplasma interactions are based on average cell or parasite responses across bulk cell populations. Although informative, population-level averages of monocyte responses to Toxoplasma have sometimes produced contradictory results, such as whether CCL2 or IL12 define effective monocyte responses to the parasite. Here, we used single-cell dual RNA sequencing (scDual-Seq) to comprehensively define, for the first time, the monocyte and parasite transcriptional responses that underpin human monocyte-Toxoplasma encounters at the single cell level. We report extreme transcriptional variability between individual monocytes. Furthermore, we report that Toxoplasma-exposed and unexposed monocytes are transcriptionally distinguished by a reactive subset of CD14+CD16- monocytes. Functional cytokine assays on sorted monocyte populations show that the infection-distinguishing monocytes secrete high levels of chemokines, such as CCL2 and CXCL5. These findings uncover the Toxoplasma-induced monocyte transcriptional heterogeneity and shed new light on the cell populations that largely define cytokine and chemokine secretion in human monocytes exposed to Toxoplasma.
Collapse
|
25
|
Gossner A, Hassan MA. Transcriptional Analyses Identify Genes That Modulate Bovine Macrophage Response to Toxoplasma Infection and Immune Stimulation. Front Cell Infect Microbiol 2020; 10:437. [PMID: 33014886 PMCID: PMC7508302 DOI: 10.3389/fcimb.2020.00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022] Open
Abstract
The obligate intracellular parasite, Toxoplasma gondii, is highly prevalent among livestock species. Although cattle are generally resistant to Toxoplasma strains circulating in Europe and North America, the underlying mechanisms are largely unknown. Here, we report that bovine bone marrow-derived macrophage (BMDM) pre-stimulated with interferon gamma (IFNγ) restricts intracellular Toxoplasma growth independently of nitric oxide. While Toxoplasma promoted the expression of genes associated with alternative macrophage activation and lipid metabolism, IFNγ abrogated parasite-induced transcriptional responses and promoted the expression of genes linked to the classical macrophage activation phenotype. Additionally, several chemokines, including CCL22, that are linked to parasite-induced activation of the Wnt/β-catenin signaling were highly expressed in Toxoplasma-exposed naïve BMDMs. A chemical Wnt/β-catenin signaling pathway antagonist (IWR-1-endo) significantly reduced intracellular parasite burden in naïve BMDMs, suggesting that Toxoplasma activates this pathway to evade bovine macrophage anti-parasitic responses. Congruently, intracellular burden of a mutant Toxoplasma strain (RHΔASP5) that does not secrete dense granule proteins into the host cell, which is an essential requirement for parasite-induced activation of the Wnt/β-catenin pathway, was significantly reduced in naïve BMDMs. However, both the Wnt/β-catenin antagonist and RHASPΔ5 did not abolish parasite burden differences in naïve and IFNγ-stimulated BMDMs. Finally, we observed that parasites infecting IFNγ-stimulated BMDMs largely express genes associated with the slow dividing bradyzoite stage. Overall, this study provides novel insights into bovine macrophage transcriptional response to Toxoplasma. It establishes a foundation for a mechanistic analysis IFNγ-induced bovine anti-Toxoplasma responses and the counteracting Toxoplasma survival strategies.
Collapse
Affiliation(s)
- Anton Gossner
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Musa A Hassan
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Banerjee S, Datta R. Leishmania infection triggers hepcidin-mediated proteasomal degradation of Nramp1 to increase phagolysosomal iron availability. Cell Microbiol 2020; 22:e13253. [PMID: 32827218 DOI: 10.1111/cmi.13253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Natural resistance-associated macrophage protein 1 (Nramp1) was originally discovered as a genetic determinant of resistance against multiple intracellular pathogens, including Leishmania. It encodes a transmembrane protein of the phago-endosomal compartments, where it functions as an iron transporter. But the mechanism by which Nramp1 controls host-pathogen dynamics and determines final outcome of an infection is yet to be fully deciphered. Whether the expression of Nramp1 is altered in response to a pathogen attack is also unknown. To address these, Nramp1 status was examined in Leishmania major-infected murine macrophages. We observed that at 12 hrs post infection, there was drastic lowering of Nramp1 level accompanied by increased phagolysosomal iron content and enhanced intracellular parasite growth. Leishmania infection-induced Nramp1 downregulation was caused by ubiquitin-proteasome degradation pathway, which in turn was found to be mediated by the iron-regulatory peptide hormone hepcidin. Blocking of Nramp1 degradation with proteasome inhibitor or transcriptional agonist of hepcidin resulted in depletion of phagolysosomal iron pool that led to significant reduction of intracellular parasite burden. Interestingly, Nramp1 level was restored to normalcy after 30 hrs of infection with a concomitant drop in phagolysosomal iron, which is suggestive of a host counteractive response to deprive the pathogen of this essential micronutrient. Taken together, our study implicates Nramp1 as a central player in the host-pathogen battle for phagolysosomal iron. We also report Nramp1 as a novel target for hepcidin, and this 'hepcidin-Nramp1' axis may have a broader role in regulating macrophage iron homeostasis.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| |
Collapse
|
27
|
Franch O, Gutiérrez-Corbo C, Domínguez-Asenjo B, Boesen T, Jensen PB, Nejsum LN, Keller JG, Nielsen SP, Singh PR, Jha RK, Nagaraja V, Balaña-Fouce R, Ho YP, Reguera RM, Knudsen BR. DNA flowerstructure co-localizes with human pathogens in infected macrophages. Nucleic Acids Res 2020; 48:6081-6091. [PMID: 32402089 PMCID: PMC7293011 DOI: 10.1093/nar/gkaa341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023] Open
Abstract
