1
|
Thiam LG, McHugh K, Ba A, Li R, Guo Y, Pouye MN, Cisse A, Pipini D, Diallo F, Sene SD, Patel SD, Thiam A, Sadio BD, Mbengue A, Vigan-Womas I, Sheng Z, Shapiro L, Draper SJ, Bei AK. Vaccine-induced human monoclonal antibodies to PfRH5 show broadly neutralizing activity against P. falciparum clinical isolates. NPJ Vaccines 2024; 9:198. [PMID: 39448626 PMCID: PMC11502735 DOI: 10.1038/s41541-024-00986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Vaccines to the Plasmodium falciparum reticulocyte binding-like protein homologue 5 (PfRH5) target the blood-stage of the parasite life cycle. PfRH5 has the potential to trigger the production of strain-transcendent antibodies and has proven its efficacy both in pre-clinical and early clinical studies. Vaccine-induced monoclonal antibodies (mAbs) to PfRH5 showed promising outcomes against cultured P. falciparum laboratory strains from distinct geographic areas. Here, we assessed the functional impact of vaccine-induced anti-PfRH5 mAbs on more genetically diverse P. falciparum clinical isolates. We used mAbs previously isolated from single B cells of UK adult PfRH5 vaccinees and used ex-vivo growth inhibition activity (GIA) assays to assess their efficacy against P. falciparum clinical isolates. Next-generation sequencing (NGS) was used to assess the breadth of genetic diversity in P. falciparum clinical isolates and to infer the genotype/phenotype relationship involved in antibody susceptibility. We showed a dose-dependent inhibition of clinical isolates with three main GIA groups: high, medium and low. Except for one isolate, our data show no significant differences in the mAb GIA profile between P. falciparum clinical isolates and the 3D7 reference strain, which harbors the vaccine allele. We also observed an additive relationship for mAb combinations, whereby the combination of GIA-low and GIA-medium antibodies resulted in increased GIA, having important implications for the contribution of specific clones within polyclonal IgG responses. While our NGS analysis showed the occurrence of novel mutations in the pfrh5 gene, these mutations were predicted to have little or no functional impact on the antigen structure or recognition by known mAbs. Our present findings complement earlier reports on the strain transcendent potential of anti-PfRH5 mAbs and constitute, to our knowledge, the first report on the susceptibility of P. falciparum clinical isolates from natural infections to vaccine-induced human mAbs to PfRH5.
Collapse
Affiliation(s)
- Laty G Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Kirsty McHugh
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Rebecca Li
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mariama N Pouye
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Awa Cisse
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Dimitra Pipini
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Fatoumata Diallo
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Seynabou D Sene
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Saurabh D Patel
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bacary D Sadio
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Inés Vigan-Womas
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biochemistry and Biophysics, Columbia University, New York, NY, USA
| | - Simon J Draper
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amy K Bei
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
2
|
Yong JJM, Gao X, Prakash P, Ang JW, Lai SK, Chen MW, Neo JJL, Lescar J, Li HY, Preiser PR. Red blood cell signaling is functionally conserved in Plasmodium invasion. iScience 2024; 27:111052. [PMID: 39635131 PMCID: PMC11615254 DOI: 10.1016/j.isci.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
It is widely recognized that Plasmodium merozoites secrete ligands that interact with RBC receptors. Meanwhile the question on whether these interactions trigger RBC signals essential for invasion remains unresolved. There is evidence that Plasmodium falciparum parasites manipulate native RBC Ca2+ signaling to facilitate invasion. Here, we demonstrate a key role of RBC Ca2+ influx that is conserved across different Plasmodium species during invasion. RH5-basigin interaction triggers RBC cAMP increase to promote Ca2+ influx. The RBC signaling pathways can be blocked by a range of inhibitors during Plasmodium invasion, providing the evidence of a functionally conserved host cAMP-Ca2+ signaling that drives invasion and junction formation. Furthermore, RH5-basigin binding induces a pre-existing multimeric RBC membrane complex to undergo increased protein association containing the cAMP-inducing β-adrenergic receptor. Our work presents evidence of a conserved host cell signaling cascade necessary for Plasmodium invasion and will create opportunities to therapeutically target merozoite invasion.
Collapse
Affiliation(s)
- James Jia Ming Yong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiaohong Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Prem Prakash
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jing Wen Ang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jason Jun Long Neo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
3
|
Barrett JR, Pipini D, Wright ND, Cooper AJR, Gorini G, Quinkert D, Lias AM, Davies H, Rigby CA, Aleshnick M, Williams BG, Bradshaw WJ, Paterson NG, Martinson T, Kirtley P, Picard L, Wiggins CD, Donnellan FR, King LDW, Wang LT, Popplewell JF, Silk SE, de Ruiter Swain J, Skinner K, Kotraiah V, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Minassian AM, Lauffenburger DA, Miura K, Long CA, Wilder BK, Koekemoer L, Tan J, Nielsen CM, McHugh K, Draper SJ. Analysis of the diverse antigenic landscape of the malaria protein RH5 identifies a potent vaccine-induced human public antibody clonotype. Cell 2024; 187:4964-4980.e21. [PMID: 39059380 PMCID: PMC11380582 DOI: 10.1016/j.cell.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024]
Abstract
The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.
Collapse
Affiliation(s)
- Jordan R Barrett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Dimitra Pipini
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Nathan D Wright
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Andrew J R Cooper
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Giacomo Gorini
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - William J Bradshaw
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Neil G Paterson
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Thomas Martinson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Luc Picard
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Francesca R Donnellan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Lawrence T Wang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | | | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jed de Ruiter Swain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolyn M Nielsen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK; The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
King LDW, Pulido D, Barrett JR, Davies H, Quinkert D, Lias AM, Silk SE, Pattinson DJ, Diouf A, Williams BG, McHugh K, Rodrigues A, Rigby CA, Strazza V, Suurbaar J, Rees-Spear C, Dabbs RA, Ishizuka AS, Zhou Y, Gupta G, Jin J, Li Y, Carnrot C, Minassian AM, Campeotto I, Fleishman SJ, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Long CA, Miura K, Ashfield R, Skinner K, Howarth MR, Biswas S, Draper SJ. Preclinical development of a stabilized RH5 virus-like particle vaccine that induces improved antimalarial antibodies. Cell Rep Med 2024; 5:101654. [PMID: 39019011 PMCID: PMC11293324 DOI: 10.1016/j.xcrm.2024.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.
Collapse
Affiliation(s)
- Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Ana Rodrigues
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Veronica Strazza
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK
| | - Jonathan Suurbaar
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra LG 54, Ghana
| | - Chloe Rees-Spear
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; London School of Hygiene and Tropical Medicine, WC1E 7HT London, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Andrew S Ishizuka
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yu Zhou
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Gaurav Gupta
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Yuanyuan Li
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | | | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ivan Campeotto
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Rebecca Ashfield
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, OX1 3QU Oxford, UK; The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
5
|
Donnellan FR, Rayaprolu V, Rijal P, O’Dowd V, Parvate A, Callaway H, Hariharan C, Parekh D, Hui S, Shaffer K, Avalos RD, Hastie K, Schimanski L, Müller-Kräuter H, Strecker T, Balaram A, Halfmann P, Saphire EO, Lightwood DJ, Townsend AR, Draper SJ. A broadly-neutralizing antibody against Ebolavirus glycoprotein that potentiates the breadth and neutralization potency of other antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600001. [PMID: 38979279 PMCID: PMC11230233 DOI: 10.1101/2024.06.21.600001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Ebolavirus disease (EVD) is caused by multiple species of Ebolavirus. Monoclonal antibodies (mAbs) against the virus glycoprotein (GP) are the only class of therapeutic approved for treatment of EVD caused by Zaire ebolavirus (EBOV). Therefore, mAbs targeting multiple Ebolavirus species may represent the next generation of EVD therapeutics. Broadly reactive anti-GP mAbs were produced; among these, mAbs 11886 and 11883 were broadly neutralizing in vitro. A 3.0 Å cryo-electron microscopy structure of EBOV GP bound to both mAbs shows that 11886 binds a novel epitope bridging the glycan cap (GC), 310 pocket and GP2 N-terminus, whereas 11883 binds the receptor binding region (RBR) and GC. In vitro, 11886 synergized with a range of mAbs with epitope specificities spanning the RBR/GC, including 11883. Notably, 11886 increased the breadth of neutralization by partner mAbs against different Ebolavirus species. These data provide a strategic route to design improved mAb-based next-generation EVD therapeutics.
Collapse
Affiliation(s)
- Francesca R. Donnellan
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Vamseedhar Rayaprolu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Pacific Northwest Cryo-EM Center, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | - Amar Parvate
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Heather Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Chemistry & Biochemistry Building, Montana State University, Bozeman, MT 59717, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Dipti Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sean Hui
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current Affiliation: Department of Pathology & Immunology, Washington University School of Medicine. St. Louis MO 63110, USA
| | - Kelly Shaffer
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine. University of California San Diego. La Jolla, CA 92037, USA
| | - Ruben Diaz Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Lisa Schimanski
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Ariane Balaram
- Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53713, USA
| | - Peter Halfmann
- Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53713, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine. University of California San Diego. La Jolla, CA 92037, USA
| | | | - Alain R. Townsend
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
6
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Williams BG, King LDW, Pulido D, Quinkert D, Lias AM, Silk SE, Ragotte RJ, Davies H, Barrett JR, McHugh K, Rigby CA, Alanine DGW, Barfod L, Shea MW, Cowley LA, Dabbs RA, Pattinson DJ, Douglas AD, Lyth OR, Illingworth JJ, Jin J, Carnrot C, Kotraiah V, Christen JM, Noe AR, MacGill RS, King CR, Birkett AJ, Soisson LA, Skinner K, Miura K, Long CA, Higgins MK, Draper SJ. Development of an improved blood-stage malaria vaccine targeting the essential RH5-CyRPA-RIPR invasion complex. Nat Commun 2024; 15:4857. [PMID: 38849365 PMCID: PMC11161584 DOI: 10.1038/s41467-024-48721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.
