1
|
Li N, Deshmukh MV, Sahin F, Hafza N, Ammanath AV, Ehnert S, Nüssler A, Weber ANR, Jin T, Götz F. Staphylococcus aureus thermonuclease NucA is a key virulence factor in septic arthritis. Commun Biol 2025; 8:598. [PMID: 40210969 PMCID: PMC11986129 DOI: 10.1038/s42003-025-07920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/11/2025] [Indexed: 04/12/2025] Open
Abstract
Septic arthritis, primarily caused by Staphylococcus aureus, poses a significant risk of both mortality and morbidity due to its aggressive nature. The nuc1-encoded thermonuclease NucA of S. aureus degrades extracellular DNA/RNA, allowing the pathogen to escape neutrophil extracellular traps (NETs) and maintain the infection unabated. Here we show that in the mouse model for hematogenous septic arthritis, the Δnuc1 mutant is much less pathogenic and the severity of clinical septic arthritis is markedly reduced, including decreased weight loss, lower kidney bacterial load, reduced bone erosion, and much less IL-6 production. In vitro, S. aureus genomic DNA induces a robust TNF-α response in macrophage-like RAW 264.7 cells abrogated when the DNA is degraded by NucA. Moreover, the wild type induces high levels of TNF-α, IL-10, and IL-6 in neutrophils and osteoblast-like SAOS-2 cells, respectively. NucA exacerbates septic arthritis by increasing extracellular and intracellular survival of bacteria.
Collapse
Affiliation(s)
- Ningna Li
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Meghshree Vinod Deshmukh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filiz Sahin
- Siegfried Weller Institute for trauma research, BG Unfallklinik Tübingen, University of Tübingen, Tübingen, Germany
| | - Nourhane Hafza
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | | | - Sabrina Ehnert
- Siegfried Weller Institute for trauma research, BG Unfallklinik Tübingen, University of Tübingen, Tübingen, Germany
| | - Andreas Nüssler
- Siegfried Weller Institute for trauma research, BG Unfallklinik Tübingen, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, Section Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Zeppa JJ, Avery EG, Aftanas P, Choi E, Uleckas S, Patel P, Waglechner N, Jimenez H, Vermeiren C, Katz K, Li XX, Maguire F, Kozak R. Comparison of pharyngeal and invasive isolates of Streptococcus pyogenes by whole-genome sequencing in Toronto, Canada. Microbiol Spectr 2025; 13:e0214124. [PMID: 39945517 PMCID: PMC11960128 DOI: 10.1128/spectrum.02141-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/24/2025] [Indexed: 04/03/2025] Open
Abstract
Invasive Group A streptococcal (iGAS) infections are rising in Canada and wordwide. The 2022-2023 Ontario iGAS season was among the highest recorded, a trend continuing in 2023-2024. We sequenced 38 invasive (blood) and 117 non-invasive (pharyngeal) Streptococcus pyogenes clinical isolates from Toronto (January-May 2023) to compare between the two cohorts and against published sequences to determine if any genomic changes accounted for the trend. Results demonstrated limited clustering with one small totally invasive cluster (emm49) with both invasive and non-invasive isolates represented across a diverse set of lineages. Non-invasive isolates were predominantly emm12 (70.1%), whereas invasive isolates included emm12 (26.32%), emm49 (23.68%), and emm1 (13.16%) with most emm1 strains containing the 27 SNPs that define the hypervirulent M1UK clone (58.33%). Although there were no differences in the presence of overall virulence factors/adhesin genes between cohorts, there were statistically more superantigen and DNase genes in non-invasive isolates and a rare phage gene was significantly associated with invasiveness across three emm-types. The prevalence of individual virulence factor/adhesin genes also differed between our cohorts, including a higher likelihood of speA, enn, mrp, ideS/Mac, fbaA, and fbaB in invasive isolates. There were also no significant differences across the 11 antimicrobial resistance genes identified. Finally, pharyngeal isolates had larger hydrolysis and hemolysis zones, and covS deletions were observed in only seven invasive strains. Despite there being no genetic signature that differentiated our isolates, we observed several features that were predominant in invasive strains which provides further insights into the factors that contribute to GAS invasiveness.IMPORTANCEIncreasing rates of invasive Group A streptococcal (iGAS) infections are being seen both in Canada and worldwide, which is leading to a greater disease burden caused by this pathogen. Leveraging whole-genome sequencing gives us an opportunity to better understand the underlying genetic mechanisms of streptococcal disease. By utilizing this technique, we shed light on the circulating invasive and non-invasive strains of Streptococcus pyogenes in the largest urban area in Canada from January to May 2023. GAS strains causing non-invasive disease were found to have a higher abundance of superantigen and DNase genes, whereas invasive isolates were more likely to contain M-like protein genes, the superantigen speA, the protease ideS/Mac, and/or the fibronectin-binding proteins fbaA and fbaB. This work provides valuable insights into iGAS disease which will help with surveillance, epidemiology as well as developing treatment and preventative modalities to help curb the disease burden caused by this globally important pathogen.
Collapse
Affiliation(s)
- Joseph J. Zeppa
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ellen G. Avery
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Erin Choi
- Shared Hospital Laboratory, Toronto, Ontario, Canada
| | | | - Prachi Patel
- Shared Hospital Laboratory, Toronto, Ontario, Canada
| | | | | | - Christie Vermeiren
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kevin Katz
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Xena X. Li
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Finlay Maguire
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Department of Community Health & Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Kozak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Shared Hospital Laboratory, Toronto, Ontario, Canada
- Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Thacharodi A, Hassan S, Vithlani A, Ahmed T, Kavish S, Geli Blacknell NM, Alqahtani A, Pugazhendhi A. The burden of group A Streptococcus (GAS) infections: The challenge continues in the twenty-first century. iScience 2025; 28:111677. [PMID: 39877071 PMCID: PMC11773489 DOI: 10.1016/j.isci.2024.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Streptococcus pyogenes is a Gram-positive bacterium, also known as Group A Streptococcus (GAS), that has become a significant threat to the healthcare system, infecting more than 18 million people and resulting in more than 500,000 deaths annually worldwide. GAS infection rates decreased gradually during the 20th century in Western countries, largely due to improved living conditions and access to antibiotics. However, post-COVID-19, the situation has led to a steep increase in GAS infection rates in Europe, the United States, Australia, and New Zealand, which triggers a global concern. GAS infections are normally moderate, with symptoms of fever, pharyngitis, and pyoderma; nevertheless, if left untreated or with continued exposure to GAS or with recurring infections it can result in fatal outcomes. GAS produces a variety of virulence factors and exotoxins that can lead to deadly infections such as necrotizing fasciitis, impetigo, cellulitis, pneumonia, empyema, streptococcal toxic shock syndrome, bacteremia, and puerperal sepsis. In addition, post-immune mediated disorders such as post-streptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease contribute to extremely high death rates in developing nations. Despite substantial research on GAS infections, it is still unclear what molecular pathways are responsible for their emergence and how to best manage them. This review thus provides insights into the most recent research on the pathogenesis, virulence, resistance, and host interaction mechanisms of GAS, as well as novel management options to assist scientific communities in combating GAS infections.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi’s Laboratories, Department of Research and Development, Puducherry 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington 20036, USA
| | - Avadh Vithlani
- Senior Resident, Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Sanjana Kavish
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
4
|