Herein, we characterize the cellular uptake of a DNA structure generated by rolling circle DNA amplification. The structure, termed nanoflower, was fluorescently labeled by incorporation of ATTO488-dUTP allowing the intracellular localization to be followed. The nanoflower had a hydrodynamic diameter of approximately 300 nanometer and was non-toxic for all mammalian cell lines tested. It was internalized specifically by mammalian macrophages by phagocytosis within a few hours resulting in specific compartmentalization in phagolysosomes. Maximum uptake was observed after eight hours and the nanoflower remained stable in the phagolysosomes with a half-life of 12 h. Interestingly, the nanoflower co-localized with both Mycobacterium tuberculosis and Leishmania infantum within infected macrophages although these pathogens escape lysosomal degradation by affecting the phagocytotic pathway in very different manners. These results suggest an intriguing and overlooked potential application of DNA structures in targeted treatment of infectious diseases such as tuberculosis and leishmaniasis that are caused by pathogens that escape the human immune system by modifying macrophage biology.
Collapse
Affiliation(s)
- Oskar Franch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Pia Bomholt Jensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Josephine Geertsen Keller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Prakruti R Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science & Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rajiv Kumar Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science & Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science & Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Birgitta Ruth Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Sharma S, Tiwari M, Tiwari V. Molecular mechanisms of bacteria induced autophagy and its escape strategies. Future Microbiol 2020; 15:303-306. [DOI: 10.2217/fmb-2019-0285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| |
Collapse
|
29
|
Jiang L, Wang P, Li X, Lv R, Wang L, Yang B, Huang D, Feng L, Liu B. PagR mediates the precise regulation of
Salmonella
pathogenicity island 2 gene expression in response to magnesium and phosphate signals in
Salmonella
Typhimurium. Cell Microbiol 2019; 22:e13125. [DOI: 10.1111/cmi.13125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Lingyan Jiang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Peisheng Wang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Xiaomin Li
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Runxia Lv
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
| | - Lin Wang
- Inspection and Quarantine Technical CenterBeijing Entry‐Exit Inspection and Quarantine Bureau Beijing China
| | - Bin Yang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Di Huang
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Lu Feng
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| | - Bin Liu
- TEDA Institute of Biological Sciences and BiotechnologyNankai University Tianjin China
- The Key Laboratory of Molecular Microbiology and TechnologyMinistry of Education Tianjin China
- Tianjin Key Laboratory of Microbial Functional GenomicsNankai University Tianjin China
| |
Collapse
|
30
|
Hu W, Chan H, Lu L, Wong KT, Wong SH, Li MX, Xiao ZG, Cho CH, Gin T, Chan MTV, Wu WKK, Zhang L. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol 2019; 101:41-50. [PMID: 31408699 DOI: 10.1016/j.semcdb.2019.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/06/2019] [Accepted: 07/30/2019] [Indexed: 12/11/2022]
Abstract
Autophagy is a conserved intracellular degradation process enclosing the bulk of cytosolic components for lysosomal degradation to maintain cellular homeostasis. Accumulating evidences showed that a specialized form of autophagy, known as xenophagy, could serve as an innate immune response to defend against pathogens invading inside the host cells. Correspondingly, infectious pathogens have developed a variety of strategies to disarm xenophagy, leading to a prolonged and persistent intracellular colonization. In this review, we first summarize the current knowledge about the general mechanisms of intracellular bacterial infections and xenophagy. We then focus on the ongoing battle between these two processes.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, PR China; Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Lan Lu
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, PR China
| | - Kam Tak Wong
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming X Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Zhan G Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Tony Gin
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| | - Lin Zhang
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, and Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Ichimaru H, Harada A, Yoshimoto S, Miyazawa Y, Mizoguchi D, Kyaw K, Ono K, Tsutsuki H, Sawa T, Niidome T. Gold Coating of Silver Nanoplates for Enhanced Dispersion Stability and Efficient Antimicrobial Activity against Intracellular Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10413-10418. [PMID: 30107745 DOI: 10.1021/acs.langmuir.8b00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles have antibacterial activity. However, the nanoparticles are unstable and easily form aggregates, which decreases their antibacterial activity. To improve the dispersion stability of silver nanoparticles in aqueous media and to increase their effectiveness as antibacterial agents, we coated triangular plate-like silver nanoparticles (silver nanoplates, Ag NPLs) with one or two layers of gold atoms (Ag@Au1L NPLs and Ag@Au2L NPLs, respectively). These gold coatings improved the dispersion stability in aqueous media with high salt concentrations. Ag@Au1L NPLs showed stronger antibacterial activity on pathogenic bacteria than Ag NPLs and Ag@Au2L NPLs. Furthermore, the Ag@Au1L NPLs decreased the number of bacteria in RAW 264.7 cells. The Ag@Au1L NPLs displayed no cytotoxicity towards RAW 264.7 cells and could be used as antibacterial agents for intracellular bacterial infections.