Collapse
Affiliation(s)
- Barnabas G Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lloyd D W King
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Amelia M Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Robert J Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Hannah Davies
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kirsty McHugh
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Daniel G W Alanine
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Lea Barfod
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Michael W Shea
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Li An Cowley
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Rebecca A Dabbs
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Oliver R Lyth
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | | | | | | | - Amy R Noe
- Leidos Life Sciences, Frederick, MD, USA
- Latham BioPharm Group, Elkridge, MD, USA
| | | | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | - Ashley J Birkett
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | | | - Katherine Skinner
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, USA
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK.
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
8
|
Segireddy RR, Belda H, Yang ASP, Dundas K, Knoeckel J, Galaway F, Wood L, Quinkert D, Knuepfer E, Treeck M, Wright GJ, Douglas AD. A screen for Plasmodium falciparum sporozoite surface protein binding to human hepatocyte surface receptors identifies novel host-pathogen interactions. Malar J 2024; 23:151. [PMID: 38755636 PMCID: PMC11098746 DOI: 10.1186/s12936-024-04913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.
Collapse
Affiliation(s)
- Rameswara R Segireddy
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Annie S P Yang
- Research Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Kirsten Dundas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Julia Knoeckel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Francis Galaway
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Laura Wood
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, UK
| | - Ellen Knuepfer
- The Royal Veterinary College, North Mymms, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, Midland Road, London, NW1 1AT, UK
| | - Gavin J Wright
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Alexander D Douglas
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
9
|
Sahu W, Bai T, Das A, Mukherjee S, Prusty A, Mallick NR, Elangovan S, Reddy KS. Plasmodium falciparum J-dot localized J domain protein A8iJp modulates the chaperone activity of human HSPA8. FEBS Lett 2024; 598:818-836. [PMID: 38418371 DOI: 10.1002/1873-3468.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 03/01/2024]
Abstract
Plasmodium falciparum renovates the host erythrocyte to survive during intraerythrocytic development. This renovation requires many parasite proteins to unfold and move outside the parasitophorous vacuolar membrane, and chaperone-regulated protein folding becomes essential for the exported proteins to function. We report on a type-IV J domain protein (JDP), PF3D7_1401100, which we found to be processed before export and trafficked inside the lumen of parasite-derived structures known as J-dots. We found this protein to have holdase activity, as well as stimulate the ATPase and aggregation suppression activity of the human HSP70 chaperone HsHSPA8; thus, we named it "HSPA8-interacting J protein" (A8iJp). Moreover, we found a subset of HsHSPA8 to co-localize with A8iJp inside the infected human erythrocyte. Our results suggest that A8iJp modulates HsHSPA8 chaperone activity and may play an important role in host erythrocyte renovation.
Collapse
Affiliation(s)
- Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Tapaswini Bai
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Subhadip Mukherjee
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Aradhana Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Nipa Rani Mallick
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| |
Collapse
|
10
|
Mhlongo LC, Mseleku C, Tenza T, Fomum SW, McGaw LJ, Hassen A, Nsahlai IV. A Review of Ethnomedicinal Plants as Potential Anthelmintic Agents to Alternatively Control Gastrointestinal Nematodes of Ruminants in South Africa. J Parasitol Res 2024; 2024:7955692. [PMID: 38268708 PMCID: PMC10805549 DOI: 10.1155/2024/7955692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Small ruminant production is one of the most important animal productions for food security in the world, especially in the developing world. Gastrointestinal nematode (GIN) infection is a threat to this animal's production. Conventional drugs that are used to control these parasites are losing their efficacy due to the development of resistant parasites. These drugs are not biologically degradable, taint meat products and are also expensive for communal farmers. Hence, research is now exploring ethnomedicinal anthelmintic plants for an alternative remedy. The objective of this paper was to review ethnomedicinal plants as a potential alternative to unsustainable commercial anthelmintics. This review sought to understand common GINs infecting ruminants, resistance manifestation in GINs to conventional treatment, reasons communal farmers choose ethnomedicine, and modes of action in anthelmintic plants. It also examined the usage of plants and plant parts, dosage forms, methods for improving bioactivity, convectional validation procedures, and restrictions on ethnomedicinal plant use as anthelmintics in ethnomedicine. Such insight is essential, as it highlights the importance of ethnoveterinary medicine and ways to adopt or improve it as a potential alternative to conventional anthelmintics.
Collapse
Affiliation(s)
| | - Cresswell Mseleku
- Department of Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Thando Tenza
- Department of Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Sylvester Werekeh Fomum
- Department of Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lyndy Joy McGaw
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Abubeker Hassen
- Department of Animal and Wildlife Sciences, University of Pretoria, Hatfield, South Africa
| | - Ignatius Verla Nsahlai
- Department of Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
11
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
12
|
Suresh RV, Deng B, Gebremicale Y, Roche K, Miura K, Long C. Mesenchymal stem cells of the bone marrow raise infectivity of Plasmodium falciparum gametocytes. mBio 2023; 14:e0223223. [PMID: 37909740 PMCID: PMC10746266 DOI: 10.1128/mbio.02232-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE While prior research has established that Plasmodium gametocytes sequester in the bone marrow and can influence resident stem cells, the question of why they would choose this compartment and these cells remained a mystery. This study, for the first time, shows that being in the presence of mesenchymal stem cells (MSCs) alters the biology of the P. falciparum parasite and makes it more infectious to mosquitoes, hinting at novel mechanisms in its life cycle. This method also facilitates mosquito infections with field isolated parasites, affording research teams new infection models with parasites, which are challenging to infect into mosquitos using conventional culture methods. Finally, our findings that MSC-conditioned medium can also raise infectivity open avenues of investigation into mechanisms involved but can also serve as a practical tool for researchers hoping to increase oocyst yields.
Collapse
Affiliation(s)
- Ragavan Varadharajan Suresh
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yonas Gebremicale
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Kyle Roche
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
13
|
Hart MN, Mohring F, DonVito SM, Thomas JA, Muller-Sienerth N, Wright GJ, Knuepfer E, Saibil HR, Moon RW. Sequential roles for red blood cell binding proteins enable phased commitment to invasion for malaria parasites. Nat Commun 2023; 14:4619. [PMID: 37528099 PMCID: PMC10393984 DOI: 10.1038/s41467-023-40357-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Invasion of red blood cells (RBCs) by Plasmodium merozoites is critical to their continued survival within the host. Two major protein families, the Duffy binding-like proteins (DBPs/EBAs) and the reticulocyte binding like proteins (RBLs/RHs) have been studied extensively in P. falciparum and are hypothesized to have overlapping, but critical roles just prior to host cell entry. The zoonotic malaria parasite, P. knowlesi, has larger invasive merozoites and contains a smaller, less redundant, DBP and RBL repertoire than P. falciparum. One DBP (DBPα) and one RBL, normocyte binding protein Xa (NBPXa) are essential for invasion of human RBCs. Taking advantage of the unique biological features of P. knowlesi and iterative CRISPR-Cas9 genome editing, we determine the precise order of key invasion milestones and demonstrate distinct roles for each family. These distinct roles support a mechanism for phased commitment to invasion and can be targeted synergistically with invasion inhibitory antibodies.
