1
|
Ma J, Zhang J, Yan R. Recombinant Mammalian Prions: The “Correctly” Misfolded Prion Protein Conformers. Viruses 2022; 14:v14091940. [PMID: 36146746 PMCID: PMC9504972 DOI: 10.3390/v14091940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Generating a prion with exogenously produced recombinant prion protein is widely accepted as the ultimate proof of the prion hypothesis. Over the years, a plethora of misfolded recPrP conformers have been generated, but despite their seeding capability, many of them have failed to elicit a fatal neurodegenerative disorder in wild-type animals like a naturally occurring prion. The application of the protein misfolding cyclic amplification technique and the inclusion of non-protein cofactors in the reaction mixture have led to the generation of authentic recombinant prions that fully recapitulate the characteristics of native prions. Together, these studies reveal that recPrP can stably exist in a variety of misfolded conformations and when inoculated into wild-type animals, misfolded recPrP conformers cause a wide range of outcomes, from being completely innocuous to lethal. Since all these recPrP conformers possess seeding capabilities, these results clearly suggest that seeding activity alone is not equivalent to prion activity. Instead, authentic prions are those PrP conformers that are not only heritable (the ability to seed the conversion of normal PrP) but also pathogenic (the ability to cause fatal neurodegeneration). The knowledge gained from the studies of the recombinant prion is important for us to understand the pathogenesis of prion disease and the roles of misfolded proteins in other neurodegenerative disorders.
Collapse
|
2
|
Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021; 434:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
Conformational conversion of the α-helix-rich cellular prion protein into the misfolded, β-rich, aggregated, scrapie form underlies the molecular basis of prion diseases that represent a class of invariably fatal, untreatable, and transmissible neurodegenerative diseases. However, despite the extensive and rigorous research, there is a significant gap in the understanding of molecular mechanisms that contribute to prion pathogenesis. In this review, we describe the historical perspective of the development of the prion concept and the current state of knowledge of prion biology including structural, molecular, and cellular aspects of the prion protein. We then summarize the putative functional role of the N-terminal intrinsically disordered segment of the prion protein. We next describe the ongoing efforts in elucidating the prion phase behavior and the emerging role of liquid-liquid phase separation that can have potential functional relevance and can offer an alternate non-canonical pathway involving conformational conversion into a disease-associated form. We also attempt to shed light on the evolutionary perspective of the prion protein highlighting the potential role of intrinsic disorder in prion protein biology and summarize a few important questions associated with the phase transitions of the prion protein. Delving deeper into these key aspects can pave the way for a detailed understanding of the critical molecular determinants of the prion phase transition and its relevance to physiology and neurodegenerative diseases.
Collapse
|
3
|
Zhang X, Pan YH, Chen Y, Pan C, Ma J, Yuan C, Yu G, Ma J. The protease-sensitive N-terminal polybasic region of prion protein modulates its conversion to the pathogenic prion conformer. J Biol Chem 2021; 297:101344. [PMID: 34710372 PMCID: PMC8604679 DOI: 10.1016/j.jbc.2021.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.
Collapse
Affiliation(s)
- Xiangyi Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ying Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chenhua Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Ji Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Guohua Yu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, School of Life Sciences, Longyan University, Longyan, China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China; Department of Neurodegeneraive Science, Van Andel Institute, Grand Rapids, Michigan, USA; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
4
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
5
|
Yakubu UM, Catumbela CSG, Morales R, Morano KA. Understanding and exploiting interactions between cellular proteostasis pathways and infectious prion proteins for therapeutic benefit. Open Biol 2020; 10:200282. [PMID: 33234071 PMCID: PMC7729027 DOI: 10.1098/rsob.200282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrPSc), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker's yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA.,MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA
| | - Celso S G Catumbela
- MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA.,Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA.,Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA
| |
Collapse
|
6
|
Thackray AM, Andréoletti O, Bujdoso R. Mammalian prion propagation in PrP transgenic Drosophila. Brain 2019; 141:2700-2710. [PMID: 29985975 PMCID: PMC6113635 DOI: 10.1093/brain/awy183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian prions propagate by template-directed misfolding and aggregation of normal cellular prion related protein PrPC as it converts into disease-associated conformers collectively referred to as PrPSc. Mammalian species may be permissive for prion disease because these hosts have co-evolved specific co-factors that assist PrPC conformational change and prion propagation. We have tested this hypothesis by examining whether faithful prion propagation occurs in the normally PrPC-null invertebrate host Drosophila melanogaster. Ovine PrP transgenic Drosophila exposed at the larval stage to ovine scrapie showed a progressive accumulation of transmissible prions in adult flies. Strikingly, the biological properties of distinct ovine prion strains were maintained during their propagation in Drosophila. Our observations show that the co-factors necessary for strain-specific prion propagation are not unique to mammalian species. Our studies establish Drosophila as a novel host for the study of transmissible mammalian prions.
Collapse
Affiliation(s)
- Alana M Thackray
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 OES, UK
| | - Olivier Andréoletti
- UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Raymond Bujdoso
- University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 OES, UK
| |
Collapse
|
7
|
Pan Y, Wang B, Reese RA, Xu B. The molecular basis of interaction domains of full-length PrP with lipid membranes. NANOSCALE 2019; 11:12087-12091. [PMID: 31204758 DOI: 10.1039/c9nr02735a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PrP-lipid membrane interactions are critical to PrP structural conversion and neurotoxicity, but its molecular mechanism remains unclear. A two-dimensional histogram of force-distance curves and a worm-like chain model revealed three binding regions at the PrP N-terminal, providing the molecular basis for understanding the interactions between full-length PrP and lipid membranes.