Collapse
Affiliation(s)
- Hiroaki Ichimaru
- Faculty of Advanced Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Soichiro Yoshimoto
- Faculty of Advanced Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| | - Yuta Miyazawa
- Dai Nippon Toryo Co., Ltd. , 1382-12, Shimoishigami , Otawara , Tochigi , 324-8516 , Japan
| | - Daigou Mizoguchi
- Dai Nippon Toryo Co., Ltd. , 1382-12, Shimoishigami , Otawara , Tochigi , 324-8516 , Japan
| | - Kaung Kyaw
- Faculty of Advanced Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
- Department of Chemical Engineering , Yangon Technological University , Gyogone, Insein P.O., Yangon 11-011 , Myanmar
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences , Kumamoto University , 1-1-1 Honjo , Chuo-ku, Kumamoto 860-8556 , Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences , Kumamoto University , 1-1-1 Honjo , Chuo-ku, Kumamoto 860-8556 , Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences , Kumamoto University , 1-1-1 Honjo , Chuo-ku, Kumamoto 860-8556 , Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology , Kumamoto University , 2-39-1 Kurokami , Chuo-ku, Kumamoto 860-8555 , Japan
| |
Collapse
|
32
|
Watanabe R, Eckstrand C, Liu H, Pedersen NC. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Vet Res 2018; 49:81. [PMID: 30086792 PMCID: PMC6081860 DOI: 10.1186/s13567-018-0578-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Laboratory cats were infected with a serotype I cat-passaged field strain of FIP virus (FIPV) and peritoneal cells harvested 2-3 weeks later at onset of lymphopenia, fever and serositis. Comparison peritoneal cells were collected from four healthy laboratory cats by peritoneal lavage and macrophages predominated in both populations. Differential mRNA expression analysis identified 5621 genes as deregulated in peritoneal cells from FIPV infected versus normal cats; 956 genes showed > 2.0 Log2 Fold Change (Log2FC) and 1589 genes showed < -2.0 Log2FC. Eighteen significantly upregulated pathways were identified by InnateDB enrichment analysis. These pathways involved apoptosis, cytokine-cytokine receptor interaction, pathogen recognition, Jak-STAT signaling, NK cell mediated cytotoxicity, several chronic infectious diseases, graft versus host disease, allograft rejection and certain autoimmune disorders. Infected peritoneal macrophages were activated M1 type based on pattern of RNA expression. Apoptosis was found to involve large virus-laden peritoneal macrophages more than less mature macrophages, suggesting that macrophage death played a role in virus dissemination. Gene transcripts for MHC I but not II receptors were upregulated, while mRNA for receptors commonly associated with virus attachment and identified in other coronaviruses were either not detected (APN, L-SIGN), not deregulated (DDP-4) or down-regulated (DC-SIGN). However, the mRNA for FcγRIIIA (CD16A/ADCC receptor) was significantly upregulated, supporting entry of virus as an immune complex. Analysis of KEGG associated gene transcripts indicated that Th1 polarization overshadowed Th2 polarization, but the addition of relevant B cell associated genes previously linked to FIP macrophages tended to alter this perception.
Collapse
Affiliation(s)
- Rie Watanabe
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Christina Eckstrand
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Niels C. Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA USA
| |
Collapse
|
33
|
A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe 2018; 24:285-295.e8. [PMID: 30057173 DOI: 10.1016/j.chom.2018.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
Many pathogenic intracellular bacteria manipulate the host phago-endosomal system to establish and maintain a permissive niche. The fate and identity of these intracellular compartments is controlled by phosphoinositide lipids. By mechanisms that have remained undefined, a Francisella pathogenicity island-encoded secretion system allows phagosomal escape and replication of bacteria within host cell cytoplasm. Here we report the discovery that a substrate of this system, outside pathogenicity island A (OpiA), represents a family of wortmannin-resistant bacterial phosphatidylinositol (PI) 3-kinase enzymes with members found in a wide range of intracellular pathogens, including Rickettsia and Legionella spp. We show that OpiA acts on the Francisella-containing phagosome and promotes bacterial escape into the cytoplasm. Furthermore, we demonstrate that the phenotypic consequences of OpiA inactivation are mitigated by endosomal maturation arrest. Our findings suggest that Francisella, and likely other intracellular bacteria, override the finely tuned dynamics of phagosomal PI(3)P in order to promote intracellular survival and pathogenesis.
