1
|
Janevska M, Witkowski W, Vermeire J, Borowicz M, Naessens E, Vanderstraeten H, Nauwynck H, Favoreel H, Verhasselt B. Impairment of endocytosis-related factors FNBP1L, ARHGAP24, and ATP6V1B1 increases HIV-1 entry into dendritic cells. J Virol 2025; 99:e0206624. [PMID: 40029073 PMCID: PMC11998494 DOI: 10.1128/jvi.02066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
HIV-1 infects several types of CD4+ cells. Among these, dendritic cells (DCs) are considered one of the first to encounter the virus upon sexual transmission. Expression of several restriction factors, of which SAMHD1 is well known, limits productive infection. Still, DCs are essential players in shaping adaptive immune responses that contribute heavily to the pathogenesis of HIV. Here, we set out to identify other factors that potentially contribute to the resistance of dendritic cells to HIV infection. Since endocytosis and the cytoskeleton impact HIV infection, we have put special emphasis on proteins implied in these pathways. In a selective, shRNA-mediated knockdown screen in primary monocyte-derived dendritic cells (MDDCs) infected with HIV in the presence of SAMHD1-disactivating Vpx containing virus-like particles, three proteins hampering HIV-1 infection were identified: FNBP1L, ARHGAP24, and ATP6V1B1. Findings of our research indicate that upon blocking of factors involved in endocytosis, increased viral entry is observed providing supportive evidence for endocytosis mostly being a dead-end entry pathway for HIV infection of MDDCs. Additional experiments show that changes in the cytoskeleton and endosomal pH that lead to impaired fluid-phase endocytosis and phagocytosis are responsible for these shifts in the phenotype observed.IMPORTANCEUnderstanding how HIV-1 interacts with dendritic cells (DCs) is pivotal in deciphering early viral transmission and immune evasion but is subject to a long-standing controversy in HIV virology. Therefore, the identification of endocytosis-related host factors as barriers to productive infection in DCs emphasizes the role of endocytosis as a restrictive pathway for viral entry. By disrupting these processes, we highlight a shift in the cellular environment that could influence viral entry and transmission. These findings challenge existing models of HIV-1 entry into DCs. New insights into how cellular pathways limit viral spread have implications for the development of strategies aimed to curb viral dissemination and reservoir formation. Whether the knockdown of the proteins described simply augments the efficiency of infection via existing pathways or opens additional routes for HIV-1 entry remains to be investigated.
Collapse
Affiliation(s)
- Marija Janevska
- Department of Diagnostic Sciences, Faculty of Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Wojciech Witkowski
- Department of Diagnostic Sciences, Faculty of Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Jolien Vermeire
- Department of Diagnostic Sciences, Faculty of Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Marek Borowicz
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Evelien Naessens
- Department of Diagnostic Sciences, Faculty of Medicine and Life Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hanne Vanderstraeten
- Department of Diagnostic Sciences, Faculty of Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Department of Parasitology, Virology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman Favoreel
- Department of Parasitology, Virology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Diagnostic Sciences, Faculty of Medicine and Life Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Warner van Dijk FA, Bertram KM, O’Neil TR, Li Y, Buffa DJ, Harman AN, Cunningham AL, Nasr N. Recent Advances in Our Understanding of Human Inflammatory Dendritic Cells in Human Immunodeficiency Virus Infection. Viruses 2025; 17:105. [PMID: 39861894 PMCID: PMC11768623 DOI: 10.3390/v17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed. Dendritic cells (DCs), as potent antigen-presenting cells, are among the first to capture HIV upon its entry into the mucosa, and they subsequently transport the virus to CD4 T cells, the primary HIV target cells. This increased HIV susceptibility in inflamed tissue likely stems from a disrupted epithelial barrier integrity, phenotypic changes in resident DCs and an influx of inflammatory HIV target cells, including DCs and CD4 T cells. Gaining insight into how HIV interacts with specific inflammatory DC subsets could inform the development of new therapeutic strategies to block HIV transmission. However, little is known about the early stages of HIV capture and transmission in inflammatory environments. Here, we review the currently characterised inflammatory-tissue DCs and their interactions with HIV.
Collapse
Affiliation(s)
- Freja A. Warner van Dijk
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Yuchen Li
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Daniel J. Buffa
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia; (F.A.W.v.D.); (K.M.B.); (T.R.O.); (Y.L.); (D.J.B.); (A.N.H.)
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
3
|
Byford O, Shaw AB, Tse HN, Moon-Walker A, Saphire EO, Whelan SPJ, Stacey M, Hewson R, Fontana J, Barr JN. Lymphocytic choriomeningitis arenavirus utilises intercellular connections for cell to cell spread. Sci Rep 2024; 14:28961. [PMID: 39578605 PMCID: PMC11584850 DOI: 10.1038/s41598-024-79397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
The Arenaviridae family of segmented RNA viruses contains nearly 70 species with several associated with fatal haemorrhagic fevers, including Lassa, Lujo and Junin viruses. Lymphocytic choriomeningitis arenavirus (LCMV) is associated with fatal neurologic disease in humans and additionally represents a tractable model for studying arenavirus biology. Within cultured cells, a high proportion of LCMV spread is between directly neighbouring cells, suggesting infectivity may pass through intercellular connections, bypassing the canonical extracellular route involving egress from the plasma membrane. Consistent with this, we visualized abundant actin- and tubulin-rich connections conjoining LCMV-infected and uninfected cells within cultures, resembling tunnelling nanotubes (TNTs). Within these TNT-like connections, confocal and STED microscopy identified puncta containing the major structural components of LCMV virions alongside genomic RNA, consistent with intercellular transit of assembled virions or ribonucleoprotein genome segments. Blocking the extracellular route of infection by adding potent LCMV neutralising antibody M28 to supernatants during infection revealed around 50% of LCMV transmission was via intercellular connections. These results show arenaviruses transmission is more complex than previously thought involving both extracellular and intercellular routes.
Collapse
Affiliation(s)
- Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amelia B Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
- Merck Research Laboratories, Merck & Co, Cambridge, MA, 02141, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Martin Stacey
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, SP4 0JG, UK
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Calado M, Pires D, Conceição C, Santos-Costa Q, Anes E, Azevedo-Pereira JM. Human immunodeficiency virus transmission-Mechanisms underlying the cell-to-cell spread of human immunodeficiency virus. Rev Med Virol 2023; 33:e2480. [PMID: 37698498 DOI: 10.1002/rmv.2480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Despite the success of combined antiretroviral therapy in controlling viral load and reducing the risk of human immunodeficiency virus (HIV) transmission, an estimated 1.5 million new infections occurred worldwide in 2021. These new infections are mainly the result of sexual intercourse and thus involve cells present on the genital mucosa, such as dendritic cells (DCs), macrophages (Mø) and CD4+ T lymphocytes. Understanding the mechanisms by which HIV interacts with these cells and how HIV exploits these interactions to establish infection in a new human host is critical to the development of strategies to prevent and control HIV transmission. In this review, we explore how HIV has evolved to manipulate some of the physiological roles of these cells, thereby gaining access to strategic cellular niches that are critical for the spread and pathogenesis of HIV infection. The interaction of HIV with DCs, Mø and CD4+ T lymphocytes, and the role of the intercellular transfer of viral particles through the establishment of the infectious or virological synapses, but also through membrane protrusions such as filopodia and tunnelling nanotubes (TNTs), and cell fusion or cell engulfment processes are presented and discussed.