Collapse
Affiliation(s)
- Yangang Pan
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA. and Department of Pharmaceutical Sciences, University of Nebraska, Omaha, NE 68195, USA
| | - Bin Wang
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA. and United States Department of Agriculture, Agricultural Research Service, National Poultry Research Canter, Athens, GA 30605, USA
| | - R Alexander Reese
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA.
| | - Bingqian Xu
- Single Molecule Study Lab., College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Huang YW, King CY. A complete catalog of wild-type Sup35 prion variants and their protein-only propagation. Curr Genet 2019; 66:97-122. [DOI: 10.1007/s00294-019-01003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
|
9
|
Combet S, Cousin F, Rezaei H, Noinville S. Membrane interaction of off-pathway prion oligomers and lipid-induced on-pathway intermediates during prion conversion: A clue for neurotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:514-523. [PMID: 30529078 DOI: 10.1016/j.bbamem.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
Soluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the β-aggregation pathway, either in solution, or in lipid environment. In the present study, we characterized membrane interaction of off-pathway oligomers from recombinant prion protein generated along the amyloid aggregation and compared to lipid-induced intermediates produced during lipid-accelerated fibrillation. Using calcein-leakage assay, we show that the soluble prion oligomers are the most potent in producing leakage with negatively charged vesicles. Binding affinities, conformational states, mode of action of the different PrP assemblies were determined by thioflavin T binding-static light scattering experiments on DOPC/DOPS vesicles, as well as by FTIR-ATR spectroscopy and specular neutron reflectivity onto the corresponding supported lipid bilayers. Our results indicate that the off-pathway PrP oligomers interact with lipid membrane via a distinct mechanism, compared to the inserted lipid-induced intermediates. Thus, separate neurotoxic mechanisms could exist following the puzzling intermediates generated in the different cell compartments. These results not only reveal an important regulation of lipid membrane on PrP behavior but may also provide clues for designing stage-specific and prion-targeted therapy.
Collapse
Affiliation(s)
- Sophie Combet
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Fabrice Cousin
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Human Rezaei
- Laboratoire de Virologie et Immunologie Moléculaires, UR892, Institut National de la Recherche Agronomique (INRA), F-78352 Jouy-en-Josas, France
| | - Sylvie Noinville
- Laboratoire MONARIS, UMR 8233, Sorbonne Université, CNRS, F-75005 Paris, France.
| |
Collapse
|
10
|
Sang J, Meisl G, Thackray AM, Hong L, Ponjavic A, Knowles TPJ, Bujdoso R, Klenerman D. Direct Observation of Murine Prion Protein Replication in Vitro. J Am Chem Soc 2018; 140:14789-14798. [PMID: 30351023 PMCID: PMC6225343 DOI: 10.1021/jacs.8b08311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prions are believed to propagate when an assembly of prion protein (PrP) enters a cell and replicates to produce two or more fibrils, leading to an exponential increase in PrP aggregate number with time. However, the molecular basis of this process has not yet been established in detail. Here, we use single-aggregate imaging to study fibril fragmentation and elongation of individual murine PrP aggregates from seeded aggregation in vitro. We found that PrP elongation occurs via a structural conversion from a PK-sensitive to PK-resistant conformer. Fibril fragmentation was found to be length-dependent and resulted in the formation of PK-sensitive fragments. Measurement of the rate constants for these processes also allowed us to predict a simple spreading model for aggregate propagation through the brain, assuming that doubling of the aggregate number is rate-limiting. In contrast, while α-synuclein aggregated by the same mechanism, it showed significantly slower elongation and fragmentation rate constants than PrP, leading to much slower replication rate. Overall, our study shows that fibril elongation with fragmentation are key molecular processes in PrP and α-synuclein aggregate replication, an important concept in prion biology, and also establishes a simple framework to start to determine the main factors that control the rate of prion and prion-like spreading in animals.
Collapse
Affiliation(s)
- Jason
C. Sang
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Georg Meisl
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Alana M. Thackray
- Department
of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, U.K.
| | - Liu Hong
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,Zhou
Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, PR China
| | - Aleks Ponjavic
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,Cavendish
Laboratory, University of Cambridge, Cambridge, CB3 0HE, U.K.
| | - Raymond Bujdoso
- Department
of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, U.K.
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K.,
| |
Collapse
|
11
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurological disorders caused by prions, which are composed of a misfolded protein (PrPSc) that self-propagates in the brain of infected individuals by converting the normal prion protein (PrPC) into the pathological isoform. Here, we report a novel experimental strategy for preventing prion disease based on producing a self-replicating, but innocuous PrPSc-like form, termed anti-prion, which can compete with the replication of pathogenic prions. Our results show that a prophylactic inoculation of prion-infected animals with an anti-prion delays the onset of the disease and in some animals completely prevents the development of clinical symptoms and brain damage. The data indicate that a single injection of the anti-prion eliminated ~99% of the infectivity associated to pathogenic prions. Furthermore, this treatment caused significant changes in the profile of regional PrPSc deposition in the brains of animals that were treated, but still succumbed to the disease. Our findings provide new insights for a mechanistic understanding of prion replication and support the concept that prion replication can be separated from toxicity, providing a novel target for therapeutic intervention.