Collapse
|
34
|
Schmidt H, Vlaic S, Krüger T, Schmidt F, Balkenhol J, Dandekar T, Guthke R, Kniemeyer O, Heinekamp T, Brakhage AA. Proteomics of Aspergillus fumigatus Conidia-containing Phagolysosomes Identifies Processes Governing Immune Evasion. Mol Cell Proteomics 2018; 17:1084-1096. [PMID: 29507050 DOI: 10.1074/mcp.ra117.000069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 02/17/2018] [Indexed: 12/12/2022] Open
Abstract
Invasive infections by the human pathogenic fungus Aspergillus fumigatus start with the outgrowth of asexual, airborne spores (conidia) into the lung tissue of immunocompromised patients. The resident alveolar macrophages phagocytose conidia, which end up in phagolysosomes. However, A. fumigatus conidia resist phagocytic degradation to a certain degree. This is mainly attributable to the pigment 1,8-dihydroxynaphthalene (DHN) melanin located in the cell wall of conidia, which manipulates the phagolysosomal maturation and prevents their intracellular killing. To get insight in the underlying molecular mechanisms, we comparatively analyzed proteins of mouse macrophage phagolysosomes containing melanized wild-type (wt) or nonmelanized pksP mutant conidia. For this purpose, a protocol to isolate conidia-containing phagolysosomes was established and a reference protein map of phagolysosomes was generated. We identified 637 host and 22 A. fumigatus proteins that were differentially abundant in the phagolysosome. 472 of the host proteins were overrepresented in the pksP mutant and 165 in the wt conidia-containing phagolysosome. Eight of the fungal proteins were produced only in pksP mutant and 14 proteins in wt conidia-containing phagolysosomes. Bioinformatical analysis compiled a regulatory module, which indicates host processes affected by the fungus. These processes include vATPase-driven phagolysosomal acidification, Rab5 and Vamp8-dependent endocytic trafficking, signaling pathways, as well as recruitment of the Lamp1 phagolysosomal maturation marker and the lysosomal cysteine protease cathepsin Z. Western blotting and immunofluorescence analyses confirmed the proteome data and moreover showed differential abundance of the major metabolic regulator mTOR. Taken together, with the help of a protocol optimized to isolate A. fumigatus conidia-containing phagolysosomes and a potent bioinformatics algorithm, we were able to confirm A. fumigatus conidia-dependent modification of phagolysosomal processes that have been described before and beyond that, identify pathways that have not been implicated in A. fumigatus evasion strategy, yet.Mass spectrometry proteomics data are available via ProteomeXchange with identifiers PXD005724 and PXD006134.
Collapse
Affiliation(s)
- Hella Schmidt
- From the ‡Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Sebastian Vlaic
- §Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Thomas Krüger
- From the ‡Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Franziska Schmidt
- From the ‡Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Johannes Balkenhol
- ¶Department of Bioinformatics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- ¶Department of Bioinformatics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Reinhard Guthke
- §Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Olaf Kniemeyer
- From the ‡Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Thorsten Heinekamp
- From the ‡Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- From the ‡Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany; .,‖Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
35
|
Deng W, Yang W, Zeng J, Abdalla AE, Xie J. Mycobacterium tuberculosis PPE32 promotes cytokines production and host cell apoptosis through caspase cascade accompanying with enhanced ER stress response. Oncotarget 2018; 7:67347-67359. [PMID: 27634911 PMCID: PMC5341880 DOI: 10.18632/oncotarget.12030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (MTB) infection, remains a grave global public health burden which claims the lives around two to three million annually. PE and PPE proteins, featured by the Pro-Glu (PE) or Pro-Pro-Glu (PPE) motifs at the conserved N-terminal domain, are abundant in the MTB genome. PPE32 can increase intracellular survival of mycobacteria through abnormally increase in cytokines production. PPE32 might subvert the macrophage immune response and thwart its bactericidal effect. THP-1 macrophages treated with PPE32 or infected with Mycobacterium smegmatis (MS) expression PPE32 showed increase of cytokines production and multiple hallmarks of apoptosis. We found that PPE32 significantly increases the expression of IL-12p40 and IL-32 through ERK1/2 signaling pathway. In addition, the cell viability of macrophage was inhibited after PPE32 stimulation. We noted that PPE32 induces cleavage of caspase-3 and caspase-9, while inhibition of caspase activity significantly abrogates the PPE32-induced cell apoptosis. Moreover, PPE32 treatment promotes endoplasmic reticulum stress related gene expression, suggesting ER stress might be responsible for PPE32-induced cell apoptosis.