Collapse
Affiliation(s)
- Melissa N Hart
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
| | - Franziska Mohring
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Sophia M DonVito
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - James A Thomas
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | - Gavin J Wright
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ellen Knuepfer
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
- Malaria Parasitology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Helen R Saibil
- ISMB, Biological Sciences, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
14
|
Miura K, Diouf A, Fay MP, Barrett JR, Payne RO, Olotu AI, Minassian AM, Silk SE, Draper SJ, Long CA. Assessment of precision in growth inhibition assay (GIA) using human anti-PfRH5 antibodies. Malar J 2023; 22:159. [PMID: 37208733 PMCID: PMC10196285 DOI: 10.1186/s12936-023-04591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND For blood-stage malaria vaccine development, the in vitro growth inhibition assay (GIA) has been widely used to evaluate functionality of vaccine-induced antibodies (Ab), and Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage antigen. However, precision, also called "error of assay (EoA)", in GIA readouts and the source of EoA has not been evaluated systematically. METHODS In the Main GIA experiment, 4 different cultures of P. falciparum 3D7 parasites were prepared with red blood cells (RBC) collected from 4 different donors. For each culture, 7 different anti-RH5 Ab (either monoclonal or polyclonal Ab) were tested by GIA at two concentrations on three different days (168 data points). To evaluate sources of EoA in % inhibition in GIA (%GIA), a linear model fit was conducted including donor (source of RBC) and day of GIA as independent variables. In addition, 180 human anti-RH5 polyclonal Ab were tested in a Clinical GIA experiment, where each Ab was tested at multiple concentrations in at least 3 independent GIAs using different RBCs (5,093 data points). The standard deviation (sd) in %GIA and in GIA50 (Ab concentration that gave 50%GIA) readouts, and impact of repeat assays on 95% confidence interval (95%CI) of these readouts was estimated. RESULTS The Main GIA experiment revealed that the RBC donor effect was much larger than the day effect, and an obvious donor effect was also observed in the Clinical GIA experiment. Both %GIA and log-transformed GIA50 data reasonably fit a constant sd model, and sd of %GIA and log-transformed GIA50 measurements were calculated as 7.54 and 0.206, respectively. Taking the average of three repeat assays (using three different RBCs) reduces the 95%CI width in %GIA or in GIA50 measurements by ~ half compared to a single assay. CONCLUSIONS The RBC donor effect (donor-to-donor variance on the same day) in GIA was much bigger than the day effect (day-to-day variance using the same donor's RBC) at least for the RH5 Ab evaluated in this study; thus, future GIA studies should consider the donor effect. In addition, the 95%CI for %GIA and GIA50 shown here help when comparing GIA results from different samples/groups/studies; therefore, this study supports future malaria blood-stage vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jordan R Barrett
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ruth O Payne
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Ally I Olotu
- Interventions and Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| |
Collapse
|
15
|
Pulido-Quevedo FA, Arévalo-Pinzón G, Castañeda-Ramírez JJ, Barreto-Santamaría A, Patarroyo ME, Patarroyo MA. Plasmodium falciparum rhoptry neck protein 4 has conserved regions mediating interactions with receptors on human erythrocytes and hepatocyte membrane. Int J Med Microbiol 2023; 313:151579. [PMID: 37030083 DOI: 10.1016/j.ijmm.2023.151579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Plasmodium falciparum-related malaria represents a serious worldwide public health problem due to its high mortality rates. P. falciparum expresses rhoptry neck protein 4 (PfRON4) in merozoite and sporozoite rhoptries, it participates in tight junction-TJ formation via the AMA-1/RON complex and is refractory to complete genetic deletion. Despite this, which PfRON4 key regions interact with host cells remain unknown; such information would be useful for combating falciparum malaria. Thirty-two RON4 conserved region-derived peptides were chemically synthesised for determining and characterising PfRON4 regions having high host cell binding affinity (high activity binding peptides or HABPs). Receptor-ligand interaction/binding assays determined their specific binding capability, the nature of their receptors and their ability to inhibit in vitro parasite invasion. Peptides 42477, 42479, 42480, 42505 and 42513 had greater than 2% erythrocyte binding activity, whilst peptides 42477 and 42480 specifically bound to HepG2 membrane, both of them having micromolar and submicromolar range dissociation constants (Kd). Cell-peptide interaction was sensitive to treating erythrocytes with trypsin and/or chymotrypsin and HepG2 with heparinase I and chondroitinase ABC, suggesting protein-type (erythrocyte) and heparin and/or chondroitin sulphate proteoglycan receptors (HepG2) for PfRON4. Erythrocyte invasion inhibition assays confirmed HABPs' importance during merozoite invasion. PfRON4 800-819 (42477) and 860-879 (42480) regions specifically interacted with host cells, thereby supporting their inclusion in a subunit-based, multi-antigen, multistage anti-malarial vaccine.
Collapse
Affiliation(s)
- Fredy A Pulido-Quevedo
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; MSc programme in Biochemistry, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia
| | - Gabriela Arévalo-Pinzón
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Carrera 7 # 40-62, Bogotá, Colombia
| | - Jeimmy J Castañeda-Ramírez
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia
| | - Adriana Barreto-Santamaría
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Faculty of Sciences, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá, Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9 # 51-11, Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; Health Sciences Division, Main Campus, Universidad Santo Tomás, Carrera 9 # 51-11, Bogotá, Colombia; Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia.
| |
Collapse
|
16
|
Munjal A, Kannan D, Singh S. A C2 domain containing plasma membrane protein of Plasmodium falciparum merozoites mediates calcium-dependent binding and invasion to host erythrocytes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:139-149. [PMID: 35995671 DOI: 10.1016/j.jmii.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Invasion of red blood cells by Plasmodium falciparum merozoites is governed by multiple receptor-ligand interactions which are critical for bridging the two cells together. The critical function of these ligands for invasion and their direct exposure to the host immune system makes them lucrative vaccine candidates. This necessitates the discovery of new adhesins with less redundancy that mediates the binding of merozoite to the red cell, and furthermore invasion into it. Here we have identified a novel membrane associated antigen (PfC2DMA) that is conserved throughout the Plasmodium species and has a membrane targeting C2 domain at its extreme N-terminal region. METHODS Recombinant C2dom was expressed heterologously in bacteria and purified to homogeneity. Mice antisera against C2dom was raised and used to check the expression and intraparasitic localization of the protein. RBC and Ca2+ ion binding activity of C2dom was also checked. RESULTS C2dom exhibited specific binding to Ca2+ ions and not to Mg2+ ions. PfC2DMA localized to the surface of merozoite and recombinant C2dom bound to the surface of human RBCs. RBC receptor modification by treatment with different enzymes showed that binding of C2dom to RBC surface is neuraminidase sensitive. Mice antisera raised against C2dom of Pf C2DMA showed invasion inhibitory effects. CONCLUSION Our findings suggest that C2dom of PfC2DMA binds to surface of red cell in a Ca2+-dependent manner, advocating a plausible role in invasion and can serve as a potential novel blood stage vaccine candidate.
Collapse
Affiliation(s)
- Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Deepika Kannan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India; The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
17
|
Takashima E, Nagaoka H, Correia R, Alves PM, Roldão A, Christensen D, Guderian JA, Fukushima A, Viebig NK, Depraetere H, Tsuboi T. A novel asexual blood-stage malaria vaccine candidate: PfRipr5 formulated with human-use adjuvants induces potent growth inhibitory antibodies. Front Immunol 2022; 13:1002430. [PMID: 36389677 PMCID: PMC9647036 DOI: 10.3389/fimmu.2022.1002430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2023] Open
Abstract
PfRipr is a highly conserved asexual-blood stage malaria vaccine candidate against Plasmodium falciparum. PfRipr5, a protein fragment of PfRipr inducing the most potent inhibitory antibodies, is a promising candidate for the development of next-generation malaria vaccines, requiring validation of its potential when formulated with adjuvants already approved for human use. In this study, PfRipr5 antigen was efficiently produced in a tank bioreactor using insect High Five cells and the baculovirus expression vector system; purified PfRipr5 was thermally stable in its monomeric form, had high purity and binding capacity to functional monoclonal anti-PfRipr antibody. The formulation of purified PfRipr5 with Alhydrogel®, GLA-SE or CAF®01 adjuvants accepted for human use showed acceptable compatibility. Rabbits immunized with these formulations induced comparable levels of anti-PfRipr5 antibodies, and significantly higher than the control group immunized with PfRipr5 alone. To investigate the efficacy of the antibodies, we used an in vitro parasite growth inhibition assay (GIA). The highest average GIA activity amongst all groups was attained with antibodies induced by immunization with PfRipr5 formulated with CAF®01. Overall, this study validates the potential of adjuvanted PfRipr5 as an asexual blood-stage malaria vaccine candidate, with PfRipr5/CAF®01 being a promising formulation for subsequent pre-clinical and clinical development.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ricardo Correia
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut (SSI), Copenhagen, Denmark
| | | | | | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Hilde Depraetere
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
18
|
Vimonpatranon S, Roytrakul S, Phaonakrop N, Lekmanee K, Atipimonpat A, Srimark N, Sukapirom K, Chotivanich K, Khowawisetsut L, Pattanapanyasat K. Extracellular Vesicles Derived from Early and Late Stage Plasmodium falciparum-Infected Red Blood Cells Contain Invasion-Associated Proteins. J Clin Med 2022; 11:jcm11144250. [PMID: 35888014 PMCID: PMC9318397 DOI: 10.3390/jcm11144250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
In infectious diseases, extracellular vesicles (EVs) released from a pathogen or pathogen-infected cells can transfer pathogen-derived biomolecules, especially proteins, to target cells and consequently regulate these target cells. For example, malaria is an important tropical infectious disease caused by Plasmodium spp. Previous studies have identified the roles of Plasmodium falciparum-infected red blood cell-derived EVs (Pf-EVs) in the pathogenesis, activation, and modulation of host immune responses. This study investigated the proteomic profiles of Pf-EVs isolated from four P. falciparum strains. We also compared the proteomes of EVs from (i) different EV types (microvesicles and exosomes) and (ii) different parasite growth stages (early- and late-stage). The proteomic analyses revealed that the human proteins carried in the Pf-EVs were specific to the type of Pf-EVs. By contrast, most of the P. falciparum proteins carried in Pf-EVs were common across all types of Pf-EVs. As the proteomics results revealed that Pf-EVs contained invasion-associated proteins, the effect of Pf-EVs on parasite invasion was also investigated. Surprisingly, the attenuation of parasite invasion efficiency was found with the addition of Pf-MVs. Moreover, this effect was markedly increased in culture-adapted isolates compared with laboratory reference strains. Our evidence supports the concept that Pf-EVs play a role in quorum sensing, which leads to parasite growth-density regulation.
