1
|
Nolan LM, Webber MA, Filloux A. Throwing a spotlight on genomic dark matter: the power and potential of transposon-insertion sequencing. J Biol Chem 2025:110231. [PMID: 40378959 DOI: 10.1016/j.jbc.2025.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
Linking genotype to phenotype is a central goal in biology. In the microbiological field, transposon mutagenesis is a technique that has been widely used since the 1970's to facilitate this connection. The development of modern 'omics approaches and next-generation sequencing, have allowed high-throughput association between genes and their putative function. In 2009, four different variations of modern transposon-insertion sequencing (TIS) approaches were published, being referred to as transposon-directed insertion-site sequencing (TraDIS), transposon sequencing (Tn-seq), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). These approaches exploit a similar concept to allow estimation of the essentiality or contribution to fitness of each gene in any bacterial genome. The main rationale is to perform a comparative analysis of the abundance of specific transposon mutants under one or more selective conditions. The approaches themselves only vary in the transposon used for mutagenesis, and in the methodology used for sequencing library preparation. In this review, we discuss how TIS approaches have been used to facilitate a major shift in our fundamental understanding of bacterial biology in a range of areas. We focus on several aspects including pathogenesis, biofilm development, polymicrobial interactions in various ecosystems, and antimicrobial resistance. These studies have provided new insight into bacterial physiology and revealed predicted functions for hundreds of genes previously representing genomic 'dark matter'. We also discuss how TIS approaches have been used to understand complex bacterial systems and interactions and how future developments of TIS could continue to accelerate and enrich our understanding of bacterial biology.
Collapse
Affiliation(s)
- Laura M Nolan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, Norwich Research Park, Norwich, UK; Center for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Alain Filloux
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; Lee Kon Chian School of Medicine, Nanyang Technological University, Singapore; Imperial, Centre for Bacterial Resistance Biology, London, UK
| |
Collapse
|
2
|
Takahashi M, Hiraoka S, Matsumoto Y, Shibagaki R, Ujihara T, Maeda H, Seo S, Nagasaki K, Takeuchi H, Matsuzaki S. Host-encoded DNA methyltransferases modify the epigenome and host tropism of invading phages. iScience 2025; 28:112264. [PMID: 40241747 PMCID: PMC12003011 DOI: 10.1016/j.isci.2025.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/09/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Restriction modification (RM) systems are ubiquitous bacterial defense systems; however, some phages evade RM system and adapt to their bacterial hosts. In such cases, phages are thought to stochastically acquire DNA methylation from host-encoded DNA methyltransferases (MTases), facilitating host adaptation. However, no studies have directly compared the methylomes of host bacteria and their infecting phages. Here, we demonstrate the epigenetic landscape of adapted phages with diverse infection histories, focusing on the broad host-range phage KHP30T as its adapts to three Helicobacter pylori strains. Using a multistage infection system, we observed that the adapted phages displayed significantly high titers against the last infected H. pylori strain, suggesting an attendant change in host tropism. Single-molecule real-time sequencing revealed that methylated motifs were predominantly shared between the adapted phages and their most recent host. Our findings enhance our understanding of epigenetic phage-host interactions, which have significant implications for microbial ecology.
Collapse
Affiliation(s)
- Michiko Takahashi
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yuki Matsumoto
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Rikako Shibagaki
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Takako Ujihara
- Science Research Center, Kochi University, Nankoku, Kochi, Japan
| | - Hiromichi Maeda
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoru Seo
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Keizo Nagasaki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Hiroaki Takeuchi
- Department of Medical Laboratory Sciences, Health and Science, International University of Health and Welfare Graduate School, Narita, Chiba, Japan
| | | |
Collapse
|
3
|
Burroughs AM, Nicastro GG, Aravind L. The Lipocone Superfamily: A Unifying Theme In Metabolism Of Lipids, Peptidoglycan And Exopolysaccharides, Inter-Organismal Conflicts And Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632903. [PMID: 40236132 PMCID: PMC11996534 DOI: 10.1101/2025.01.14.632903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time. It includes previously studied enzymatic domains like the phosphatidylserine synthases (PTDSS1/2) and the TelC toxin domain from Streptococcus intermedius , the enigmatic VanZ proteins, the animal Serum Amyloid A (SAA) and a further host of uncharacterized proteins in a total of 30 families. Though the metazoan Wnts are catalytically inactive, we present evidence for a conserved active site across this superfamily, versions of which are consistently predicted to operate on head groups of either phospholipids or polyisoprenoid lipids, catalyzing transesterification and phosphate-containing head group severance reactions. We argue that this superfamily originated as membrane proteins, with one branch (including Wnt and SAA) evolving into soluble versions. By comprehensively analyzing contextual information networks derived from comparative genomics, we establish that they act in varied functional contexts, including regulation of membrane lipid composition, extracellular polysaccharide biosynthesis, and biogenesis of bacterial outer-membrane components, like lipopolysaccharides. On multiple occasions, members of this superfamily, including the bacterial progenitors of Wnt and SAA, have been recruited as effectors in biological conflicts spanning inter-organismal interactions and anti-viral immunity in both prokaryotes and eukaryotes. These findings establish a unifying theme in lipid biochemistry, explain the origins of Wnt signaling and provide new leads regarding immunity across the tree of life.
Collapse
|
4
|
Woldetsadik YA, Lazinski DW, Camilli A. A Vibrio cholerae anti-phage system depletes nicotinamide adenine dinucleotide to restrict virulent bacteriophages. mBio 2024; 15:e0245724. [PMID: 39377576 PMCID: PMC11559045 DOI: 10.1128/mbio.02457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
Bacteria and their predatory viruses (bacteriophages or phages) are in a perpetual molecular arms race. This has led to the evolution of numerous phage defensive systems in bacteria that are still being discovered, as well as numerous ways of interference or circumvention on the part of phages. Here, we identify a unique molecular battle between the classical biotype of Vibrio cholerae and virulent phages ICP1, ICP2, and ICP3. We show that classical biotype strains resist almost all isolates of these phages due to a 25-kb genomic island harboring several putative anti-phage systems. We observed that one of these systems, Nezha, encoding SIR2-like and helicase proteins, inhibited the replication of all three phages. Bacterial SIR2-like enzymes degrade the essential metabolic coenzyme nicotinamide adenine dinucleotide (NAD+), thereby preventing replication of the invading phage. In support of this mechanism, we identified one phage isolate, ICP1_2001, which circumvents Nezha by encoding two putative NAD+ regeneration enzymes. By restoring the NAD+ pool, we hypothesize that this system antagonizes Nezha without directly interacting with its proteins and should be able to antagonize other anti-phage systems that deplete NAD+.IMPORTANCEBacteria and phages are in a perpetual molecular arms race, with bacteria evolving an extensive arsenal of anti-phage systems and phages evolving mechanisms to overcome these systems. This study identifies a previously uncharacterized facet of the arms race between Vibrio cholerae and its phages. We identify an NAD+-depleting anti-phage defensive system called Nezha, potent against three virulent phages. Remarkably, one phage encodes proteins that regenerate NAD+ to counter the effects of Nezha. Without Nezha, the NAD+ regeneration genes are detrimental to the phage. Our study provides new insight into the co-evolutionary dynamics between bacteria and phages and informs the microbial ecology and phage therapy fields.
Collapse
Affiliation(s)
- Yishak A. Woldetsadik
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David W. Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
6
|
Pattnaik A, Pati S, Samal SK. Bacteriophage as a potential biotherapeutics to combat present-day crisis of multi-drug resistant pathogens. Heliyon 2024; 10:e37489. [PMID: 39309956 PMCID: PMC11416503 DOI: 10.1016/j.heliyon.2024.e37489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The rise of Multi-Drug Resistant (MDR) bacterial pathogens to most, if not all, currently available antibacterial agents has become a global threat. As a consequence of the antibiotic resistance epidemic, phage therapy has emerged as a potential alternative to conventional antibiotics. Despite the high therapeutic advantages of phage therapy, they have not yet been successfully used in the clinic due to various limitations of narrow host specificity compared to antibiotics, poor adhesion on biofilm surface, and susceptibility to both human and bacterial defences. This review focuses on the antibacterial effect of bacteriophage and their recent clinical trials with a special emphasis on the underlying mechanism of lytic phage action with the help of endolysin and holin. Furthermore, recent clinical trials of natural and modified endolysins and some marketed products have also been emphasized with future prospective.