Bergsten H, Nizet V. The intricate pathogenicity of Group A Streptococcus: A comprehensive update. Virulence 2024; 15:2412745. [PMID: 39370779 PMCID: PMC11542602 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Bentahar MC, Benabdelmoumene D, Robert V, Dahmouni S, Qadi WSM, Bengharbi Z, Langella P, Benbouziane B, Al-Olayan E, Dawoud EAD, Mediani A. Evaluation of Probiotic Potential and Functional Properties of Lactobacillus Strains Isolated from Dhan, Traditional Algerian Goat Milk Butter. Foods 2024; 13:3781. [PMID: 39682853 DOI: 10.3390/foods13233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Goat milk butter, locally known as "Dhan", from the Sfisfa region of Algeria, holds significant cultural and economic value. This study investigates the probiotic properties of lactic acid bacteria (LAB) present in Dhan, focusing particularly on Lactobacillus strains. Molecular identification using 16S rRNA revealed a dominance of Levilactobacillus brevis and Lactiplantibacillus plantarum, forming a substantial part of the bacterial profile. Three LAB isolates (DC01-A, DC04, and DC06) were selected from fresh samples, and rigorous analyses were performed to evaluate their probiotic properties. Safety assessments confirmed the absence of gelatinase, DNase, and haemolytic activities in all isolates. The isolates demonstrated high tolerance to bile salts and acidic conditions, along with the ability to survive simulated gastrointestinal digestion. Notably, strain DC06 exhibited exceptional survival at low pH (1.5) and high bile salt concentrations (0.15-0.3%). All isolates showed substantial growth in MRS medium with 2% phenol, although growth was significantly decreased at 5% phenol. Furthermore, our strains exhibited high adhesion rates to various solvents, demonstrating their potential for strong interaction with cell membranes. Specifically, adhesion to chloroform was observed at 98.26% for DC01-A, 99.30% for DC04, and 99.20% for DC06. With xylene, the adhesion rates were 75.94% for DC01-A, 61.13% for DC04, and 76.52% for DC06. The LAB strains demonstrated impressive growth in ethanol concentrations up to 12%, but their tolerance did not exceed this concentration. They also exhibited robust growth across temperatures from 10 °C to 37 °C, with strains DC04 and DC06 able to proliferate at 45 °C, though none survived at 50 °C. Additionally, the isolates showed significant resistance to oxidative stress induced by hydrogen peroxide (H2O2) and displayed medium to high autolytic activity, with rates of 50.86%, 37.53%, and 33.42% for DC01-A, DC04, and DC06, respectively. The cell-free supernatant derived from strain DC04 exhibited significant antimicrobial activity against the tested pathogens, while strain DC06 demonstrated moderate antioxidant activity with the highest DPPH scavenging rate at 68.56%, compared to the probiotic reference strain LGG at 61.28%. These collective findings not only suggest the probiotic viability of LAB strains found in Dhan but also highlight the importance of traditional food practises in contributing to health and nutrition. Consequently, this study supports the potential of traditional Dhan butter as a functional food and encourages further exploration of its health benefits.
Collapse
Affiliation(s)
- Mohamed Cherif Bentahar
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Djilali Benabdelmoumene
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Véronique Robert
- Institut National de la Recherche Agronomique, Micalis Institute, UMR 1319 MICALIS, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Said Dahmouni
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Wasim S M Qadi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43650, Malaysia
| | - Zineb Bengharbi
- Laboratory of Applied Animal Physiology, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Philippe Langella
- Institut National de la Recherche Agronomique, Micalis Institute, UMR 1319 MICALIS, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Bouasria Benbouziane
- Bioeconomy Laboratory, SNV Faculty, University of Mostaganem, Mostaganem 27000, Algeria
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
6
|
Deneubourg G, Schiavolin L, Lakhloufi D, Botquin G, Delforge V, Davies MR, Smeesters PR, Botteaux A. Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence. Microorganisms 2024; 12:2209. [PMID: 39597598 PMCID: PMC11596691 DOI: 10.3390/microorganisms12112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is responsible for over 500,000 deaths per year. Approximately 15% of these deaths are caused by necrotizing soft-tissue infections. In 2008, we isolated an M5 GAS, named the LO1 strain, responsible for the nosocomial transmission of necrotizing fasciitis between a baby and a nurse in Belgium. To understand this unusual transmission route, the LO1 strain was sequenced. A comparison of the LO1 genome and transcriptome with the reference M5 Manfredo strain was conducted. We found that the major differences were the presence of an additional DNase and a Tn916-like transposon in the LO1 and other invasive M5 genomes. RNA-seq analysis showed that genes present on the transposon were barely expressed. In contrast, the DNases presented different expression profiles depending on the tested conditions. We generated knock-out mutants in the LO1 background and characterized their virulence phenotype. We also determined their nuclease activity on different substrates. We found that DNases are dispensable for biofilm formation and adhesion to both keratinocytes and pharyngeal cells. Three of these were found to be essential for blood survival; Spd4 and Sdn are implicated in phagocytosis resistance, and Spd1 is responsible for neutrophil extracellular trap (NET) degradation.
Collapse
Affiliation(s)
- Geoffrey Deneubourg
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Lionel Schiavolin
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Dalila Lakhloufi
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Gwenaelle Botquin
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Valérie Delforge
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Mark R. Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;
| | - Pierre R. Smeesters
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
- Department of Pediatrics, Academic Children Hospital Queen Fabiola, Brussels University Hospital, Université Libre de Bruxelles, 1020 Bruxelles, Belgium
| | - Anne Botteaux
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| |
Collapse
|
7
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
8
|
Rampersadh K, Salie MT, Engel KC, Moodley C, Zühlke LJ, Engel ME. Presence of Group A streptococcus frequently assayed virulence genes in invasive disease: a systematic review and meta-analysis. Front Cell Infect Microbiol 2024; 14:1337861. [PMID: 39055978 PMCID: PMC11270091 DOI: 10.3389/fcimb.2024.1337861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction It is currently unclear what the role of Group A streptococcus (GAS) virulence factors (VFs) is in contributing to the invasive potential of GAS. This work investigated the evidence for the association of GAS VFs with invasive disease. Methods We employed a broad search strategy for studies reporting the presence of GAS VFs in invasive and non-invasive GAS disease. Data were independently extracted by two reviewers, quality assessed, and meta-analyzed using Stata®. Results A total of 32 studies reported on 45 putative virulence factors [invasive (n = 3,236); non-invasive (n = 5,218)], characterized by polymerase chain reaction (PCR) (n = 30) and whole-genome sequencing (WGS) (n = 2). The risk of bias was rated as low and moderate, in 23 and 9 studies, respectively. Meta-,analyses of high-quality studies (n = 23) revealed a significant association of speM [OR, 1.64 (95%CI, 1.06; 2.52)] with invasive infection. Meta-analysis of WGS studies demonstrated a significant association of hasA [OR, 1.91 (95%CI, 1.36; 2.67)] and speG [OR, 2.83 (95%CI, 1.63; 4.92)] with invasive GAS (iGAS). Meta-analysis of PCR studies indicated a significant association of speA [OR, 1.59 (95%CI, 1.10; 2.30)] and speK [OR, 2.95 (95%CI, 1.81; 4.80)] with invasive infection. A significant inverse association was observed between prtf1 [OR, 0.42 (95%CI, 0.20; 0.87)] and invasive infection. Conclusion This systematic review and genomic meta-analysis provides evidence of a statistically significant association with invasive infection for the hasA gene, while smeZ, ssa, pnga3, sda1, sic, and NaDase show statistically significantly inverse associations with invasive infection. SpeA, speK, and speG are associated with GAS virulence; however, it is unclear if they are markers of invasive infection. This work could possibly aid in developing preventative strategies.