Collapse
Affiliation(s)
- Sinmanus Vimonpatranon
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand; (S.R.); (N.P.)
| | - Kittima Lekmanee
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.L.); (N.S.); (K.S.)
| | - Anyapat Atipimonpat
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Narinee Srimark
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.L.); (N.S.); (K.S.)
| | - Kasama Sukapirom
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.L.); (N.S.); (K.S.)
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: (L.K.); (K.P.); Tel.: +66-2419-6477 (L.K. & K.P.)
| | - Kovit Pattanapanyasat
- Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.L.); (N.S.); (K.S.)
- Correspondence: (L.K.); (K.P.); Tel.: +66-2419-6477 (L.K. & K.P.)
| |
Collapse
|
19
|
Knudsen AS, Walker MR, Agullet JP, Björnsson KH, Bassi MR, Barfod L. Enhancing neutralization of Plasmodium falciparum using a novel monoclonal antibody against the rhoptry-associated membrane antigen. Sci Rep 2022; 12:3040. [PMID: 35197516 PMCID: PMC8866459 DOI: 10.1038/s41598-022-06921-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of malaria is associated with blood-stage infection and there is strong evidence that antibodies specific to parasite blood-stage antigens can control parasitemia. This provides a strong rational for applying blood-stage antigen components in a multivalent vaccine, as the induced antibodies in combination can enhance protection. The Plasmodium falciparum rhoptry-associated membrane antigen (PfRAMA) is a promising vaccine target, due to its fundamental role in merozoite invasion and low level of polymorphism. Polyclonal antibodies against PfRAMA are able to inhibit P. falciparum growth and interact synergistically when combined with antibodies against P. falciparum reticulocyte-binding protein 5 (PfRh5) or cysteine-rich protective antigen (PfCyRPA). In this study, we identified a novel PfRAMA-specific mAb with neutralizing activity, which in combination with PfRh5- or PfCyRPA-specific mAbs potentiated the neutralizing effect. By applying phage display technology, we mapped the protective epitope to be in the C-terminal region of PfRAMA. Our results confirmed previous finding of synergy between PfRAMA-, PfRh5- and PfCyRPA-specific antibodies, thereby paving the way of testing these antigens (or fragments of these antigens) in combination to improve the efficacy of blood-stage malaria vaccines. The results emphasize the importance of directing antibody responses towards protective epitopes, as the majority of anti-PfRAMA mAbs were unable to inhibit merozoite invasion of erythrocytes.
Collapse
Affiliation(s)
- Anne S Knudsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie R Walker
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judit P Agullet
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria R Bassi
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
20
|
Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nat Commun 2022; 13:933. [PMID: 35177602 PMCID: PMC8854392 DOI: 10.1038/s41467-022-28601-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 01/01/2023] Open
Abstract
Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets. Antibodies can have synergistic effects, but mechanisms are not well understood. Here, Ragotte et al. identify three antibodies that bind neighbouring epitopes on CyRPA, a malaria vaccine candidate, and show that lateral interactions between the antibodies slow dissociation and inhibit parasite growth synergistically.
Collapse
|
21
|
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) Elicits Detectable Levels of Invasion-Inhibitory Antibodies during Natural Infection in Humans. Infect Immun 2021; 90:e0037721. [PMID: 34694918 DOI: 10.1128/iai.00377-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum Cysteine-Rich Protective Antigen (CyRPA) is a conserved component of an essential erythrocyte invasion complex (RH5/Ripr/CyRPA) and a target of potent cross-strain parasite-neutralizing antibodies. While, naturally acquired human RH5 antibodies have been functionally characterized, there are no similar reports on CyRPA. Thus, we analyzed the parasite neutralizing activity of naturally acquired human CyRPA antibodies. In this regard, CyRPA human antibodies were measured and purified from malaria infected sera obtained from central India and analyzed for their parasite neutralizing activity in in vitro growth inhibition assays (GIA). We report that despite being susceptible to antibody, CyRPA being a highly conserved antigen does not appear to be under substantial immune selection pressure as a very low acquisition of anti-CyRPA antibodies was reported in malaria-exposed Indians. We demonstrate for the first time that the low amounts of natural CyRPA antibodies exhibited functional parasite-neutralizing activity and that a CyRPA based vaccine formulation induces highly potent antibodies in rabbits. Importantly, the vaccine induced CyRPA antibodies exhibited a robust IC50 of 21.96 μg/ml that is comparable to IC50 of antibodies against the leading blood stage vaccine candidate, RH5. Our data support CyRPA as a unique vaccine target that is highly susceptible to immune attack but highly conserved compared to other leading candidates such as MSP-1, AMA-1, further substantiating its promise as a leading blood-stage vaccine candidate.
Collapse
|
22
|
Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4 + T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol 2021; 12:732667. [PMID: 34659219 PMCID: PMC8515144 DOI: 10.3389/fimmu.2021.732667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.
Collapse
Affiliation(s)
- Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gaurav Gupta
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Williams
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Knudsen AS, Björnsson KH, Bassi MR, Walker MR, Kok A, Cristinoi B, Jensen AR, Barfod L. Strain-Dependent Inhibition of Erythrocyte Invasion by Monoclonal Antibodies Against Plasmodium falciparum CyRPA. Front Immunol 2021; 12:716305. [PMID: 34447381 PMCID: PMC8383283 DOI: 10.3389/fimmu.2021.716305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
The highly conserved Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) is a key target for next-generation vaccines against blood-stage malaria. PfCyRPA constitute the core of a ternary complex, including the reticulocyte binding-like homologous protein 5 (PfRh5) and the Rh5-interacting protein (PfRipr), and is fundamental for merozoite invasion of erythrocytes. In this study, we show that monoclonal antibodies (mAbs) specific to PfCyRPA neutralize the in vitro growth of Ghanaian field isolates as well as numerous laboratory-adapted parasite lines. We identified subsets of mAbs with neutralizing activity that bind to distinct sites on PfCyRPA and that in combination potentiate the neutralizing effect. As antibody responses against multiple merozoite invasion proteins are thought to improve the efficacy of blood-stage vaccines, we also demonstrated that combinations of PfCyRPA- and PfRh5 specific mAbs act synergistically to neutralize parasite growth. Yet, we identified prominent strain-dependent neutralization potencies, which our results suggest is independent of PfCyRPA expression level and polymorphism, demonstrating the importance of addressing functional converseness when evaluating blood-stage vaccine candidates. Finally, our results suggest that blood-stage vaccine efficacy can be improved by directing the antibody response towards defined protective epitopes on multiple parasite antigens.
Collapse
Affiliation(s)
- Anne S Knudsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper H Björnsson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria R Bassi
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie R Walker
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kok
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bogdan Cristinoi
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, et alAhouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441 DOI: 10.12688/wellcomeopenres.16168.1] [Show More Authors] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
25
|
Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, et alAhouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441.2 DOI: 10.12688/wellcomeopenres.16168.2] [Show More Authors] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
26
|
Willcox AC, Huber AS, Diouf A, Barrett JR, Silk SE, Pulido D, King LDW, Alanine DGW, Minassian AM, Diakite M, Draper SJ, Long CA, Miura K. Antibodies from malaria-exposed Malians generally interact additively or synergistically with human vaccine-induced RH5 antibodies. CELL REPORTS MEDICINE 2021; 2:100326. [PMID: 34337556 PMCID: PMC8324462 DOI: 10.1016/j.xcrm.2021.100326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
Reticulocyte-binding protein homolog 5 (RH5) is a leading Plasmodium falciparum blood-stage vaccine candidate. Another possible candidate, apical membrane antigen 1 (AMA1), was not efficacious in malaria-endemic populations, likely due to pre-existing antimalarial antibodies that interfered with the activity of vaccine-induced AMA1 antibodies, as judged by in vitro growth inhibition assay (GIA). To determine how pre-existing antibodies interact with vaccine-induced RH5 antibodies, we purify total and RH5-specific immunoglobulin Gs (IgGs) from malaria-exposed Malians and malaria-naive RH5 vaccinees. Infection-induced RH5 antibody titers are much lower than those induced by vaccination, and RH5-specific IgGs show differences in the binding site between the two populations. In GIA, Malian polyclonal IgGs show additive or synergistic interactions with RH5 human monoclonal antibodies and overall additive interactions with vaccine-induced polyclonal RH5 IgGs. These results suggest that pre-existing antibodies will interact favorably with vaccine-induced RH5 antibodies, in contrast to AMA1 antibodies. This study supports RH5 vaccine trials in malaria-endemic regions. RH5 IgG titers induced by infection are lower than those induced by RH5 vaccination Infection- and vaccine-induced RH5 IgGs have different specificity and avidity Infection- and vaccine-induced RH5 IgGs interact differently with RH5 mAbs Infection-induced IgGs generally do not reduce the activity of vaccine-induced IgGs
Collapse
Affiliation(s)
- Alexandra C Willcox
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alex S Huber
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jordan R Barrett
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Lloyd D W King
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Daniel G W Alanine
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Angela M Minassian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy, and Odontostomatology, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
27
|
Minassian AM, Silk SE, Barrett JR, Nielsen CM, Miura K, Diouf A, Loos C, Fallon JK, Michell AR, White MT, Edwards NJ, Poulton ID, Mitton CH, Payne RO, Marks M, Maxwell-Scott H, Querol-Rubiera A, Bisnauthsing K, Batra R, Ogrina T, Brendish NJ, Themistocleous Y, Rawlinson TA, Ellis KJ, Quinkert D, Baker M, Lopez Ramon R, Ramos Lopez F, Barfod L, Folegatti PM, Silman D, Datoo M, Taylor IJ, Jin J, Pulido D, Douglas AD, de Jongh WA, Smith R, Berrie E, Noe AR, Diggs CL, Soisson LA, Ashfield R, Faust SN, Goodman AL, Lawrie AM, Nugent FL, Alter G, Long CA, Draper SJ. Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. MED 2021; 2:701-719.e19. [PMID: 34223402 PMCID: PMC8240500 DOI: 10.1016/j.medj.2021.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/19/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 μg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.