Collapse
Affiliation(s)
- Ananya Pattnaik
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
| | | |
Collapse
|
7
|
Woldetsadik YA, Lazinski DW, Camilli A. A Vibrio cholerae Anti-Phage System Depletes Nicotinamide Adenine Dinucleotide to Restrict Virulent Bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599363. [PMID: 38948830 PMCID: PMC11212891 DOI: 10.1101/2024.06.17.599363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bacteria and their predatory viruses (bacteriophages or phages) are in a perpetual molecular arms race. This has led to the evolution of numerous phage defensive systems in bacteria that are still being discovered, as well as numerous ways of interference or circumvention on the part of phages. Here, we identify a unique molecular battle between the classical biotype of Vibrio cholerae and virulent phages ICP1, ICP2, and ICP3. We show that classical biotype strains resist almost all isolates of these phages due to a 25-kb genomic island harboring several putative anti-phage systems. We observed that one of these systems, Nezha, encoding SIR2-like and helicase proteins, inhibited the replication of all three phages. Bacterial SIR2-like enzymes degrade the essential metabolic coenzyme nicotinamide adenine dinucleotide (NAD+), thereby preventing replication of the invading phage. In support of this mechanism, we identified one phage isolate, ICP1_2001, which circumvents Nezha by encoding two putative NAD+ regeneration enzymes. By restoring the NAD+ pool, we hypothesize that this system antagonizes Nezha without directly interacting with either protein and should be able to antagonize other anti-phage systems that deplete NAD+.
Collapse
Affiliation(s)
- Yishak A. Woldetsadik
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David W. Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Antoine C, Laforêt F, Fall A, Blasdel B, Delcenserie V, Thiry D. K1 capsule-dependent phage-driven evolution in Escherichia coli leading to phage resistance and biofilm production. J Appl Microbiol 2024; 135:lxae109. [PMID: 38688866 DOI: 10.1093/jambio/lxae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
AIMS Understanding bacterial phage resistance mechanisms has implications for developing phage-based therapies. This study aimed to explore the development of phage resistance in Escherichia coli K1 isolates' to K1-ULINTec4, a K1-dependent bacteriophage. METHODS AND RESULTS Resistant colonies were isolated from two different strains (APEC 45 and C5), both previously exposed to K1-ULINTec4. Genome analysis and several parameters were assessed, including growth capacity, phage adsorption, phenotypic impact at capsular level, biofilm production, and virulence in the in vivo Galleria mellonella larvae model. One out of the six resistant isolates exhibited a significantly slower growth rate, suggesting the presence of a resistance mechanism altering its fitness. Comparative genomic analysis revealed insertion sequences in the region 2 of the kps gene cluster involved in the capsule biosynthesis. In addition, an immunoassay targeting the K1 capsule showed a very low positive reaction compared to the control. Nevertheless, microscopic images of resistant strains revealed the presence of capsules with a clustered organization of bacterial cells and biofilm assessment showed an increased biofilm production compared to the sensitive strains. In the G. mellonella model, larvae infected with phage-resistant isolates showed better survival rates than larvae infected with phage-sensitive strains. CONCLUSIONS A phage resistance mechanism was identified at the genomic level and had a negative impact on the K1 capsule production. The resistant isolates showed an increased biofilm production and a decreased virulence in vivo.
Collapse
Affiliation(s)
- Céline Antoine
- Department of Infectious and Parasitic Diseases, Veterinary bacteriology, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - Fanny Laforêt
- Department of Infectious and Parasitic Diseases, Veterinary bacteriology, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | | | - Bob Blasdel
- Vésale Bioscience, Vésale Pharmaceutica, 5310 Noville-sur-Mehaigne, Belgium
| | - Véronique Delcenserie
- Food Science Department, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| | - Damien Thiry
- Department of Infectious and Parasitic Diseases, Veterinary bacteriology, FARAH and Faculty of Veterinary Medicine, ULiège, 4000 Liège, Belgium
| |
Collapse
|
9
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Richard E, Darracq B, Littner E, Millot GA, Conte V, Cokelaer T, Engelstädter J, Rocha EPC, Mazel D, Loot C. Belt and braces: Two escape ways to maintain the cassette reservoir of large chromosomal integrons. PLoS Genet 2024; 20:e1011231. [PMID: 38578806 PMCID: PMC11023631 DOI: 10.1371/journal.pgen.1011231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/17/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Integrons are adaptive devices that capture, stockpile, shuffle and express gene cassettes thereby sampling combinatorial phenotypic diversity. Some integrons called sedentary chromosomal integrons (SCIs) can be massive structures containing hundreds of cassettes. Since most of these cassettes are non-expressed, it is not clear how they remain stable over long evolutionary timescales. Recently, it was found that the experimental inversion of the SCI of Vibrio cholerae led to a dramatic increase of the cassette excision rate associated with a fitness defect. Here, we question the evolutionary sustainability of this apparently counter selected genetic context. Through experimental evolution, we find that the integrase is rapidly inactivated and that the inverted SCI can recover its original orientation by homologous recombination between two insertion sequences (ISs) present in the array. These two outcomes of SCI inversion restore the normal growth and prevent the loss of cassettes, enabling SCIs to retain their roles as reservoirs of functions. These results illustrate a nice interplay between gene orientation, genome rearrangement, bacterial fitness and demonstrate how integrons can benefit from their embedded ISs.
Collapse
Affiliation(s)
- Egill Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, ED515, Paris, France
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, ED515, Paris, France
| | - Eloi Littner
- Sorbonne Université, ED515, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
- DGA CBRN Defence, Vert-le-Petit, France
| | - Gael A. Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Valentin Conte
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, Plateforme Technologique Biomics, Paris, France
| | - Jan Engelstädter
- School of the Environment, The University of Queensland, Brisbane, Australia
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
11
|
Netter Z, Dunham DT, Seed KD. Adaptation to bile and anaerobicity limits Vibrio cholerae phage adsorption. mBio 2023; 14:e0198523. [PMID: 37882540 PMCID: PMC10746206 DOI: 10.1128/mbio.01985-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Vibrio cholerae is the bacterial pathogen responsible for cholera, a diarrheal disease that impacts people in areas without access to potable water. In regions that lack such infrastructure, cholera represents a large proportion of disease outbreaks. Bacteriophages (phages, viruses that infect bacteria) have recently been examined as potential therapeutic and prophylactic agents to treat and prevent bacterial disease outbreaks like cholera due to their specificity and stability. This work examines the interaction between V. cholerae and vibriophages in consideration for a cholera prophylaxis regimen (M. Yen, L. S. Cairns, and A. Camilli, Nat Commun 8:14187, 2017, https://doi.org/10.1038/ncomms14187) in the context of stimuli found in the intestinal environment. We discover that common signals in the intestinal environment induce cell surface modifications in V. cholerae that also restrict some phages from binding and initiating infection. These findings could impact considerations for the design of phage-based treatments, as phage infection appears to be limited by bacterial adaptations to the intestinal environment.
Collapse
Affiliation(s)
- Zoe Netter
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
12
|
Beckman DA, Waters CM. Vibrio cholerae phage ICP3 requires O1 antigen for infection. Infect Immun 2023; 91:e0002623. [PMID: 37594274 PMCID: PMC10501212 DOI: 10.1128/iai.00026-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023] Open
Abstract
In its natural aquatic environment, the bacterial pathogen Vibrio cholerae, the causative agent of the enteric disease cholera, is in constant competition with bacterial viruses known as phages. Following ICP3 infection, V. cholerae cultures that exhibited phage killing always recovered overnight, and clones isolated from these regrowth populations exhibited complete resistance to subsequent infections. Whole-genome sequencing of these resistant mutants revealed seven distinct mutations in genes encoding for enzymes involved in O1 antigen biosynthesis, demonstrating that the O1 antigen is a previously uncharacterized putative receptor of ICP3. To further elucidate the specificity of the resistance conferred by these mutations, they were challenged with the V. cholerae-specific phages ICP1 and ICP2. All seven O1 antigen mutants demonstrated pan-resistance to ICP1 but not ICP2, which utilizes the OmpU outer membrane protein as a receptor. We show that resistant mutations to ICP1 and ICP3 evolve at a significantly higher frequency than ICP2, but these mutations have a significant fitness tradeoff to V. cholerae and are unable to evolve in the presence of an antimicrobial that mimics host cell defensins.
