1
|
Viljoen A, Vercellone A, Chimen M, Gaibelet G, Mazères S, Nigou J, Dufrêne YF. Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. SCIENCE ADVANCES 2023; 9:eadf9498. [PMID: 37205764 PMCID: PMC10198640 DOI: 10.1126/sciadv.adf9498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The bacterial pathogen Mycobacterium tuberculosis binds to the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) on dendritic cells to evade the immune system. While DC-SIGN glycoconjugate ligands are ubiquitous among mycobacterial species, the receptor selectively binds pathogenic species from the M. tuberculosis complex (MTBC). Here, we unravel the molecular mechanism behind this intriguing selective recognition by means of a multidisciplinary approach combining single-molecule atomic force microscopy with Förster resonance energy transfer and bioassays. Molecular recognition imaging of mycobacteria demonstrates that the distribution of DC-SIGN ligands markedly differs between Mycobacterium bovis Bacille Calmette-Guérin (BCG) (model MTBC species) and Mycobacterium smegmatis (non-MTBC species), the ligands being concentrated into dense nanodomains on M. bovis BCG. Upon bacteria-host cell adhesion, ligand nanodomains induce the recruitment and clustering of DC-SIGN. Our study highlights the key role of clustering of both ligands on MTBC species and DC-SIGN host receptors in pathogen recognition, a mechanism that might be widespread in host-pathogen interactions.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Myriam Chimen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gérald Gaibelet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
3
|
Leonard H, Jiang X, Arshavsky-Graham S, Holtzman L, Haimov Y, Weizman D, Halachmi S, Segal E. Shining light in blind alleys: deciphering bacterial attachment in silicon microstructures. NANOSCALE HORIZONS 2022; 7:729-742. [PMID: 35616534 DOI: 10.1039/d2nh00130f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With new advances in infectious disease, antifouling surfaces, and environmental microbiology research comes the need to understand and control the accumulation and attachment of bacterial cells on a surface. Thus, we employ intrinsic phase-shift reflectometric interference spectroscopic measurements of silicon diffraction gratings to non-destructively observe the interactions between bacterial cells and abiotic, microstructured surfaces in a label-free and real-time manner. We conclude that the combination of specific material characteristics (i.e., substrate surface charge and topology) and characteristics of the bacterial cells (i.e., motility, cell charge, biofilm formation, and physiology) drive bacteria to adhere to a particular surface, often leading to a biofilm formation. Such knowledge can be exploited to predict antibiotic efficacy and biofilm formation, and enhance surface-based biosensor development, as well as the design of anti-biofouling strategies.
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yuri Haimov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Daniel Weizman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sarel Halachmi
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
4
|
Santore MM. Interplay of physico-chemical and mechanical bacteria-surface interactions with transport processes controls early biofilm growth: A review. Adv Colloid Interface Sci 2022; 304:102665. [PMID: 35468355 DOI: 10.1016/j.cis.2022.102665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
Abstract
Biofilms initiate when bacteria encounter and are retained on surfaces. The surface orchestrates biofilm growth through direct physico-chemical and mechanical interactions with different structures on bacterial cells and, in turn, through its influence on cell-cell interactions. Individual cells respond directly to a surface through mechanical or chemical means, initiating "surface sensing" pathways that regulate gene expression, for instance producing extra cellular matrix or altering phenotypes. The surface can also physically direct the evolving colony morphology as cells divide and grow. In either case, the physico-chemistry of the surface influences cells and cell communities through mechanisms that involve additional factors. For instance the numbers of cells arriving on a surface from solution relative to the generation of new cells by division depends on adhesion and transport kinetics, affecting early colony density and composition. Separately, the forces experienced by adhering cells depend on hydrodynamics, gravity, and the relative stiffnesses and viscoelasticity of the cells and substrate materials, affecting mechanosensing pathways. Physical chemistry and surface functionality, along with interfacial mechanics also influence cell-surface friction and control colony morphology, in particular 2D and 3D shape. This review focuses on the current understanding of the mechanisms in which physico-chemical interactions, deriving from surface functionality, impact individual cells and cell community behavior through their coupling with other interfacial processes.