Collapse
Affiliation(s)
- Marta Calado
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Carolina Conceição
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Quirina Santos-Costa
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Faculty of Pharmacy, Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
7
|
Gerberick A, Rinaldo CR, Sluis-Cremer N. Antigen Presenting Cell-Mediated HIV-1 Trans Infection in the Establishment and Maintenance of the Viral Reservoir. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i7.1.4064. [PMID: 39634038 PMCID: PMC11616617 DOI: 10.18103/mra.v11i7.1.4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Despite potent antiretroviral therapy, an HIV-1 reservoir persists that represents a major barrier to a cure. Understanding the mechanisms by which the HIV-1 reservoir is established and maintained is critical for the discovery of effective treatments to significantly reduce or eliminate the viral reservoir. In addition to cis infection, in which HIV-1 directly infects target CD4+ T cells, cell-to-cell transmission, or trans infection, can also occur. HIV-1 trans infection is significantly more efficient than cis infection, mostly due to the occurrence of multiple infections per cell during transfer. Additionally, trans infection is efficient even in the presence of ART and/or neutralizing antibodies. Cell-to-cell transmission is mediated by CD4+ T cells and professional antigen presenting cells (APC). Here we focus on APC, i.e., myeloid dendritic cells, B lymphocytes, and monocytes/macrophages, that bind, internalize, and transfer HIV-1 to target CD4+ T cells via various proposed mechanisms. We assess the potential impact of trans infection on the establishment and maintenance of the HIV-1 reservoir including its role in disease progression. We consider the natural interactions between APC and CD4+ T cells in vivo that HIV-1 may hijack, allowing for the highly efficient trans infection of CD4+ T cells, maintaining the viral reservoirs in tissue despite undetectable plasma viral loads in peripheral blood. We propose that these modes of viral pathogenesis need to be addressed in potential cure strategies to ensure eradication of the viral reservoir.
Collapse
Affiliation(s)
- Abigail Gerberick
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Charles R Rinaldo
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Nicolas Sluis-Cremer
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| |
Collapse
|
8
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 302] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Innocenti M. Investigating Mammalian Formins with SMIFH2 Fifteen Years in: Novel Targets and Unexpected Biology. Int J Mol Sci 2023; 24:ijms24109058. [PMID: 37240404 DOI: 10.3390/ijms24109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The mammalian formin family comprises fifteen multi-domain proteins that regulate actin dynamics and microtubules in vitro and in cells. Evolutionarily conserved formin homology (FH) 1 and 2 domains allow formins to locally modulate the cell cytoskeleton. Formins are involved in several developmental and homeostatic processes, as well as human diseases. However, functional redundancy has long hampered studies of individual formins with genetic loss-of-function approaches and prevents the rapid inhibition of formin activities in cells. The discovery of small molecule inhibitor of formin homology 2 domains (SMIFH2) in 2009 was a disruptive change that provided a powerful chemical tool to explore formins' functions across biological scales. Here, I critically discuss the characterization of SMIFH2 as a pan-formin inhibitor, as well as growing evidence of unexpected off-target effects. By collating the literature and information hidden in public repositories, outstanding controversies and fundamental open questions about the substrates and mechanism of action of SMIFH2 emerge. Whenever possible, I propose explanations for these discrepancies and roadmaps to address the paramount open questions. Furthermore, I suggest that SMIFH2 be reclassified as a multi-target inhibitor for its appealing activities on proteins involved in pathological formin-dependent processes. Notwithstanding all drawbacks and limitations, SMIFH2 will continue to prove useful in studying formins in health and disease in the years to come.
Collapse
Affiliation(s)
- Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
10
|
Duette G, Cronin S, Kelleher AD, Palmer S. Viral competition assay to assess the role of HIV-1 proteins in immune evasion. STAR Protoc 2023; 4:102025. [PMID: 36853860 PMCID: PMC9860156 DOI: 10.1016/j.xpro.2022.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
CD8+ T lymphocytes can recognize and eliminate cells infected by viruses. However, the human immunodeficiency virus (HIV-1) has developed mechanisms to evade CD8+ T-cell-mediated clearance. Here, we describe a protocol to assess the role of the HIV-1 protein Nef in immune evasion. The viral competition assay reveals the preferential killing of HIV-1-infected cells unable to express Nef. This methodology can be extended to study HIV-1 proteins involved in immune evasion and viral variants encoding cytotoxic T lymphocyte escape mutations. For complete details on the use and execution of this protocol, please refer to Duette et al. (2022).1.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Samantha Cronin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
11
|
Loo L, Waller MA, Moreno CL, Cole AJ, Stella AO, Pop OT, Jochum AK, Ali OH, Denes CE, Hamoudi Z, Chung F, Aggarwal A, Low JKK, Patel K, Siddiquee R, Kang T, Mathivanan S, Mackay JP, Jochum W, Flatz L, Hesselson D, Turville S, Neely GG. Fibroblast-expressed LRRC15 is a receptor for SARS-CoV-2 spike and controls antiviral and antifibrotic transcriptional programs. PLoS Biol 2023; 21:e3001967. [PMID: 36757924 PMCID: PMC9910744 DOI: 10.1371/journal.pbio.3001967] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023] Open
Abstract
Although ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 spike binding where they form a cell surface complex. LRRC15 mRNA is expressed in human collagen-producing lung myofibroblasts and LRRC15 protein is induced in severe Coronavirus Disease 2019 (COVID-19) infection where it can be found lining the airways. Mechanistically, LRRC15 does not itself support SARS-CoV-2 infection, but fibroblasts expressing LRRC15 can suppress both pseudotyped and authentic SARS-CoV-2 infection in trans. Moreover, LRRC15 expression in fibroblasts suppresses collagen production and promotes expression of IFIT, OAS, and MX-family antiviral factors. Overall, LRRC15 is a novel SARS-CoV-2 spike-binding receptor that can help control viral load and regulate antiviral and antifibrotic transcriptional programs in the context of COVID-19 infection.
Collapse
Affiliation(s)
- Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew A. Waller
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Cesar L. Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Alexander J. Cole
- Centenary Institute and Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Oltin-Tiberiu Pop
- Institute for Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ann-Kristin Jochum
- Institute for Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute for Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Omar Hasan Ali
- Institute for Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christopher E. Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Zina Hamoudi
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Felicity Chung
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Jason K. K. Low
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Karishma Patel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Rezwan Siddiquee
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Taeyoung Kang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Wolfram Jochum
- Institute for Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lukas Flatz
- Institute for Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniel Hesselson
- Centenary Institute and Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - G. Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
12
|
Lau D, Márquez CL, Parker MW, Böcking AT. Negative Staining Transmission Electron Microscopy of HIV Viral Particles Permeabilized with PFO and Capsid Stabilized with IP6. Bio Protoc 2022; 12:e4536. [PMID: 36353716 PMCID: PMC9606454 DOI: 10.21769/bioprotoc.4536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022] Open
Abstract
The human immunodeficiency virus 1 (HIV-1) consists of a viral membrane surrounding the conical capsid. The capsid is a protein container assembled from approximately 1,500 copies of the viral capsid protein (CA), functioning as a reaction and transport chamber for the viral genome after cell entry. Transmission electron microscopy (TEM) is a widely used technique for characterizing the ultrastructure of isolated viral capsids after removal of the viral membrane, which otherwise hinders negative staining of structures inside the viral particle for TEM. Here, we provide a protocol to permeabilize the membrane of HIV-1 particles using a pore-forming toxin for negative staining of capsids, which are stabilized with inositol hexakisphosphate to prevent premature capsid disassembly. This approach revealed the pleomorphic nature of capsids with a partially intact membrane surrounding them. The permeabilization strategy using pore-forming toxins can be readily applied to visualize the internal architecture of other enveloped viruses using TEM. Graphical abstract.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Chantal L. Márquez
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, Australia
,
Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Michael W. Parker
- St. Vincent’s Institute of Medical Research, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - And Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, Australia
,
*For correspondence:
| |
Collapse
|
13
|
Aggarwal A, Stella AO, Walker G, Akerman A, Esneau C, Milogiannakis V, Burnett DL, McAllery S, Silva MR, Lu Y, Foster CSP, Brilot F, Pillay A, Van Hal S, Mathivanan V, Fichter C, Kindinger A, Hoppe AC, Munier ML, Amatayakul-Chantler S, Roth N, Coppola G, Symonds GP, Schofield P, Jackson J, Lenthall H, Henry JY, Mazigi O, Jäck HM, Davenport MP, Darley DR, Matthews GV, Khoury DS, Cromer D, Goodnow CC, Christ D, Robosa R, Starck DJ, Bartlett NW, Rawlinson WD, Kelleher AD, Turville SG. Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia. Nat Microbiol 2022; 7:896-908. [PMID: 35637329 PMCID: PMC9159941 DOI: 10.1038/s41564-022-01135-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/26/2022] [Indexed: 01/31/2023]