Collapse
Affiliation(s)
- Drew A. Beckman
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Pierlé SA, Lang M, López-Igual R, Krin E, Fourmy D, Kennedy SP, Val ME, Baharoglu Z, Mazel D. Identification of the active mechanism of aminoglycoside entry in V. cholerae through characterization of sRNA ctrR, regulating carbohydrate utilization and transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549712. [PMID: 37502966 PMCID: PMC10370196 DOI: 10.1101/2023.07.19.549712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The possible active entry of aminoglycosides in bacterial cells has been debated since the development of this antibiotic family. Here we report the identification of their active transport mechanism in Vibrio species. We combined genome-wide transcriptional analysis and fitness screens to identify alterations driven by treatment of V. cholerae with sub-minimum inhibitory concentrations (sub-MIC) of the aminoglycoside tobramycin. RNA-seq data showed downregulation of the small non-coding RNA ncRNA586 during such treatment, while Tn-seq revealed that inactivation of this sRNA was associated with improved fitness in the presence of tobramycin. This sRNA is located near sugar transport genes and previous work on a homologous region in Vibrio tasmaniensis suggested that this sRNA stabilizes gene transcripts for carbohydrate transport and utilization, as well as phage receptors. The role for ncRNA586, hereafter named ctrR, in the transport of both carbohydrates and aminoglycosides, was further investigated. Flow cytometry on cells treated with a fluorescent aminoglycoside confirmed the role of ctrR and of carbohydrate transporters in differential aminoglycoside entry. Despite sequence diversity, ctrR showed functional conservation across the Vibrionales. This system in directly modulated by carbon sources, suggesting regulation by carbon catabolite repression, a widely conserved mechanism in Gram-negative bacteria, priming future research on aminoglycoside uptake by sugar transporters in other bacterial species.
Collapse
Affiliation(s)
- Sebastian A. Pierlé
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Rocío López-Igual
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Dominique Fourmy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sean P. Kennedy
- Institut Pasteur, Université Paris Cité, USR 3756 CNRS, Department of Computational Biology, 75015 Paris, France
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| |
Collapse
|
14
|
Beckman DA, Waters CM. Vibrio cholerae phage ICP3 requires O1 antigen for infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526503. [PMID: 36778411 PMCID: PMC9915646 DOI: 10.1101/2023.01.31.526503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In its natural aquatic environment, the bacterial pathogen Vibrio cholerae, the causative agent of the enteric disease cholera, is in constant competition with bacterial viruses known as phages. Following ICP3 infection, V. cholerae cultures that exhibited phage killing always recovered overnight, and clones isolated from these regrowth populations exhibited complete resistance to subsequent infections. Whole genome sequencing of these resistant mutants revealed seven distinct mutations in genes encoding for enzymes involved in O1 antigen biosynthesis, demonstrating that the O1 antigen is a previously uncharacterized putative receptor of ICP3. To further elucidate the specificity of the resistance conferred by these mutations, they were challenged with the V. cholerae-specific phages ICP1 and ICP2. All seven O1 antigen mutants demonstrated pan-resistance to ICP1 but not ICP2, which utilizes the OmpU outer membrane protein as a receptor. We show that resistant mutations to ICP1 and ICP3 evolve at a significantly higher frequency than ICP2, but these mutations have a significant fitness tradeoff to V. cholerae and are unable to evolve in the presence of an antimicrobial that mimics host cell defensins.
Collapse
|
15
|
Ioannou P, Baliou S, Samonis G. Bacteriophages in Infectious Diseases and Beyond-A Narrative Review. Antibiotics (Basel) 2023; 12:1012. [PMID: 37370331 PMCID: PMC10295561 DOI: 10.3390/antibiotics12061012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The discovery of antibiotics has revolutionized medicine and has changed medical practice, enabling successful fighting of infection. However, quickly after the start of the antibiotic era, therapeutics for infectious diseases started having limitations due to the development of antimicrobial resistance. Since the antibiotic pipeline has largely slowed down, with few new compounds being produced in the last decades and with most of them belonging to already-existing classes, the discovery of new ways to treat pathogens that are resistant to antibiotics is becoming an urgent need. To that end, bacteriophages (phages), which are already used in some countries in agriculture, aquaculture, food safety, and wastewater plant treatments, could be also used in clinical practice against bacterial pathogens. Their discovery one century ago was followed by some clinical studies that showed optimistic results that were limited, however, by some notable obstacles. However, the rise of antibiotics during the next decades left phage research in an inactive status. In the last decades, new studies on phages have shown encouraging results in animals. Hence, further studies in humans are needed to confirm their potential for effective and safe treatment in cases where there are few or no other viable therapeutic options. This study reviews the biology and applications of phages for medical and non-medical uses in a narrative manner.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine Department, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
16
|
Oyejobi GK, Zhang X, Xiong D, Ogolla F, Xue H, Wei H. Phage-bacterial evolutionary interactions: experimental models and complications. Crit Rev Microbiol 2023; 49:283-296. [PMID: 35358006 DOI: 10.1080/1040841x.2022.2052793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phage treatment of bacterial infections has offered some hope even as the crisis of antimicrobial resistance continues to be on the rise. However, bacterial resistance to phage is another looming challenge capable of undermining the effectiveness of phage therapy. Moreover, the consideration of including phage therapy in modern medicine calls for more careful research around every aspect of phage study. In an attempt to adequately prepare for the events of phage resistance, many studies have attempted to experimentally evolve phage resistance in different bacterial strains, as well as train phages to evolve counter-infectivity of resistant bacterial mutants, in view of answering such questions as coevolutionary dynamics between phage and bacteria, mechanisms of phage resistance, fitness costs of phage resistance on bacteria, etc. In this review, we summarised many such studies and by careful examination, highlighted critical issues to the outcome of phage therapy. We also discuss the insufficiency of many of these in vitro studies to represent actual disease conditions during phage application, alongside other complications that exist in phage-bacterial evolutionary interactions. Conclusively, we present the exploitation of phage-bacterial interactions for successful infection managements, as well as some future perspectives to direct phage research.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Department of Microbiology, Osun State University, Osogbo, Nigeria.,Organization of African Academic Doctors, Nairobi, Kenya
| | - Xiaoxu Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Dongyan Xiong
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Faith Ogolla
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China.,Organization of African Academic Doctors, Nairobi, Kenya.,Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Heng Xue
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Nairobi, Kenya
| |
Collapse
|
17
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
18
|
Khalifa AA, Hussien SM. The promising role of bacteriophage therapy in managing total hip and knee arthroplasty related periprosthetic joint infection, a systematic review. J Exp Orthop 2023; 10:18. [PMID: 36786898 PMCID: PMC9929010 DOI: 10.1186/s40634-023-00586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Total hip and knee arthroplasty periprosthetic joint infection (PJI) poses a management dilemma owing to the emergence of resistant organisms. A promising option is Bacteriophage therapy (BT) was used as an adjuvant for PJI management, aiming at treating resistant infections, decreasing morbidity, and mortality. The current review aimed to demonstrate the role and safety of using BT as an adjuvant to treat PJIs. METHODS A systematic search was performed through four databases (Embase, PubMed, Web of Science, and Scopus) up to March 2022, according to the predetermined inclusion and exclusion criteria. RESULTS Our systematic review included 11 case reports of 13 patients in which 14 joints (11 TKAs and three THAs) were treated. The patients' average age was 73.7 years, underwent an average of 4.5 previous surgeries. The most common organism was the Staphylococcus aureus species. All patients underwent surgical debridement; for the 13 patients, eight received a cocktail, and five received monophage therapy. All patients received postoperative suppressive antibiotic therapy. After an average follow-up of 14.5 months, all patients had satisfactory outcomes. No recurrence of infection in any patient. Transaminitis complicating BT was developed in three patients, needed stoppage in only one, and the condition was reversible and non-life-threatening. CONCLUSION BT is a safe and potentially effective adjuvant therapy for treating resistant and relapsing PJIs. However, further investigations are needed to clarify some BT-related issues to create effective and reproducible therapeutics. Furthermore, new ethical regulations should be implemented to facilitate its widespread use.