Collapse
Affiliation(s)
- Kimona Rampersadh
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - M. Taariq Salie
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Kelin C. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Department of Pathology, Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- The National Health Laboratory Service, Microbiology, Groote Schuur Hospital, Cape Town, South Africa
| | - Liesl J. Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| | - Mark E. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| |
Collapse
|
9
|
Henderson EA, Ivey A, Choi SJ, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A streptococcal collagen-like protein 1 restricts tumor growth in murine pancreatic adenocarcinoma and inhibits cancer-promoting neutrophil extracellular traps. Front Immunol 2024; 15:1363962. [PMID: 38515758 PMCID: PMC10955053 DOI: 10.3389/fimmu.2024.1363962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Abby Ivey
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Soo Jeon Choi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Stell Santiago
- Department of Pathology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Tracy W. Liu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
10
|
Marquardt L, Andreoni F, Boumasmoud M, Schweizer TA, Heuberger DM, Parietti E, Hertegonne S, Epprecht J, Mattle D, Raez AK, Marques‐Maggio E, Schuepbach RA, Hasse B, Mairpady‐Shambat S, Brugger SD, Zinkernagel AS. Group A Streptococcus strains causing meningitis without distinct invasive phenotype. Microbiologyopen 2024; 13:e1394. [PMID: 39992076 PMCID: PMC10765256 DOI: 10.1002/mbo3.1394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 02/25/2025] Open
Abstract
Group A streptococcal (GAS; aka Streptococcus pyogenes) meningitis is a fulminant disease associated with high morbidity and mortality. To elucidate the mechanisms underlying the invasiveness of GAS in meningitis, we compared GAS isolates derived from five cases of meningitis to otitis and colonizing isolates. We did not observe differences in adherence to and invasion of human brain microvascular endothelial cells, virulence factors activity, or barrier disruption. Whole genome sequencing did not reveal particular invasiveness traits. Most patients previously suffered from otitis media suggesting that meningitis likely resulted from a continuous spread of the infection rather than being attributable to changes in the pathogen's virulence.
Collapse
Affiliation(s)
- Laura Marquardt
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Federica Andreoni
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Mathilde Boumasmoud
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Tiziano A. Schweizer
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Dorothea M. Heuberger
- Institute for Intensive Care Medicine, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Elena Parietti
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Sanne Hertegonne
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Jana Epprecht
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Dario Mattle
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Anna K. Raez
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Ewerton Marques‐Maggio
- Division of Clinical Pathology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Reto A. Schuepbach
- Institute for Intensive Care Medicine, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Barbara Hasse
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Srikanth Mairpady‐Shambat
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Silvio D. Brugger
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Annelies S. Zinkernagel
- Departement of Infectious Diseases and Hospital Epidemiology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Henderson EA, Ivey A, Choi S, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A Streptococcal Collagen-like Protein 1 Restricts Tumor Growth in Murine Pancreatic Adenocarcinoma and Inhibits Cancer-Promoting Neutrophil Extracellular Traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576060. [PMID: 38293049 PMCID: PMC10827155 DOI: 10.1101/2024.01.17.576060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on streptococcal collagen-like protein 1 (Scl1), as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were negative toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Abby Ivey
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Soo Choi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Stell Santiago
- Department of Pathology, West Virginia University, Morgantown, WV
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Tracy W Liu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Brian A Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
- Department of Surgery, West Virginia University, Morgantown, WV
| |
Collapse
|
12
|
Happonen L, Collin M. Immunomodulating Enzymes from Streptococcus pyogenes-In Pathogenesis, as Biotechnological Tools, and as Biological Drugs. Microorganisms 2024; 12:200. [PMID: 38258026 PMCID: PMC10818452 DOI: 10.3390/microorganisms12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus, is an exclusively human pathogen that causes a wide variety of diseases ranging from mild throat and skin infections to severe invasive disease. The pathogenesis of S. pyogenes infection has been extensively studied, but the pathophysiology, especially of the more severe infections, is still somewhat elusive. One key feature of S. pyogenes is the expression of secreted, surface-associated, and intracellular enzymes that directly or indirectly affect both the innate and adaptive host immune systems. Undoubtedly, S. pyogenes is one of the major bacterial sources for immunomodulating enzymes. Major targets for these enzymes are immunoglobulins that are destroyed or modified through proteolysis or glycan hydrolysis. Furthermore, several enzymes degrade components of the complement system and a group of DNAses degrade host DNA in neutrophil extracellular traps. Additional types of enzymes interfere with cellular inflammatory and innate immunity responses. In this review, we attempt to give a broad overview of the functions of these enzymes and their roles in pathogenesis. For those enzymes where experimentally determined structures exist, the structural aspects of the enzymatic activity are further discussed. Lastly, we also discuss the emerging use of some of the enzymes as biotechnological tools as well as biological drugs and vaccines.
Collapse
Affiliation(s)
- Lotta Happonen
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Mattias Collin
- Faculty of Medicine, Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
13
|
Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 13:1217095. [PMID: 37588093 PMCID: PMC10425600 DOI: 10.3389/fonc.2023.1217095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Pancreatic cancer is a highly aggressive form of cancer with a five-year survival rate of only ten percent. Pancreatic ductal adenocarcinoma (PDAC) accounts for ninety percent of those cases. PDAC is associated with a dense stroma that confers resistance to current treatment modalities. Increasing resistance to cancer treatments poses a challenge and a need for alternative therapies. Bacterial mediated cancer therapies were proposed in the late 1800s by Dr. William Coley when he injected osteosarcoma patients with live streptococci or a fabrication of heat-killed Streptococcus pyogenes and Serratia marcescens known as Coley's toxin. Since then, several bacteria have gained recognition for possible roles in potentiating treatment response, enhancing anti-tumor immunity, and alleviating adverse effects to standard treatment options. This review highlights key bacterial mechanisms and structures that promote anti-tumor immunity, challenges and risks associated with bacterial mediated cancer therapies, and applications and opportunities for use in PDAC management.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
14
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
15
|
Yang N, Jin X, Zhu C, Gao F, Weng Z, Du X, Feng G. Subunit vaccines for Acinetobacter baumannii. Front Immunol 2023; 13:1088130. [PMID: 36713441 PMCID: PMC9878323 DOI: 10.3389/fimmu.2022.1088130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative bacterium and a crucial opportunistic pathogen in hospitals. A. baumannii infection has become a challenging problem in clinical practice due to the increasing number of multidrug-resistant strains and their prevalence worldwide. Vaccines are effective tools to prevent and control A. baumannii infection. Many researchers are studying subunit vaccines against A. baumannii. Subunit vaccines have the advantages of high purity, safety, and stability, ease of production, and highly targeted induced immune responses. To date, no A. baumannii subunit vaccine candidate has entered clinical trials. This may be related to the easy degradation of subunit vaccines in vivo and weak immunogenicity. Using adjuvants or delivery vehicles to prepare subunit vaccines can slow down degradation and improve immunogenicity. The common immunization routes include intramuscular injection, subcutaneous injection, intraperitoneal injection and mucosal vaccination. The appropriate immunization method can also enhance the immune effect of subunit vaccines. Therefore, selecting an appropriate adjuvant and immunization method is essential for subunit vaccine research. This review summarizes the past exploration of A. baumannii subunit vaccines, hoping to guide current and future research on these vaccines.
Collapse
Affiliation(s)
- Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenghua Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fenglin Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheqi Weng
- The Second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingran Du
- Department of Infectious Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,*Correspondence: Xingran Du, ; Ganzhu Feng,
| |
Collapse
|
16
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
17
|
Liao C, Mao F, Qian M, Wang X. Pathogen-Derived Nucleases: An Effective Weapon for Escaping Extracellular Traps. Front Immunol 2022; 13:899890. [PMID: 35865526 PMCID: PMC9294136 DOI: 10.3389/fimmu.2022.899890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 2004 publication of the first study describing extracellular traps (ETs) from human neutrophils, several reports have shown the presence of ETs in a variety of different animals and plants. ETs perform two important functions of immobilizing and killing invading microbes and are considered a novel part of the phagocytosis-independent, innate immune extracellular defense system. However, several pathogens can release nucleases that degrade the DNA backbone of ETs, reducing their effectiveness and resulting in increased pathogenicity. In this review, we examined the relevant literature and summarized the results on bacterial and fungal pathogens and parasites that produce nucleases to evade the ET-mediated host antimicrobial mechanism.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| | - Fuchao Mao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Vocational and Technical College, Luoyang, China
| | - Man Qian
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| |
Collapse
|
18
|
Garcia Gonzalez J, Hernandez FJ. Nuclease activity: an exploitable biomarker in bacterial infections. Expert Rev Mol Diagn 2022; 22:265-294. [PMID: 35240900 DOI: 10.1080/14737159.2022.2049249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In the increasingly challenging field of clinical microbiology, diagnosis is a cornerstone whose accuracy and timing are crucial for the successful management, therapy, and outcome of infectious diseases. Currently employed biomarkers of infectious diseases define the scope and limitations of diagnostic techniques. As such, expanding the biomarker catalog is crucial to address unmet needs and bring about novel diagnostic functionalities and applications. AREAS COVERED This review describes the extracellular nucleases of 15 relevant bacterial pathogens and discusses the potential use of nuclease activity as a diagnostic biomarker. Articles were searched for in PubMed using terms: "nuclease", "bacteria", "nuclease activity" or "biomarker". For overview sections, original and review articles between 2000 and 2019 were searched for using terms: "infections", "diagnosis", "bacterial", "burden", "challenges". Informative articles were selected. EXPERT OPINION Using the catalytic activity of nucleases offers new possibilities compared to established biomarkers. Nucleic acid activatable reporters in combination with different transduction platforms and delivery methods can be used to detect disease-associated nuclease activity patterns in vitro and in vivo for prognostic and diagnostic applications. Even when these patterns are not obvious or of unknown etiology, screening platforms could be used to identify new disease reporters.