Collapse
|
12
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
13
|
Marín-Moreno A, Fernández-Borges N, Espinosa JC, Andréoletti O, Torres JM. Transmission and Replication of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:181-201. [PMID: 28838661 DOI: 10.1016/bs.pmbts.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of progressive, invariably fatal diseases that affect the nervous system of many mammals including humans. The key molecular event in the pathogenesis of TSEs is the conversion of the cellular prion protein PrPC into a disease-associated isoform PrPSc. The "protein-only hypothesis" argues that PrPSc itself is the infectious agent. In effect, PrPSc can adopt several structures that represent different prion strains. The interspecies transmission of TSEs is difficult because of differences between the host and donor primary PrP sequence. However, transmission is not impossible as this occurred when bovine spongiform encephalopathy spread to humans causing variant Creutzfeldt-Jakob disease (vCJD). This event determined a need for a thorough understanding of prion replication and transmission so that we could be one step ahead of further threats for human health. This chapter focuses on these concepts and on new insights gained into prion propagation mechanisms.
Collapse
Affiliation(s)
| | | | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
| | - Olivier Andréoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan M Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain.
| |
Collapse
|
14
|
Mabbott NA. Immunology of Prion Protein and Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:203-240. [PMID: 28838662 DOI: 10.1016/bs.pmbts.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom.
| |
Collapse
|
15
|
Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog 2017; 13:e1006491. [PMID: 28704563 PMCID: PMC5524416 DOI: 10.1371/journal.ppat.1006491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res’ pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity. Many neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and Prion disease, are caused by misfolded proteins that can self-propagate in vivo and in vitro. Misfolded self-replicating recombinant prion protein (PrP) conformers have been generated in vitro with defined cofactors, some of which are highly infectious and cause bona fide prion diseases, while others completely fail to induce any pathology. Here we compare these misfolded recombinant PrP conformers and show that the non-pathogenic misfolded recombinant PrP is not completely inert in vivo. We also found that the pathogenic and non-pathogenic recombinant PrP conformers share a similar overall architecture. Importantly, our study clearly shows that in vivo seeded spread of misfolded conformation does not necessarily lead to pathogenic change or cause disease. These findings not only are important for understanding the molecular basis for prion infectivity, but also may have important implications for the “prion-like” spread of misfolded proteins in other neurodegenerative diseases.
Collapse
|
16
|
Miyazawa K, Masujin K, Okada H, Ushiki-Kaku Y, Matsuura Y, Yokoyama T. Selective propagation of mouse-passaged scrapie prions with long incubation period from a mixed prion population using GT1-7 cells. PLoS One 2017. [PMID: 28636656 PMCID: PMC5479544 DOI: 10.1371/journal.pone.0179317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Kentaro Masujin
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | | - Yuichi Matsuura
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Quittot N, Sebastiao M, Bourgault S. Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance. Biochem Cell Biol 2017; 95:329-337. [DOI: 10.1139/bcb-2016-0236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are long and unbranched polysaccharides that are abundant in the extracellular matrix and basement membrane of multicellular organisms. These linear polyanionic macromolecules are involved in many physiological functions from cell adhesion to cellular signaling. Interestingly, amyloid fibrils extracted from patients afflicted with protein misfolding diseases are virtually always associated with GAGs. Amyloid fibrils are highly organized nanostructures that have been historically associated with pathological states, such as Alzheimer’s disease and systemic amyloidoses. However, recent studies have identified functional amyloids that accomplish crucial physiological roles in almost all living organisms, from bacteria to insects and mammals. Over the last 2 decades, numerous reports have revealed that sulfated GAGs accelerate and (or) promote the self-assembly of a large diversity of proteins, both inherently amyloidogenic and non-aggregation prone. Despite the fact that many studies have investigated the molecular mechanism(s) by which GAGs induce amyloid assembly, the mechanistic elucidation of GAG-mediated amyloidogenesis still remains the subject of active research. In this review, we expose the contribution of GAGs in amyloid assembly, and we discuss the pathophysiological and functional significance of GAG-mediated fibrillization. Finally, we propose mechanistic models of the unique and potent ability of sulfated GAGs to hasten amyloid fibril formation.
Collapse
Affiliation(s)
- Noé Quittot
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Mathew Sebastiao
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
- Department of Chemistry, Pharmaqam, C.P. 8888, Succursale Centre-Ville, Université du Québec à Montréal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
18
|
Taguchi Y, Nishida N. Secondary-structure prediction revisited: Theoretical β-sheet propensity and coil propensity represent structures of amyloids and aid in elucidating phenomena involved in interspecies transmission of prions. PLoS One 2017; 12:e0171974. [PMID: 28199368 PMCID: PMC5310760 DOI: 10.1371/journal.pone.0171974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/27/2017] [Indexed: 01/18/2023] Open
Abstract
Prions are unique infectious agents, consisting solely of abnormally-folded prion protein (PrPSc). However, they possess virus-like features, including strain diversity, the ability to adapt to new hosts and to be altered evolutionarily. Because prions lack genetic material (DNA and RNA), these biological phenomena have been attributed to the structural properties of PrPSc. Therefore, many structural models of the structure of PrPSc have been proposed based on the limited structural information available, regardless of the incompatibility with high-resolution structural analysis. Recently hypothesized models consist solely of β-sheets and intervening loops/kinks; i.e. parallel in-register β-sheet and β-solenoid models. Owing to the relative simplicity of these structural models of PrPSc, we hypothesized that numerical conversion of the primary structures with a relevant algorithm would enable quantitative comparison between PrPs of distinct primary structures. We therefore used the theoretical values of β-sheet (Pβ) and random-coil (Pc) propensity calculated by secondary structure prediction with a neural network, to analyze interspecies transmission of prions. By reviewing experiments in the literature, we ascertained the biological relevance of Pβ and Pc and found that these classical parameters surprisingly carry substantial information of amyloid structures. We also demonstrated how these parameters could aid in interpreting and explaining phenomena in interspecies transmissions. Our approach can lead to the development of a versatile tool for investigating not only prions but also other amyloids.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Division of Cellular and Molecular Biology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JAPAN
- * E-mail:
| | - Noriyuki Nishida
- Division of Cellular and Molecular Biology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JAPAN
| |
Collapse
|
19
|
Divergent prion strain evolution driven by PrP C expression level in transgenic mice. Nat Commun 2017; 8:14170. [PMID: 28112164 PMCID: PMC5264111 DOI: 10.1038/ncomms14170] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Prions induce a fatal neurodegenerative disease in infected host brain based on the refolding and aggregation of the host-encoded prion protein PrPC into PrPSc. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Constrained interactions between PrPC and different PrPSc strains can in turn lead to certain PrPSc (sub)populations being selected for cross-species transmission, or even produce mutation-like events. By contrast, prion strains are generally conserved when transmitted within the same species, or to transgenic mice expressing homologous PrPC. Here, we compare the strain properties of a representative sheep scrapie isolate transmitted to a panel of transgenic mouse lines expressing varying levels of homologous PrPC. While breeding true in mice expressing PrPC at near physiological levels, scrapie prions evolve consistently towards different strain components in mice beyond a certain threshold of PrPC overexpression. Our results support the view that PrPC gene dosage can influence prion evolution on homotypic transmission. PrPC protein plays a key role in prion transmission across species. Here, the authors compare transmission of a representative scrapie isolate to transgenic mice expressing variable levels of the same Prnp allele as the donor sheep, and find divergent strain propagation regulated by PrPC gene dosage.