Collapse
Affiliation(s)
- Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China.,Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Wenmin Yang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| | - Abualgasim Elgaili Abdalla
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China.,Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, PR China
| |
Collapse
|
36
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
37
|
Magryś A, Bogut A, Kiełbus M, Olender A. The role of the PI3K/mTOR signaling pathway in Staphylococcus epidermidis small colony variants intracellular survival. Immunol Invest 2018; 47:251-263. [PMID: 29336620 DOI: 10.1080/08820139.2018.1423569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objective of this study was to analyze how Staphylococcus epidermidis SCV and WT strains manipulate the PI3K/Akt/mTOR signaling pathway. Six S. epidermidis strains with normal phenotype (WT) and six S. epidermidis strains with SCV phenotype were isolated in parallel from six patients with the prosthetic hip joint infections. THP-1 activated cells were incubated with or without PI3K inhibitor-wortmannin or with mTOR inhibitor-rapamycin. Next, macrophages were exposed to S. epidermidis WT and SCV strains. After 4 h incubation, bacterial survival inside macrophages as well as PI3K-mTOR activation was analyzed. SCV strains of S. epidermidis increased the level of Akt phosphorylation, compared to uninfected macrophages and to their parental WT forms. Wild type variants of S. epidermidis phosphorylated Akt at similar or lower levels as control uninfected cells. Next, the induction of mTOR target, phosphorylated ribosomal protein S6, was measured in bacteria-infected macrophages. The level of phosphorylation was significantly reduced when the cells were exposed to WT strains of S. epidermidis. In contrast, the SCV strains activated S6 protein mostly at a level comparable to the control cells. Rapamycin inhibited mTOR activation as the number of p-S6 positive cells decreased in the tested cases. To conclude, the SCV strains activate the PI3K-Akt signaling pathway in opposite to WT strains. This fact however did not influence the increase in the number of live SCV bacteria as compared to the WT strains. Knowing that the PI3K-Akt pathway is involved in proinflammatory cytokines suppression, SCVs seem to use this pathway to reduce the inflammatory response during the infection.
Collapse
Affiliation(s)
- Agnieszka Magryś
- a Chair and Department of Medical Microbiology , Medical University of Lublin , Lublin , Poland
| | - Agnieszka Bogut
- a Chair and Department of Medical Microbiology , Medical University of Lublin , Lublin , Poland
| | - Michał Kiełbus
- b Chair and Department of Biochemistry and Molecular Biology , Medical University of Lublin , Lublin , Poland
| | - Alina Olender
- a Chair and Department of Medical Microbiology , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
38
|
Intrinsic Maturational Neonatal Immune Deficiencies and Susceptibility to Group B Streptococcus Infection. Clin Microbiol Rev 2017; 30:973-989. [PMID: 28814408 DOI: 10.1128/cmr.00019-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although a normal member of the gastrointestinal and vaginal microbiota, group B Streptococcus (GBS) can also occasionally be the cause of highly invasive neonatal disease and is an emerging pathogen in both elderly and immunocompromised adults. Neonatal GBS infections are typically transmitted from mother to baby either in utero or during passage through the birth canal and can lead to pneumonia, sepsis, and meningitis within the first few months of life. Compared to the adult immune system, the neonatal immune system has a number of deficiencies, making neonates more susceptible to infection. Recognition of GBS by the host immune system triggers an inflammatory response to clear the pathogen. However, GBS has developed several mechanisms to evade the host immune response. A comprehensive understanding of this interplay between GBS and the host immune system will aid in the development of new preventative measures and therapeutics.
Collapse
|
39
|
Roy S, Gupta P, Palit S, Basu M, Ukil A, Das PK. The role of PD-1 in regulation of macrophage apoptosis and its subversion by Leishmania donovani. Clin Transl Immunology 2017; 6:e137. [PMID: 28690843 PMCID: PMC5493582 DOI: 10.1038/cti.2017.12] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/03/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023] Open
Abstract
Programmed death-1 receptor (PD-1) expressed in many immune cells is known to trigger T-cell exhaustion but the significance of macrophage-associated PD-1 in relevance to macrophage apoptosis is not known. This study is aimed to delineate whether PD-1 pathway has any role in eliciting macrophage apoptosis and, if so, then how the intra-macrophage parasite, Leishmania donovani modulates PD-1 pathway for protecting its niche. Resting macrophages when treated with H2O2 showed increased PD-1 expression and apoptosis, which was further enhanced on PD-1 agonist treatment. The administration of either PD-1 receptor or PD-1 ligand-blocking antibodies reversed the process thus documenting the involvement of PD-1 in macrophage apoptosis. On the contrary, L. donovani-infected macrophages showed decreased PD-1 expression concurrent with inhibition of apoptosis. The activation of PD-1 pathway was found to negatively regulate the phosphorylation of pro-survival AKT, which was reversed during infection. Infection-induced PD-1 downregulation led to the activation of AKT resulting in phosphorylation and subsequent inhibition of proapoptotic protein BAD. Strong association of SHP2 (a SH2-containing ubiquitously expressed tyrosine-specific protein phosphatase) with PD-1 along with AKT deactivation observed in H2O2-treated macrophages was reversed by L. donovani infection. Kinetic analysis coupled with inhibitor-based approach and knockdown experiments demonstrated that L. donovani infection actively downregulated the PD-1 by deactivating NFATc1 as revealed by its reduced nuclear translocation. The study thus elucidates the detailed mechanism of the role of PD-1 in macrophage apoptosis and its negative modulation by Leishmania for their intracellular survival.