Abstract
Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021. Our platform facilitated viral variant isolation, rapid resolution of variant fitness using nasopharyngeal swabs and ranking of evasion of neutralizing antibodies. In late 2021, variant of concern Omicron (B1.1.529) emerged. Using our platform, we detected and characterized SARS-CoV-2 VOC Omicron. We show that Omicron effectively evades neutralization antibodies and has a different entry route that is TMPRSS2-independent. Our low-cost platform is available to all and can detect all variants of SARS-CoV-2 studied so far, with the main limitation being that our platform still requires appropriate biocontainment.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Alberto Ospina Stella
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Gregory Walker
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Camille Esneau
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Vanessa Milogiannakis
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Samantha McAllery
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Mariana Ruiz Silva
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Yonghui Lu
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Charles S P Foster
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, School of Medical Sciences, Sydney University of Sydney, Sydney Institute for Infectious Diseases, Sydney, New South Wales, Australia
| | - Aleha Pillay
- Brain Autoimmunity Group, Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, School of Medical Sciences, Sydney University of Sydney, Sydney Institute for Infectious Diseases, Sydney, New South Wales, Australia
| | | | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Christina Fichter
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrea Kindinger
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexandra Carey Hoppe
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Mee Ling Munier
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Supavadee Amatayakul-Chantler
- Department of Bioanalytical Sciences, Plasma Product Development, Research and Development, CSL Behring, Broadmeadows, Melbourne, Victoria, Australia
| | - Nathan Roth
- Department of Bioanalytical Sciences, Plasma Product Development, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Germano Coppola
- Department of Bioanalytical Sciences, Plasma Product Development, Research and Development, CSL Behring, Broadmeadows, Melbourne, Victoria, Australia
| | | | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ohan Mazigi
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Miles P Davenport
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - David R Darley
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gail V Matthews
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - David S Khoury
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah Cromer
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Roselle Robosa
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Damien J Starck
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nathan W Bartlett
- Serology and Virology Division (SAViD), NSW Health Pathology, Sydney, New South Wales, Australia
| | - William D Rawlinson
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Anthony D Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Duette G, Hiener B, Morgan H, Mazur FG, Mathivanan V, Horsburgh BA, Fisher K, Tong O, Lee E, Ahn H, Shaik A, Fromentin R, Hoh R, Bacchus-Souffan C, Nasr N, Cunningham AL, Hunt PW, Chomont N, Turville SG, Deeks SG, Kelleher AD, Schlub TE, Palmer S. The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. J Clin Invest 2022; 132:154422. [PMID: 35133986 PMCID: PMC8970682 DOI: 10.1172/jci154422] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Morgan
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fernando G. Mazur
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Bethany A. Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Fisher
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Haelee Ahn
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ansari Shaik
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Charline Bacchus-Souffan
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anthony D. Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Ashhurst A, Tang AH, Fajtová P, Yoon MC, Aggarwal A, Bedding MJ, Stoye A, Beretta L, Pwee D, Drelich A, Skinner D, Li L, Meek TD, McKerrow JH, Hook V, Tseng CT, Larance M, Turville S, Gerwick WH, O’Donoghue AJ, Payne RJ. Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. J Med Chem 2022; 65:2956-2970. [PMID: 34730959 PMCID: PMC8577376 DOI: 10.1021/acs.jmedchem.1c01494] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC50 values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry. Gallinamide A directly interacted with cathepsin L in cells and, together with two lead analogues, potently inhibited SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range. Reduced antiviral activity was observed in cells overexpressing transmembrane protease, serine 2 (TMPRSS2); however, a synergistic improvement in antiviral activity was achieved when combined with a TMPRSS2 inhibitor. These data highlight the potential of cathepsin L as a COVID-19 drug target as well as the likely need to inhibit multiple routes of viral entry to achieve efficacy.
Collapse
Affiliation(s)
- Anneliese
S. Ashhurst
- School
of Chemistry, The University of Sydney, Sydney, NSW2006, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW2006, Australia
| | - Arthur H. Tang
- School
of Chemistry, The University of Sydney, Sydney, NSW2006, Australia
| | - Pavla Fajtová
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, 16610Prague, Czech Republic
| | - Michael C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
| | - Anupriya Aggarwal
- Kirby
Institute, University of New South Wales, Sydney, NSW2052, Australia
| | - Max J. Bedding
- School
of Chemistry, The University of Sydney, Sydney, NSW2006, Australia
| | - Alexander Stoye
- School
of Chemistry, The University of Sydney, Sydney, NSW2006, Australia
| | - Laura Beretta
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
| | - Dustin Pwee
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
| | - Aleksandra Drelich
- Department
of Microbiology and Immunology, University
of Texas, Medical Branch, 3000 University Boulevard, Galveston, Texas77755-1001, United States
| | - Danielle Skinner
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
| | - Linfeng Li
- Department
of Biochemistry and Biophysics, Texas A&M
University, 301 Old Main
Drive, College Station, Texas77843, United States
| | - Thomas D. Meek
- Department
of Biochemistry and Biophysics, Texas A&M
University, 301 Old Main
Drive, College Station, Texas77843, United States
| | - James H. McKerrow
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
| | - Chien-Te Tseng
- Department
of Microbiology and Immunology, University
of Texas, Medical Branch, 3000 University Boulevard, Galveston, Texas77755-1001, United States
| | - Mark Larance
- Charles
Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW2006, Australia
| | - Stuart Turville
- Kirby
Institute, University of New South Wales, Sydney, NSW2052, Australia
| | - William H. Gerwick
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California92093, United States
| | - Richard J. Payne
- School
of Chemistry, The University of Sydney, Sydney, NSW2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, NSW2006, Australia
| |
Collapse
|
17
|
Bertacchi G, Posch W, Wilflingseder D. HIV-1 Trans Infection via TNTs Is Impeded by Targeting C5aR. Biomolecules 2022; 12:biom12020313. [PMID: 35204813 PMCID: PMC8868603 DOI: 10.3390/biom12020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Nonadjacent immune cells communicate through a complex network of tunneling nanotubes (TNTs). TNTs can be hijacked by HIV-1, allowing it to spread between connected cells. Dendritic cells (DCs) are among the first cells to encounter HIV-1 at mucosal sites, but they are usually efficiently infected only at low levels. However, HIV-1 was demonstrated to productively infect DCs when the virus was complement-opsonized (HIV-C). Such HIV-C-exposed DCs mediated an improved antiviral and T-cell stimulatory capacity. The role of TNTs in combination with complement in enhancing DC infection with HIV-C remains to be addressed. To this aim, we evaluated TNT formation on the surface of DCs or DC/CD4+ T-cell co-cultures incubated with non- or complement-opsonized HIV-1 (HIV, HIV-C) and the role of TNTs or locally produced complement in the infection process using either two different TNT or anaphylatoxin receptor antagonists. We found that HIV-C significantly increased the formation of TNTs between DCs or DC/CD4+ T-cell co-cultures compared to HIV-exposed DCs or co-cultures. While augmented TNT formation in DCs promoted productive infection, as was previously observed, a significant reduction in productive infection was observed in DC/CD4+ T-cell co-cultures, indicating antiviral activity in this setting. As expected, TNT inhibitors significantly decreased infection of HIV-C-loaded-DCs as well as HIV- and HIV-C-infected-DC/CD4+ T-cell co-cultures. Moreover, antagonizing C5aR significantly inhibited TNT formation in DCs as well as DC/CD4+ T-cell co-cultures and lowered the already decreased productive infection in co-cultures. Thus, local complement mobilization via DC stimulation of complement receptors plays a pivotal role in TNT formation, and our findings herein might offer an exciting opportunity for novel therapeutic approaches to inhibit trans infection via C5aR targeting.
Collapse
|
18
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
19
|
Embedding of HIV Egress within Cortical F-Actin. Pathogens 2022; 11:pathogens11010056. [PMID: 35056004 PMCID: PMC8777837 DOI: 10.3390/pathogens11010056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/07/2022] Open
Abstract
F-Actin remodeling is important for the spread of HIV via cell-cell contacts; however, the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell-cell contact, provided Cdc42 and IQGAP1 were present. From these observations, we conclude that a proportion out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, the maturation of cell-cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.