Collapse
Affiliation(s)
- Ahmed A. Khalifa
- Orthopaedic Department, Qena Faculty of Medicine and University Hospital, South Valley University, Kilo 6 Qena-Safaga Highway, Qena, 83523 Egypt
- Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
19
|
Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane-A Molecular Simulation Approach. Int J Mol Sci 2023; 24:ijms24032005. [PMID: 36768325 PMCID: PMC9916935 DOI: 10.3390/ijms24032005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
A short antimicrobial peptide (AMP), rich in tryptophan and arginine (P6-HRWWRWWRR-NH2), was used in molecular dynamics (MD) simulations to investigate the interaction between AMPs and lipopolysaccharides (LPS) from two E. coli outer membrane (OM) membrane models. The OM of Gram-negative bacteria is an asymmetric bilayer, with the outer layer consisting exclusively of lipopolysaccharide molecules and the lower leaflet made up of phospholipids. The mechanisms by which short AMPs permeate the OM of Gram-negative bacteria are not well understood at the moment. For this study, two types of E. coli OM membrane models were built with (i) smooth LPS composed of lipid A, K12 core and O21 O-antigen, and (ii) rough type LPS composed of lipid A and R1 core. An OmpF monomer from E. coli was embedded in both membrane models. MD trajectories revealed that AMP insertion in the LPS layer was facilitated by the OmpF-created gap and allowed AMPs to form hydrogen bonds with the phosphate groups of inner core oligosaccharides. OM proteins such as OmpF may be essential for the permeation of short AMPs such as P6 by exposing the LPS binding site or even by direct translocation of AMPs across the OM.
Collapse
|
20
|
Leprince A, Mahillon J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023; 15:196. [PMID: 36680236 PMCID: PMC9863714 DOI: 10.3390/v15010196] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The phage life cycle is a multi-stage process initiated by the recognition and attachment of the virus to its bacterial host. This adsorption step depends on the specific interaction between bacterial structures acting as receptors and viral proteins called Receptor Binding Proteins (RBP). The adsorption process is essential as it is the first determinant of phage host range and a sine qua non condition for the subsequent conduct of the life cycle. In phages belonging to the Caudoviricetes class, the capsid is attached to a tail, which is the central player in the adsorption as it comprises the RBP and accessory proteins facilitating phage binding and cell wall penetration prior to genome injection. The nature of the viral proteins involved in host adhesion not only depends on the phage morphology (i.e., myovirus, siphovirus, or podovirus) but also the targeted host. Here, we give an overview of the adsorption process and compile the available information on the type of receptors that can be recognized and the viral proteins taking part in the process, with the primary focus on phages infecting Gram-positive bacteria.
Collapse
|
21
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
22
|
Bolsan AC, Rodrigues HC, Abilhôa HCZ, Hollas CE, Venturin B, Gabiatti NC, Bortoli M, Kunz A, De Prá MC. Bacteriophages in wastewater treatment: can they be an approach to optimize biological treatment processes? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89889-89898. [PMID: 36367646 DOI: 10.1007/s11356-022-24000-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we explore the applications of bacteriophages and the advantages of using these viruses to control undesirable organisms in wastewater treatment plants. Based on this, this paper reviewed the literature on the subject by performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals through 2021. We obtained 806 publications, of which 40% were published in the last 5 years, demonstrating an increase in interest in the subject. These articles analyzed, bacteriophages in treatment plants were strongly linked to bacteria such as Escherichia coli and related to disinfection, inactivation, sewage, and wastewater, in addition, biocontrol studies have gained prominence in recent years, particularly due to the resistance of microorganisms to antibiotics. Studies have shown that bacteriophages have great potential for application in treatment systems to control unwanted processes and act as valuable economic and environmental tools to improve the efficiency of various treatment technologies. Although these viruses have already been studied in various applications to optimize treatment plant processes, technology transfer remains a challenge due to the limitations of the technique-such as physicochemical factors related to the environment-and the complexity of biological systems. The research focusing on application strategies in conjunction with molecular biology techniques can expand this study area, enabling the discovery of new bacteriophages.
Collapse
Affiliation(s)
- Alice Chiapetti Bolsan
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil
| | - Heloisa Campeão Rodrigues
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil
| | - Hélen Caroline Zonta Abilhôa
- Universidade Tecnológica Federal Do Paraná, Campus Francisco Beltrão, UTFPR-FB/PPGEA-FB, Francisco Beltrão, PR, Brazil
| | - Camila Ester Hollas
- Universidade Estadual Do Oeste Do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - Bruno Venturin
- Universidade Estadual Do Oeste Do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
| | - Naiana Cristine Gabiatti
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil
| | - Marcelo Bortoli
- Universidade Tecnológica Federal Do Paraná, Campus Francisco Beltrão, UTFPR-FB/PPGEA-FB, Francisco Beltrão, PR, Brazil
| | - Airton Kunz
- Universidade Estadual Do Oeste Do Paraná, UNIOESTE/CCET/PGEAGRI, Cascavel, PR, Brazil
- Embrapa Suínos E Aves, Concórdia, SC, 89715-899, Brazil
| | - Marina Celant De Prá
- Universidade Tecnológica Federal Do Paraná, Campus Dois Vizinhos, UTFPR-DV/PPGBIOTEC-DV, Dois Vizinhos, PR, Brazil.
| |
Collapse
|
23
|
Alam MT, Mavian C, Paisie TK, Tagliamonte MS, Cash MN, Angermeyer A, Seed KD, Camilli A, Maisha FM, Senga RKK, Salemi M, Morris JG, Ali A. Emergence and Evolutionary Response of Vibrio cholerae to Novel Bacteriophage, Democratic Republic of the Congo 1. Emerg Infect Dis 2022; 28:2482-2490. [PMID: 36417939 PMCID: PMC9707599 DOI: 10.3201/eid2812.220572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cholera causes substantial illness and death in Africa. We analyzed 24 toxigenic Vibrio cholerae O1 strains isolated in 2015-2017 from patients in the Great Lakes region of the Democratic Republic of the Congo. Strains originating in southern Asia appeared to be part of the T10 introduction event in eastern Africa. We identified 2 main strain lineages, most recently a lineage corresponding to sequence type 515, a V. cholerae cluster previously reported in the Lake Kivu region. In 41% of fecal samples from cholera patients, we also identified a novel ICP1 (Bangladesh cholera phage 1) bacteriophage, genetically distinct from ICP1 isolates previously detected in Asia. Bacteriophage resistance occurred in distinct clades along both internal and external branches of the cholera phylogeny. This bacteriophage appears to have served as a major driver for cholera evolution and spread, and its appearance highlights the complex evolutionary dynamic that occurs between predatory phage and bacterial host.
Collapse
|
24
|
Sepúlveda D, Hansen MJ, Dalsgaard I, Skov J, Lorenzen N. Antigenic variability of Vibrio anguillarum serotype O2a: A hurdle for vaccine efficacy against vibriosis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:300-311. [PMID: 36202204 DOI: 10.1016/j.fsi.2022.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Despite vaccination, outbreaks of vibriosis still occur in sea-reared rainbow trout in Denmark. Vibriosis outbreaks are caused mainly by V. anguillarum serotypes O1 and O2a, and bacterins of both serotypes are included in the commonly used vaccine against this disease in Danish aquaculture. However, while the strains belonging to serotype O1 are genetically similar, the strains belonging to serotype O2a are highly diverse. This work aimed first at examining how the antibody response and protection induced by bacterin-based vaccines were affected by the antigenic variability within V. anguillarum serotype O2a strains. Following vaccination of rainbow trout with either a commercial or an experimental vaccine, specific antibody reactivity in serum from vaccinated fish was examined by ELISA against 23 strains of V. anguillarum serotype O2a (VaO2a). The strains were divided into 4 distinct subgroups according to the observed detection pattern. Seven strains were strongly recognized only by sera from fish vaccinated with the experimental vaccine (EV-I antisera), while 13 other strains were primarily recognized by sera from fish vaccinated with the commercial vaccine (CV antisera). Two strains were recognized by both EV-I and CV antisera, but with intermediate reactivity, while one strain was not recognized at all. A partly similar recognition pattern was observed when purified lipopolysaccharide (LPS) was used as antigen in the examination of antibody reactivity in Western blotting. The level of protection was highly dependent on both the vaccine and the strain used for challenge and showed no consistent correlation with antibody reactivity. Secondly, we attempted to use a bacterin vaccine based on one of the V. anguillarum O2a strains intermediately recognized by both EV-I and CV antisera to investigate whether that could potentially provide protection across strain variability. The immunized fish did mount a cross-reactive antibody response, but protection still varied depending on the strain used for challenge. Interestingly, the grouping of strains according to antibody reactivity correlated not only with genotyping based on single nucleotides polymorphisms analysis (SNP) but also with variability in the accessory genome, indicating that presence or absence of protein antigens or proteins associated with the biosynthesis of antigenic epitopes may explain the observed distinct serological subgrouping within VaO2a strains by trout immune sera. In terms of vaccination against VaO2a, our results demonstrate that it is important to take (local) antigen variations into account when using bacterin-based vaccines but also that alternatives to traditional bacterin-based vaccines might be needed to induce protection against the highly virulent Vibrio anguillarum serotype O2a strains.