Collapse
Affiliation(s)
- Shalini Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Purnima Gupta
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Shreyasi Palit
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Moumita Basu
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
40
|
Velásquez LN, Milillo MA, Delpino MV, Trotta A, Mercogliano MF, Pozner RG, Schillaci R, Elizalde PV, Giambartolomei GH, Barrionuevo P. Inhibition of MHC-I by Brucella abortus is an early event during infection and involves EGFR pathway. Immunol Cell Biol 2017; 95:388-398. [PMID: 27811842 DOI: 10.1038/icb.2016.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/18/2023]
Abstract
Brucella abortus is able to persist inside the host despite the development of potent CD8+ T-cell responses. We have recently reported the ability of B. abortus to inhibit the interferon-γ-induced major histocompatibility complex (MHC)-I cell surface expression on human monocytes. This phenomenon was due to the B. abortus-mediated retention of MHC-I molecules within the Golgi apparatus and was dependent on bacterial viability. However, the implications of bacterial virulence or replicative capacity and the signaling pathways remained unknown. Here we demonstrated that the B. abortus mutant strains RB51 and virB10- are able to inhibit MHC-I expression in the same manner as wild-type B. abortus, even though they are unable to persist inside human monocytes for a long period of time. Consistent with this, the phenomenon was triggered early in time and could be observed at 8 h postinfection. At 24 and 48 h, it was even stronger. Regarding the signaling pathway, targeting epidermal growth factor (EGF) receptor (EGFR), ErbB2 (HER2) or inhibition of tumor necrosis factor-α-converting enzyme, one of the enzymes which generates soluble EGF-like ligands, resulted in partial recovery of MHC-I surface expression. Moreover, recombinant EGF and transforming growth factor-α as well as the combination of both were also able to reproduce the B. abortus-induced MHC-I downmodulation. Finally, when infection was performed in the presence of an extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, MHC-I surface expression was significantly recovered. Overall, these results describe how B. abortus evades CD8+ T-cell responses early during infection and exploits the EGFR-ERK signaling pathway to escape from the immune system and favor chronicity.
Collapse
Affiliation(s)
- Lis N Velásquez
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - M Ayelén Milillo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas 'José de San Martín', (CONICET/UBA), Buenos Aires, Argentina
| | - Aldana Trotta
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | | | - Roberto G Pozner
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (IByME), CONICET, Buenos Aires, Argentina
| | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IByME), CONICET, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas 'José de San Martín', (CONICET/UBA), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| |
Collapse
|
41
|
Verissimo-Villela E, Kitahara-Oliveira MY, Reis ABDBD, Albano RM, Da-Cruz AM, Bello AR. Functional complementation of Leishmania (Leishmania) amazonensis AP endonuclease gene (lamap) in Escherichia coli mutant strains challenged with DNA damage agents. Mem Inst Oswaldo Cruz 2017; 111:349-54. [PMID: 27223868 PMCID: PMC4878305 DOI: 10.1590/0074-02760150412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/09/2016] [Indexed: 01/25/2023] Open
Abstract
During its life cycle Leishmania spp. face several stress conditions
that can cause DNA damages. Base Excision Repair plays an important role in DNA
maintenance and it is one of the most conserved mechanisms in all living organisms.
DNA repair in trypanosomatids has been reported only for Old World
Leishmania species. Here the AP endonuclease from
Leishmania (L.) amazonensis was cloned, expressed in
Escherichia coli mutants defective on the DNA repair machinery,
that were submitted to different stress conditions, showing ability to survive in
comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple
sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of
proteins.