Collapse
|
20
|
HIV transmitting mononuclear phagocytes; integrating the old and new. Mucosal Immunol 2022; 15:542-550. [PMID: 35173293 PMCID: PMC9259493 DOI: 10.1038/s41385-022-00492-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.
Collapse
|
21
|
Balachandran H, Phetsouphanh C, Agapiou D, Adhikari A, Rodrigo C, Hammoud M, Shrestha LB, Keoshkerian E, Gupta M, Turville S, Christ D, King C, Sasson SC, Bartlett A, Grubor-Bauk B, Rawlinson W, Aggarwal A, Stella AO, Klemm V, Mina MM, Post JJ, Hudson B, Gilroy N, Konecny P, Ahlenstiel G, Dwyer DE, Sorrell TC, Kelleher A, Tedla N, Lloyd AR, Martinello M, Bull RA. Maintenance of broad neutralising antibodies and memory B cells 12 months post-infection is predicted by SARS-CoV-2 specific CD4+ T cell responses. Cell Rep 2022; 38:110345. [PMID: 35090598 PMCID: PMC8768427 DOI: 10.1016/j.celrep.2022.110345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Understanding the long-term maintenance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity is critical for predicting protection against reinfection. In an age- and gender-matched cohort of 24 participants, the association of disease severity and early immune responses on the maintenance of humoral immunity 12 months post-infection is examined. All severely affected participants maintain a stable subset of SARS-CoV-2 receptor-binding domain (RBD)-specific memory B cells (MBCs) and good neutralizing antibody breadth against the majority of the variants of concern, including the Delta variant. Modeling these immune responses against vaccine efficacy data indicate a 45%–76% protection against symptomatic infection (variant dependent). Overall, these findings indicate durable humoral responses in most participants after infection, reasonable protection against reinfection, and implicate baseline antigen-specific CD4+ T cell responses as a predictor of maintenance of antibody neutralization breadth and RBD-specific MBC levels at 12 months post-infection.
Collapse
|
22
|
Single-chain variable fragments of broadly neutralizing antibodies prevent HIV cell-cell transmission. J Virol 2021; 96:e0193421. [PMID: 34935437 DOI: 10.1128/jvi.01934-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are able to prevent HIV infection following passive administration. Single-chain variable fragments (scFv) may have advantages over IgG as their smaller size permits improved diffusion into mucosal tissues. We have previously shown that scFv of bNAbs retain significant breadth and potency against cell-free viral transmission in a TZM-bl assay. However, scFv have not been tested for their ability to block cell-cell transmission, a model in which full-sized bNAbs lose potency. We tested 4 scFv (CAP256.25, PGT121, 3BNC117 and 10E8v4) compared to IgG, in free-virus and cell-cell neutralization assays in A3.01 cells, against a panel of seven heterologous viruses. We show that free-virus neutralization titers in the TZM-bl and A3.01 assays were not significantly different, and confirm that scFv show a 1 to 32-fold reduction in activity in the cell-free model, compared to IgG. However, whereas IgG show 3.4 to 19-fold geometric mean potency loss in cell-cell neutralization compared to free-virus transmission, scFv had more comparable activity in the two assays, with only a 1.3 to 2.3-fold reduction. Geometric mean IC50 of scFv for cell-cell transmission ranged from 0.65 μg/ml (10E8v4) to 2.3 μg/ml (3BNC117) with IgG and scFv neutralization showing similar potency against cell-associated transmission. Therefore, despite the reduced activity of scFv in cell-free assays, their retention of activity in the cell-cell format may make scFv useful for the prevention of both modes of transmission in HIV prevention studies. Importance Broadly neutralizing antibodies (bNAbs) are a major focus for passive immunization against HIV, with the recently concluded HVTN AMP (Antibody Mediated Protection) trial providing proof of concept. Most studies focus on cell-free HIV, however cell-associated virus may play a significant role in HIV infection, pathogenesis and latency. Single-chain variable fragments (scFv) of antibodies may have increased tissue penetration, and reduced immunogenicity. We previously demonstrated that scFv of four HIV-directed bNAbs (CAP256-VRC26.25, PGT121, 3BNC117 and 10E8v4) retain significant potency and breadth against cell-free HIV. As some bNAbs have been shown to lose potency against cell-associated virus, we investigated the ability of bNAb scFv to neutralize this mode of transmission. We demonstrate that unlike IgG, scFv of bNAbs are able to neutralize cell-free and cell-associated virus with similar potency. These scFv, which show functional activity in the therapeutic range, may therefore be suitable for further development as passive immunity for HIV prevention.
Collapse
|
23
|
Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J, Piplani S, Bebin-Blackwell AG, Forgacs D, Sakamoto K, Stella A, Turville S, Chataway T, Colella A, Triccas J, Ross TM, Petrovsky N. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 2021; 39:5940-5953. [PMID: 34420786 PMCID: PMC8328570 DOI: 10.1016/j.vaccine.2021.07.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19™). A synthetic gene encoding the spike extracellular domain (ECD) was inserted into a baculovirus backbone to express the protein in insect cell cultures. The spike ECD was formulated with Advax-SM adjuvant and first tested for immunogenicity in C57BL/6 and BALB/c mice. Covax-19 vaccine induced high spike protein binding antibody levels that neutralised the original lineage B.1.319 virus from which the vaccine spike protein was derived, as well as the variant B.1.1.7 lineage virus. Covax-19 vaccine also induced a high frequency of spike-specific CD4 + and CD8 + memory T-cells with a dominant Th1 phenotype associated with the ability to kill spike-labelled target cells in vivo. Ferrets immunised with Covax-19 vaccine intramuscularly twice 2 weeks apart made spike receptor binding domain (RBD) IgG and were protected against an intranasal challenge with SARS-CoV-2 virus given two weeks after the last immunisation. Notably, ferrets that received the two higher doses of Covax-19 vaccine had no detectable virus in their lungs or in nasal washes at day 3 post-challenge, suggesting that in addition to lung protection, Covax-19 vaccine may have the potential to reduce virus transmission. This data supports advancement of Covax-19 vaccine into human clinical trials.
Collapse
Affiliation(s)
- Lei Li
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Ying Huang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Jeremy Baldwin
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia
| | - Sakshi Piplani
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | | | - David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, GA, USA
| | - Alberto Stella
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Stuart Turville
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Alex Colella
- College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia
| | - Jamie Triccas
- School of Medical Sciences and Marie Bashir Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Adelaide 5042, SA, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
24
|
Aliyu IA, Kumurya AS, Bala JA, Yahaya H, Saidu H. Proteomes, kinases and signalling pathways in virus-induced filopodia, as potential antiviral therapeutics targets. Rev Med Virol 2021; 31:1-9. [PMID: 33314425 PMCID: PMC7883202 DOI: 10.1002/rmv.2202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
Filopodia are thin finger-like protrusions at the surface of cells that are internally occupied with bundles of tightly parallel actin filaments. They play significant roles in cellular physiological processes, such as adhesion to extracellular matrix, guidance towards chemo-attractants and in wound healing. Filopodia were recently reported to play important roles in viral infection including initial viral attachment to host cells, cell surfing, viral trafficking, internalization, budding, virus release and spread to other cells in a form that would avoid the host immune system. The detailed virus-host protein interactions underlying most of these processes remain to be elucidated. This review will describe some reported virus-host protein interactions on filopodia with the aim of identifying potential new anti-virus therapeutic targets. Exploring this research area may lead to the development of novel classes of anti-viral therapeutics that can block signalling pathways used by the virus to trigger filopodia formation. Successful compounds would inhibit initial virus attachment, formation of filopodia, expression of putative virus binding protein, extracellular virus trafficking, and budding.