Collapse
|
20
|
Imamura M, Tabeta N, Kato N, Matsuura Y, Iwamaru Y, Yokoyama T, Murayama Y. Heparan Sulfate and Heparin Promote Faithful Prion Replication in Vitro by Binding to Normal and Abnormal Prion Proteins in Protein Misfolding Cyclic Amplification. J Biol Chem 2016; 291:26478-26486. [PMID: 27821590 DOI: 10.1074/jbc.m116.745851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
The precise mechanism underlying the conversion of normal prion protein (PrPC) into abnormal prion protein (PrPSc) remains unclear. Protein misfolding cyclic amplification (PMCA), an in vitro technique used for amplifying PrPSc, results in PrPSc replication that preserves the strain-specific characteristics of the input PrPSc; thus, PMCA mimics the process of in vivo PrPSc replication. Previous work has demonstrated that in PMCA, nucleic acids are critical for PrPSc amplification, but little information has been reported on glycosaminoglycan (GAG) participation in PrPSc replication in vitro Here, we investigated whether GAGs play a role in the faithful replication of PrPSc by using a modified PMCA performed with baculovirus-derived recombinant PrP (Bac-PrP) as a substrate. The addition of heparan sulfate (HS) or its analog heparin (HP) restored the conversion efficiency in PMCA that was inhibited through nucleic acid depletion. Moreover, the PMCA products obtained under these conditions were infectious and preserved the properties of the input PrPSc These data suggest that HS and HP play the same role as nucleic acids in facilitating faithful replication of prions in PMCA. Furthermore, we showed that HP binds to both Bac-PrP and Bac-PrPSc through the sulfated groups present on HP and that the N-terminal domain of Bac-PrPSc might potentially not be involved in the binding to HP. These results suggest that the interaction of GAGs such as HS and HP with PrPC and/or PrPSc through their sulfate groups is critical for the faithful replication of prions.
Collapse
Affiliation(s)
- Morikazu Imamura
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Naoko Tabeta
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Nobuko Kato
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yuichi Matsuura
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshifumi Iwamaru
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Takashi Yokoyama
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| | - Yuichi Murayama
- From the National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
21
|
Roles of methionine oxidation in E200K prion protein misfolding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:346-58. [DOI: 10.1016/j.bbapap.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 01/20/2023]
|
22
|
Imamura M, Kato N, Iwamaru Y, Mohri S, Yokoyama T, Murayama Y. Multiple affinity purification of a baculovirus-derived recombinant prion protein with in vitro ability to convert to its pathogenic form. Prep Biochem Biotechnol 2016; 47:1-7. [PMID: 26918377 DOI: 10.1080/10826068.2016.1155058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously showed that baculovirus-derived recombinant prion protein (Bac-PrP) can be converted to the misfolded infectious form (PrPSc) by protein misfolding cyclic amplification, an in vitro conversion technique. Bac-PrP, with post-translational modifications, would be useful for various applications such as using PrP as an immunogen for generating anti-PrP antibody, developing anti-prion drugs or diagnostic assays using in vitro conversion systems, and establishing an in vitro prion propagation model. For this purpose, highly purified Bac-PrP with in vitro conversion activity is necessary for use as a PrPC source, to minimize contamination. Furthermore, an exogenous affinity tag-free form is desirable to avoid potential steric interference by the affinity tags during the conversion process. In this study, we established purification methods for the untagged Bac-PrP under native conditions by combining exogenous double-affinity tags, namely, a polyhistidine-tag and a profinity eXact tag, with an octarepeat sequence of the N-terminal region of PrP, which has metal ion-binding affinity. The untagged Bac-PrP with near-homogeneity was obtained by three-step affinity purification, and it was shown that the final, purified Bac-PrP could convert to its pathogenic form. The presented purification procedure could be applied not only to PrP but also to other eukaryotic, recombinant proteins that require high purity and intact physiological activity.