Collapse
Affiliation(s)
- Javier Garcia Gonzalez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Linköping, Sweden.,Nucleic Acids Technologies Laboratory (NAT-lab), Linköping University, Linköping, Sweden
| |
Collapse
|
19
|
Bi S, Wang J, Xu M, Li N, Wang B. Immunity to Sda1 Protects against Infection by Sda1 + and Sda1 - Serotypes of Group A Streptococcus. Vaccines (Basel) 2022; 10:vaccines10010102. [PMID: 35062763 PMCID: PMC8779841 DOI: 10.3390/vaccines10010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Group A Streptococcus (GAS) causes a variety of diseases globally. The DNases in GAS promote GAS evasion of neutrophil killing by degrading neutrophil extracellular traps (NETs). Sda1 is a prophage-encoded DNase associated with virulent GAS strains. However, protective immunity against Sda1 has not been determined. In this study, we explored the potential of Sda1 as a vaccine candidate. Sda1 was used as a vaccine to immunize mice intranasally. The effect of anti-Sda1 IgG in neutralizing degradation of NETs was determined and the protective role of Sda1 was investigated with intranasal and systemic challenge models. Antigen-specific antibodies were induced in the sera and pharyngeal mucosal site after Sda1 immunization. The anti-Sda1 IgG efficiently prevented degradation of NETs by supernatant samples from different GAS serotypes with or without Sda1. Sda1 immunization promoted clearance of GAS from the nasopharynx independent of GAS serotypes but did not reduce lethality after systemic GAS challenge. Anti-Sda1 antibody can neutralize degradation of NETs by Sda1 and other phage-encoded DNases and decrease GAS colonization at the nasopharynx across serotypes. These results indicate that Sda1 can be a potential vaccine candidate for reduction in GAS reservoir and GAS tonsillitis-associated diseases.
Collapse
Affiliation(s)
- Shuai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
| | - Jie Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
| | - Meiyi Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
20
|
Yu D, Liang Y, Lu Q, Meng Q, Wang W, Huang L, Bao Y, Zhao R, Chen Y, Zheng Y, Yang Y. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children With Different Diseases. Front Microbiol 2021; 12:722225. [PMID: 34956108 PMCID: PMC8696671 DOI: 10.3389/fmicb.2021.722225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is a bacterial pathogen that causes a wide spectrum of clinical diseases exclusively in humans. The distribution of emm type, antibiotic resistance and virulence gene expression for S. pyogenes varies temporally and geographically, resulting in distinct disease spectra. In this study, we analyzed antibiotic resistance and resistance gene expression patterns among S. pyogenes isolates from pediatric patients in China and investigated the relationship between virulence gene expression, emm type, and disease categories. Forty-two representative emm1.0 and emm12.0 strains (n = 20 and n = 22, respectively) isolated from patients with scarlet fever or obstructive sleep apnea-hypopnea syndrome were subjected to whole-genome sequencing and phylogenetic analysis. These strains were further analyzed for susceptibility to vancomycin. We found a high rate and degree of resistance to macrolides and tetracycline in these strains, which mainly expressed ermB and tetM. The disease category correlated with emm type but not superantigens. The distribution of vanuG and virulence genes were associated with emm type. Previously reported important prophages, such as φHKU16.vir, φHKU488.vir, Φ5005.1, Φ5005.2, and Φ5005.3 encoding streptococcal toxin, and integrative conjugative elements (ICEs) such as ICE-emm12 and ICE-HKU397 encoding macrolide and tetracycline resistance were found present amongst emm1 or emm12 clones from Shenzhen, China.
Collapse
Affiliation(s)
- Dingle Yu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Yunmei Liang
- Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Qinghua Lu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Qing Meng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Lu Huang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | | | - Yonghong Yang
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
21
|
Siemens N, Snäll J, Svensson M, Norrby-Teglund A. Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1294:127-150. [PMID: 33079367 DOI: 10.1007/978-3-030-57616-5_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing skin and soft tissue infections (NSTIs) are severe life-threatening and rapidly progressing infections. Beta-hemolytic streptococci, particularly S. pyogenes (group A streptococci (GAS)) but also S. dysgalactiae subsp. equisimilis (SDSE, most group G and C streptococcus), are the main causative agents of monomicrobial NSTIs and certain types, such as emm1 and emm3, are over-represented in NSTI cases. An arsenal of bacterial virulence factors contribute to disease pathogenesis, which is a complex and multifactorial process. In this chapter, we summarize data that have provided mechanistic and immuno-pathologic insight into host-pathogens interactions that contribute to tissue pathology in streptococcal NSTIs. The role of streptococcal surface associated and secreted factors contributing to the hyper-inflammatory state and immune evasion, bacterial load in the tissue and persistence strategies, including intracellular survival and biofilm formation, as well as strategies to mimic NSTIs in vitro are discussed.
Collapse
Affiliation(s)
- Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| | - Johanna Snäll
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Norrby-Teglund
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
22
|
Ríos-López AL, González GM, Hernández-Bello R, Sánchez-González A. Avoiding the trap: Mechanisms developed by pathogens to escape neutrophil extracellular traps. Microbiol Res 2020; 243:126644. [PMID: 33199088 DOI: 10.1016/j.micres.2020.126644] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022]
Abstract
Neutrophils are the first cells of the innate immune system that respond to infection by arriving at sites when pathogens have exceeded physical barriers. Among their response mechanisms against pathogens is the release of neutrophil extracellular traps (NETs), which are composed of deoxyribonucleic acid and antimicrobial proteins such as neutrophil elastase, myeloperoxidase, antimicrobial peptides, and other proteins in neutrophil granules. The formation of extracellular traps is considered an effective strategy to capture and, in some cases, neutralize pathogenic bacteria, fungi, parasites, or viruses. However, it is also known that pathogens can respond to NETs by expressing some virulence factors, thus evading the antimicrobial effect of these structures. These include the secretion of proteins to degrade the deoxyribonucleic acid scaffold, the formation of biofilms that impede the effect of NETs, or the modification of its membrane structure to avoid interaction with NETs. In this review, we discuss these mechanisms and summarize the different pathogens that employ one or more mechanisms to evade the NET-mediated neutrophil response.