Collapse
Affiliation(s)
- Isah Abubakar Aliyu
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Abdulhadi Sale Kumurya
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Jamilu Abubakar Bala
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
- Virology UnitDepartment of Pathology and MicrobiologyFaculty of Veterinary MedicineUniversity Putra MalaysiaSelangorMalaysia
| | - Hassan Yahaya
- Department of Medical Microbiology and ParasitologyFaculty of Medicine and Health ScienceUniversity Putra MalaysiaSelangorMalaysia
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| | - Hayatu Saidu
- Department of Medical Laboratory ScienceFaculty of Allied Health SciencesCollege of Health SciencesBayero University KanoKano StateNigeria
| |
Collapse
|
25
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
26
|
Tea F, Ospina Stella A, Aggarwal A, Ross Darley D, Pilli D, Vitale D, Merheb V, Lee FXZ, Cunningham P, Walker GJ, Fichter C, Brown DA, Rawlinson WD, Isaacs SR, Mathivanan V, Hoffmann M, Pöhlman S, Mazigi O, Christ D, Dwyer DE, Rockett RJ, Sintchenko V, Hoad VC, Irving DO, Dore GJ, Gosbell IB, Kelleher AD, Matthews GV, Brilot F, Turville SG. SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Med 2021; 18:e1003656. [PMID: 34228725 PMCID: PMC8291755 DOI: 10.1371/journal.pmed.1003656] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design.
Collapse
Affiliation(s)
- Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Alberto Ospina Stella
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - David Ross Darley
- St Vincent’s Hospital, Sydney, New South Wales, Australia
- School of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
| | - Deepti Pilli
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Daniele Vitale
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Fiona X. Z. Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Philip Cunningham
- St Vincent’s Applied Medical Research, Sydney, New South Wales, Australia
| | | | - Christina Fichter
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - David A. Brown
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, Australia
| | - William D. Rawlinson
- New South Wales Health Pathology, Sydney, Australia
- School of Medical Sciences, Biotechnology and Biomolecular Sciences and School of Women’s and Children’s Health, The University of New South Wales Sydney, New South Wales, Australia
- Serology and Virology Division (SAViD), NSW HP SEALS, Randwick, Australia
| | | | - Vennila Mathivanan
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlman
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Ohan Mazigi
- School of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Daniel Christ
- School of Medicine, St Vincent’s Clinical School, The University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Dominic E. Dwyer
- New South Wales Health Pathology, Sydney, Australia
- Centre for Infectious Diseases & Microbiology, Public Health, New South Wales Health Pathology, Institute of Clinical Pathology & Medical Research (ICPMR), Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca J. Rockett
- Centre for Infectious Diseases & Microbiology, Public Health, New South Wales Health Pathology, Institute of Clinical Pathology & Medical Research (ICPMR), Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- New South Wales Health Pathology, Sydney, Australia
- Centre for Infectious Diseases & Microbiology, Public Health, New South Wales Health Pathology, Institute of Clinical Pathology & Medical Research (ICPMR), Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - David O. Irving
- Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
- Faculty of Health, University of Technology, Sydney, New South Wales, Australia
| | - Gregory J. Dore
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
- St Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Iain B. Gosbell
- Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Gail V. Matthews
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
- St Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Marie Bashir Institute for Biosecurity, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart G. Turville
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Baena V, Conrad R, Friday P, Fitzgerald E, Kim T, Bernbaum J, Berensmann H, Harned A, Nagashima K, Narayan K. FIB-SEM as a Volume Electron Microscopy Approach to Study Cellular Architectures in SARS-CoV-2 and Other Viral Infections: A Practical Primer for a Virologist. Viruses 2021; 13:v13040611. [PMID: 33918371 PMCID: PMC8066521 DOI: 10.3390/v13040611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/06/2023] Open
Abstract
The visualization of cellular ultrastructure over a wide range of volumes is becoming possible by increasingly powerful techniques grouped under the rubric “volume electron microscopy” or volume EM (vEM). Focused ion beam scanning electron microscopy (FIB-SEM) occupies a “Goldilocks zone” in vEM: iterative and automated cycles of milling and imaging allow the interrogation of microns-thick specimens in 3-D at resolutions of tens of nanometers or less. This bestows on FIB-SEM the unique ability to aid the accurate and precise study of architectures of virus-cell interactions. Here we give the virologist or cell biologist a primer on FIB-SEM imaging in the context of vEM and discuss practical aspects of a room temperature FIB-SEM experiment. In an in vitro study of SARS-CoV-2 infection, we show that accurate quantitation of viral densities and surface curvatures enabled by FIB-SEM imaging reveals SARS-CoV-2 viruses preferentially located at areas of plasma membrane that have positive mean curvatures.
Collapse
Affiliation(s)
- Valentina Baena
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ryan Conrad
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Patrick Friday
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ella Fitzgerald
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Taeeun Kim
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - John Bernbaum
- National Institute of Allergy and Infectious Diseases, Division of Clinical Research, Integrated Research Facility at Fort Detrick (IRF-Frederick), Frederick, MD 21702, USA;
| | - Heather Berensmann
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Kunio Nagashima
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (V.B.); (R.C.); (P.F.); (E.F.); (T.K.); (H.B.); (A.H.); (K.N.)
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
- Correspondence:
| |
Collapse
|
28
|
Ashhurst AS, Tang AH, Fajtová P, Yoon M, Aggarwal A, Stoye A, Larance M, Beretta L, Drelich A, Skinner D, Li L, Meek TD, McKerrow JH, Hook V, Tseng CTK, Turville S, Gerwick WH, O'Donoghue AJ, Payne RJ. Potent in vitro anti-SARS-CoV-2 activity by gallinamide A and analogues via inhibition of cathepsin L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33398273 DOI: 10.1101/2020.12.23.424111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The emergence of SARS-CoV-2 in late 2019, and the subsequent COVID-19 pandemic, has led to substantial mortality, together with mass global disruption. There is an urgent need for novel antiviral drugs for therapeutic or prophylactic application. Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is recognized as a promising drug target. The marine natural product, gallinamide A and several synthetic analogues, were identified as potent inhibitors of cathepsin L activity with IC 50 values in the picomolar range. Lead molecules possessed selectivity over cathepsin B and other related human cathepsin proteases and did not exhibit inhibitory activity against viral proteases Mpro and PLpro. We demonstrate that gallinamide A and two lead analogues potently inhibit SARS-CoV-2 infection in vitro , with EC 50 values in the nanomolar range, thus further highlighting the potential of cathepsin L as a COVID-19 antiviral drug target.
Collapse
|
29
|
Faria Waziry PA, Raja A, Salmon C, Aldana N, Damodar S, Fukushima AR, Mayi BS. Impact of pyriproxyfen on virus behavior: implications for pesticide-induced virulence and mechanism of transmission. Virol J 2020; 17:93. [PMID: 32631404 PMCID: PMC7339562 DOI: 10.1186/s12985-020-01378-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background More than 3 years since the last Zika virus (ZIKV) outbreak in Brazil, researchers are still deciphering the molecular mechanisms of neurovirulence and vertical transmission, as well as the best way to control spread of ZIKV, a flavivirus. The use of pesticides was the main strategy of mosquito control during the last ZIKV outbreak. Methods We used vesicular stomatitis virus (VSV) tagged with green fluorescent protein (GFP) as our prototypical virus to study the impact of insecticide pyriproxyfen (PPF). VZV-GFP infected and uninfected Jurkat, HeLa and trophoblast cells were treated with PPF and compared to untreated cells (control). Cell viability was determined by the MTT assay. Cell morphology, presence of extracellular vesicles (EVs), virus infection/GFP expression as well as active mitochondrial levels/localization were examined by confocal microscopy. Results PPF, which was used to control mosquito populations in Brazil prior to the ZIKV outbreak, enhances VSV replication and has cell membrane-altering properties in the presence of virus. PPF causes enhanced viral replication and formation of large EVs, loaded with virus as well as mitochondria. Treatment of trophoblasts or HeLa cells with increasing concentrations of PPF does not alter cell viability, however, it proportionately increases Jurkat cell viability. Increasing concentrations of PPF followed by VSV infection does not interfere with HeLa cell viability. Both Jurkats and trophoblasts show proportionately increased cell death with increased concentrations of PPF in the presence of virus. Conclusions We hypothesize that PPF disrupts the lipid microenvironment of mammalian cells, thereby interfering with pathways of viral replication. PPF lowers viability of trophoblasts and Jurkats in the presence of VSV, implying that the combination renders immune system impairment in infected individuals as well as enhanced vulnerability of fetuses towards viral vertical transmission. We hypothesize that similar viruses such as ZIKV may be vertically transmitted via EV-to-cell contact when exposed to PPF, thereby bypassing immune detection. The impact of pesticides on viral replication must be fully investigated before large scale use in future outbreaks of mosquito borne viruses.