Collapse
Affiliation(s)
- Morikazu Imamura
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Nobuko Kato
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Yoshifumi Iwamaru
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Shirou Mohri
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Takashi Yokoyama
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Yuichi Murayama
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| |
Collapse
|
23
|
Conformational Switching and Nanoscale Assembly of Human Prion Protein into Polymorphic Amyloids via Structurally Labile Oligomers. Biochemistry 2015; 54:7505-13. [DOI: 10.1021/acs.biochem.5b01110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Torrent J, Lange R, Igel-Egalon A, Béringue V, Rezaei H. Getting to the core of prion superstructural variability. Prion 2015; 10:1-8. [PMID: 26636374 PMCID: PMC4981190 DOI: 10.1080/19336896.2015.1122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The phenomenon of protein superstructural polymorphism has become the subject of increased research activity. Besides the relevance to explain the existence of multiple prion strains, such activity is partly driven by the recent finding that in many age-related neurodegenerative diseases highly ordered self-associated forms of peptides and proteins might be the structural basis of prion-like processes and strains giving rise to different disease phenotypes. Biophysical studies of prion strains have been hindered by a lack of tools to characterize inherently noncrystalline, heterogeneous and insoluble proteins. A description of the pressure response of prion quaternary structures might change this picture. This is because applying pressure induces quaternary structural changes of PrP, such as misfolding and self-assembly. From the thermodynamics of these processes, structural features in terms of associated volume changes can then be deduced. We suggest that conformation-enciphered prion strains can be distinguished in terms of voids in the interfaces of the constituting PrP protomers and thus in their volumetric properties.
Collapse
Affiliation(s)
- Joan Torrent
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Reinhard Lange
- b Institut National de la Recherche Agronomique, UMR1208, Ingénierie des Agropolymères et Technologies Emergentes, Université Montpellier , Montpellier , France
| | - Angelique Igel-Egalon
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Vincent Béringue
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| | - Human Rezaei
- a Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
25
|
Moreno-Del Álamo M, de la Espina SMD, Fernández-Tresguerres ME, Giraldo R. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 2015; 5:14669. [PMID: 26423724 PMCID: PMC4589793 DOI: 10.1038/srep14669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Upon binding to short specific dsDNA sequences in vitro, the N-terminal WH1 domain of the plasmid DNA replication initiator RepA assembles as amyloid fibres. These are bundles of single or double twisted tubular filaments in which distorted RepA-WH1 monomers are the building blocks. When expressed in Escherichia coli, RepA-WH1 triggers the first synthetic amyloid proteinopathy in bacteria, recapitulating some of the features of mammalian prion diseases: it is vertically transmissible, albeit non-infectious, showing up in at least two phenotypically distinct and interconvertible strains. Here we report B3h7, a monoclonal antibody specific for oligomers of RepA-WH1, but which does not recognize the mature amyloid fibres. Unlike a control polyclonal antibody generated against the soluble protein, B3h7 interferes in vitro with DNA-promoted or amyloid-seeded assembly of RepA-WH1 fibres, thus the targeted oligomers are on-pathway amyloidogenic intermediates. Immuno-electron microscopy with B3h7 on thin sections of E. coli cells expressing RepA-WH1 consistently labels the bacterial nucleoid, but not the large cytoplasmic aggregates of the protein. This observation points to the nucleoid as the place where oligomeric amyloid precursors of RepA-WH1 are generated, and suggests that, once nucleated by DNA, further growth must continue in the cytoplasm due to entropic exclusion.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| | | | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| |
Collapse
|
26
|
Daus ML. Techniques to elucidate the conformation of prions. World J Biol Chem 2015; 6:218-222. [PMID: 26322176 PMCID: PMC4549762 DOI: 10.4331/wjbc.v6.i3.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/04/2015] [Accepted: 06/16/2015] [Indexed: 02/05/2023] Open
Abstract
Proteinaceous infectious particles (prions) are unique pathogens as they are devoid of any coding nucleic acid. Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein, the structural insight of prions is still vague and research for high resolution structural information of prions is still ongoing. In this review, techniques that may contribute to the clarification of the conformation of prions are presented and discussed.
Collapse
|
27
|
Abstract
UNLABELLED Mammalian prions are unconventional infectious agents composed primarily of the misfolded aggregated host prion protein PrP, termed PrP(Sc). Prions propagate by the recruitment and conformational conversion of cellular prion protein into abnormal prion aggregates on the cell surface or along the endocytic pathway. Cellular glycosaminoglycans have been implicated as the first attachment sites for prions and cofactors for cellular prion replication. Glycosaminoglycan mimetics and obstruction of glycosaminoglycan sulfation affect prion replication, but the inhibitory effects on different strains and different stages of the cell infection have not been thoroughly addressed. We examined the effects of a glycosaminoglycan mimetic and undersulfation on cellular prion protein metabolism, prion uptake, and the establishment of productive infections in L929 cells by two mouse-adapted prion strains. Surprisingly, both treatments reduced endogenous sulfated glycosaminoglycans but had divergent effects on cellular PrP levels. Chemical or genetic manipulation of glycosaminoglycans did not prevent PrP(Sc) uptake, arguing against their roles as essential prion attachment sites. However, both treatments effectively antagonized de novo prion infection independently of the prion strain and reduced PrP(Sc) formation in chronically infected cells. Our results demonstrate that sulfated glycosaminoglycans are dispensable for prion internalization but play a pivotal role in persistently maintained PrP(Sc) formation independent of the prion strain. IMPORTANCE Recently, glycosaminoglycans (GAGs) became the focus of neurodegenerative disease research as general attachment sites for cell invasion by pathogenic protein aggregates. GAGs influence amyloid formation in vitro. GAGs are also found in intra- and extracellular amyloid deposits. In light of the essential role GAGs play in proteinopathies, understanding the effects of GAGs on protein aggregation and aggregate dissemination is crucial for therapeutic intervention. Here, we show that GAGs are dispensable for prion uptake but play essential roles in downstream infection processes. GAG mimetics also affect cellular GAG levels and localization and thus might affect prion propagation by depleting intracellular cofactor pools.