Collapse
Affiliation(s)
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Carolin Loos
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ashlin R. Michell
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael T. White
- Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Celia H. Mitton
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael Marks
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Hector Maxwell-Scott
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Antonio Querol-Rubiera
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Karen Bisnauthsing
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Tatiana Ogrina
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Daniel Silman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Mehreen Datoo
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Iona J. Taylor
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Willem A. de Jongh
- ExpreSion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Robert Smith
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | - Eleanor Berrie
- Clinical BioManufacturing Facility, University of Oxford, Oxford OX3 7JT, UK
| | | | | | | | | | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anna L. Goodman
- Centre for Clinical Infection and Diagnostics Research, King’s College London and Guy’s & St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK
| | | | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Galit Alter
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
28
|
Bonde CS, Bornancin L, Lu Y, Simonsen HT, Martínez-Valladares M, Peña-Espinoza M, Mejer H, Williams AR, Thamsborg SM. Bio-Guided Fractionation and Molecular Networking Reveal Fatty Acids to Be Principal Anti-Parasitic Compounds in Nordic Seaweeds. Front Pharmacol 2021; 12:674520. [PMID: 34149425 PMCID: PMC8206555 DOI: 10.3389/fphar.2021.674520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 01/25/2023] Open
Abstract
Widespread use of antimicrobial drugs has led to high levels of drug-resistance in pathogen populations and a need for novel sources of anti-bacterial and anti-parasitic compounds. Macroalgae (seaweed) are potentially a rich source of bioactive compounds, and several species have traditionally been used as vermifuges. Here, we investigated the anti-parasitic properties of four common cold-water Nordic seaweeds; Palmaria palmata (Rhodophyta), Laminaria digitata, Saccharina latissima and Ascophyllum nodosum (Ochrophyta, Phaeophyceae). Screening of organic extracts against helminths of swine (Ascaris suum) and sheep (Teladorsagia circumcincta) revealed that S. latissima and L. digitata had particularly high biological activity. A combination of molecular networking and bio-guided fractionation led to the isolation of six compounds from extracts of these two species identified in both fermented and non-fermented samples. The six isolated compounds were tentatively identified by using MS-FINDER as five fatty acids and one monoglyceride: Stearidonic acid (1), Eicosapentaenoic acid (2), Alpha-Linolenic acid (3), Docosahexaenoic acid (4), Arachidonic acid (5), and Monoacylglycerol (MG 20:5) (6). Individual compounds showed only modest activity against A. suum, but a clear synergistic effect was apparent when selected compounds were tested in combination. Collectively, our data reveal that fatty acids may have a previously unappreciated role as natural anti-parasitic compounds, which suggests that seaweed products may represent a viable option for control of intestinal helminth infections.
Collapse
Affiliation(s)
- Charlotte Smith Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Louis Bornancin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Department of Animal Health, León, Spain
| | - Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
29
|
Singh H, Mian SY, Pandey AK, Krishna S, Anand G, Reddy KS, Chaturvedi N, Bahl V, Hans N, Shukla MM, Bassat Q, Mayor A, Miura K, Bharti PK, Long C, Singh N, Chauhan VS, Gaur D. Antibody Combinations Targeting the Essential Antigens CyRPA, RH5, and MSP-119 Potently Neutralize Plasmodium falciparum Clinical Isolates From India and Africa. J Infect Dis 2020; 223:1953-1964. [PMID: 32989463 DOI: 10.1093/infdis/jiaa608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Targeting multiple key antigens that mediate distinct Plasmodium falciparum erythrocyte invasion pathways is an attractive approach for the development of blood-stage malaria vaccines. However, the challenge is to identify antigen cocktails that elicit potent strain-transcending parasite-neutralizing antibodies efficacious at low immunoglobulin G concentrations feasible to achieve through vaccination. Previous reports have screened inhibitory antibodies primarily against well adapted laboratory parasite clones. However, validation of the parasite-neutralizing efficacy against clinical isolates with minimal in vitro cultivation is equally significant to better ascertain their prospective in vivo potency. METHODS We evaluated the parasite-neutralizing activity of different antibodies individually and in combinations against laboratory adapted clones and clinical isolates. Clinical isolates were collected from Central India and Mozambique, Africa, and characterized for their invasion properties and genetic diversity of invasion ligands. RESULTS In our portfolio, we evaluated 25 triple antibody combinations and identified the MSP-Fu+CyRPA+RH5 antibody combination to elicit maximal parasite neutralization against P. falciparum clinical isolates with variable properties that underwent minimal in vitro cultivation. CONCLUSIONS The MSP-Fu+CyRPA+RH5 combination exhibited highly robust parasite neutralization against P. falciparum clones and clinical isolates, thus substantiating them as promising candidate antigens and establishing a proof of principle for the development of a combinatorial P. falciparum blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Hina Singh
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok K Pandey
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sri Krishna
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Gaurav Anand
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - K Sony Reddy
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India
| | - Neha Chaturvedi
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Vanndita Bahl
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Hans
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Man Mohan Shukla
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Quique Bassat
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ICREA, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville Maryland, USA
| | - Praveen K Bharti
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville Maryland, USA
| | - Neeru Singh
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, Madhya Pradesh, India
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
30
|
Bliss' and Loewe's additive and synergistic effects in Plasmodium falciparum growth inhibition by AMA1-RON2L, RH5, RIPR and CyRPA antibody combinations. Sci Rep 2020; 10:11802. [PMID: 32678144 PMCID: PMC7366652 DOI: 10.1038/s41598-020-67877-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
Plasmodium invasion of red blood cells involves malaria proteins, such as reticulocyte-binding protein homolog 5 (RH5), RH5 interacting protein (RIPR), cysteine-rich protective antigen (CyRPA), apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2), all of which are blood-stage malaria vaccine candidates. So far, vaccines containing AMA1 alone have been unsuccessful in clinical trials. However, immunization with AMA1 bound with RON2L (AMA1-RON2L) induces better protection against P. falciparum malaria in Aotus monkeys. We therefore sought to determine whether combinations of RH5, RIPR, CyRPA and AMA1-RON2L antibodies improve their biological activities and sought to develop a robust method for determination of synergy or additivity in antibody combinations. Rabbit antibodies against AMA1-RON2L, RH5, RIPR or CyRPA were tested either alone or in combinations in P. falciparum growth inhibition assay to determine Bliss' and Loewe's additivities. The AMA1-RON2L/RH5 combination consistently demonstrated an additive effect while the CyRPA/RIPR combination showed a modest synergistic effect with Hewlett’s \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S=1.07 \left[95\% \mathrm{C}\mathrm{I}: 1.03, 1.19\right].$$\end{document}S=1.0795%CI:1.03,1.19. Additionally, we provide a publicly-available, online tool to aid researchers in analyzing and planning their own synergy experiments. This study supports future blood-stage vaccine development by providing a solid methodology to evaluate additive and/or synergistic (or antagonistic) effect of vaccine-induced antibodies.
Collapse
|
31
|
Oteng EK, Gu W, McKeague M. High-efficiency enrichment enables identification of aptamers to circulating Plasmodium falciparum-infected erythrocytes. Sci Rep 2020; 10:9706. [PMID: 32546848 PMCID: PMC7298056 DOI: 10.1038/s41598-020-66537-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023] Open
Abstract
Plasmodium falciparum is the causative agent of the deadliest human malaria. New molecules are needed that can specifically bind to erythrocytes that are infected with P. falciparum for diagnostic purposes, to disrupt host-parasite interactions, or to deliver chemotherapeutics. Aptamer technology has the potential to revolutionize biological diagnostics and therapeutics; however, broad adoption is hindered by the high failure rate of the systematic evolution of ligands by exponential enrichment (SELEX). Here we performed parallel SELEX experiments to compare the impact of two different methods for single-strand recovery on the efficiency of aptamer enrichment. Our experimental results and analysis of SELEX publications spanning 13 years implicate the alkaline denaturation step as a significant cause for inefficient aptamer selection. Thus, we applied an exonuclease single-strand recovery step in our SELEX to direct aptamers to the surface of erythrocytes infected with P. falciparum. The selected aptamers bind with high affinity (low nanomolar Kd values) and selectivity to exposed surface proteins of both laboratory parasite strains as well isolates from patients in Asia and Africa with clinical malaria. The results obtained in this study potentially open new approaches to malaria diagnosis and surveillance.