Collapse
Affiliation(s)
- Erika Verissimo-Villela
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Milene Yoko Kitahara-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Ana Beatriz de Bragança Dos Reis
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Rodolpho Mattos Albano
- Laboratório de Genoma, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Alda Maria Da-Cruz
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Alexandre Ribeiro Bello
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
42
|
Pal DS, Abbasi M, Mondal DK, Varghese BA, Paul R, Singh S, Datta R. Interplay between a cytosolic and a cell surface carbonic anhydrase in pH homeostasis and acid tolerance of Leishmania. J Cell Sci 2017; 130:754-766. [PMID: 28062849 DOI: 10.1242/jcs.199422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/23/2016] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites have evolved to endure the acidic phagolysosomal environment within host macrophages. How Leishmania cells maintain near-neutral intracellular pH and proliferate in such a proton-rich mileu remains poorly understood. We report here that, in order to thrive in acidic conditions, Leishmania major relies on a cytosolic and a cell surface carbonic anhydrase, LmCA1 and LmCA2, respectively. Upon exposure to acidic medium, the intracellular pH of the LmCA1+/-, LmCA2+/- and LmCA1+/-:LmCA2+/- mutant strains dropped by varying extents that led to cell cycle delay, growth retardation and morphological abnormalities. Intracellular acidosis and growth defects of the mutant strains could be reverted by genetic complementation or supplementation with bicarbonate. When J774A.1 macrophages were infected with the mutant strains, they exhibited much lower intracellular parasite burdens than their wild-type counterparts. However, these differences in intracellular parasite burden between the wild-type and mutant strains were abrogated if, before infection, the macrophages were treated with chloroquine to alkalize their phagolysosomes. Taken together, our results demonstrate that haploinsufficiency of LmCA1 and/or LmCA2 renders the parasite acid-susceptible, thereby unravelling a carbonic anhydrase-mediated pH homeostatic circuit in Leishmania cells.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, West Bengal, India
| | - Mazharul Abbasi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, West Bengal, India
| | - Dipon Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, West Bengal, India
| | - Binitha Anu Varghese
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, West Bengal, India
| | - Ritama Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, West Bengal, India
| | - Shalini Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, West Bengal, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
43
|
Mudakavi RJ, Vanamali S, Chakravortty D, Raichur AM. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv 2017; 7:7022-7032. [DOI: 10.1039/c6ra27868j] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Arginine decorated nanocarriers exhibited intravacuolar targeting capability which was utilized to deliver antibiotics and reactive NO into the intracellular niche of pathogens likeSalmonellaandMycobacterium.
Collapse
Affiliation(s)
- Rajeev J. Mudakavi
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Department of Materials Engineering
| | - Surya Vanamali
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore
- India
- Centre for BioSystems Science and Engineering
| | - Ashok M. Raichur
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore
- India
- Centre for BioSystems Science and Engineering
| |
Collapse
|
44
|
Abstract
The pathophysiology of Crohn's disease (CD), a chronic inflammatory bowel disease, remains imperfectly elucidated. Consequently, the therapeutic armamentarium remains limited and has not changed the natural history of CD hitherto. Accordingly, physicians need to identify new therapeutic targets to be able to alter the intestinal damage. The most recent hypothesis considered CD as resulting from an abnormal interaction between microbiota and host immune system influenced by genetics and environmental factors. Several experimental and genetic evidence point out intestinal macrophages in CD etiology. An increase of macrophages number and the presence of granulomas are especially observed in the intestinal mucosa of patients with CD. These macrophages could be defective and particularly in responses to infectious agents like CD-associated Escherichia coli. This review focuses on, what is currently known regarding the role of macrophages, macrophages/E. coli interaction, and the impact of CD therapies on macrophages in CD. We also speculate that macrophages modulation could lead to important translational implications in CD with the end goal of promoting gut health.
Collapse
|
45
|
Korir ML, Laut C, Rogers LM, Plemmons JA, Aronoff DM, Manning SD. Differing mechanisms of surviving phagosomal stress among group B Streptococcus strains of varying genotypes. Virulence 2016; 8:924-937. [PMID: 27791478 DOI: 10.1080/21505594.2016.1252016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Group B Streptococcus (GBS), a leading cause of neonatal sepsis and meningitis, asymptomatically colonizes up to 30% of women and can persistently colonize even after antibiotic treatment. Previous studies have shown that GBS resides inside macrophages, but the mechanism by which it survives remains unknown. Here, we examined the ability of 4 GBS strains to survive inside macrophages and then focused on 2 strains belonging to sequence type (ST)-17 and ST-12, to examine persistence in the presence of antibiotics. A multiple stress medium was also developed using several stressors found in the phagosome to assess the ability of 30 GBS strains to withstand phagosomal stress. The ST-17 strain was more readily phagocytosed and survived intracellularly longer than the ST-12 strain, but the ST-12 strain was tolerant to ampicillin unlike the ST-17 strain. Exposure to sub-inhibitory concentrations of ampicillin and erythromycin increased the level of phagocytosis of the ST-17 strain, but had no effect on the ST-12 strain. In addition, blocking acidification of the phagosome decreased the survival of the ST-17 strain indicating a pH-dependent survival mechanism for the ST-17 strain. Congruent with the macrophage experiments, the ST-17 strain had a higher survival rate in the multiple stress medium than the ST-12 strain, and overall, serotype III isolates survived significantly better than other serotypes. These results indicate that diverse GBS strains may use differing mechanisms to persist and that serotype III strains are better able to survive specific stressors inside the phagosome relative to other serotypes.
Collapse
Affiliation(s)
- Michelle L Korir
- a Department of Microbiology and Molecular Genetics , Michigan State University , East Lansing , MI , USA
| | - Clare Laut
- a Department of Microbiology and Molecular Genetics , Michigan State University , East Lansing , MI , USA
| | - Lisa M Rogers
- b Department of Medicine , Vanderbilt University , Nashville , TN , USA
| | - Jessica A Plemmons
- a Department of Microbiology and Molecular Genetics , Michigan State University , East Lansing , MI , USA
| | - David M Aronoff
- b Department of Medicine , Vanderbilt University , Nashville , TN , USA
| | - Shannon D Manning
- a Department of Microbiology and Molecular Genetics , Michigan State University , East Lansing , MI , USA
| |
Collapse
|
46
|
Tandberg JI, Lagos LX, Langlete P, Berger E, Rishovd AL, Roos N, Varkey D, Paulsen IT, Winther-Larsen HC. Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics. PLoS One 2016; 11:e0165099. [PMID: 27764198 PMCID: PMC5072724 DOI: 10.1371/journal.pone.0165099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/06/2016] [Indexed: 01/18/2023] Open
Abstract
Membrane vesicles (MVs) are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89), Norway (NVI 5692) and Canada (NVI 5892), respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium’s utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.