Collapse
|
5
|
Laskowski D, Strzelecki J, Dahm H, Balter A. Adhesion heterogeneity of individual bacterial cells in an axenic culture studied by atomic force microscopy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:668-674. [PMID: 34060237 DOI: 10.1111/1758-2229.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The evaluation of bacterial adhesive properties at a single-cell level is critical for under standing the role of phenotypic heterogeneity in bacterial attachment and community formation. Bacterial population exhibits a wide variety of adhesive properties at the single-cell level, suggesting that bacterial adhesion is a rather complex process and some bacteria are prone to phenotypic heterogeneity. This heterogeneity was more pronounced for Escherichia coli, where two subpopulations were detected. Subpopulations exhibiting higher adhesion forces may be better adapted to colonize a new surface, especially during sudden changes in environmental conditions. Escherichia coli was characterized by a higher adhesion force, a stronger ability to form biofilm and larger heterogeneity index calculated in comparison with Bacillus subtilis. Higher adhesion forces are associated with a more efficient attachment of bacteria observed in an adhesion assay and might provide a basis for successful colonization, survival and multiplications in changing environment. The atomic force microscopy provides a platform for investigation of the adhesion heterogeneity of individual cells within a population, which may be expected to underpin further elucidation of the adaptive significance of phenotypic heterogeneity in a natural environment.
Collapse
Affiliation(s)
- Dariusz Laskowski
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Janusz Strzelecki
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudzia˛dzka 5, Toruń, 87-100, Poland
| | - Hanna Dahm
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Aleksander Balter
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudzia˛dzka 5, Toruń, 87-100, Poland
| |
Collapse
|
6
|
Dauben TJ, Dewald C, Firkowska-Boden I, Helbing C, Peisker H, Roth M, Bossert J, Jandt KD. Quantifying the relationship between surfaces' nano-contact point density and adhesion force of Candida albicans. Colloids Surf B Biointerfaces 2020; 194:111177. [PMID: 32569885 DOI: 10.1016/j.colsurfb.2020.111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
It has been recently recognized that controlled surface structuring on the nanometer scale is a successful strategy to endow different materials with antimicrobial properties. Despite many studies on bacterial interactions with nanostructured surfaces, a quantitative link between surface topography and bacterial adhesion is still missing. To quantitatively link cell adhesion data with topographical surface parameters, we performed single-cell spectroscopy on chemically identical surfaces with controlled nano-contact point density achieved by immobilization of gold nanoparticles (AuNP) on gold thin films. Such materials surfaces have previously shown antimicrobial (anti-adhesive) efficacy towards Gram-negative Escherichia coli cells. In the current study, the influence of nano-structured surfaces on the surface coverage and adhesion forces of clinically relevant Candida albicans (C. albicans), the fungus primarily associated with implant infections, was investigated to validate their antimicrobial potency against different microbial cells. The adhesion forces of C. albicans cells to nanostructured surfaces showed a decreasing trend with decreasing contact-point density and correlated well with the results of the respective C. albicans cell counts. The surfaces with the lowest contact-point density, 25 AuNP/μm², resulted in an average adhesion force of 5 nN, which was up to 5 times lower compared to control and 61 AuNP/μm² surfaces. Further, detailed analyses of force-distance curves revealed that the work of adhesion, and thus the energy required to remove the C. albicans cell from the surface is up to 10 times lower on 25 AuNP/μm² surfaces compared to unstructured surfaces. These findings show that a controlled tuning of nanostructured surfaces in terms of accessible nano-contact points is crucial to generate surface structures with enhanced antimicrobial properties. The gained knowledge can be further exploited for the design of biomaterials surfaces to prevent adhesion of some most commonly encountered pathogens.