Collapse
Affiliation(s)
- Paula A Faria Waziry
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3400 Gulf to Bay Blvd, Clearwater, FL, 33759, USA
| | - Aarti Raja
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| | - Chloe Salmon
- Plymouth University, 3 Endsleigh Place, Drake Circus, Plymouth, England, PL4 8AA
| | - Nathalia Aldana
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Dr, Fort Lauderdale, FL, 33328, USA
| | - Sruthi Damodar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 S. University Dr, Fort Lauderdale, FL, 33328, USA
| | - Andre Rinaldi Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, Brazil
| | - Bindu S Mayi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3400 Gulf to Bay Blvd, Clearwater, FL, 33759, USA.
| |
Collapse
|
30
|
Oliveira MMS, Westerberg LS. Cytoskeletal regulation of dendritic cells: An intricate balance between migration and presentation for tumor therapy. J Leukoc Biol 2020; 108:1051-1065. [PMID: 32557835 DOI: 10.1002/jlb.1mr0520-014rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DCs) are the main players in many approaches for cancer therapy. The idea with DC tumor therapy is to promote activation of tumor infiltrating cytotoxic T cells that kill tumor cells. This requires that DCs take up tumor Ag and present peptides on MHC class I molecules in a process called cross-presentation. For this process to be efficient, DCs have to migrate to the tumor draining lymph node and there activate the machinery for cross-presentation. In this review, we will discuss recent progress in understanding the role of actin regulators for control of DC migration and Ag presentation. The potential to target actin regulators for better DC-based tumor therapy will also be discussed.
Collapse
Affiliation(s)
- Mariana M S Oliveira
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
32
|
Abstract
Tunneling nanotubes (TNTs) are actin-based intercellular conduits that connect distant cells and allow intercellular transfer of molecular information, including genetic information, proteins, lipids, and even organelles. Besides providing a means of intercellular communication, TNTs may also be hijacked by pathogens, particularly viruses, to facilitate their spread. Viruses of many different families, including retroviruses, herpesviruses, orthomyxoviruses, and several others have been reported to trigger the formation of TNTs or TNT-like structures in infected cells and use these structures to efficiently spread to uninfected cells. In the current review, we give an overview of the information that is currently available on viruses and TNT-like structures, and we discuss some of the standing questions in this field.
Collapse
|
33
|
Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell Stress 2020; 4:30-43. [PMID: 32043076 PMCID: PMC6997949 DOI: 10.15698/cst2020.02.212] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intercellular communication is a fundamental property of multicellular organisms, necessary for their adequate responses to changing environment. Tunneling nanotubes (TNTs) represent a novel means of intercellular communication being a long cell-to-cell conduit. TNTs are actively formed under a broad range of stresses and are also proposed to exist under physiological conditions. Development is a physiological condition of particular interest, as it requires fine coordination. Here we discuss whether protrusions shown to exist during embryonic development of different species could be TNTs or if they represent other types of cell structure, like cytonemes or intercellular bridges, that are suggested to play an important role in development.
Collapse
Affiliation(s)
- Olga Korenkova
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.,Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Anna Pepe
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
34
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Fluorescent Protein Inserts in between NC and SP2 are Tolerated for Assembly, Release and Maturation of HIV with Limited Infectivity. Viruses 2019; 11:v11110973. [PMID: 31652757 PMCID: PMC6893430 DOI: 10.3390/v11110973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
We report the design of a fluorescent HIV construct that is labeled by insertion of fluorescent protein between the nucleocapsid (NC) and spacer peptide 2 (SP2) domains of Gag and further show that the fluorescent protein is released from its confines within Gag during maturation. This fluorescent HIV is capable of budding and maturation with similar efficiency to the parental virus. Virions generated using this design within the R8 HIV backbone pseudotyped with VSV-G were capable of delivering small RNA genomes encoding GFP to the target cells; however, the same design within the NL4-3 backbone has limited HIV infectivity. The virions generated by these constructs are approximately 165 ± 35 nm in size, which is significantly larger than wild type HIV. We suggest that this design has the potential to be a vehicle for protein and small guide RNA delivery.
Collapse
|
36
|
HIV Infection Stabilizes Macrophage-T Cell Interactions To Promote Cell-Cell HIV Spread. J Virol 2019; 93:JVI.00805-19. [PMID: 31270227 DOI: 10.1128/jvi.00805-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophages are susceptible to HIV infection and play an important role in viral dissemination through cell-cell contacts with T cells. However, our current understanding of macrophage-to-T cell HIV transmission is derived from studies that do not consider the robust migration and cell-cell interaction dynamics between these cells. Here, we performed live-cell imaging studies in 3-dimensional (3D) collagen that allowed CD4+ T cells to migrate and to locate and engage HIV-infected macrophages, modeling the dynamic aspects of the in situ environment in which these contacts frequently occur. We show that HIV+ macrophages form stable contacts with CD4+ T cells that are facilitated by both gp120-CD4 and LFA-1-ICAM-1 interactions and that prolonged contacts are a prerequisite for efficient viral spread. LFA-1-ICAM-1 adhesive contacts function to restrain highly motile T cells, since their blockade substantially destabilized macrophage-T cell contacts, resulting in abnormal tethering events that reduced cell-cell viral spread. HIV-infected macrophages displayed strikingly elongated podosomal extensions that were dependent on Nef expression but were dispensable for stable cell-cell contact formation. Finally, we observed persistent T cell infection in dynamic monocyte-derived macrophage (MDM)-T cell cocultures in the presence of single high antiretroviral drug concentrations but achieved complete inhibition with combination therapy. Together, our data implicate macrophages as drivers of T cell infection by altering physiological MDM-T cell contact dynamics to access and restrain large numbers of susceptible, motile T cells within lymphoid tissues.IMPORTANCE Once HIV enters the lymphoid organs, exponential viral replication in T cells ensues. Given the densely packed nature of these tissues, where infected and uninfected cells are in nearly constant contact with one another, efficient HIV spread is thought to occur through cell-cell contacts in vivo However, this has not been formally demonstrated. In this study, we performed live-cell imaging studies within a 3-dimensional space to recapitulate the dynamic aspects of the lymphoid microenvironment and asked whether HIV can alter the morphology, migration capacity, and cell-cell contact behaviors between macrophages and T cells. We show that HIV-infected macrophages can engage T cells in stable contacts through binding of virus- and host-derived adhesive molecules and that stable macrophage-T cell contacts were required for high viral spread. Thus, HIV alters physiological macrophage-T cell interactions in order to access and restrain large numbers of susceptible, motile T cells, thereby playing an important role in HIV progression.
Collapse
|
37
|
Márquez CL, Lau D, Walsh J, Faysal KMR, Parker MW, Turville SG, Böcking T. Fluorescence Microscopy Assay to Measure HIV-1 Capsid Uncoating Kinetics in vitro. Bio Protoc 2019; 9:e3297. [PMID: 33654810 PMCID: PMC7854090 DOI: 10.21769/bioprotoc.3297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 11/05/2022] Open
Abstract
The stability of the HIV-1 capsid and the spatiotemporal control of its disassembly, a process called uncoating, need to be finely tuned for infection to proceed. Biochemical methods for measuring capsid lattice disassembly in bulk are unable to resolve intermediates in the uncoating reaction. We have developed a single-particle fluorescence microscopy method to follow the real-time uncoating kinetics of authentic HIV capsids in vitro. The assay utilizes immobilized viral particles that are permeabilized with the a pore-former protein, and is designed to (1) detect the first defect of the capsid by the release of a solution phase marker (GFP) and (2) visualize the disassembly of the capsid over time by “painting” the capsid lattice with labeled cyclophilin A (CypA), a protein that binds weakly to the outside of the capsid. This novel assay allows the study of dynamic interactions of molecules with hundreds of individual capsids as well as to determine their effect on viral capsid stability, which provides a powerful tool for dissecting uncoating mechanisms and for the development of capsid-binding drugs.