Collapse
Affiliation(s)
- Dagoberto Sepúlveda
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark.
| | - Mie Johanne Hansen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Jakob Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Niels Lorenzen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens, Lyngby, Denmark
| |
Collapse
|
25
|
Soto W. Emerging Research Topics in the Vibrionaceae and the Squid- Vibrio Symbiosis. Microorganisms 2022; 10:microorganisms10101946. [PMID: 36296224 PMCID: PMC9607633 DOI: 10.3390/microorganisms10101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The Vibrionaceae encompasses a cosmopolitan group that is mostly aquatic and possesses tremendous metabolic and genetic diversity. Given the importance of this taxon, it deserves continued and deeper research in a multitude of areas. This review outlines emerging topics of interest within the Vibrionaceae. Moreover, previously understudied research areas are highlighted that merit further exploration, including affiliations with marine plants (seagrasses), microbial predators, intracellular niches, and resistance to heavy metal toxicity. Agarases, phototrophy, phage shock protein response, and microbial experimental evolution are also fields discussed. The squid-Vibrio symbiosis is a stellar model system, which can be a useful guiding light on deeper expeditions and voyages traversing these "seas of interest". Where appropriate, the squid-Vibrio mutualism is mentioned in how it has or could facilitate the illumination of these various subjects. Additional research is warranted on the topics specified herein, since they have critical relevance for biomedical science, pharmaceuticals, and health care. There are also practical applications in agriculture, zymology, food science, and culinary use. The tractability of microbial experimental evolution is explained. Examples are given of how microbial selection studies can be used to examine the roles of chance, contingency, and determinism (natural selection) in shaping Earth's natural history.
Collapse
Affiliation(s)
- William Soto
- Integrated Science Center Rm 3035, Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|
26
|
Zang Z, Park KJ, Gerdt JP. A Metabolite Produced by Gut Microbes Represses Phage Infections in Vibrio cholerae. ACS Chem Biol 2022; 17:2396-2403. [PMID: 35960903 PMCID: PMC10981169 DOI: 10.1021/acschembio.2c00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. Bacteriophages that prey on V. cholerae may be employed as phage therapy against cholera. However, the influence of the chemical environment on the infectivity of vibriophages has been unexplored. Here, we discovered that a common metabolite produced by gut microbes─linear enterobactin (LinEnt), represses vibriophage proliferation. We found that the antiphage effect by LinEnt is due to iron sequestration and that multiple forms of iron sequestration can protect V. cholerae from phage predation. This discovery emphasizes the significance that the chemical environment can have on natural phage infectivity and phage-based interventions.
Collapse
Affiliation(s)
- Zhiyu Zang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Kyoung Jin Park
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
27
|
Abstract
EMBL-EBI The European Bioinformatics Institute; E. coli Escherichia coli; E. faecalis Enterobacter faecalis; B. fragilis Bacteroides fragilis; B. vulgatus Bacteroides vulgatus; SaPIs Staphylococcus aureus pathogenicity islands; ARGs Antibiotic resistance genes; STEC Shiga toxigenic E. coli; Stx Shiga toxin; BLAST Basic Local Alignment Search Tool; TSST-1 Toxic shock toxin 1; RBPs Receptor-binding proteins; LPS lipopolysaccharide; OMVs Outer membrane vesicles; PT Phosphorothioate; BREX Bacteriophage exclusion; OCR Overcome classical restriction; Pgl Phage growth limitation; DISARM Defense island system associated with restrictionmodification; R-M system Restriction-modification system; BREX system Bacteriophage exclusion system; CRISPR Clustered regularly interspaced short palindromic repeats; Cas CRISPR-associated; PAMs Prospacer adjacent motifs; crRNA CRISPR RNA; SIE; OMPs; Superinfection exclusion; Outer membrane proteins; Abi Abortive infection; TA Toxin-antitoxin; TLR Toll-like receptor; APCs Antigen-presenting cells; DSS Dextran sulfate sodium; IELs Intraepithelial lymphocytes; FMT Fecal microbiota transfer; IFN-γ Interferon-gamma; IBD Inflammatory bowel disease; AgNPs Silver nanoparticles; MDSC Myeloid-derived suppressor cell; CRC Colorectal cancer; VLPs Virus-like particles; TMP Tape measure protein; PSMB4 Proteasome subunit beta type-4; ALD Alcohol-related liver disease; GVHD Graft-versus-host disease; ROS Reactive oxygen species; RA Rheumatoid arthritis; CCP Cyclic citrullinated protein; AMGs Accessory metabolic genes; T1DM Type 1 diabetes mellitus; T2DM Type 2 diabetes mellitus; SCFAs Short-chain fatty acids; GLP-1 Glucagon-like peptide-1; A. baumannii Acinetobacter baumannii; CpG Deoxycytidylinate-phosphodeoxyguanosine; PEG Polyethylene glycol; MetS Metabolic syndrome; OprM Outer membrane porin M.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Ding Kefeng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Colorectal Surgery and Oncology, Cancer Center Zhejiang University, Hangzhou, China,CONTACT Ding Kefeng Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Building 6 room 2018, Hangzhou, Zhejiang310009, China
| |
Collapse
|
28
|
LeGault KN, Barth ZK, DePaola P, Seed KD. A phage parasite deploys a nicking nuclease effector to inhibit viral host replication. Nucleic Acids Res 2022; 50:8401-8417. [PMID: 35066583 PMCID: PMC9410903 DOI: 10.1093/nar/gkac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
PLEs (phage-inducible chromosomal island-like elements) are phage parasites integrated into the chromosome of epidemic Vibrio cholerae. In response to infection by its viral host ICP1, PLE excises, replicates and hijacks ICP1 structural components for transduction. Through an unknown mechanism, PLE prevents ICP1 from transitioning to rolling circle replication (RCR), a prerequisite for efficient packaging of the viral genome. Here, we characterize a PLE-encoded nuclease, NixI, that blocks phage development likely by nicking ICP1's genome as it transitions to RCR. NixI-dependent cleavage sites appear in ICP1's genome during infection of PLE(+) V. cholerae. Purified NixI demonstrates in vitro nuclease activity specifically for sites in ICP1's genome and we identify a motif that is necessary for NixI-mediated cleavage. Importantly, NixI is sufficient to limit ICP1 genome replication and eliminate progeny production, representing the most inhibitory PLE-encoded mechanism revealed to date. We identify distant NixI homologs in an expanded family of putative phage parasites in vibrios that lack nucleotide homology to PLEs but nonetheless share genomic synteny with PLEs. More generally, our results reveal a previously unknown mechanism deployed by phage parasites to limit packaging of their viral hosts' genome and highlight the prominent role of nuclease effectors as weapons in the arms race between antagonizing genomes.
Collapse
Affiliation(s)
- Kristen N LeGault
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Peter DePaola
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, 271 Koshland Hall, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Knecht LE, Born Y, Pelludat C, Pothier JF, Smits THM, Loessner MJ, Fieseler L. Spontaneous Resistance of Erwinia amylovora Against Bacteriophage Y2 Affects Infectivity of Multiple Phages. Front Microbiol 2022; 13:908346. [PMID: 35979490 PMCID: PMC9376448 DOI: 10.3389/fmicb.2022.908346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Broad application of antibiotics gave rise to increasing numbers of antibiotic resistant bacteria. Therefore, effective alternatives are currently investigated. Bacteriophages, natural predators of bacteria, could work as such an alternative. Although phages can be highly effective at eliminating specific bacteria, phage resistance can be observed after application. The nature of this resistance, however, can differ depending on the phage. Exposing Erwinia amylovora CFBP 1430, the causative agent of fire blight, to the different phages Bue1, L1, S2, S6, or M7 led to transient resistance. The bacteria reversed to a phage sensitive state after the phage was eliminated. When wild type bacteria were incubated with Y2, permanently resistant colonies (1430Y2R) formed spontaneously. In addition, 1430Y2R revealed cross-resistance against other phages (Bue1) or lowered the efficiency of plating (L1, S2, and S6). Pull down experiments revealed that Y2 is no longer able to bind to the mutant suggesting mutation or masking of the Y2 receptor. Other phages tested were still able to bind to 1430Y2R. Bue1 was observed to still adsorb to the mutant, but no host lysis was found. These findings indicated that, in addition to the alterations of the Y2 receptor, the 1430Y2R mutant might block phage attack at different stage of infection. Whole genome sequencing of 1430Y2R revealed a deletion in the gene with the locus tag EAMY_2231. The gene, which encodes a putative galactosyltransferase, was truncated due to the resulting frameshift. The mutant 1430Y2R was monitored for potential defects or fitness loss. Weaker growth was observed in LB medium compared to the wild type but not in minimal medium. Strain 1430Y2R was still highly virulent in blossoms even though amylovoran production was observed to be reduced. Additionally, LPS structures were analyzed and were clearly shown to be altered in the mutant. Complementation of the truncated EAMY_2231 in trans restored the wild type phenotype. The truncation of EAMY_2231 can therefore be associated with manifold modifications in 1430Y2R, which can affect different phages simultaneously.