Collapse
|
28
|
Wang X, McGovern G, Zhang Y, Wang F, Zha L, Jeffrey M, Ma J. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion. PLoS Pathog 2015; 11:e1004958. [PMID: 26136122 PMCID: PMC4489884 DOI: 10.1371/journal.ppat.1004958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/14/2015] [Indexed: 11/23/2022] Open
Abstract
The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / μg. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. The transmissible spongiform encephalopathies (TSEs) are a group of infectious neurodegenerative diseases affecting both humans and animals. The prion hypothesis postulates that prions are protein conformation based infectious agents responsible for TSE infectivity. Prions have been synthetically generated in vitro, but it remains unclear whether the properties of synthetically generated prion are the same as those of TSE agents and whether the disease caused by synthetically generated prion is identical to naturally occurring TSEs. In this study, we demonstrated that similar to the classical TSE agents, the synthetically generated prion has a titratable infectivity and is able to cause prion disease in wild-type mice via routes other than direct intra-cerebral inoculation. More importantly, we showed that the synthetically generated prion induced pathological changes, including the dissemination of disease-specific prion protein accumulation and the route and mechanism of neuroinvasion, were all typical of classical TSEs. These results demonstrate the similarity of synthetically generated prion to the infectious agent in TSEs, providing strong evidence supporting the prion hypothesis.
Collapse
Affiliation(s)
- Xinhe Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Gillian McGovern
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Yi Zhang
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Wang
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Liang Zha
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Martin Jeffrey
- Animal and Plant Health Agency, Lasswade Laboratory, Pentlands Science Park, Penicuik, Midlothian, Scotland
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics (East China Normal University), School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
29
|
Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein. PLoS One 2015; 10:e0130283. [PMID: 26090881 PMCID: PMC4474664 DOI: 10.1371/journal.pone.0130283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/18/2015] [Indexed: 01/03/2023] Open
Abstract
Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP) purified from E.coli into the infectious prion state (PrPSc) with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA) for generating PrPScde novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1’-rac-glycerol) (POPG) or phosphatidylethanolamine (PE), as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, α-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of α-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE.
Collapse
|
30
|
Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases. Acta Neuropathol Commun 2015; 3:18. [PMID: 25853328 PMCID: PMC4383067 DOI: 10.1186/s40478-015-0188-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The prion protein (PrP) binds to various molecular partners, but little is known about their potential impact on the pathogenesis of prion diseases RESULTS Here, we show that PrP can interact in vitro with acetylcholinesterase (AChE), a key protein of the cholinergic system in neural and non-neural tissues. This heterologous association induced aggregation of monomeric PrP and modified the structural properties of PrP amyloid fibrils. Following its recruitment into PrP fibrils, AChE loses its enzymatic activity and enhances PrP-mediated cytotoxicity. Using several truncated PrP variants and specific tight-binding AChE inhibitors (AChEis), we then demonstrate that the PrP-AChE interaction requires two mutually exclusive sub-sites in PrP N-terminal domain and an aromatic-rich region at the entrance of AChE active center gorge. We show that AChEis that target this site impair PrP-AChE complex formation and also limit the accumulation of pathological prion protein (PrPSc) in prion-infected cell cultures. Furthermore, reduction of AChE levels in prion-infected heterozygous AChE knock-out mice leads to slightly but significantly prolonged incubation time. Finally, we found that AChE levels were altered in prion-infected cells and tissues, suggesting that AChE might be directly associated with abnormal PrP. CONCLUSION Our results indicate that AChE deserves consideration as a new actor in expanding pathologically relevant PrP morphotypes and as a therapeutic target.
Collapse
|
31
|
Zhang Y, Wang F, Wang X, Zhang Z, Xu Y, Yu G, Yuan C, Ma J. Comparison of 2 synthetically generated recombinant prions. Prion 2014; 8:28669. [PMID: 24721728 PMCID: PMC4189893 DOI: 10.4161/pri.28669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion is a protein-conformation-based infectious agent causing fatal neurodegenerative diseases in humans and animals. Our previous studies revealed that in the presence of cofactors, infectious prions can be synthetically generated in vitro with bacterially expressed recombinant prion protein (PrP). Once initiated, the recombinant prion is able to propagate indefinitely via serial protein misfolding cyclic amplification (sPMCA). In this study, we compared 2 separately initiated recombinant prions. Our results showed that these 2 recombinant prions had distinct biochemical properties and caused different patterns of spongiosis and PrP deposition in inoculated mice. Our findings indicate that various recombinant prions can be initiated in vitro and potential reasons for this variability are discussed.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China; Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Fei Wang
- Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Xinhe Wang
- Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| | - Zhihong Zhang
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Yuanyuan Xu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Guohua Yu
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Chonggang Yuan
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China
| | - Jiyan Ma
- Key Laboratory of Brain Functional Genomics; Ministry of Education; Shanghai Key Laboratory of Brain Functional Genomics; School of Life Sciences; East China Normal University; Shanghai, PR China; Department of Molecular and Cellular Biochemistry; Ohio State University; Columbus, OH USA
| |
Collapse
|
32
|
Shao J, Choe V, Cheng H, Tsai YC, Weissman AM, Luo S, Rao H. Ubiquitin ligase gp78 targets unglycosylated prion protein PrP for ubiquitylation and degradation. PLoS One 2014; 9:e92290. [PMID: 24714645 PMCID: PMC3979651 DOI: 10.1371/journal.pone.0092290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis.