Collapse
Affiliation(s)
- Thomas J Dauben
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Carolin Dewald
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| | - Christian Helbing
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Henrik Peisker
- Institute for Medical Microbiology and Hygiene, Saarland University Clinic, Kirrberger Straße Building 43, 66421 Homburg, Saar, Germany
| | - Martin Roth
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
7
|
Variations in the Morphology, Mechanics and Adhesion of Persister and Resister E. coli Cells in Response to Ampicillin: AFM Study. Antibiotics (Basel) 2020; 9:antibiotics9050235. [PMID: 32392749 PMCID: PMC7277365 DOI: 10.3390/antibiotics9050235] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Persister bacterial cells are great at surviving antibiotics. The phenotypic means by which they do that are underexplored. As such, atomic force microscope (AFM) was used to quantify the contributions of the surface properties of the outer membrane of multidrug resistance (MDR)-Escherichia coli Strains (A5 and A9) in the presence of ampicillin at minimum inhibitory concentration (MIC) (resistant cells) and at 20× MIC (persistent cells). The properties quantified were morphology, root mean square (RMS) roughness, adhesion, elasticity, and bacterial surface biopolymers' thickness and grafting density. Compared to untreated cells, persister cells of E. coli A5 increased their RMS, adhesion, apparent grafting density, and elasticity by 1.2, 3.4, 2.0, and 3.3 folds, respectively, and decreased their surface area and brush thickness by 1.3 and 1.2 folds, respectively. Similarly, compared to untreated cells, persister cells of E. coli A9 increased their RMS, adhesion and elasticity by 1.6, 4.4, and 4.5 folds, respectively; decreased their surface area and brush thickness by 1.4 and 1.6 folds, respectively; and did not change their grafting densities. Our results indicate that resistant and persistent E. coli A5 cells battled ampicillin by decreasing their size and going through dormancy. The resistant E. coli A9 cells resisted ampicillin through elongation, increased surface area, and adhesion. In contrast, the persistent E. coli A9 cells resisted ampicillin through increased roughness, increased surface biopolymers' grafting densities, increased cellular elasticities, and decreased surface areas. Mechanistic insights into how the resistant and persistent E. coli cells respond to ampicillin's treatment are instrumental to guide design efforts exploring the development of new antibiotics or renovating the existing antibiotics that may kill persistent bacteria by combining more than one mechanism of action.
Collapse
|
8
|
Uzoechi SC, Abu-Lail NI. Changes in Cellular Elasticities and Conformational Properties of Bacterial Surface Biopolymers of Multidrug-Resistant Escherichia coli (MDR- E. coli) Strains in Response to Ampicillin. ACTA ACUST UNITED AC 2019; 5. [PMID: 31179402 PMCID: PMC6550352 DOI: 10.1016/j.tcsw.2019.100019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The roles of the thicknesses and grafting densities of the surface biopolymers of four multi-drug resistant (MDR) Escherichia coli bacterial strains that varied in their biofilm formation in controlling cellular elasticities after exposure to ampicillin were investigated using atomic force microscopy. Exposure to ampicillin was carried out at minimum inhibitory concentrations for different duration times. Our results indicated that the four strains resisted ampicillin through variable mechanisms. Strain A5 did not change its cellular properties upon exposure to ampicillin and as such resisted ampicillin through dormancy. Strain H5 increased its biopolymer brush thickness, adhesion and biofilm formation and kept its roughness, surface area and cell elasticity unchanged upon exposure to ampicillin. As such, this strain likely limits the diffusion of ampicillin by forming strong biofilms. At three hours’ exposure to ampicillin, strains D4 and A9 increased their roughness, surface areas, biofilm formation, and brush thicknesses and decreased their elasticities. Therefore, at short exposure times to ampicillin, these strains resisted ampicillin through forming strong biofilms that impede ampicillin diffusion. At eight hours’ exposure to ampicillin, strains D4 and A9 collapsed their biopolymers, increased their apparent grafting densities and increased their cellular elasticities. Therefore, at long exposure times to ampicillin, cells utilized their higher rigidity to reduce the diffusion of ampicillin into the cells. The findings of this study clearly point to the potential of using the nanoscale characterization of MDR bacterial properties as a means to monitor cell modifications that enhance “phenotypic antibiotic resistance”.