Collapse
Affiliation(s)
- Leandra E. Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- *Correspondence: Lars Fieseler,
| |
Collapse
|
30
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
31
|
Aaron J, van Zyl LJ, Dicks LMT. Isolation and Characterization of Lytic Proteus Virus 309. Viruses 2022; 14:1309. [PMID: 35746779 PMCID: PMC9229222 DOI: 10.3390/v14061309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Proteus mirabilis is frequently associated with complicated urinary tract infections (UTIs) and is the main cause of catheter-associated urinary tract infections (CAUTIs). Treatment of such infections is complicated and challenging due to the biofilm forming abilities of P. mirabilis. If neglected or mistreated, infections may lead to life-threating conditions such as cystitis, pyelonephritis, kidney failure, and bacteremia that may progress to urosepsis. Treatment with antibiotics, especially in cases of recurring and persistent infections, leads to the development of resistant strains. Recent insights into phage therapy and using phages to coat catheters have been evaluated with many studies showing promising results. Here, we describe a highly lytic bacteriophage, Proteus_virus_309 (41,740 bp), isolated from a wastewater treatment facility in Cape Town, South Africa. According to guidelines of the International Committee on Taxonomy of Viruses (ICTV), bacteriophage 309 is a species within the genus Novosibovirus. Similar to most members of the genus, bacteriophage 309 is strain-specific and lyse P. mirabilis in less than 20 min.
Collapse
Affiliation(s)
- Joshua Aaron
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Leonardo J. van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville 7535, South Africa;
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
32
|
El-Moghazy AY, Wisuthiphaet N, Yang X, Sun G, Nitin N. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Johnson CN, Palacios Araya D, Schink V, Islam M, Mangalea MR, Decurtis EK, Ngo TC, Palmer KL, Duerkop BA. Genetically distant bacteriophages select for unique genomic changes in Enterococcus faecalis. Microbiologyopen 2022; 11:e1273. [PMID: 35478284 PMCID: PMC8924694 DOI: 10.1002/mbo3.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
The human microbiota harbors diverse bacterial and bacteriophage (phage) communities. Bacteria evolve to overcome phage infection, thereby driving phage evolution to counter bacterial resistance. Understanding how phages select for genetic alterations in medically relevant bacteria is important as phages become established biologics for the treatment of multidrug-resistant (MDR) bacterial infections. Before phages can be widely used as standalone or combination antibacterial therapies, we must obtain a deep understanding of the molecular mechanisms of phage infection and how host bacteria alter their genomes to become resistant. We performed coevolution experiments using a single Enterococcus faecalis strain and two distantly related phages to determine how phage pressure impacts the evolution of the E. faecalis genome. Whole-genome sequencing of E. faecalis following continuous exposure to these two phages revealed mutations previously demonstrated to be essential for phage infection. We also identified mutations in genes previously unreported to be associated with phage infection in E. faecalis. Intriguingly, there was only one shared mutation in the E. faecalis genome that was selected by both phages tested, demonstrating that infection by two genetically distinct phages selects for diverse variants. This knowledge serves as the basis for the continued study of E. faecalis genome evolution during phage infection and can be used to inform the design of future therapeutics, such as phage cocktails, intended to target MDR E. faecalis.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | - Viviane Schink
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Moutusee Islam
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Mihnea R. Mangalea
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Emily K. Decurtis
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Tuong‐Vi C. Ngo
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Kelli L. Palmer
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Breck A. Duerkop
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
34
|
Lynch JB, Bennett BD, Merrill BD, Ruby EG, Hryckowian AJ. Independent host- and bacterium-based determinants protect a model symbiosis from phage predation. Cell Rep 2022; 38:110376. [PMID: 35172163 PMCID: PMC8983117 DOI: 10.1016/j.celrep.2022.110376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are diverse and abundant constituents of microbial communities worldwide, capable of modulating bacterial populations in diverse ways. Here, we describe the phage HNL01, which infects the marine bacterium Vibrio fischeri. We use culture-based approaches to demonstrate that mutations in the exopolysaccharide locus of V. fischeri render this bacterium resistant to infection by HNL01, highlighting the extracellular matrix as a key determinant of HNL01 infection. Additionally, using the natural symbiosis between V. fischeri and the squid Euprymna scolopes, we show that, during colonization, V. fischeri is protected from phages present in the ambient seawater. Taken together, these findings shed light on independent yet synergistic host- and bacterium-based strategies for resisting symbiosis-disrupting phage predation, and we present important implications for understanding these strategies in the context of diverse host-associated microbial ecosystems.
Collapse
Affiliation(s)
- Jonathan B Lynch
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI 96822, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brittany D Bennett
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI 96822, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Bryan D Merrill
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Andrew J Hryckowian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
35
|
Genetic Signatures from Adaptation of Bacteria to Lytic Phage Identify Potential Agents to Aid Phage-Killing of Multidrug-Resistant Acinetobacter baumannii. J Bacteriol 2022; 204:e0059321. [PMID: 35156836 DOI: 10.1128/jb.00593-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the increasing morbidity and mortality rates associated with multidrug-resistant bacteria, interest in bacteriophage therapy has been revived. However, bacterial resistance to phage infection threatens the usefulness of phage therapy, especially its inclusion in modern medicine. Multidrug-resistant Acinetobacter baumannii is a top priority pathogen requiring urgent intervention and new therapeutic approaches, such as phage therapy. Here, we experimentally adapted A. baumannii WHG40004 to its lytic phage P21, and thereafter isolated a phage-resistant bacterial mutant, named Ev5-WHG. We then aimed to identify potential agents to aid phage-killing of Ev5-WHG by analyzing its genome and that of the wildtype strain. The enriched Gene Ontology (GO) analysis based on genetic alterations in minor alleles and mutations showed that pathways such as zinc ion transport and cell membrane synthesis could play certain roles in phage resistance. Remarkably, the combination of zinc acetate and P21 showed increased bactericidal effect on Ev5-WHG. Significantly also, we showed that P21 completely prevented the growth of wildtype WHG40004 in the presence of antibiotics (meropenem and imipenem). The results from this study indicate that the analysis of phage resistance signatures during adaptation of bacteria to a lytic phage can inform choice of agents to work cooperatively with phage to limit and/or reverse resistance. This approach could be important for guiding future successful phage therapy. Importance Bacteriophages have proven very useful as alternative therapeutic agents in combating multidrug-resistant bacterial infections, however, bacterial resistance to phages threatens their use. In this study, we showed a new strategy of leveraging on genetic signatures that accompany phage resistance in bacteria to predict agents that can be used with lytic phages to combat multidrug-resistant Acinetobacter baumannii. Significantly, this approach was helpful in suggesting the use of zinc acetate to reduce resistance in phage-resistant bacteria, as well as the use of phage with antibiotics meropenem and imipenem to prevent resistance in wildtype strain of MDR A. baumannii. The approach of this study will be helpful for improving the outcome of phage therapy and in overcoming antimicrobial resistance.