Collapse
Affiliation(s)
- Eugene K Oteng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA.
| | - Wenjuan Gu
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada.,Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
32
|
Bemani P, Amirghofran Z, Mohammadi M. Designing a multi-epitope vaccine against blood-stage of Plasmodium falciparum by in silico approaches. J Mol Graph Model 2020; 99:107645. [PMID: 32454399 DOI: 10.1016/j.jmgm.2020.107645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Plasmodium falciparum causes the most severe form of malaria disease and is the major cause of infection-related mortalities in the world. Due to increasing in P. falciparum resistance to the first-line antimalarial drugs, an effective vaccine for the control and elimination of malaria infection is urgent. Because the pathogenesis of malaria disease results from blood-stage infection, and all of the symptoms and clinical illness of malaria occur during this stage, there is a strong rationale to develop vaccine against this stage. In the present study, different structural-vaccinology and immuno informatics tools were applied to design an effective antibody-inducing multi-epitope vaccine against the blood-stage of P. falciparum. The designed multi-epitope vaccine was composed of three main parts including B cell epitopes, T helper (Th) cell epitopes, and two adjuvant motives (HP91 and RS09), which were linked to each other via proper linkers. B cell and T cell epitopes were derived from four protective antigens expressed on the surface of merozoites, which are critical to invade the erythrocytes. HP91 and RS09 adjuvants and Th cell epitopes were used to induce, enhance and direct the best form of humoral immune-response against P. falciparum surface merozoite antigens. The vaccine construct was modeled, and after model quality evaluation and refinement by different software, the high-quality 3D-structure model of the vaccine was achieved. Analysis of immunological and physicochemical features of the vaccine showed acceptable results. We believe that this multi-epitope vaccine can be effective for preventing malaria disease caused by P. falciparum.
Collapse
Affiliation(s)
- Peyman Bemani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Amirghofran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Nagaoka H, Kanoi BN, Ntege EH, Aoki M, Fukushima A, Tsuboi T, Takashima E. Antibodies against a short region of PfRipr inhibit Plasmodium falciparum merozoite invasion and PfRipr interaction with Rh5 and SEMA7A. Sci Rep 2020; 10:6573. [PMID: 32313230 PMCID: PMC7171142 DOI: 10.1038/s41598-020-63611-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum merozoite invasion into erythrocytes is an essential step of the blood-stage cycle, survival of parasites, and malaria pathogenesis. P. falciparum merozoite Rh5 interacting protein (PfRipr) forms a complex with Rh5 and CyRPA in sequential molecular events leading to erythrocyte invasion. Recently we described PfRipr as a conserved protein that induces strain-transcending growth inhibitory antibodies in in vitro assays. However, being a large and complex protein of 1086 amino acids (aa) with 87 cysteine residues, PfRipr is difficult to express in conventional expression systems towards vaccine development. In this study we sought to identify the most potent region of PfRipr that could be developed to overcome difficulties related to protein expression, as well as to elucidate the invasion inhibitory mechanism of anti-PfRipr antibodies. Using the wheat germ cell-free system, Ecto- PfRipr and truncates of approximately 200 aa were expressed as soluble proteins. We demonstrate that antibodies against PfRipr truncate 5 (PfRipr_5: C720-D934), a region within the PfRipr C-terminal EGF-like domains, potently inhibit merozoite invasion. Furthermore, the antibodies strongly block PfRipr/Rh5 interaction, as well as that between PfRipr and its erythrocyte-surface receptor, SEMA7A. Taken together, PfRipr_5 is a potential candidate for further development as a blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan.,Department of Plastic and Reconstructive Surgery, University of the Ryukyus, School of Medicine and Hospital, Okinawa, Japan
| | - Masamitsu Aoki
- Sumitomo Dainippon Pharma Co., Ltd, 3-1-98, Kasugadenaka, Konohanaku, Osaka, 554-0022, Japan
| | - Akihisa Fukushima
- Sumitomo Dainippon Pharma Co., Ltd, 3-1-98, Kasugadenaka, Konohanaku, Osaka, 554-0022, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan.
| |
Collapse
|
34
|
Warszawski S, Dekel E, Campeotto I, Marshall JM, Wright KE, Lyth O, Knop O, Regev-Rudzki N, Higgins MK, Draper SJ, Baum J, Fleishman SJ. Design of a basigin-mimicking inhibitor targeting the malaria invasion protein RH5. Proteins 2020; 88:187-195. [PMID: 31325330 PMCID: PMC6904230 DOI: 10.1002/prot.25786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 11/07/2022]
Abstract
Many human pathogens use host cell-surface receptors to attach and invade cells. Often, the host-pathogen interaction affinity is low, presenting opportunities to block invasion using a soluble, high-affinity mimic of the host protein. The Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) provides an exciting candidate for mimicry: it is highly conserved and its moderate affinity binding to the human receptor basigin (KD ≥1 μM) is an essential step in erythrocyte invasion by this malaria parasite. We used deep mutational scanning of a soluble fragment of human basigin to systematically characterize point mutations that enhance basigin affinity for RH5 and then used Rosetta to design a variant within the sequence space of affinity-enhancing mutations. The resulting seven-mutation design exhibited 1900-fold higher affinity (KD approximately 1 nM) for RH5 with a very slow binding off rate (0.23 h-1 ) and reduced the effective Plasmodium growth-inhibitory concentration by at least 10-fold compared to human basigin. The design provides a favorable starting point for engineering on-rate improvements that are likely to be essential to reach therapeutically effective growth inhibition.
Collapse
Affiliation(s)
- Shira Warszawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elya Dekel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Campeotto
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jennifer M. Marshall
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Katherine E. Wright
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Oliver Lyth
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Orli Knop
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
35
|
Healer J, Wong W, Thompson JK, He W, Birkinshaw RW, Miura K, Long CA, Soroka V, Søgaard TMM, Jørgensen T, de Jongh WA, Weir C, Svahn E, Czabotar PE, Tham W, Mueller I, Barlow PN, Cowman AF. Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of Plasmodium falciparum into human erythrocytes. Cell Microbiol 2019; 21:e13030. [PMID: 30965383 PMCID: PMC6594224 DOI: 10.1111/cmi.13030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 01/19/2023]
Abstract
An effective vaccine is a priority for malaria control and elimination. The leading candidate in the Plasmodium falciparum blood stage is PfRh5. PfRh5 assembles into trimeric complex with PfRipr and PfCyRPA in the parasite, and this complex is essential for erythrocyte invasion. In this study, we show that antibodies specific for PfRh5 and PfCyRPA prevent trimeric complex formation. We identify the EGF-7 domain on PfRipr as a neutralising epitope and demonstrate that antibodies against this region act downstream of complex formation to prevent merozoite invasion. Antibodies against the C-terminal region of PfRipr were more inhibitory than those against either PfRh5 or PfCyRPA alone, and a combination of antibodies against PfCyRPA and PfRipr acted synergistically to reduce invasion. This study supports prioritisation of PfRipr for development as part of a next-generation antimalarial vaccine.
Collapse
Affiliation(s)
- Julie Healer
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Wilson Wong
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jennifer K. Thompson
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Wengqiang He
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Richard W. Birkinshaw
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMarylandUSA
| | - Carol A. Long
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMarylandUSA
| | | | | | | | | | - Christopher Weir
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
- Schools of Chemistry and Biological SciencesUniversity of EdinburghEdinburghScotland, UK
| | - Ella Svahn
- Schools of Chemistry and Biological SciencesUniversity of EdinburghEdinburghScotland, UK
| | - Peter E. Czabotar
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Wai‐Hong Tham
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Ivo Mueller
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Paul N. Barlow
- Schools of Chemistry and Biological SciencesUniversity of EdinburghEdinburghScotland, UK
| | - Alan F. Cowman
- Infection and ImmunityWalter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
36
|
Alanine DGW, Quinkert D, Kumarasingha R, Mehmood S, Donnellan FR, Minkah NK, Dadonaite B, Diouf A, Galaway F, Silk SE, Jamwal A, Marshall JM, Miura K, Foquet L, Elias SC, Labbé GM, Douglas AD, Jin J, Payne RO, Illingworth JJ, Pattinson DJ, Pulido D, Williams BG, de Jongh WA, Wright GJ, Kappe SHI, Robinson CV, Long CA, Crabb BS, Gilson PR, Higgins MK, Draper SJ. Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell 2019; 178:216-228.e21. [PMID: 31204103 PMCID: PMC6602525 DOI: 10.1016/j.cell.2019.05.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022]
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.
Collapse
Affiliation(s)
- Daniel G W Alanine
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Doris Quinkert
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Francesca R Donnellan
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave. N., #500, Seattle, WA 98109, USA
| | - Bernadeta Dadonaite
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Abhishek Jamwal
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jennifer M Marshall
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Lander Foquet
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave. N., #500, Seattle, WA 98109, USA
| | - Sean C Elias
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Geneviève M Labbé
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ruth O Payne
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - David J Pattinson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - David Pulido
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Barnabas G Williams
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Willem A de Jongh
- ExpreS(2)ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm 2970, Denmark
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave. N., #500, Seattle, WA 98109, USA
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Brendan S Crabb
- Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Paul R Gilson
- Burnet Institute, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
37
|
Illingworth JJ, Alanine DG, Brown R, Marshall JM, Bartlett HE, Silk SE, Labbé GM, Quinkert D, Cho JS, Wendler JP, Pattinson DJ, Barfod L, Douglas AD, Shea MW, Wright KE, de Cassan SC, Higgins MK, Draper SJ. Functional Comparison of Blood-Stage Plasmodium falciparum Malaria Vaccine Candidate Antigens. Front Immunol 2019; 10:1254. [PMID: 31214195 PMCID: PMC6558156 DOI: 10.3389/fimmu.2019.01254] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.