Collapse
Affiliation(s)
- A L Ríos-López
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - G M González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - R Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - A Sánchez-González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico.
| |
Collapse
|
23
|
Zhu L, Olsen RJ, Beres SB, Saavedra MO, Kubiak SL, Cantu CC, Jenkins L, Waller AS, Sun Z, Palzkill T, Porter AR, DeLeo FR, Musser JM. Streptococcus pyogenes genes that promote pharyngitis in primates. JCI Insight 2020; 5:137686. [PMID: 32493846 DOI: 10.1172/jci.insight.137686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) causes 600 million cases of pharyngitis annually worldwide. There is no licensed human GAS vaccine despite a century of research. Although the human oropharynx is the primary site of GAS infection, the pathogenic genes and molecular processes used to colonize, cause disease, and persist in the upper respiratory tract are poorly understood. Using dense transposon mutant libraries made with serotype M1 and M28 GAS strains and transposon-directed insertion sequencing, we performed genome-wide screens in the nonhuman primate (NHP) oropharynx. We identified many potentially novel GAS fitness genes, including a common set of 115 genes that contribute to fitness in both genetically distinct GAS strains during experimental NHP pharyngitis. Targeted deletion of 4 identified fitness genes/operons confirmed that our newly identified targets are critical for GAS virulence during experimental pharyngitis. Our screens discovered many surface-exposed or secreted proteins - substrates for vaccine research - that potentially contribute to GAS pharyngitis, including lipoprotein HitA. Pooled human immune globulin reacted with purified HitA, suggesting that humans produce antibodies against this lipoprotein. Our findings provide new information about GAS fitness in the upper respiratory tract that may assist in translational research, including developing novel vaccines.
Collapse
Affiliation(s)
- Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Stephen B Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Leslie Jenkins
- Department of Comparative Medicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Andrew S Waller
- Animal Health Trust, Lanwades Park, Newmarket, United Kingdom
| | - Zhizeng Sun
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
24
|
Neutrophil Extracellular Traps Are Elevated in Patients with Pneumonia-related Acute Respiratory Distress Syndrome. Anesthesiology 2020; 130:581-591. [PMID: 30676417 DOI: 10.1097/aln.0000000000002619] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neutrophil extracellular traps have been associated with tissue damage. Whether these are involved in the pathogenesis of human acute respiratory distress syndrome (ARDS) and could be a potential therapeutic target is unknown. The authors quantified bronchoalveolar and blood neutrophil extracellular traps in patients with pneumonia-related ARDS and assessed their relationship with ventilator-free days. METHODS Immunocompetent patients with pneumonia and moderate or severe ARDS (n = 35) and controls (n = 4) were included in a prospective monocentric study. Neutrophil extracellular trap concentrations were quantified (as DNA-myeloperoxidase complexes) in bronchoalveolar lavage fluid and serum by enzyme-linked immunosorbent assay. The relationship between bronchoalveolar lavage neutrophil extracellular trap concentrations and the primary clinical endpoint (i.e., the number of live ventilator-free days at day 28) was assessed using linear regression analyses. RESULTS There was no significant relationship between bronchoalveolar lavage neutrophil extracellular trap concentrations and ventilator-free days by multiple regression analysis (β coefficient = 2.40; 95% CI, -2.13 to 6.92; P = 0.288). Neutrophil extracellular trap concentrations were significantly higher in bronchoalveolar lavage than in blood of ARDS patients (median [first to third quartiles]:154 [74 to 1,000] vs. 26 [4 to 68] arbitrary units, difference: -94; 95% CI, -341 to -57; P < 0.0001). Bronchoalveolar concentrations of patients were higher than those of controls (154 [74 to 1,000] vs. 4 [4 to 4] arbitrary units, difference: -150; 95% CI, -996 to -64; P < 0.001) and associated with bronchoalveolar interleukin-8 (Spearman's ρ = 0.42; P = 0.012) and neutrophil concentrations (ρ = 0.57; P < 0.0001). Intensive care unit mortality (12%, n = 2 of 17 vs. 17%, n = 3 of 18; P > 0.99) and the number of ventilator-free days at day 28 (22 [14 to 25] vs. 14 [0 to 21] days; difference: -5; 95% CI, -15 to 0; P = 0.066) did not significantly differ between patients with higher (n = 17) versus lower (n = 18) bronchoalveolar neutrophil extracellular trap concentrations. CONCLUSIONS Bronchoalveolar neutrophil extracellular trap concentration was not significantly associated with mechanical ventilation duration in pneumonia-related ARDS.
Collapse
|
25
|
Multifaceted toxin profile of Bacillus probiotic in newly isolated Bacillus spp. from soil rhizosphere. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00357-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Sharma P, Garg N, Sharma A, Capalash N, Singh R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J Med Microbiol 2019; 309:151354. [PMID: 31495663 DOI: 10.1016/j.ijmm.2019.151354] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
New frontiers of therapy are being explored against the upcoming bacterial diseases rendered untreatable due to multiple, extreme and pan- antibiotic resistance. Nucleases are ubiquitous in bacterial pathogens performing various functions like acquiring nucleotide nutrients, allowing or preventing uptake of foreign DNA, controlling biofilm formation/dispersal/architecture, invading host by tissue damage, evading immune defence by degrading DNA matrix of neutrophil extracellular traps (NETs) and immunomodulating the host immune response. Secretory nucleases also provide means of survival to other bacteria like iron-reducing Shewanella and such functions help them adapt and survive proficiently. Other than their pro-pathogen roles in survival, nucleases can be used directly as therapeutics. One of the powerful armours of pathogens is the formation of biofilms, thus helping them resist and persist in the harshest of environments. As eDNA forms the structural and binding component of biofilm, nucleases can be used against the adhering component, thus increasing the permeability of antimicrobial agents. Nucleases have recently become a model system of intense study for their biological functions and medical applications in diagnosis, immunoprophylaxis and therapy. Rational implications of these enzymes can impact human medicine positively in future by opening new ways for therapeutics which have otherwise reached saturation due to multi drug resistance.
Collapse
Affiliation(s)
- Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| | - Nisha Garg
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Anshul Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ravinder Singh
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
27
|
Udgata A, Dolasia K, Ghosh S, Mukhopadhyay S. Dribbling through the host defence: targeting the TLRs by pathogens. Crit Rev Microbiol 2019; 45:354-368. [PMID: 31241370 DOI: 10.1080/1040841x.2019.1608904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Atul Udgata
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Komal Dolasia
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | - Sudip Ghosh
- Molecular Biology Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
28
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
29
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
30
|
Kurosawa M, Oda M, Domon H, Isono T, Nakamura Y, Saitoh I, Hayasaki H, Yamaguchi M, Kawabata S, Terao Y. Streptococcus pyogenes CAMP factor promotes calcium ion uptake in RAW264.7 cells. Microbiol Immunol 2018; 62:617-623. [PMID: 30211957 DOI: 10.1111/1348-0421.12647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Abstract
Streptococcus pyogenes is a bacterium that causes systemic diseases such as pharyngitis and toxic shock syndrome. S. pyogenes produces molecules that inhibit the function of the human immune system, thus allowing growth and spread of the pathogen in tissues. It is known that S. pyogenes CAMP factor induces vacuolation in macrophages; however, the mechanism remains unclear. In the current study, the mechanism by which CAMP factor induces vacuolation in macrophages was investigated. CAMP factor was found to induce calcium ion uptake in murine macrophage RAW264.7 cells. In addition, EDTA inhibited calcium ion uptake and vacuolation in the cells. The L-type voltage-dependent calcium ion channel blockers nifedipine and verapamil reduced vacuolation. Furthermore, the phosphoinositide 3-kinase inhibitors LY294002 and wortmannin also inhibited the vacuolation induced by CAMP factor. Fluorescent microscopy revealed that clathrin localized to the vacuoles. These results suggest that the vacuolation is related to calcium ion uptake by RAW264.7 cells via L-type voltage-dependent calcium ion channels. Therefore, it was concluded that the vacuoles induced by S. pyogenes CAMP factor in macrophages are clathrin-dependent endosomes induced by activation of the phosphoinositide 3-kinase signaling pathway through calcium ion uptake.