Collapse
Affiliation(s)
- Samuel C Uzoechi
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Biomedical Technology, Federal University of Technology, Owerri, PMB 1526, Owerri, Nigeria
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249
| |
Collapse
|
9
|
Lasserre M, Fresia P, Greif G, Iraola G, Castro-Ramos M, Juambeltz A, Nuñez Á, Naya H, Robello C, Berná L. Whole genome sequencing of the monomorphic pathogen Mycobacterium bovis reveals local differentiation of cattle clinical isolates. BMC Genomics 2018; 19:2. [PMID: 29291727 PMCID: PMC5748942 DOI: 10.1186/s12864-017-4249-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world’s highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. Results We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. Conclusions This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this pathogen, evidencing the existence of greater genetic variability among strains than previously contemplated. Electronic supplementary material The online version of this article (10.1186/s12864-017-4249-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moira Lasserre
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Greif
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Miguel Castro-Ramos
- Departamento de Bacteriología, División de Laboratorios Veterinarios (DI.LA.VE.) "Miguel C. Rubino", Montevideo, Uruguay
| | - Arturo Juambeltz
- Departamento de Bacteriología, División de Laboratorios Veterinarios (DI.LA.VE.) "Miguel C. Rubino", Montevideo, Uruguay
| | - Álvaro Nuñez
- Departamento de Bacteriología, División de Laboratorios Veterinarios (DI.LA.VE.) "Miguel C. Rubino", Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Luisa Berná
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
10
|
Olson AP, Spies KB, Browning AC, Soneral PAG, Lindquist NC. Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates. Sci Rep 2017; 7:9135. [PMID: 28831104 PMCID: PMC5567233 DOI: 10.1038/s41598-017-08915-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/18/2017] [Indexed: 11/10/2022] Open
Abstract
Plasmonic hotspots generate a blinking Surface Enhanced Raman Spectroscopy (SERS) effect that can be processed using Stochastic Optical Reconstruction Microscopy (STORM) algorithms for super-resolved imaging. Furthermore, by imaging through a diffraction grating, STORM algorithms can be modified to extract a full SERS spectrum, thereby capturing spectral as well as spatial content simultaneously. Here we demonstrate SERS and STORM combined in this way for super-resolved chemical imaging using an ultra-thin silver substrate. Images of gram-positive and gram-negative bacteria taken with this technique show excellent agreement with scanning electron microscope images, high spatial resolution at <50 nm, and spectral SERS content that can be correlated to different regions. This may be used to identify unique chemical signatures of various cells. Finally, because we image through as-deposited, ultra-thin silver films, this technique requires no nanofabrication beyond a single deposition and looks at the cell samples from below. This allows direct imaging of the cell/substrate interface of thick specimens or imaging samples in turbid or opaque liquids since the optical path doesn’t pass through the sample. These results show promise that super-resolution chemical imaging may be used to differentiate chemical signatures from cells and could be applied to other biological structures of interest.
Collapse
Affiliation(s)
- Aeli P Olson
- Physics Department, Bethel University, St Paul, MN, 55112, USA
| | - Kelsey B Spies
- Biology Department, Bethel University, St Paul, MN, 55112, USA
| | - Anna C Browning
- Biology Department, Bethel University, St Paul, MN, 55112, USA
| | | | | |
Collapse
|
11
|
Page A, Perry D, Unwin PR. Multifunctional scanning ion conductance microscopy. Proc Math Phys Eng Sci 2017; 473:20160889. [PMID: 28484332 PMCID: PMC5415692 DOI: 10.1098/rspa.2016.0889] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.
Collapse
Affiliation(s)
- Ashley Page
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- MOAC Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
12
|
Fulazzaky MA, Abdullah S, Salim MR. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent. Data Brief 2016; 7:834-8. [PMID: 27077083 PMCID: PMC4816861 DOI: 10.1016/j.dib.2016.03.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 11/02/2022] Open
Abstract
The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.
Collapse
Affiliation(s)
- Mohamad Ali Fulazzaky
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bahru, Malaysia; Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bahru, Malaysia
| | - Shakila Abdullah
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bahru, Malaysia; Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
| | - Mohd Razman Salim
- Centre for Environmental Sustainability and Water Security, Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bahru, Malaysia; Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor Bahru, Malaysia
| |
Collapse
|
13
|
Mechanisms of Bacterial Colonization of Implants and Host Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 971:15-27. [DOI: 10.1007/5584_2016_173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:677-687. [PMID: 26656533 DOI: 10.1016/j.nano.2015.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/27/2022]
Abstract
UNLABELLED Engineered nanoparticles have the potential to expand the breadth of pulmonary therapeutics, especially as respiratory vaccines. Notably, cationic nanoparticles have been demonstrated to produce superior local immune responses following pulmonary delivery; however, the cellular mechanisms of this increased response remain unknown. To this end, we investigated the cellular response of lung APCs following pulmonary instillation of anionic and cationic charged nanoparticles. While nanoparticles of both surface charges were capable of trafficking to the draining lymph node and were readily internalized by alveolar macrophages, both CD11b and CD103 lung dendritic cell (DC) subtypes preferentially associated with cationic nanoparticles. Instillation of cationic nanoparticles resulted in the upregulation of Ccl2 and Cxc10, which likely contributes to the recruitment of CD11b DCs to the lung. In total, these cellular mechanisms explain the increased efficacy of cationic formulations as a pulmonary vaccine carrier and provide critical benchmarks in the design of pulmonary vaccine nanoparticles. FROM THE CLINICAL EDITOR Advance in nanotechnology has allowed the production of precise nanoparticles as vaccines. In this regard, pulmonary delivery has the most potential. In this article, the authors investigated the interaction of nanoparticles with various types of lung antigen presenting cells in an attempt to understand the cellular mechanisms. The findings would further help the future design of much improved vaccines for clinical use.