Collapse
Affiliation(s)
| | | | - Rebecca Brown
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Sarah E Silk
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jee Sun Cho
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jason P Wendler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Lea Barfod
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Michael W Shea
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katherine E Wright
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Structural basis for inhibition of Plasmodium vivax invasion by a broadly neutralizing vaccine-induced human antibody. Nat Microbiol 2019; 4:1497-1507. [PMID: 31133755 PMCID: PMC6711757 DOI: 10.1038/s41564-019-0462-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
The most widespread form of malaria is caused by Plasmodium vivax. To replicate, this parasite must invade immature red blood cells, through a process which requires interaction of the Plasmodium vivax Duffy binding protein, PvDBP with its human receptor, the Duffy antigen receptor for chemokines, DARC. Naturally acquired antibodies that inhibit this interaction associate with clinical immunity, suggesting PvDBP as a leading candidate for inclusion in a vaccine to prevent malaria due to Plasmodium vivax. Here, we isolated a panel of monoclonal antibodies from human volunteers immunised in a clinical vaccine trial of PvDBP. We screened their ability to prevent PvDBP from binding to DARC, and their capacity to block red blood cell invasion by a transgenic Plasmodium knowlesi parasite genetically modified to express PvDBP and to prevent reticulocyte invasion by multiple clinical isolates of Plasmodium vivax. This identified a broadly neutralising human monoclonal antibody which inhibited invasion of all tested strains of Plasmodium vivax. Finally, we determined the structure of a complex of this antibody bound to PvDBP, indicating the molecular basis for inhibition. These findings will guide future vaccine design strategies and open up possibilities for testing the prophylactic use of such an antibody.
Collapse
|
39
|
Douglas AD, Baldeviano GC, Jin J, Miura K, Diouf A, Zenonos ZA, Ventocilla JA, Silk SE, Marshall JM, Alanine DGW, Wang C, Edwards NJ, Leiva KP, Gomez-Puerta LA, Lucas CM, Wright GJ, Long CA, Royal JM, Draper SJ. A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates. Nat Commun 2019; 10:1953. [PMID: 31028254 PMCID: PMC6486575 DOI: 10.1038/s41467-019-09894-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Malaria vaccine design and prioritization has been hindered by the lack of a mechanistic correlate of protection. We previously demonstrated a strong association between protection and merozoite-neutralizing antibody responses following vaccination of non-human primates against Plasmodium falciparum reticulocyte binding protein homolog 5 (PfRH5). Here, we test the mechanism of protection. Using mutant human IgG1 Fc regions engineered not to engage complement or FcR-dependent effector mechanisms, we produce merozoite-neutralizing and non-neutralizing anti-PfRH5 chimeric monoclonal antibodies (mAbs) and perform a passive transfer-P. falciparum challenge study in Aotus nancymaae monkeys. At the highest dose tested, 6/6 animals given the neutralizing PfRH5-binding mAb c2AC7 survive the challenge without treatment, compared to 0/6 animals given non-neutralizing PfRH5-binding mAb c4BA7 and 0/6 animals given an isotype control mAb. Our results address the controversy regarding whether merozoite-neutralizing antibody can cause protection against P. falciparum blood-stage infections, and highlight the quantitative challenge of achieving such protection.
Collapse
Affiliation(s)
- Alexander D Douglas
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| | - G Christian Baldeviano
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Jing Jin
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Zenon A Zenonos
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Julio A Ventocilla
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Sarah E Silk
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jennifer M Marshall
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Daniel G W Alanine
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Chuan Wang
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Nick J Edwards
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Karina P Leiva
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Luis A Gomez-Puerta
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Carmen M Lucas
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Joseph M Royal
- US Naval Medical Research Unit No. 6 (NAMRU-6), Av. Venezuela Cuadra 36, Bellavista, Callao, Peru
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
40
|
Abstract
The enzyme-linked immunosorbent assay (ELISA) is a reliable and relatively low-cost method for measuring soluble ligands such as antibodies and proteins in biological samples. For analysis of specific antibodies in serum, a capture antigen is immobilized onto a solid polystyrene surface from which it can capture the antibodies. The captured antibodies are subsequently detected using a secondary antibody conjugated to an enzyme. Detection is accomplished by addition of a colorimetric substrate, and the readout is absorbance (optical density). Here, we provide a detailed standardized ELISA protocol for the quantification of antibodies against malaria antigens.
Collapse
|
41
|
Tan J, Piccoli L, Lanzavecchia A. The Antibody Response to Plasmodium falciparum: Cues for Vaccine Design and the Discovery of Receptor-Based Antibodies. Annu Rev Immunol 2018; 37:225-246. [PMID: 30566366 DOI: 10.1146/annurev-immunol-042617-053301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
Collapse
Affiliation(s)
- Joshua Tan
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.,Current affiliation: National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,VIR Biotechnology, San Francisco, California 94158, USA
| |
Collapse
|
42
|
Paing MM, Salinas ND, Adams Y, Oksman A, Jensen ATR, Goldberg DE, Tolia NH. Shed EBA-175 mediates red blood cell clustering that enhances malaria parasite growth and enables immune evasion. eLife 2018; 7:e43224. [PMID: 30556808 PMCID: PMC6305201 DOI: 10.7554/elife.43224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/14/2018] [Indexed: 01/22/2023] Open
Abstract
Erythrocyte Binding Antigen of 175 kDa (EBA-175) has a well-defined role in binding to glycophorin A (GpA) during Plasmodium falciparum invasion of erythrocytes. However, EBA-175 is shed post invasion and a role for this shed protein has not been defined. We show that EBA-175 shed from parasites promotes clustering of RBCs, and EBA-175-dependent clusters occur in parasite culture. Region II of EBA-175 is sufficient for clustering RBCs in a GpA-dependent manner. These clusters are capable of forming under physiological flow conditions and across a range of concentrations. EBA-175-dependent RBC clustering provides daughter merozoites ready access to uninfected RBCs enhancing parasite growth. Clustering provides a general method to protect the invasion machinery from immune recognition and disruption as exemplified by protection from neutralizing antibodies that target AMA-1 and RH5. These findings provide a mechanistic framework for the role of shed proteins in RBC clustering, immune evasion, and malaria.
Collapse
Affiliation(s)
- May M Paing
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUnited States
| | - Nichole D Salinas
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUnited States
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anna Oksman
- Department of MedicineWashington University School of MedicineSt. LouisUnited States
| | - Anja TR Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daniel E Goldberg
- Department of MedicineWashington University School of MedicineSt. LouisUnited States
| | - Niraj H Tolia
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisUnited States
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
43
|
Dutta S, Tewari A, Balaji C, Verma R, Moitra A, Yadav M, Agrawal P, Sahal D, Jarori GK. Strain-transcending neutralization of malaria parasite by antibodies against Plasmodium falciparum enolase. Malar J 2018; 17:304. [PMID: 30126436 PMCID: PMC6102825 DOI: 10.1186/s12936-018-2455-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022] Open
Abstract
Background Plasmodium enolase is a target for the growth neutralizing antibodies. Interestingly, the three invasive stages i.e. sporozoites, merozoites, and ookinetes express this protein on their cell surface. Polyclonal anti-Plasmodium falciparum enolase (Pfeno) antibodies disrupt traversal of ookinete through mosquito mid-gut wall as well as have inhibitory effect on parasite growth at erythrocytic stage. In a recent study, it was observed that immunization with a unique epitope of parasite enolase (EWGWS) could confer partial protection against mouse malaria. Further validation is needed for the protective potential of this unique epitope in otherwise highly conserved enolase. Methods In order to investigate the efficacy of growth inhibitory potential of the epitope of P falciparum enolase, a monoclonal antibody specific to EWGWS is generated. In vitro parasite growth inhibition assays and passive immunization of Plasmodium yoelii (or Plasmodium berghei) infected mice were used to assess the parasite growth neutralizing activity of the antibody. Results Screening a panel of monoclonal antibodies raised against recombinant Pfeno that were specific to EWGWS resulted in isolation of H12E1. This antibody recognized only EWGWS epitope containing enolases. H12E1 strongly inhibited parasite growth in culture. This inhibition was strain transcending. Passive infusion of this antibody in P. yoelii or P. berghei infected mice showed significant reduction in parasitemia as compared to controls (p < 0.001). Surface Plasmon Resonance measurements indicated high affinity binding of H12E1 to P. falciparum enolase (KD ~ 7.6 × 10−9M). Conclusions A monoclonal antibody directed against EWGWS epitope of Pfeno was shown to inhibit the growth of blood stage malarial parasites. This inhibition was species/strain transcending and is likely to arise due to blockade of enolase on the surface of merozoites, functionally implicating Pfeno in invasion related events. Presence of enolase on the cell surface of merozoites and ookinetes could potentially result in inhibition of host cell invasions at erythrocytic and transmission stages in the parasite life cycle. It is suggested that antibodies against EWGWS epitope have the potential to confer dual stage, species and strain transcending protection against malaria. Electronic supplementary material The online version of this article (10.1186/s12936-018-2455-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Graduate School of Arts and Sciences, Harvard University, Boston, USA
| | - Aneesha Tewari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.,Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology (MIT), Boston, USA
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Reena Verma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Anasuya Moitra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Mamta Yadav
- International Center for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, India
| | - Prakhar Agrawal
- International Center for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, India
| | - Dinkar Sahal
- International Center for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, India
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.
| |
Collapse
|
44
|
Production, quality control, stability, and potency of cGMP-produced Plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. NPJ Vaccines 2018; 3:32. [PMID: 30131879 PMCID: PMC6098134 DOI: 10.1038/s41541-018-0071-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022] Open
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called “RH5.1” was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at −80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and “difficult-to-express” recombinant protein-based vaccines. A vaccine candidate for blood-stage malaria has overcome previous hurdles to enter clinical trials. The protein PfRH5 is an essential blood-stage infection facilitator of malarial parasite Plasmodium falciparum, and a promising target for vaccine strategies. Unfortunately, efforts to produce the protein in an immunogenic, clinically-viable way have been met with difficulty. Here, researchers led by Simon Draper, from the UK’s Jenner Institute, used a fruit fly expression system to produce over 400 mg of high-purity protein. Formulated with an immunity-boosting adjuvant, the vaccine elicited antibodies in mice that proved inhibitory to blood-stage P. falciparum during in vitro assays. The PfRH5 vaccine candidate and its adjuvant have been approved for a clinical trial in the UK, and the authors hope that the expression system used may be beneficial in the expression of other ‘difficult’ proteins.