Collapse
Affiliation(s)
- Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masataka Oda
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, 5 Misasagi, nakauchimachi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Yuki Nakamura
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan.,Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| |
Collapse
|
31
|
Group A Streptococcal DNase Sda1 Impairs Plasmacytoid Dendritic Cells' Type 1 Interferon Response. J Invest Dermatol 2018; 139:1284-1293. [PMID: 30543898 DOI: 10.1016/j.jid.2018.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023]
Abstract
Group A Streptococcus causes severe invasive infections, including necrotizing fasciitis. The expression of an array of virulence factors targeting specific host immune functions impedes successful bacterial clearance. The virulence factor streptococcal DNase Sda1 was previously shown to interfere with the entrapment of bacteria through neutrophil extracellular traps and TLR9 signaling. In this study, we showed that plasmacytoid dendritic cells are recruited to the infected tissue during group A streptococcal necrotizing fasciitis. We found that the streptococcal DNase Sda1 impairs plasmacytoid dendritic cell recruitment by reducing IFN-1 levels at the site of infection. We found that streptococcal DNase Sda1 interferes with stabilization of the DNA by the host molecule HMGB1 protein, which may account for decreased IFN-1 levels at the site of infection.
Collapse
|
32
|
Rudresha GV, Urs AP, Manjuprasanna VN, Suvilesh KN, Sharanappa P, Vishwanath BS. Plant DNases are potent therapeutic agents against
Echis carinatus
venom‐induced tissue necrosis in mice. J Cell Biochem 2018; 120:8319-8332. [DOI: 10.1002/jcb.28115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Gotravalli V. Rudresha
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru India
| | - Amog P. Urs
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru India
| | | | - Kanve N. Suvilesh
- Department of Studies in Biochemistry University of Mysore, Manasagangothri Mysuru India
| | - Puttappa Sharanappa
- Department of Studies in Bioscience University of Mysore, Hemagangothri Hassan India
| | | |
Collapse
|
33
|
Corvec S. Clinical and Biological Features of Cutibacterium (Formerly Propionibacterium) avidum, an Underrecognized Microorganism. Clin Microbiol Rev 2018; 31:e00064-17. [PMID: 29848774 PMCID: PMC6056840 DOI: 10.1128/cmr.00064-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The recent description of the genus Cutibacterium has altered the taxonomy of Propionibacterium species. These organisms still belong to the genera of the skin coryneform group, and the most-studied species remains Cutibacterium acnes. Cutibacterium avidum is also a known skin commensal. This underrecognized microorganism can, however, act as a pathogen after bacterial seeding and can be considered opportunistic, causing either superficial or deep/invasive infections. It can cause numerous infections, including but not limited to breast infections, skin abscesses, infective endocarditis, and device-related infections. The ecological niche of C. avidum is clearly different from that of other members of the genus: it is found in the axillary region or at wet sites rather than in dry, exposed areas, and the number of microorganisms increases during puberty. Historically, it has been used for its ability to modulate the immune response and for its antitumor properties. Conventional microbial culture methods and identification processes allow for its accurate identification and characterization. Thanks to the modern omics tools used for phylogenomic approaches, understanding C. avidum pathogenesis (including host-bacterium interactions and virulence factor characterization) is becoming easier, allowing for more thorough molecular characterization. These analyses have revealed that C. avidum causes diverse diseases mediated by multiple virulence factors. The recent genome approach has revealed specific genomic regions within this species that are involved in adherence and biofilm formation as well as fitness, survival, and defense functions. Numerous regions show the presence of phages and horizontal gene transfer. C. avidum remains highly sensitive to a broad spectrum of antibiotics, such as β-lactams, fluoroquinolones, macrolides, and rifampin, although erythromycin and clindamycin resistance has been described. A long-term treatment regimen with a combination of antibiotics is required to successfully eliminate the remaining adherent bacteria, particularly in the case of deep infections after debridement surgery.
Collapse
Affiliation(s)
- Stéphane Corvec
- CHU Nantes, Service de Bactériologie-Hygiène Hospitalière, Nantes, France
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
| |
Collapse
|
34
|
Jhelum H, Sori H, Sehgal D. A novel extracellular vesicle-associated endodeoxyribonuclease helps Streptococcus pneumoniae evade neutrophil extracellular traps and is required for full virulence. Sci Rep 2018; 8:7985. [PMID: 29789571 PMCID: PMC5964101 DOI: 10.1038/s41598-018-25865-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/26/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a major bacterial pathogen that causes pneumonia and septicemia in humans. Pneumococci are cleared from the host primarily by antibody dependent opsonophagocytosis by phagocytes like neutrophils. Neutrophils release neutrophil extracellular traps (NETs) on contacting pneumococci. NETs immobilize pneumococci and restrict its dissemination in the host. One of the strategies utilized by pneumococci to evade the host immune response involves use of DNase(s) to degrade NETs. We screened the secretome of autolysin deficient S. pneumoniae to identify novel DNase(s). Zymogram analysis revealed 3 bands indicative of DNase activity. Mass spectrometric analysis led to the identification of TatD as a potential extracellular DNase. Recombinant TatD showed nucleotide sequence-independent endodeoxyribonuclease activity. TatD was associated with extracellular vesicles. Pneumococcal secretome degraded NETs from human neutrophils. Extracellular vesicle fraction from tatD deficient strain showed little NET degrading activity. Recombinant TatD efficiently degraded NETs. tatD deficient pneumococci showed lower bacterial load in lungs, blood and spleen in a murine sepsis model compared to wildtype strain, and showed less severe lung pathology and compromised virulence. This study provides insights into the role of a novel extracellular DNase in evasion of the innate immune system.
Collapse
Affiliation(s)
- Hina Jhelum
- Molecular Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Hema Sori
- Molecular Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
35
|
Ermert D, Weckel A, Magda M, Mörgelin M, Shaughnessy J, Rice PA, Björck L, Ram S, Blom AM. Human IgG Increases Virulence of Streptococcus pyogenes through Complement Evasion. THE JOURNAL OF IMMUNOLOGY 2018; 200:3495-3505. [PMID: 29626087 DOI: 10.4049/jimmunol.1800090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Streptococcus pyogenes is an exclusively human pathogen that can provoke mild skin and throat infections but can also cause fatal septicemia. This gram-positive bacterium has developed several strategies to evade the human immune system, enabling S. pyogenes to survive in the host. These strategies include recruiting several human plasma proteins, such as the complement inhibitor, C4b-binding protein (C4BP), and human (hu)-IgG through its Fc region to the bacterial surface to evade immune recognition. We identified a novel virulence mechanism whereby IgG-enhanced binding of C4BP to five of 12 tested S. pyogenes strains expressed diverse M proteins that are important surface-expressed virulence factors. Importantly, all strains that bound C4BP in the absence of IgG bound more C4BP when IgG was present. Further studies with an M1 strain that additionally expressed protein H, also a member of the M protein family, revealed that binding of hu-IgG Fc to protein H increased the affinity of protein H for C4BP. Increased C4BP binding accentuated complement downregulation, resulting in diminished bacterial killing. Accordingly, mortality from S. pyogenes infection in hu-C4BP transgenic mice was increased when hu-IgG or its Fc portion alone was administered concomitantly. Electron microscopy analysis of human tissue samples with necrotizing fasciitis confirmed increased C4BP binding to S. pyogenes when IgG was present. Our findings provide evidence of a paradoxical function of hu-IgG bound through Fc to diverse S. pyogenes isolates that increases their virulence and may counteract the beneficial effects of IgG opsonization.