Collapse
Affiliation(s)
- Jia Shao
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Vitnary Choe
- Department of Molecular Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Haili Cheng
- Department of Molecular Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, Maryland, United States of America
| | - Allan M. Weissman
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shiwen Luo
- The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- * E-mail: (SL); (HR)
| | - Hai Rao
- Department of Molecular Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail: (SL); (HR)
| |
Collapse
|
33
|
Pathological implications of nucleic acid interactions with proteins associated with neurodegenerative diseases. Biophys Rev 2014; 6:97-110. [PMID: 28509960 DOI: 10.1007/s12551-013-0132-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
Abstract
Protein misfolding disorders (PMDs) refer to a group of diseases related to the misfolding of particular proteins that aggregate and deposit in the cells and tissues of humans and other mammals. The mechanisms that trigger protein misfolding and aggregation are still not fully understood. Increasing experimental evidence indicates that abnormal interactions between PMD-related proteins and nucleic acids (NAs) can induce conformational changes. Here, we discuss these protein-NA interactions and address the role of deoxyribonucleic (DNA) and ribonucleic (RNA) acid molecules in the conformational conversion of different proteins that aggregate in PMDs, such as Alzheimer's, Parkinson's, and prion diseases. Studies on the affinity, stability, and specificity of proteins involved in neurodegenerative diseases and NAs are specifically addressed. A landscape of reciprocal effects resulting from the binding of prion proteins, amyloid-β peptides, tau proteins, huntingtin, and α-synuclein are presented here to clarify the possible role of NAs, not only as encoders of genetic information but also in triggering PMDs.
Collapse
|
34
|
Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013; 2013:910314. [PMID: 24454379 PMCID: PMC3884631 DOI: 10.1155/2013/910314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrPC, into the aggregate, β-sheet rich, amyloidogenic form, PrPSc. Increasing evidence indicates that distinct PrPSc conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrPSc distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrPSc toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrPSc and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrPSc aggregates.
Collapse
|
35
|
Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, Yu G, Yuan C, Ma J. De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB J 2013; 27:4768-75. [PMID: 23970796 DOI: 10.1096/fj.13-233965] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.
Collapse
Affiliation(s)
- Zhihong Zhang
- 2Department of Molecular and Cellular Biochemistry, 1645 Neil Ave., Rm. 457A Hamilton Hall, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Involvement of endogenous retroviruses in prion diseases. Pathogens 2013; 2:533-43. [PMID: 25437206 PMCID: PMC4235691 DOI: 10.3390/pathogens2030533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/25/2013] [Accepted: 08/09/2013] [Indexed: 11/17/2022] Open
Abstract
For millions of years, vertebrates have been continuously exposed to infection by retroviruses. Ancient retroviral infection of germline cells resulted in the formation and accumulation of inherited retrovirus sequences in host genomes. These inherited retroviruses are referred to as endogenous retroviruses (ERVs), and recent estimates have revealed that a significant portion of animal genomes is made up of ERVs. Although various host factors have suppressed ERV activation, both positive and negative functions have been reported for some ERVs in normal and abnormal physiological conditions, such as in disease states. Similar to other complex diseases, ERV activation has been observed in prion diseases, and this review will discuss the potential involvement of ERVs in prion diseases.
Collapse
|
37
|
Taguchi Y, Mistica AMA, Kitamoto T, Schätzl HM. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein. PLoS Pathog 2013; 9:e1003466. [PMID: 23825952 PMCID: PMC3694865 DOI: 10.1371/journal.ppat.1003466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in man and animals associated with the accumulation of the pathogenic isoform PrPSc of the host-encoded prion protein (PrPc). A profound conformational change of PrPc underlies formation of PrPSc and prion propagation involves conversion of PrPc substrate by direct interaction with PrPSc template. Identifying the interfaces and modalities of inter-molecular interactions of PrPs will highly advance our understanding of prion propagation in particular and of prion-like mechanisms in general. To identify the region critical for inter-molecular interactions of PrP, we exploited here dominant-negative inhibition (DNI) effects of conversion-incompetent, internally-deleted PrP (ΔPrP) on co-expressed conversion-competent PrP. We created a series of ΔPrPs with different lengths of deletions in the region between first and second α-helix (H1∼H2) which was recently postulated to be of importance in prion species barrier and PrP fibril formation. As previously reported, ΔPrPs uniformly exhibited aberrant properties including detergent insolubility, limited protease digestion resistance, high-mannose type N-linked glycans, and intracellular localization. Although formerly controversial, we demonstrate here that ΔPrPs have a GPI anchor attached. Surprisingly, despite very similar biochemical and cell-biological properties, DNI efficiencies of ΔPrPs varied significantly, dependant on location and inversely correlated with the size of deletion. This data demonstrates that H1∼H2 and the region C-terminal to it are critically important for efficient DNI. It also suggests that this region is involved in PrP-PrP interaction and conversion of PrPC into PrPSc. To reconcile the paradox of how an intracellular PrP can exert DNI, we demonstrate that ΔPrPs are subject to both proteasomal and lysosomal/autophagic degradation pathways. Using autophagy pathways ΔPrPs obtain access to the locale of prion conversion and PrPSc recycling and can exert DNI there. This shows that the intracellular trafficking of PrPs is more complex than previously anticipated. Prion diseases are deadly infectious diseases of the brain characterized by accumulation of a pathologic protein (PrPSc) which is derived from the normal prion protein (PrPc). Prions replicate by direct contact in a template-directed refolding process which involves conversion of PrPC into PrPSc. Identifying the modalities of this interaction can advance our molecular understanding of prion diseases. Like substrates and competitive inhibitors of enzymes, a conversion-incompetent PrP can inhibit conversion of normal PrPC, a phenomenon known as dominant-negative inhibition (DNI). Interestingly, some conversion-incompetent PrPs efficiently cause DNI but others do not, presumably depending on affinity for PrPSc and integrity of interaction interface. We utilized DNI to characterize the PrP-PrP interaction interface in cultured cells. We created a series of PrPs with internal deletions in the region between helix 1 and 2 and evaluated their DNI. We found an inverse correlation between deletion size and DNI which suggests that this region plays an important role in PrP-PrP interaction. We also found that such PrPs are subject to various cellular degradation pathways and that a fraction of them reaches the intracellular locale of prion conversion. Further investigation of such prion proteins might help elucidating the cellular mechanisms of the PrPC-PrPSc interaction.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America.