Collapse
Affiliation(s)
- Julia I. Tandberg
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Leidy X. Lagos
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Petter Langlete
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eva Berger
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne-Lise Rishovd
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Deepa Varkey
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Hanne C. Winther-Larsen
- Center of Integrative Microbiology and Evolution, University of Oslo, Oslo, Norway
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
47
|
Gupta P, Srivastav S, Saha S, Das PK, Ukil A. Leishmania donovani inhibits macrophage apoptosis and pro-inflammatory response through AKT-mediated regulation of β-catenin and FOXO-1. Cell Death Differ 2016; 23:1815-1826. [PMID: 27662364 DOI: 10.1038/cdd.2016.101] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022] Open
Abstract
In order to establish infection, intra-macrophage parasite Leishmania donovani needs to inhibit host defense parameters like inflammatory cytokine production and apoptosis. In the present study, we demonstrate that the parasite achieves both by exploiting a single host regulator AKT for modulating its downstream transcription factors, β-catenin and FOXO-1. L. donovani-infected RAW264.7 and bone marrow-derived macrophages (BMDM) treated with AKT inhibitor or dominant negative AKT constructs showed decreased anti-inflammatory cytokine production and increased host cell apoptosis resulting in reduced parasite survival. Infection-induced activated AKT triggered phosphorylation-mediated deactivation of its downstream target, GSK-3β. Inactivated GSK-3β, in turn, could no longer sequester cytosolic β-catenin, an anti-apoptotic transcriptional regulator, as evidenced from its nuclear translocation during infection. Constitutively active GSK-3β-transfected L. donovani-infected cells mimicked the effects of AKT inhibition and siRNA-mediated silencing of β-catenin led to disruption of mitochondrial potential along with increased caspase-3 activity and IL-12 production leading to decreased parasite survival. In addition to activating anti-apoptotic β-catenin, phospho-AKT inhibits activation of FOXO-1, a pro-apoptotic transcriptional regulator. Nuclear retention of FOXO-1, inhibited during infection, was reversed when infected cells were transfected with dominant negative AKT constructs. Overexpression of FOXO-1 in infected macrophages not only documented increased apoptosis but promoted enhanced TLR4 expression and NF-κB activity along with an increase in IL-1β and decrease in IL-10 secretion. In vivo administration of AKT inhibitor significantly decreased liver and spleen parasite burden and switched cytokine balance in favor of host. In contrast, GSK-3β inhibitor did not result in any significant change in infectivity parameters. Collectively our findings revealed that L. donovani triggered AKT activation to regulate GSK-3β/β-catenin/FOXO-1 axis, thus ensuring inhibition of both host cell apoptosis and immune response essential for its intra-macrophage survival.
Collapse
Affiliation(s)
- Purnima Gupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Supriya Srivastav
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shriya Saha
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
48
|
|
49
|
Epigenetics: A New Model for Intracellular Parasite–Host Cell Regulation. Trends Parasitol 2016; 32:515-521. [DOI: 10.1016/j.pt.2016.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/31/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
|
50
|
Modulation of Stat-1 in Human Macrophages Infected with Different Species of Intracellular Pathogenic Bacteria. J Immunol Res 2016; 2016:5086928. [PMID: 27437406 PMCID: PMC4942631 DOI: 10.1155/2016/5086928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/08/2016] [Indexed: 01/14/2023] Open
Abstract
The infection of human macrophages by pathogenic bacteria induces different signaling pathways depending on the type of cellular receptors involved in the microorganism entry and on their mechanism(s) of survival and replication in the host cell. It was reported that Stat proteins play an important role in this process. In the present study, we investigate the changes in Stat-1 activation (phosphorylation in p-tyr701) after uptake of two Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and two Gram-negative bacteria (Salmonella typhimurium and Legionella pneumophila) characterized by their varying abilities to enter, survive, and replicate in human macrophages. Comparing the results obtained with Gram-negative and Gram-positive bacteria, Stat-1 activation in macrophages does not seem to be related to LPS content. The p-tyr701Stat-1 expression levels were found to be independent of the internalized bacterial number and IFN-γ release. On the contrary, Jak/Stat-1 pathway activation only occurs when an active infection has been established in the host macrophage, and it is plausible that the differences in the expression levels of p-tyr701Stat-1 could be due to different survival mechanisms or to differences in bacteria life cycles within macrophages.
Collapse
|