Collapse
Affiliation(s)
- Chantal L Márquez
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - James Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| | - Michael W Parker
- St. Vincent's Institute of Medical Research, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | | | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, Australia
| |
Collapse
|
38
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
39
|
de Macêdo Mendes C, Teixeira DG, Lima JPMS, Lanza DCF. Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome. BMC STRUCTURAL BIOLOGY 2019; 19:8. [PMID: 30999895 PMCID: PMC6474068 DOI: 10.1186/s12900-019-0106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/28/2019] [Indexed: 01/07/2023]
Abstract
Background White Spot Syndrome Virus (WSSV) is an enveloped double-stranded DNA virus which causes mortality of several species of shrimp, being considered one of the main pathogens that affects global shrimp farming. This virus presents a complex genome of ~ 300 kb and viral isolates that present genomes with great identity. Despite this conservation, some variable regions in the WSSV genome occur in coding regions, and these putative proteins may have some relationship with viral adaptation and virulence mechanisms. Until now, the functions of these proteins were little studied. In this work, sequences and putative proteins encoded by WSSV variable regions were characterized in silico. Results The in silico approach enabled determining the variability of some sequences, as well as the identification of some domains resembling the Formin homology 2, RNA recognition motif, Xeroderma pigmentosum group D repair helicase, Hemagglutinin and Ankyrin motif. The information obtained from the sequences and the analysis of secondary and tertiary structure models allow to infer that some of these proteins possibly have functions related to protein modulation/degradation, intracellular transport, recombination and endosome fusion events. Conclusions The bioinformatics approaches were efficient in generating three-dimensional models and to identify domains, thereby enabling to propose possible functions for the putative polypeptides produced by the ORFs wsv129, wsv178, wsv249, wsv463a, wsv477, wsv479, wsv492, and wsv497. Electronic supplementary material The online version of this article (10.1186/s12900-019-0106-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cayro de Macêdo Mendes
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Gomes Teixeira
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João Paulo Matos Santos Lima
- Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel Carlos Ferreira Lanza
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
40
|
Méndez C, Ledger S, Petoumenos K, Ahlenstiel C, Kelleher AD. RNA-induced epigenetic silencing inhibits HIV-1 reactivation from latency. Retrovirology 2018; 15:67. [PMID: 30286764 PMCID: PMC6172763 DOI: 10.1186/s12977-018-0451-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Current antiretroviral therapy is effective in controlling HIV-1 infection. However, cessation of therapy is associated with rapid return of viremia from the viral reservoir. Eradicating the HIV-1 reservoir has proven difficult with the limited success of latency reactivation strategies and reflects the complexity of HIV-1 latency. Consequently, there is a growing need for alternate strategies. Here we explore a "block and lock" approach for enforcing latency to render the provirus unable to restart transcription despite exposure to reactivation stimuli. Reactivation of transcription from latent HIV-1 proviruses can be epigenetically blocked using promoter-targeted shRNAs to prevent productive infection. We aimed to determine if independent and combined expression of shRNAs, PromA and 143, induce a repressive epigenetic profile that is sufficiently stable to protect latently infected cells from HIV-1 reactivation when treated with a range of latency reversing agents (LRAs). RESULTS J-Lat 9.2 cells, a model of HIV-1 latency, expressing shRNAs PromA, 143, PromA/143 or controls were treated with LRAs to evaluate protection from HIV-1 reactivation as determined by levels of GFP expression. Cells expressing shRNA PromA, 143, or both, showed robust resistance to viral reactivation by: TNF, SAHA, SAHA/TNF, Bryostatin/TNF, DZNep, and Chaetocin. Given the physiological importance of TNF, HIV-1 reactivation was induced by TNF (5 ng/mL) and ChIP assays were performed to detect changes in expression of epigenetic markers within chromatin in both sorted GFP- and GFP+ cell populations, harboring latent or reactivated proviruses, respectively. Ordinary two-way ANOVA analysis used to identify interactions between shRNAs and chromatin marks associated with repressive or active chromatin in the integrated provirus revealed significant changes in the levels of H3K27me3, AGO1 and HDAC1 in the LTR, which correlated with the extent of reduced proviral reactivation. The cell line co-expressing shPromA and sh143 consistently showed the least reactivation and greatest enrichment of chromatin compaction indicators. CONCLUSION The active maintenance of epigenetic silencing by shRNAs acting on the HIV-1 LTR impedes HIV-1 reactivation from latency. Our "block and lock" approach constitutes a novel way of enforcing HIV-1 "super latency" through a closed chromatin architecture that renders the virus resistant to a range of latency reversing agents.
Collapse
Affiliation(s)
- Catalina Méndez
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Scott Ledger
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Kathy Petoumenos
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| | - Chantelle Ahlenstiel
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia.
| | - Anthony D Kelleher
- Department of Immunovirology and Pathogenesis, Level 5, Wallace Wurth Building, The Kirby Institute for Infection and Immunity, UNSW Sydney, Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
41
|
Yamashita YM, Inaba M, Buszczak M. Specialized Intercellular Communications via Cytonemes and Nanotubes. Annu Rev Cell Dev Biol 2018; 34:59-84. [PMID: 30074816 DOI: 10.1146/annurev-cellbio-100617-062932] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, thin membrane protrusions such as cytonemes and tunneling nanotubes have emerged as a novel mechanism of intercellular communication. Protrusion-based cellular interactions allow for specific communication between participating cells and have a distinct spectrum of advantages compared to secretion- and diffusion-based intercellular communication. Identification of protrusion-based signaling in diverse systems suggests that this mechanism is a ubiquitous and prevailing means of communication employed by many cell types. Moreover, accumulating evidence indicates that protrusion-based intercellular communication is often involved in pathogenesis, including cancers and infections. Here we review our current understanding of protrusion-based intercellular communication.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
42
|
Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology 2018; 15:51. [PMID: 30055632 PMCID: PMC6064125 DOI: 10.1186/s12977-018-0434-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
HIV-1 spreads through contacts between infected and target cells. Polarized viral budding at the contact site forms the virological synapse. Additional cellular processes, such as nanotubes, filopodia, virus accumulation in endocytic or phagocytic compartments promote efficient viral propagation. Cell-to-cell transmission allows immune evasion and likely contributes to HIV-1 spread in vivo. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) defeat the majority of circulating viral strains by binding to the viral envelope glycoprotein (Env). Several bNAbs have entered clinical evaluation during the last years. It is thus important to understand their mechanism of action and to determine how they interact with infected cells. In experimental models, HIV-1 cell-to-cell transmission is sensitive to neutralization, but the effect of antibodies is often less marked than during cell-free infection. This may be due to differences in the conformation or accessibility of Env at the surface of virions and cells. In this review, we summarize the current knowledge on HIV-1 cell-to-cell transmission and discuss the role of bNAbs during this process.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France. .,CNRS-UMR3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| |
Collapse
|
43
|
Abstract
The p2b domain of Rous sarcoma virus (RSV) Gag and the p6 domain of HIV-1 Gag contain late assembly (L) domains that engage the ESCRT membrane fission machinery and are essential for virus release. We now show that the PPXY-type RSV L domain specifically recruits the BAR domain protein PACSIN2 into virus-like particles (VLP), in addition to the NEDD4-like ubiquitin ligase ITCH and ESCRT pathway components such as TSG101. PACSIN2, which has been implicated in the remodeling of cellular membranes and the actin cytoskeleton, is also recruited by HIV-1 p6 independent of its ability to engage the ESCRT factors TSG101 or ALIX. Moreover, PACSIN2 is robustly recruited by NEDD4-2s, a NEDD4-like ubiquitin ligase capable of rescuing HIV-1 budding defects. The NEDD4-2s-induced incorporation of PACSIN2 into VLP correlated with the formation of Gag-ubiquitin conjugates, indicating that PACSIN2 binds ubiquitin. Although PACSIN2 was not required for a single cycle of HIV-1 replication after infection with cell-free virus, HIV-1 spreading was nevertheless severely impaired in T cell lines and primary human peripheral blood mononuclear cells depleted of PACSIN2. HIV-1 spreading could be restored by reintroduction of wild-type PACSIN2, but not of a SH3 domain mutant unable to interact with the actin polymerization regulators WASP and N-WASP. Overall, our observations indicate that PACSIN2 promotes the cell-to-cell spreading of HIV-1 by connecting Gag to the actin cytoskeleton.