Collapse
|
45
|
Quintana MDP, Ch’ng JH, Zandian A, Imam M, Hultenby K, Theisen M, Nilsson P, Qundos U, Moll K, Chan S, Wahlgren M. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4.2-RON4-GLURP) contributes to merozoite invasion. PLoS One 2018; 13:e0201669. [PMID: 30092030 PMCID: PMC6084945 DOI: 10.1371/journal.pone.0201669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Plasmodium falciparum invasion into red blood cells (RBCs) is a complex process engaging proteins on the merozoite surface and those contained and sequentially released from the apical organelles (micronemes and rhoptries). Fundamental to invasion is the formation of a moving junction (MJ), a region of close apposition of the merozoite and the RBC plasma membranes, through which the merozoite draws itself before settling into a newly formed parasitophorous vacuole (PV). SURFIN4.2 was identified at the surface of the parasitized RBCs (pRBCs) but was also found apically associated with the merozoite. Using antibodies against the N-terminus of the protein we show the presence of SURFIN4.2 in the neck of the rhoptries, its secretion into the PV and shedding into the culture supernatant upon schizont rupture. Using immunoprecipitation followed by mass spectrometry we describe here a novel protein complex we have named SURGE where SURFIN4.2 forms interacts with the rhoptry neck protein 4 (RON4) and the Glutamate Rich Protein (GLURP). The N-terminal cysteine-rich-domain (CRD) of SURFIN4.2 mediates binding to the RBC membrane and its interaction with RON4 suggests its involvement in the contact between the merozoite apex and the RBC at the MJ. Supporting this suggestion, we also found that polyclonal antibodies to the extracellular domain (including the CRD) of SURFIN4.2 partially inhibit merozoite invasion. We propose that the formation of the SURGE complex participates in the establishment of parasite infection within the PV and the RBCs.
Collapse
Affiliation(s)
- Maria del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch’ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Maryam Imam
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
47
|
Ouattara A, Tran TM, Doumbo S, Adams M, Agrawal S, Niangaly A, Nelson-Owens S, Doumtabé D, Tolo Y, Ongoiba A, Takala-Harrison S, Traoré B, Silva JC, Crompton PD, Doumbo OK, Plowe CV. Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali. Am J Trop Med Hyg 2018; 99:43-50. [PMID: 29848401 PMCID: PMC6085788 DOI: 10.4269/ajtmh.17-0737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reticulocyte-binding homologues (RH) are a ligand family that mediates merozoite invasion of erythrocytes in Plasmodium falciparum. Among the five members of this family identified so far, only P. falciparum reticulocyte–binding homologue-5 (PfRH5) has been found to be essential for parasite survival across strains that differ in virulence and route of host-cell invasion. Based on its essential role in invasion and early evidence of sequence conservation, PfRH5 has been prioritized for development as a vaccine candidate. However, little is known about the extent of genetic variability of RH5 in the field and the potential impact of such diversity on clinical outcomes or on vaccine evasion. Samples collected during a prospective cohort study of malaria incidence conducted in Kalifabougou, in southwestern Mali, were used to estimate genetic diversity, measure haplotype prevalence, and assess the within-host dynamics of PfRH5 variants over time and in relation to clinical malaria. A total of 10 nonsynonymous polymorphic sites were identified in the Pfrh5 gene, resulting in 13 haplotypes encoding unique protein variants. Four of these variants have not been previously observed. Plasmodium falciparum reticulocyte–binding homologue-5 had low amino acid haplotype (h = 0.58) and nucleotide (π = 0.00061) diversity. By contrast to other leading blood-stage malaria vaccine candidate antigens, amino acid differences were not associated with changes in the risk of febrile malaria in consecutive infections. Conserved B- and T-cell epitopes were identified. These results support the prioritization of PfRH5 for possible inclusion in a broadly cross-protective vaccine.
Collapse
Affiliation(s)
- Amed Ouattara
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali.,Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tuan M Tran
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland.,Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Safiatou Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Matthew Adams
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sonia Agrawal
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | | | - Didier Doumtabé
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Shannon Takala-Harrison
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Boubacar Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technology, Bamako, Mali
| | | |
Collapse
|
48
|
Abstract
Plasmodium species cause malaria by proliferating in human erythrocytes. Invasion of immunologically privileged erythrocytes provides a relatively protective niche as well as access to a rich source of nutrients. Plasmodium spp. target erythrocytes of different ages, but share a common mechanism of invasion. Specific engagement of erythrocyte receptors defines target cell tropism, activating downstream events and resulting in the physical penetration of the erythrocyte, powered by the parasite's actinomyosin-based motor. Here we review the latest in our understanding of the molecular composition of this highly complex and fascinating biological process.
Collapse
|
49
|
Good MF, Miller LH. Interpreting challenge data from early phase malaria blood stage vaccine trials. Expert Rev Vaccines 2018; 17:189-196. [PMID: 29382292 DOI: 10.1080/14760584.2018.1435278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION As the quest for an effective blood stage malaria vaccine continues, there is increasing reliance on the use of controlled human malaria infections (CHMI) in non-endemic settings to test vaccine efficacy at the earliest possible time. This is seen as a way to accelerate vaccine research and quickly eliminate candidates with poor efficacy. Areas covered: The data from these studies need to be carefully examined and interpreted in light of the very different roles that antibody and cellular immunity play in protection and within the context of the distinct clinical sensitivities of volunteers living in malaria-non-endemic countries compared to those living in endemic countries. With current strategies, it is likely that vaccines with protective immunological 'signatures' will be missed and potentially good candidates discarded. Expert commentary: Efficacy data from early phase vaccine trials in non-endemic countries should not be used to decide whether or not to proceed to vaccine trials in endemic countries.
Collapse
Affiliation(s)
- Michael F Good
- a Institute for Glycomics , Griffith University , Queensland , Australia.,b Department of Medical Microbiology and Immunology, University of Alberta , Edmonton , Canada
| | - Louis H Miller
- c Malaria Cell Biology Section, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
50
|
Pegha-Moukandja I, Imboumy-Limoukou RK, Tchitoula-Makaya N, Mouinga-Ondeme AG, Biteghe-Bi-Essone JC, Mba DN, Lekana-Douki JB, Ndouo FST. High Level of Specific Anti- Plasmodium Falciparum Merozoite IgG1 Antibodies in Rural Asymptomatic Individuals of Dienga, South-Eastern Gabon. Eur J Microbiol Immunol (Bp) 2017; 7:247-260. [PMID: 29403652 PMCID: PMC5793693 DOI: 10.1556/1886.2017.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Plasmodium falciparum merozoite antigens (PfMAgs) play an essential role in the development of immunity to malaria. Currently, P. falciparum: protein 113 (Pf 113), apical membrane antigen 1 (AMA1), erythrocyte binding antigens (EBA175), and reticulocyte binding protein homologue 5 (RH5) are among the most PfMAgs studied. A comparative analysis of naturally acquired antibodies against these antigens in children would increase our knowledge about the development of protective immunity. Analysis of antibodies to Pf113, PfAMA1, PfEBA175, and PfRH5 was conducted in rural population during 2013 and 2014. Both prevalence and levels of total IgG anti-PfAMA1 were higher than that of IgG anti-PfEBA175, anti-PfRH5, and anti-Pf113. Seroconversion to PfAMA1 and PfEBA175 occurred moderately in young children and reached to the maximum in adolescent and in adults. High prevalence of IgG anti-Pf113 was observed in young children of 3 to 6 years old in 2013. The four antigens were recognized by IgG 1, 2, 3, and 4 antibodies from a large proportion of the subjects, and all of them induced high levels of specific IgG1 against PfAMA1, PfEBA175, fewer by Pf113 and PfRH5. Many asymptomatic children had specific IgG1 recognizing multiple antigens, and these IgG1 antibodies could be associated with a reduced risk of developing malaria symptoms.
Collapse
Affiliation(s)
- Irène Pegha-Moukandja
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Département de Parasitologie-Mycologie et Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, BP 4009, Libreville, Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Roméo-Karl Imboumy-Limoukou
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Nina Tchitoula-Makaya
- Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | | | - Jean Claude Biteghe-Bi-Essone
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Dieudonne Nkoghe Mba
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa
| | - Jean-Bernard Lekana-Douki
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Département de Parasitologie-Mycologie et Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, BP 4009, Libreville, Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Fousseyni S Toure Ndouo
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa
| |
Collapse
|