Collapse
|
15
|
Lynch F, Tomlinson S, Palombo EA, Harding IH. An epifluorescence-based evaluation of the effects of short-term particle association on the chlorination of surface water bacteria. WATER RESEARCH 2014; 63:199-208. [PMID: 25003212 DOI: 10.1016/j.watres.2014.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Investigations into particle-mediated chlorination resistance were undertaken for three different bacteria (Escherichia coli ATCC 25922 and environmental isolates of Pseudomonas fluorescens and Serratia marcescens) and three different surfaces (goethite, environmental particles and surface-modified environmental particles). P. fluorescens demonstrated greater hydrophobicity than both other strains and proved the most adherent bacterium over all substrata investigated. Particle-mediated resistance to chlorination was investigated using short bacteria-particle association times and activity assays that employed sensitive epifluorescent detection. Consistent with adhesive behaviours, the bacterial strain that demonstrated the greatest particle-mediated chlorination resistance was the environmental strain of P. fluorescens. Resistance was observed to vary with both bacteria and particle type, and demonstrated a moderate correlation with adhesion (r(2) ≥ 0.65). The short-term approach employed in our study demonstrates particle-mediated protection without the commonly assumed requirements of extracellular polymeric substances (EPS) or a large particle-based chlorine demand. Consequently, we have linked resistance with adhesion capacities and demonstrated a limit to resistance in the presence of additional particle protective sites (through increased turbidity) which appears to be driven by intra-population variance in bacterial surface characteristics. Finally, we observed important differences between behaviours of environmental versus laboratory-derived bacterial strains and particles, which highlight the importance of employing both approaches in characterising "real world" systems.
Collapse
Affiliation(s)
- Fiona Lynch
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia.
| | - Steven Tomlinson
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Ian H Harding
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| |
Collapse
|
16
|
Siegismund D, Schroeter A, Lüdecke C, Undisz A, Jandt KD, Roth M, Rettenmayr M, Schuster S, Germerodt S. Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces: application of point pattern analysis. BIOFOULING 2014; 30:1023-1033. [PMID: 25329612 DOI: 10.1080/08927014.2014.958999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dynamics of adhesion and growth of bacterial cells on biomaterial surfaces play an important role in the formation of biofilms. The surface properties of biomaterials have a major impact on cell adhesion processes, eg the random/non-cooperative adhesion of bacteria. In the present study, the spatial arrangement of Escherichia coli on different biomaterials is investigated in a time series during the first hours after exposure. The micrographs are analyzed via an image processing routine and the resulting point patterns are evaluated using second order statistics. Two main adhesion mechanisms can be identified: random adhesion and non-random processes. Comparison with an appropriate null-model quantifies the transition between the two processes with statistical significance. The fastest transition to non-random processes was found to occur after adhesion on PTFE for 2-3 h. Additionally, determination of cell and cluster parameters via image processing gives insight into surface influenced differences in bacterial micro-colony formation.
Collapse
Affiliation(s)
- Daniel Siegismund
- a Otto Schott Institute of Materials Research (OSIM) , Friedrich Schiller University Jena , Jena , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Syal K, Wang W, Shan X, Wang S, Chen HY, Tao N. Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 2014; 63:131-137. [PMID: 25064821 DOI: 10.1016/j.bios.2014.06.069] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/30/2022]
Abstract
Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.