Collapse
|
44
|
Márquez CL, Lau D, Walsh J, Shah V, McGuinness C, Wong A, Aggarwal A, Parker MW, Jacques DA, Turville S, Böcking T. Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. eLife 2018; 7:34772. [PMID: 29877795 PMCID: PMC6039174 DOI: 10.7554/elife.34772] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/05/2018] [Indexed: 02/01/2023] Open
Abstract
Uncoating of the metastable HIV-1 capsid is a tightly regulated disassembly process required for release of the viral cDNA prior to nuclear import. To understand the intrinsic capsid disassembly pathway and how it can be modulated, we have developed a single-particle fluorescence microscopy method to follow the real-time uncoating kinetics of authentic HIV capsids in vitro immediately after permeabilizing the viral membrane. Opening of the first defect in the lattice is the rate-limiting step of uncoating, which is followed by rapid, catastrophic collapse. The capsid-binding inhibitor PF74 accelerates capsid opening but stabilizes the remaining lattice. In contrast, binding of a polyanion to a conserved arginine cluster in the lattice strongly delays initiation of uncoating but does not prevent subsequent lattice disassembly. Our observations suggest that different stages of uncoating can be controlled independently with the interplay between different capsid-binding regulators likely to determine the overall uncoating kinetics. Viruses need to enter their host’s cells in order to replicate their genetic material and produce more copies of the virus. A protein shell called a capsid protects the virus during this journey. But the structure of the capsid presents a mystery. How can this protein shell be strong enough to remain intact as it enters a host cell, and yet quickly open up to release the viral genome after replication? Unlike the capsids of many other viruses, those of HIV have irregular structures that rapidly fall apart once removed from the virus. This has thwarted attempts to study intact HIV capsids in order to understand how they work. However, we do know that HIV hijacks a range of molecules produced by the invaded host cell. Dissecting their effects on the capsid is key to understanding how the capsid disassembles. Márquez et al. have now developed a method that can visualize individual HIV capsids – and how they disassemble – in real time using single-molecule microscopy. This revealed that capsids differ widely in their stability. The shell remains closed for a variable period of time and then collapses catastrophically as soon as it loses its first subunit. Using the new technique, Márquez et al. also found that a small molecule drug called PF74 causes the capsid to crack open rapidly, but the remaining shell is then stabilized against further disassembly. These observations reconcile seemingly contradictory observations made by different research groups about how this drug affects the stability of the capsid. The method developed by Márquez et al. enables researchers to measure how molecules produced by host cells interact with the viral capsid, a structure that is fundamental for the virus to establish an infection. It could also be used to test the effects of antiviral drugs that have been designed to target the capsid. The new technique has already been instrumental in related research by Mallery et al., which identifies a molecule found in host cells that stabilizes the capsid of HIV.
Collapse
Affiliation(s)
- Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - James Walsh
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Vaibhav Shah
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Conall McGuinness
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | | | | | - Michael W Parker
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia
| | | | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| |
Collapse
|
45
|
Mallery DL, Márquez CL, McEwan WA, Dickson CF, Jacques DA, Anandapadamanaban M, Bichel K, Towers GJ, Saiardi A, Böcking T, James LC. IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis. eLife 2018; 7:e35335. [PMID: 29848441 PMCID: PMC6039178 DOI: 10.7554/elife.35335] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.
Collapse
Affiliation(s)
- Donna L Mallery
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node, Single Molecule Science, School of Medical SciencesUniversity of New South WalesSydneyAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - William A McEwan
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Claire F Dickson
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node, Single Molecule Science, School of Medical SciencesUniversity of New South WalesSydneyAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | | | - Katsiaryna Bichel
- Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| | - Gregory J Towers
- Division of Infection and ImmunityUniversity College LondonLondonUnited Kingdom
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell BiologyUniversity College LondonLondonUnited Kingdom
| | - Till Böcking
- EMBL Australia Node, Single Molecule Science, School of Medical SciencesUniversity of New South WalesSydneyAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical SciencesUniversity of New South WalesSydneyAustralia
| | - Leo C James
- Medical Research Council Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
46
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
47
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
48
|
Moghaddam-Taaheri P, Karlsson AJ. Protein Labeling in Live Cells for Immunological Applications. Bioconjug Chem 2018; 29:680-685. [DOI: 10.1021/acs.bioconjchem.7b00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Distinct functions of diaphanous-related formins regulate HIV-1 uncoating and transport. Proc Natl Acad Sci U S A 2017; 114:E6932-E6941. [PMID: 28760985 DOI: 10.1073/pnas.1700247114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diaphanous (Dia)-related formins (DRFs) coordinate cytoskeletal remodeling by controlling actin nucleation and microtubule (MT) stabilization to facilitate processes such as cell polarization and migration; yet the full extent of their activities remains unknown. Here, we uncover two discrete roles and functions of DRFs during early human immunodeficiency virus type 1 (HIV-1) infection. Independent of their actin regulatory activities, Dia1 and Dia2 facilitated HIV-1-induced MT stabilization and the intracellular motility of virus particles. However, DRFs also bound in vitro assembled capsid-nucleocapsid complexes and promoted the disassembly of HIV-1 capsid (CA) shell. This process, also known as "uncoating," is among the most poorly understood stages in the viral lifecycle. Domain analysis and structure modeling revealed that regions of Dia2 that bound viral CA and mediated uncoating as well as early infection contained coiled-coil domains, and that these activities were genetically separable from effects on MT stabilization. Our findings reveal that HIV-1 exploits discrete functions of DRFs to coordinate critical steps in early infection and identifies Dia family members as regulators of the poorly understood process of HIV-1 uncoating.
Collapse
|
50
|
De Conto F, Fazzi A, Razin SV, Arcangeletti MC, Medici MC, Belletti S, Chezzi C, Calderaro A. Mammalian Diaphanous-related formin-1 restricts early phases of influenza A/NWS/33 virus (H1N1) infection in LLC-MK2 cells by affecting cytoskeleton dynamics. Mol Cell Biochem 2017; 437:185-201. [PMID: 28744815 DOI: 10.1007/s11010-017-3107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022]
Abstract
Viruses depend on cellular machinery to efficiently replicate. The host cytoskeleton is one of the first cellular systems hijacked by viruses in order to ensure their intracellular transport and promote the development of infection. Our previous results demonstrated that stable microfilaments and microtubules interfered with human influenza A/NWS/33 virus (H1N1) infection in semi-permissive LLC-MK2 cells. Although formins play a key role in cytoskeletal remodelling, few studies addressed a possible role of these proteins in development of viral infection. Here, we have demonstrated that mammalian Diaphanous-related formin-1 (mDia1) is involved in the control of cytoskeleton dynamics during human influenza A virus infection. First, by employing cytoskeleton-perturbing drugs, we evidenced a cross-talk occurring between microtubules and microfilaments that also has implications on the intracellular localization of mDia1. In influenza A/NWS/33 virus-infected LLC-MK2 cells, mDia1 showed a highly dynamic intracellular localization and partially co-localized with actin and tubulin. A depletion of mDia1 by RNA-mediated RNA interference was found to improve the outcome of influenza A/NWS/33 virus infection and to increase the dynamics of microfilament and microtubule networks in LLC-MK2 cells. Consistent with these findings, observations made in epithelial respiratory cells from paediatric patients with acute respiratory disease assessed that the expression of mDia1 is stimulated by influenza A virus but not by respiratory syncytial virus. Taken together, the obtained results suggest that mDia1 restricts the initiation of influenza A/NWS/33 virus infection in LLC-MK2 cells by counteracting cytoskeletal dynamics.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Alessandra Fazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences and Lomonosow Moscow State University, Moscow, Russia
| | | | | | - Silvana Belletti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|