| | | | | | | |
Collapse
|
38
|
Kyle LM, John TR, Schätzl HM, Lewis RV. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro. PLoS One 2013; 8:e66715. [PMID: 23825561 PMCID: PMC3692500 DOI: 10.1371/journal.pone.0066715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids.
Collapse
Affiliation(s)
- Leah M Kyle
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | | | | | | |
Collapse
|
39
|
Zhou Z, Xiao G. Conformational conversion of prion protein in prion diseases. Acta Biochim Biophys Sin (Shanghai) 2013; 45:465-76. [PMID: 23580591 DOI: 10.1093/abbs/gmt027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases are a group of infectious fatal neurodegenerative diseases. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion diseases pathology. Under normal conditions, the high-energy barrier separates PrP(C) from PrP(Sc) isoform. However, pathogenic mutations, modifications as well as some cofactors, such as glycosaminoglycans, nucleic acids, and lipids, could modulate the conformational conversion process. Understanding the mechanism of conformational conversion of prion protein is essential for the biomedical research and the treatment of prion diseases. Particularly, the characterization of cofactors interacting with prion protein might provide new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | |
Collapse
|
40
|
Abstract
The infectious agent of the transmissible spongiform encephalopathies, or prion diseases, has been the center of intense debate for decades. Years of studies have provided overwhelming evidence to support the prion hypothesis that posits a protein conformal infectious agent is responsible for the transmissibility of the disease. The recent studies that generate prion infectivity with purified bacterially expressed recombinant prion protein not only provides convincing evidence supporting the core of the prion hypothesis, that a pathogenic conformer of host prion protein is able to seed the conversion of its normal counterpart to the likeness of itself resulting in the replication of the pathogenic conformer and occurrence of disease, they also indicate the importance of cofactors, particularly lipid or lipid-like molecules, in forming the protein conformation-based infectious agent. This article reviews the literature regarding the chemical nature of the infectious agent and the potential contribution from lipid molecules to prion infectivity, and discusses the important remaining questions in this research area.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
41
|
Xu LQ, Wu S, Buell AK, Cohen SIA, Chen LJ, Hu WH, Cusack SA, Itzhaki LS, Zhang H, Knowles TPJ, Dobson CM, Welland ME, Jones GW, Perrett S. Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110410. [PMID: 23530260 PMCID: PMC3638396 DOI: 10.1098/rstb.2011.0410] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Collapse
Affiliation(s)
- Li-Qiong Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, , 15 Datun Road, Chaoyang, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yu G, Jiang L, Xu Y, Guo H, Liu H, Zhang Y, Yang H, Yuan C, Ma J. Silencing prion protein in MDA-MB-435 breast cancer cells leads to pleiotropic cellular responses to cytotoxic stimuli. PLoS One 2012; 7:e48146. [PMID: 23133614 PMCID: PMC3487893 DOI: 10.1371/journal.pone.0048146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/20/2012] [Indexed: 01/18/2023] Open
Abstract
Prion protein (PrP) is well studied for its pathogenic role in prion disease, but its potential contribution to other pathological processes is less understood. PrP is expressed in a variety of cancers and at least in pancreatic and breast cancers, its expression appears to be associated with poor prognosis. To understand the role of PrP in breast cancer cells, we knocked down PrP expression in MDA-MB-435 breast cancer cells with small interfering RNA and subjected these cells to a series of analyses. We found that PrP knockdown in these cells does not affect cell proliferation or colony formation, but significantly influences the cellular response to cytotoxic stimuli. Compared to control cells, PrP knockdown cells exhibited an increased susceptibility to serum deprivation induced apoptosis, no change to staurosporine- or paclitaxel-induced cell deaths, and a reduced susceptibility to chemotherapy drug doxorubicin-induced cell death. To understand the mechanism of unexpected role of PrP in exacerbating doxorubicin-induced cytotoxicity, we analyzed cell death related Bcl-2 family proteins. We found that PrP knockdown alters the expression of several Bcl-2 family proteins, correlating with increased resistance to doxorubicin-induced cytotoxicity. Moreover, the enhanced doxorubicin resistance is independent of DNA damage related p53 pathway, but at least partially through the ERK1/2 pathway. Together, our study revealed that silencing PrP in MDA-MB-435 breast cancer cells results in very different responses to various cytotoxic stimuli and ERK1/2 signaling pathway is involved in PrP silencing caused resistance to doxorubicin.
Collapse
Affiliation(s)
- Guohua Yu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- * E-mail: (GY); (LJ); (JM)
| | - Liming Jiang
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- * E-mail: (GY); (LJ); (JM)
| | - Yuanyuan Xu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Hongwei Guo
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Huiyan Liu
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Yi Zhang
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
| | - Huaiyi Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chonggang Yuan
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Jiyan Ma
- School of Life Sciences, Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (GY); (LJ); (JM)
| |
Collapse
|