Collapse
|
36
|
Li N, Zeng Y, Bao R, Zhu T, Tan D, Hu B. Isolation and Characterization of Novel Phages Targeting Pathogenic Klebsiella pneumoniae. Front Cell Infect Microbiol 2021; 11:792305. [PMID: 34926329 PMCID: PMC8677704 DOI: 10.3389/fcimb.2021.792305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Klebsiella pneumoniae is a dominant cause of community-acquired and nosocomial infections, specifically among immunocompromised individuals. The increasing occurrence of multidrug-resistant (MDR) isolates has significantly impacted the effectiveness of antimicrobial agents. As antibiotic resistance is becoming increasingly prevalent worldwide, the use of bacteriophages to treat pathogenic bacterial infections has recently gained attention. Elucidating the details of phage-bacteria interactions will provide insights into phage biology and the better development of phage therapy. In this study, a total of 22 K. pneumoniae isolates were assessed for their genetic and phenotypic relatedness by multi-locus sequence typing (MLST), endonuclease S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), and in vitro antibiotic susceptibility testing. In addition, the beta-lactamase gene (blaKPC) was characterized to determine the spread and outbreak of K. pneumoniae carbapenemase (KPC)-producing enterobacterial pathogens. Using these ST11 carbapenem-resistant K. pneumoniae isolates, three phages (NL_ZS_1, NL_ZS_2, and NL_ZS_3) from the family of Podoviridae were isolated and characterized to evaluate the application of lytic phages against the MDR K. pneumoniae isolates. In vitro inhibition assays with three phages and K. pneumoniae strain ZS15 demonstrated the strong lytic potential of the phages, however, followed by the rapid growth of phage-resistant and phage-sensitive mutants, suggesting several anti-phage mechanisms had developed in the host populations. Together, this data adds more comprehensive knowledge to known phage biology and further emphasizes their complexity and future challenges to overcome prior to using phages for controlling this important MDR bacterium.
Collapse
Affiliation(s)
- Na Li
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yigang Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rong Bao
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongyu Zhu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bijie Hu
- Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Li N, Zeng Y, Hu B, Zhu T, Svenningsen SL, Middelboe M, Tan D. Interactions between the Prophage 919TP and Its Vibrio cholerae Host: Implications of gmd Mutation for Phage Resistance, Cell Auto-Aggregation, and Motility. Viruses 2021; 13:v13122342. [PMID: 34960610 PMCID: PMC8706939 DOI: 10.3390/v13122342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Prophage 919TP is widely distributed among Vibrio cholera and is induced to produce free φ919TP phage particles. However, the interactions between prophage φ919TP, the induced phage particle, and its host remain unknown. In particular, phage resistance mechanisms and potential fitness trade-offs, resulting from phage resistance, are unresolved. In this study, we examined a prophage 919TP-deleted variant of V. cholerae and its interaction with a modified lytic variant of the induced prophage (φ919TP cI-). Specifically, the phage-resistant mutant was isolated by challenging a prophage-deleted variant with lytic phage φ919TP cI-. Further, the comparative genomic analysis of wild-type and φ919TP cI--resistant mutant predicted that phage φ919TP cI- selects for phage-resistant mutants harboring a mutation in key steps of lipopolysaccharide (LPS) O-antigen biosynthesis, causing a single-base-pair deletion in gene gmd. Our study showed that the gmd-mediated O-antigen defect can cause pleiotropic phenotypes, e.g., cell autoaggregation and reduced swarming motility, emphasizing the role of phage-driven diversification in V. cholerae. The developed approach assists in the identification of genetic determinants of host specificity and is used to explore the molecular mechanism underlying phage-host interactions. Our findings contribute to the understanding of prophage-facilitated horizontal gene transfer and emphasize the potential for developing new strategies to optimize the use of phages in bacterial pathogen control.
Collapse
Affiliation(s)
- Na Li
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | - Yigang Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| | - Bijie Hu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | - Tongyu Zhu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | | | - Mathias Middelboe
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
- Correspondence: (M.M.); (D.T.)
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
- Correspondence: (M.M.); (D.T.)
| |
Collapse
|
38
|
A Combination of Metagenomic and Cultivation Approaches Reveals Hypermutator Phenotypes within Vibrio cholerae-Infected Patients. mSystems 2021; 6:e0088921. [PMID: 34427503 PMCID: PMC8407408 DOI: 10.1128/msystems.00889-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can cause a range of symptoms, from severe diarrhea to asymptomatic infection. Previous studies using whole-genome sequencing (WGS) of multiple bacterial isolates per patient showed that V. cholerae can evolve modest genetic diversity during symptomatic infection. To further explore the extent of V. cholerae within-host diversity, we applied culture-based WGS and metagenomics to a cohort of both symptomatic and asymptomatic cholera patients from Bangladesh. While metagenomics allowed us to detect more mutations in symptomatic patients, WGS of cultured isolates was necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low V. cholerae load. Using both metagenomics and isolate WGS, we report three lines of evidence that V. cholerae hypermutators evolve within patients. First, we identified nonsynonymous mutations in V. cholerae DNA repair genes in 5 out of 11 patient metagenomes sequenced with sufficient coverage of the V. cholerae genome and in 1 of 3 patients with isolate genomes sequenced. Second, these mutations in DNA repair genes tended to be accompanied by an excess of intrahost single nucleotide variants (iSNVs). Third, these iSNVs were enriched in transversion mutations, a known hallmark of hypermutator phenotypes. While hypermutators appeared to generate mostly selectively neutral mutations, nonmutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power and limitations of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infections, while providing evidence for hypermutator phenotypes within cholera patients. IMPORTANCE Pathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease or asymptomatic infection. Here, we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the typically short duration of cholera, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within several patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.
Collapse
|
39
|
Carim S, Azadeh AL, Kazakov AE, Price MN, Walian PJ, Lui LM, Nielsen TN, Chakraborty R, Deutschbauer AM, Mutalik VK, Arkin AP. Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins. THE ISME JOURNAL 2021; 15:2289-2305. [PMID: 33649553 PMCID: PMC8319346 DOI: 10.1038/s41396-021-00921-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Tailocins are bactericidal protein complexes produced by a wide variety of bacteria that kill closely related strains and may play a role in microbial community structure. Thanks to their high specificity, tailocins have been proposed as precision antibacterial agents for therapeutic applications. Compared to tailed phages, with whom they share an evolutionary and morphological relationship, bacterially produced tailocins kill their host upon production but producing strains display resistance to self-intoxication. Though lipopolysaccharide (LPS) has been shown to act as a receptor for tailocins, the breadth of factors involved in tailocin sensitivity, and the mechanisms behind resistance to self-intoxication, remain unclear. Here, we employed genome-wide screens in four non-model pseudomonads to identify mutants with altered fitness in the presence of tailocins produced by closely related pseudomonads. Our mutant screens identified O-antigen composition and display as most important in defining sensitivity to our tailocins. In addition, the screens suggest LPS thinning as a mechanism by which resistant strains can become more sensitive to tailocins. We validate many of these novel findings, and extend these observations of tailocin sensitivity to 130 genome-sequenced pseudomonads. This work offers insights into tailocin-bacteria interactions, informing the potential use of tailocins in microbiome manipulation and antibacterial therapy.
Collapse
Affiliation(s)
- Sean Carim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Ashley L Azadeh
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Adam P Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
40
|
Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A Persistent Predator of Vibrio cholerae. Annu Rev Virol 2021; 8:285-304. [PMID: 34314595 PMCID: PMC9040626 DOI: 10.1146/annurev-virology-091919-072020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages or phages—viruses of bacteria—are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae–specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1’s CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kishen M Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
41
|
Bartnik P, Jafra S, Narajczyk M, Czaplewska P, Czajkowski R. Pectobacterium parmentieri SCC 3193 Mutants with Altered Synthesis of Cell Surface Polysaccharides Are Resistant to N4-Like Lytic Bacteriophage ϕA38 (vB_Ppp_A38) but Express Decreased Virulence in Potato ( Solanum tuberosum L.) Plants. Int J Mol Sci 2021; 22:7346. [PMID: 34298965 PMCID: PMC8304393 DOI: 10.3390/ijms22147346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Pectobacterium parmentieri is a Gram-negative plant-pathogenic bacterium able to infect potato (Solanum tuberosum L.). Little is known about lytic bacteriophages infecting P. parmentieri and how phage-resistance influences the environmental fitness and virulence of this species. A lytic phage vB_Ppp_A38 (ϕA38) has been previously isolated and characterized as a potential biological control agent for the management of P. parmentieri. In this study, seven P. parmentieri SCC 3193 Tn5 mutants were identified that exhibited resistance to infection caused by vB_Ppp_A38 (ϕA38). The genes disrupted in these seven mutants encoded proteins involved in the assembly of O-antigen, sugar metabolism, and the production of bacterial capsule exopolysaccharides. The potential of A38-resistant P. parmentieri mutants for plant colonization and pathogenicity as well as other phenotypes expected to contribute to the ecological fitness of P. parmentieri, including growth rate, use of carbon and nitrogen sources, production of pectinolytic enzymes, proteases, cellulases, and siderophores, swimming and swarming motility, presence of capsule and flagella as well as the ability to form biofilm were assessed. Compared to the wild-type P. parmentieri strain, all phage-resistant mutants exhibited a reduced ability to colonize and to cause symptoms in growing potato (S. tuberosum L.) plants. The implications of bacteriophage resistance on the ecological fitness of P. parmentieri are discussed.