Collapse
Affiliation(s)
- David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden; .,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Antonin Weckel
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| | - Michal Magda
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 214 28 Malmo, Sweden
| |
Collapse
|
36
|
Remmington A, Turner CE. The DNases of pathogenic Lancefield streptococci. MICROBIOLOGY (READING, ENGLAND) 2018; 164:242-250. [PMID: 29458565 DOI: 10.1099/mic.0.000612] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNases are abundant among the pathogenic streptococci, with most species harbouring genes for at least one. Despite their prevalence, however, the role for these extracellular enzymes is still relatively unclear. The DNases of the Lancefield group A Streptococcus, S. pyogenes are the best characterized, with a total of eight DNase genes identified so far. Six are known to be associated with integrated prophages. Two are chromosomally encoded, and one of these is cell-wall anchored. Homologues of both prophage-associated and chromosomally encoded S. pyogenes DNases have been identified in other streptococcal species, as well as other unique DNases. A major role identified for streptococcal DNases appears to be in the destruction of extracellular traps produced by immune cells, such as neutrophils, to ensnare bacteria and kill them. These traps are composed primarily of DNA which can be degraded by the secreted and cell-wall-anchored streptococcal DNases. DNases can also reduce TLR-9 signalling to dampen the immune response and produce cytotoxic deoxyadenosine to limit phagocytosis. Upper respiratory tract infection models of S. pyogenes have identified a role for DNases in potentiating infection and transmission, possibly by limiting the immune response or through some other unknown mechanism. Streptococcal DNases may also be involved in interacting with other microbial communities through communication, bacterial killing and disruption of competitive biofilms, or control of their own biofilm production. The contribution of DNases to pathogenesis may therefore be wide ranging and extend beyond direct interference with the host immune response.
Collapse
Affiliation(s)
- Alex Remmington
- Department of Molecular Biology and Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Claire E Turner
- Department of Molecular Biology and Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
37
|
Abstract
Group A Streptococcus (GAS) is a leading human bacterial pathogen with diverse clinical manifestations. Macrophages constitute a critical first line of host defense against GAS infection, using numerous surface and intracellular receptors such as Toll-like receptors and inflammasomes for pathogen recognition and activation of inflammatory signaling pathways. Depending on the intensity of the GAS infection, activation of these signaling cascades may provide a beneficial early alarm for effective immune clearance, or conversely, may cause hyperinflammation and tissue injury during severe invasive infection. Although traditionally considered an extracellular pathogen, GAS can invade and replicate within macrophages using specific molecular mechanisms to resist phagolysosomal and xenophagic killing. Unraveling GAS-macrophage encounters may reveal new treatment options for this leading agent of infection-associated mortality. [Formula: see text].
Collapse
Affiliation(s)
- J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
38
|
Fernandes GR, Barbosa AEAD, Almeida RN, Castro FFDS, da Ponte MDCP, Faria-Junior C, Müller FMP, Viana AAB, Grattapaglia D, Franco OL, Alencar SA, Dias SC. Genomic Comparison among Lethal Invasive Strains of Streptococcus pyogenes Serotype M1. Front Microbiol 2017; 8:1993. [PMID: 29109702 PMCID: PMC5660057 DOI: 10.3389/fmicb.2017.01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/28/2017] [Indexed: 11/27/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a human pathogen that causes diverse human diseases including streptococcal toxic shock syndrome (STSS). A GAS outbreak occurred in Brasilia, Brazil, during the second half of the year 2011, causing 26 deaths. Whole genome sequencing was performed using Illumina platform. The sequences were assembled and genes were predicted for comparative analysis with emm type 1 strains: MGAS5005 and M1 GAS. Genomics comparison revealed one of the invasive strains that differ from others isolates and from emm 1 reference genomes. Also, the new invasive strain showed differences in the content of virulence factors compared to other isolated in the same outbreak. The evolution of contemporary GAS strains is strongly associated with horizontal gene transfer. This is the first genomic study of a Streptococcal emm 1 outbreak in Brazil, and revealed the rapid bacterial evolution leading to new clones. The emergence of new invasive strains can be a consequence of the injudicious use of antibiotics in Brazil during the past decades.
Collapse
Affiliation(s)
- Gabriel R Fernandes
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Aulus E A D Barbosa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Renan N Almeida
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Fabíola F Dos S Castro
- Hospital Santa Luzia, Brasília, Brazil.,Centro Universitário de Brasília-UniCEUB, Brasília, Brazil
| | | | | | | | - Antônio A B Viana
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Dario Grattapaglia
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Empresa Brasileira de Pesquisa Agropecuária, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Sérgio A Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Simoni C Dias
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
39
|
Chen M, Wang W, Tu L, Zheng Y, Pan H, Wang G, Chen Y, Zhang X, Zhu L, Chen J, Chen M. An emm5 Group A Streptococcal Outbreak Among Workers in a Factory Manufacturing Telephone Accessories. Front Microbiol 2017; 8:1156. [PMID: 28680421 PMCID: PMC5478724 DOI: 10.3389/fmicb.2017.01156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
Ranked among the top10 infectious causes of death worldwide, group A Streptococcus (GAS) causes small- and large-scale outbreaks, depending on the trigger as transmission of a GAS strain or expansion of predominant clones. In China, GAS infections other than scarlet fever are not notifiable. In Shanghai, an epidemiological investigation was initiated after two successive severe pneumonia cases with one death in a digital factory, from where outbreaks are less widely reported. The investigation was performed using emm typing, pulsed-field gel electrophoresis (PFGE) typing, superantigen profiling, and genome analysis. This enabled characterization of relatedness among the outbreak isolates and identification of the mobile genetic elements present. Among 57 patients with respiratory symptoms investigated in the factory, emm5 GAS strains were isolated from 8 patients. The eight GAS infection cases comprising one fatal severe pneumonia case, six influenza-like illness cases, and one pharyngitis case. Two risk factors were identified: adult with an age of 18–20 years and close contact with a GAS patient or carrier. GAS attack rate was 14.0% (8/57), and GAS carriage rate was probably around 2.7% (14/521) based on surveys in two nearby districts. All the 10 outbreak associated isolates were assigned to emm5 and sequence type ST-99 (emm5/ST-99), harbored superantigen genes speC, speG, and smeZ, and were assigned to two similar PFGE patterns (clones). Among the outbreak associated isolates, all carried ermA with resistance to erythromycin and inducible resistance to clindamycin, and eight (80%) carried a tetM gene with resistance to tetracycline. Among the 14 carriage isolates, 12 were emm12/ST-36, and 2 were emm1/ST-28, all with superantigen genes speC, speG, ssa, and smeZ. All the carriage isolates harbored ermB and tetM with resistance to erythromycin, clindamycin, and tetracycline. Genome analysis showed the two outbreak clones were closely related and possessed new prophages carrying virulence gene sdc and antibiotic resistance genes of ermA and tetM, which were not found in the emm5 reference strain Manfredo. This is the first report of a GAS outbreak in this type of workplace. The outbreak was caused by two closely related emm5 clones that differed from the predominant emm types circulating in China.
Collapse
Affiliation(s)
- Mingliang Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China.,Shanghai Institutes of Preventive MedicineShanghai, China
| | - Wenqing Wang
- Pudong New Area Center for Disease Control and PreventionShanghai, China
| | - Lihong Tu
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Yaxu Zheng
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Hao Pan
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Gangyi Wang
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Yanxin Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Linying Zhu
- Pudong New Area Center for Disease Control and PreventionShanghai, China
| | - Jian Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| |
Collapse
|
40
|
Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:86. [PMID: 28373968 PMCID: PMC5357632 DOI: 10.3389/fcimb.2017.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.
Collapse
Affiliation(s)
- Fang Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Li Yi
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; College of Life Science, Luoyang Normal UniversityLuoyang, China
| | - Ningwei Yu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
41
|
Uchiyama S, Keller N, Schlaepfer E, Grube C, Schuepbach RA, Speck RF, Zinkernagel AS. Interferon α-Enhanced Clearance of Group A Streptococcus Despite Neutropenia. J Infect Dis 2016; 214:321-8. [PMID: 27338768 DOI: 10.1093/infdis/jiw157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. METHODS To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. RESULTS We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. CONCLUSIONS These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α.