Collapse
Affiliation(s)
- Karan Syal
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaonan Shan
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
18
|
Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling. Acta Biomater 2014; 10:267-75. [PMID: 24071002 DOI: 10.1016/j.actbio.2013.09.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 12/23/2022]
Abstract
It is general knowledge that bacteria/surface interactions depend on the surface topography. However, this well-known dependence has so far not been included in the modeling efforts. We propose a model for calculating interaction energies between spherical bacteria and arbitrarily structured 3-D surfaces, combining the Derjaguin, Landau, Verwey, Overbeek theory and an extended surface element integration method. The influence of roughness on the interaction (for otherwise constant parameters, e.g. surface chemistry, bacterial hydrophobicity) is quantified, demonstrating that common experimental approaches which consider amplitude parameters of the surface topography but which ignore spacing parameters fail to adequately describe the influence of surface roughness on bacterial adhesion. The statistical roughness profile parameters arithmetic average height (representing an amplitude parameter) and peak density (representing a spacing parameter) both exert a distinct influence on the interaction energy. The influence of peak density on the interaction energy increases with decreasing arithmetic average height and contributes significantly to the total interaction energy with an arithmetic average height below 70 nm. With the aid of the proposed model, different sensitivity ranges of the interaction between rough surfaces and bacteria are identified. On the nanoscale, the spacing parameter of the surface dominates the interaction, whereas on the microscale the amplitude parameter adopts the governing role.
Collapse
|
19
|
Monteil CL, Lafolie F, Laurent J, Clement JC, Simler R, Travi Y, Morris CE. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters. Environ Microbiol 2013; 16:2038-52. [PMID: 24118699 DOI: 10.1111/1462-2920.12296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/25/2013] [Indexed: 11/29/2022]
Abstract
The airborne plant pathogenic bacterium Pseudomonas syringae is ubiquitous in headwaters, snowpack and precipitation where its populations are genetically and phenotypically diverse. Here, we assessed its population dynamics during snowmelt in headwaters of the French Alps. We revealed a continuous and significant transport of P.syringae by these waters in which the population density is correlated with water chemistry. Via in situ observations and laboratory experiments, we validated that P.syringae is effectively transported with the snow melt and rain water infiltrating through the soil of subalpine grasslands, leading to the same range of concentrations as measured in headwaters (10(2) -10(5) CFU l(-1) ). A population structure analysis confirmed the relatedness between populations in percolated water and those above the ground (i.e. rain, leaf litter and snowpack). However, the transport study in porous media suggested that water percolation could have different efficiencies for different strains of P.syringae. Finally, leaching of soil cores incubated for up to 4 months at 8°C showed that indigenous populations of P.syringae were able to survive in subalpine soil under cold temperature. This study brings to light the underestimated role of hydrological processes involved in the long distance dissemination of P.syringae.
Collapse
Affiliation(s)
- Caroline L Monteil
- INRA, UR407 Pathologie Végétale, Domaine St Maurice, 84143, Montfavet cedex, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Holmes EC, Birren B, Galagan J, Feldman MW. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 2013; 9:e1003543. [PMID: 23966858 PMCID: PMC3744410 DOI: 10.1371/journal.ppat.1003543] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/24/2013] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), is estimated to infect a new host every second. While analyses of genetic data from natural populations of M.tb have emphasized the role of genetic drift in shaping patterns of diversity, the influence of natural selection on this successful pathogen is less well understood. We investigated the effects of natural selection on patterns of diversity in 63 globally extant genomes of M.tb and related pathogenic mycobacteria. We found evidence of strong purifying selection, with an estimated genome-wide selection coefficient equal to -9.5 × 10(-4) (95% CI -1.1 × 10(-3) to -6.8 × 10(-4)); this is several orders of magnitude higher than recent estimates for eukaryotic and prokaryotic organisms. We also identified different patterns of variation across categories of gene function. Genes involved in transport and metabolism of inorganic ions exhibited very low levels of non-synonymous polymorphism, equivalent to categories under strong purifying selection (essential and translation-associated genes). The highest levels of non-synonymous variation were seen in a group of transporter genes, likely due to either diversifying selection or local selective sweeps. In addition to selection, we identified other important influences on M.tb genetic diversity, such as a 25-fold expansion of global M.tb populations coincident with explosive growth in human populations (estimated timing 1684 C.E., 95% CI 1620-1713 C.E.). These results emphasize the parallel demographic histories of this obligate pathogen and its human host, and suggest that the dominant effect of selection on M.tb is removal of novel variants, with exceptions in an interesting group of genes involved in transportation and defense. We speculate that the hostile environment within a host imposes strict demands on M.tb physiology, and thus a substantial fitness cost for most new mutations. In this respect, obligate bacterial pathogens may differ from other host-associated microbes such as symbionts.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Departments of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|