Collapse
Affiliation(s)
- Przemyslaw Bartnik
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Antoniego Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
42
|
A Tail Fiber Protein and a Receptor-Binding Protein Mediate ICP2 Bacteriophage Interactions with Vibrio cholerae OmpU. J Bacteriol 2021; 203:e0014121. [PMID: 33875544 DOI: 10.1128/jb.00141-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
ICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host range mutants within infant rabbits infected with a mixture of wild-type and OmpU mutant strains. ICP2 host range mutants that can now infect OmpU mutant strains have missense mutations in the putative tail fiber gene gp25 and the putative adhesin gene gp23. Using site-specific mutagenesis, we show that single or double mutations in gp25 are sufficient to generate the host range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to produce a host range mutant phenotype. All ICP2 host range mutants retained the ability to form plaques on wild-type V. cholerae cells. The strength of binding of host range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host range mutants evolve by a two-step process. First, gp25 mutations are selected for their broad host range, albeit accompanied by low-level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near-wild-type efficiencies of adsorption and subsequent phage multiplication. IMPORTANCE Concern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to renewed interest in phage biology and the potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail that have been shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies an ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular coevolutionary arms race presents fitness costs to both ICP2 and V. cholerae.
Collapse
|
43
|
Fong K, Wong CW, Wang S, Delaquis P. How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:83-91. [PMID: 36148040 PMCID: PMC9041489 DOI: 10.1089/phage.2020.0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel bacteriophages (phages) possessing a broad host range are consistently and routinely reported, yet there is presently no consensus on the definition of "broad host range." As phages are increasingly being used in the development of methods for the detection and biocontrol of human pathogens, it is important to address the limitations associated with the host range. For instance, unanticipated host range breadth may result in the detection of nonpathogenic targets, thereby increasing the false-positive rate. Moreover, a broad host range is generally favored in biocontrol applications despite the risk of undesirable ancillary effects against nontarget species. Here, we discuss the research progress, applications, and implications of broad host range phages with a focus on tailed broad host range phages infecting human pathogens of concern in the Agri-Food sector.
Collapse
Affiliation(s)
- Karen Fong
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Pascal Delaquis
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| |
Collapse
|
44
|
Sørensen MCH, Vitt A, Neve H, Soverini M, Ahern SJ, Klumpp J, Brøndsted L. Campylobacter phages use hypermutable polyG tracts to create phenotypic diversity and evade bacterial resistance. Cell Rep 2021; 35:109214. [PMID: 34107245 DOI: 10.1016/j.celrep.2021.109214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Phase variation is a common mechanism for creating phenotypic heterogeneity of surface structures in bacteria important for niche adaptation. In Campylobacter, phase variation occurs by random variation in hypermutable homonucleotide 7-11 G (polyG) tracts. To elucidate how phages adapt to phase-variable hosts, we study Fletchervirus phages infecting Campylobacter dependent on a phase-variable receptor. Our data demonstrate that Fletcherviruses mimic their host and encode hypermutable polyG tracts, leading to phase-variable expression of two of four receptor-binding proteins. This creates phenotypically diverse phage populations, including a sub-population that infects the bacterial host when the phase-variable receptor is not expressed. Such population dynamics of both phage and host promote co-existence in a shared niche. Strikingly, we identify polyG tracts in more than 100 phage genera, infecting more than 70 bacterial species. Future experimental work may confirm phase variation as a widespread strategy for creating phenotypically diverse phage populations.
Collapse
Affiliation(s)
- Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| | - Amira Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max-Rubner Institut, 24103 Kiel, Germany
| | - Matteo Soverini
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, 2820 Gentofte, Denmark
| | - Stephen James Ahern
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
45
|
Abd-Allah IM, El-Housseiny GS, Yahia IS, Aboshanab KM, Hassouna NA. Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits. Front Cell Infect Microbiol 2021; 11:635597. [PMID: 34136415 PMCID: PMC8201069 DOI: 10.3389/fcimb.2021.635597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
46
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Cavallo FM, Jordana L, Friedrich AW, Glasner C, van Dijl JM. Bdellovibrio bacteriovorus: a potential 'living antibiotic' to control bacterial pathogens. Crit Rev Microbiol 2021; 47:630-646. [PMID: 33934682 DOI: 10.1080/1040841x.2021.1908956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bdellovibrio bacteriovorus is a small Deltaproteobacterium which, since its discovery, has distinguished itself for the unique ability to prey on other Gram-negative bacteria. The studies on this particular "predatory bacterium", have gained momentum in response to the rising problem of antibiotic resistance, because it could be applied as a potential probiotic and antibiotic agent. Hereby, we present recent advances in the study of B. bacteriovorus, comprehending fundamental aspects of its biology, obligatory intracellular life cycle, predation resistance, and potential applications. Furthermore, we discuss studies that pave the road towards the use of B. bacteriovorus as a "living antibiotic" in human therapy, focussing on its interaction with biofilms, the host immune response, predation susceptibility and in vivo application models. The available data imply that it will be possible to upgrade this predator bacterium from a predominantly academic interest to an instrument that could confront antibiotic resistant infections.
Collapse
Affiliation(s)
- Francis M Cavallo
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lorea Jordana
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Zhou Y, Lee ZL, Zhu J. On or Off: Life-Changing Decisions Made by Vibrio cholerae Under Stress. INFECTIOUS MICROBES & DISEASES 2020; 2:127-135. [PMID: 38630076 PMCID: PMC7769058 DOI: 10.1097/im9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Vibrio cholerae, the causative agent of the infectious disease, cholera, is commonly found in brackish waters and infects human hosts via the fecal-oral route. V. cholerae is a master of stress resistance as V. cholerae's dynamic lifestyle across different physical environments constantly exposes it to diverse stressful circumstances. Specifically, V. cholerae has dedicated genetic regulatory networks to sense different environmental cues and respond to these signals. With frequent outbreaks costing a tremendous amount of lives and increased global water temperatures providing more suitable aquatic habitats for V. cholerae, cholera pandemics remain a probable catastrophic threat to humanity. Understanding how V. cholerae copes with different environmental stresses broadens our repertoire of measures against infectious diseases and expands our general knowledge of prokaryotic stress responses. In this review, we summarize the regulatory mechanisms of how V. cholerae fights against stresses in vivo and in vitro.
Collapse
|
49
|
Stephan MS, Broeker NK, Saragliadis A, Roos N, Linke D, Barbirz S. In vitro Analysis of O-Antigen-Specific Bacteriophage P22 Inactivation by Salmonella Outer Membrane Vesicles. Front Microbiol 2020; 11:510638. [PMID: 33072001 PMCID: PMC7541932 DOI: 10.3389/fmicb.2020.510638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.
Collapse
Affiliation(s)
- Mareike S Stephan
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nina K Broeker
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Norbert Roos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Physical Biochemistry, Department for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
50
|
Trzilova D, Tamayo R. Site-Specific Recombination - How Simple DNA Inversions Produce Complex Phenotypic Heterogeneity in Bacterial Populations. Trends Genet 2020; 37:59-72. [PMID: 33008627 DOI: 10.1016/j.tig.2020.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Many bacterial species generate phenotypically heterogeneous subpopulations as a strategy for ensuring the survival of the population as a whole - an environmental stress that eradicates one subpopulation may leave other phenotypic groups unharmed, allowing the lineage to continue. Phase variation, a process that functions as an ON/OFF switch for gene expression, is one way that bacteria achieve phenotypic heterogeneity. Phase variation occurs stochastically and reversibly, and in the presence of a selective pressure the advantageous phenotype(s) predominates in the population. Phase variation can occur through multiple genetic and epigenetic mechanisms. This review focuses on conservative site-specific recombination that generates reversible DNA inversions as a genetic mechanism mediating phase variation. Recent studies have sparked a renewed interest in phase variation mediated through DNA inversion, revealing a high level of complexity beyond simple ON/OFF switching, including unusual modes of gene regulation, and highlighting an underappreciation of the use of these mechanisms by bacteria.
Collapse
Affiliation(s)
- Dominika Trzilova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|