Collapse
Affiliation(s)
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology
| | | | | | - Reto A Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Switzerland
| | | | | |
Collapse
|
42
|
Moon AF, Krahn JM, Lu X, Cuneo MJ, Pedersen LC. Structural characterization of the virulence factor Sda1 nuclease from Streptococcus pyogenes. Nucleic Acids Res 2016; 44:3946-57. [PMID: 26969731 PMCID: PMC4856990 DOI: 10.1093/nar/gkw143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Infection by Group A Streptococcus pyogenes (GAS) is a leading cause of severe invasive disease in humans, including streptococcal toxic shock syndrome and necrotizing fasciitis. GAS infections lead to nearly 163,000 annual deaths worldwide. Hypervirulent strains of S. pyogenes have evolved a plethora of virulence factors that aid in disease—by promoting bacterial adhesion to host cells, subsequent invasion of deeper tissues and blocking the immune system's attempts to eradicate the infection. Expression and secretion of the extracellular nuclease Sda1 is advantageous for promoting bacterial dissemination throughout the host organism, and evasion of the host's innate immune response. Here we present two crystal structures of Sda1, as well as biochemical studies to address key structural features and surface residues involved in DNA binding and catalysis. In the active site, Asn211 is observed to directly chelate a hydrated divalent metal ion and Arg124, on the putative substrate binding loop, likely stabilizes the transition state during phosphodiester bond cleavage. These structures provide a foundation for rational drug design of small molecule inhibitors to be used in prevention of invasive streptococcal disease.
Collapse
Affiliation(s)
- Andrea F Moon
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Xun Lu
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew J Cuneo
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
43
|
Euler CW, Juncosa B, Ryan PA, Deutsch DR, McShan WM, Fischetti VA. Targeted Curing of All Lysogenic Bacteriophage from Streptococcus pyogenes Using a Novel Counter-selection Technique. PLoS One 2016; 11:e0146408. [PMID: 26756207 PMCID: PMC4710455 DOI: 10.1371/journal.pone.0146408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/16/2015] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and further elucidate how the presence of prophage may affect overall streptococcal survival, pathogenicity, and evolution.
Collapse
Affiliation(s)
- Chad W. Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
- Department of Medical Laboratory Sciences, Belfer Research Building, Hunter College, CUNY, New York, NY, 10065, United States of America
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, United States of America
- * E-mail: ;
| | - Barbara Juncosa
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| | - Patricia A. Ryan
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| | - Douglas R. Deutsch
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| | - W. Michael McShan
- Department of Pharmaceutical Sciences and Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, United States of America
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, NY, NY, 10065, United States of America
| |
Collapse
|
44
|
Immunoprotective potential of in silico predicted Acinetobacter baumannii outer membrane nuclease, NucAb. Int J Med Microbiol 2016; 306:1-9. [DOI: 10.1016/j.ijmm.2015.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
|
45
|
Kurosawa M, Oda M, Domon H, Saitoh I, Hayasaki H, Terao Y. Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells. Microbes Infect 2015; 18:118-27. [PMID: 26482504 DOI: 10.1016/j.micinf.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/13/2023]
Abstract
Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection.
Collapse
Affiliation(s)
- Mie Kurosawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan; Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Masataka Oda
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| |
Collapse
|
46
|
Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat Commun 2015; 6:8369. [PMID: 26458291 PMCID: PMC4610010 DOI: 10.1038/ncomms9369] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 08/13/2015] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is a selective estrogen receptor modulator widely used for the treatment of breast cancer. In addition to its activity as an estrogen receptor agonist/antagonist, tamoxifen also modulates sphingolipid biosynthesis, which has been shown to play an important role in the regulation of neutrophil activity. Here, we find that tamoxifen stimulation enhances several pro-inflammatory pathways in human neutrophils, including chemotaxis, phagocytosis and neutrophil extracellular trap (NET) formation. The enhancement of NET production occurs via a ceramide/PKCζ-mediated pathway, and treatment with synthetic ceramide is sufficient to promote NET formation. Pretreatment of human neutrophils with tamoxifen boosts neutrophil bactericidal capacity against a variety of pathogens in vitro and enhances clearance of the leading human pathogen methicillin-resistant Staphylococcus aureus in vivo. Our results suggest that tamoxifen, and the lipid signaling pathways it modulates, merit further exploration as targets for boosting host innate immune function.
Collapse
|
47
|
LaRock CN, Nizet V. Inflammasome/IL-1β Responses to Streptococcal Pathogens. Front Immunol 2015; 6:518. [PMID: 26500655 PMCID: PMC4597127 DOI: 10.3389/fimmu.2015.00518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA ; Skaggs School of Medicine and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
48
|
Ji Y, Li J, Qin Z, Li A, Gu Z, Liu X, Lin L, Zhou Y. Contribution of nuclease to the pathogenesis of Aeromonas hydrophila. Virulence 2015; 6:515-22. [PMID: 26039879 DOI: 10.1080/21505594.2015.1049806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aeromonas hydrophila is a gram-negative bacterium that is widely distributed in aquatic environments and can cause septicemia in both fish and humans. However, the underlying mechanisms leading to severe infection are not well understood. In this study, an A. hydrophila nuclease (ahn) deletion mutant was constructed to investigate its contribution to pathogenesis. This mutant did not differ from the wild-type strain in terms of its growth or hemolytic phenotype. However, the ahn-deficient mutant was more susceptible to being killed by fish macrophages and mouse blood in vitro. Furthermore, evidence obtained using both fish and murine infection models strongly indicated that the inactivation of Ahn impaired the ability of A. hydrophila to evade innate immune clearance in vivo. More importantly, the virulence of the mutant was attenuated in both fish and mice, with reductions in dissemination capacities and mortality rates. These findings implicate Ahn in A. hydrophila virulence, with important functions in evading innate immune defenses.
Collapse
Affiliation(s)
- Yachan Ji
- a Department of Aquatic Animal Medicine; College of Fisheries; Huazhong Agricultural University ; Wuhan , China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
50
|
de Buhr N, Stehr M, Neumann A, Naim HY, Valentin-Weigand P, von Köckritz-Blickwede M, Baums CG. Identification of a novel DNase of Streptococcus suis (EndAsuis) important for neutrophil extracellular trap degradation during exponential growth. MICROBIOLOGY-SGM 2015; 161:838-50. [PMID: 25667008 DOI: 10.1099/mic.0.000040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
The porcine and human pathogen Streptococcus suis induces and degrades neutrophil extracellular traps (NETs) in vitro. In this study, we investigated the working hypothesis that NET degradation is mediated not only by the known secreted S. suis nuclease A (SsnA) but also by a so-far undescribed putative endonuclease A of S. suis (designated EndAsuis) homologous to the pneumococcal endonuclease A (EndA). Comparative analysis was conducted to identify differences in localization, expression and function of EndAsuis and SsnA. In contrast to ssnA, endAsuis RNA expression was not substantially different during exponential and stationary growth. Modelling of the 3D structure confirmed a putative DRGH-motif-containing ββα-metal finger catalytic core in EndAsuis. Accordingly, nuclease activity of recombinant EndAsuis with a point-mutated H165 was rescued through imidazol treatment. In accordance with a putative membrane anchor, nuclease activity caused by endAsuis was not detectable in the supernatant. Importantly, endAsuis determined nuclease activity of S. suis prominently during exponential growth. This activity depended on the presence of Mg(2+) but, in contrast to SsnA activity, not on Ca(2+). A pH of 5.4 did not inhibit endAsuis-encoded nuclease activity during exponential growth. NET degradation of S. suis harvested during exponential growth was significantly attenuated in the endAsuis mutant. In contrast to SsnA, mutagenesis of endAsuis did not result in a significantly higher susceptibility against the antimicrobial effect mediated by NETs. As degradation of bacterial DNA caused by S. suis depended on ssnA and endAsuis, further functions of both factors in the host-pathogen interaction might be envisioned.
Collapse
Affiliation(s)
- Nicole de Buhr
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Matthias Stehr
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Ariane Neumann
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph G Baums
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany Institute for Bacteriology and Mycology, Centre for Infectious Diseases, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|