1
|
Crowner A, Smith K, DeSmet M. Regulation of R-Loops in DNA Tumor Viruses. Pathogens 2024; 13:863. [PMID: 39452734 PMCID: PMC11510693 DOI: 10.3390/pathogens13100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
R-loops are triple-stranded nucleic acid structures that occur when newly synthesized single-stranded RNA anneals to duplex DNA upon the collision of replication forks with transcription complexes. These RNA-DNA hybrids facilitate several transcriptional processes in the cell and have been described extensively in the literature. Recently, evidence has emerged that R-loops are key regulators of DNA tumor virus transcription and the replication of their lifecycle. Studies have demonstrated that R-loops on the Human Papillomavirus (HPV) genome must be resolved to maintain genome maintenance and avoid viral integration, a hallmark of HPV cancers. For Epstein-Barr virus (EBV), R-loops are formed at the oriLyt to establish lytic replication. Structural maintenance of chromosome proteins 5/6 (SMC5/6) bind to these viral R-loops to repress EBV lytic replication. Most viruses in the herpesvirales order, such as KSHV, contain R-loop-forming sequences. In this perspective, we will describe the current, although limited, literature demonstrating the importance of RNA-DNA hybrids to regulate DNA virus transcription. We will also detail potential new areas of R-loop research and how these viruses can be used as tools to study the growing field of R-loops.
Collapse
Affiliation(s)
- Anaiya Crowner
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keely Smith
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Kervarrec T, Appenzeller S, Gramlich S, Coyaud E, Bachiri K, Appay R, Macagno N, Tallet A, Bonenfant C, Lecorre Y, Kapfer J, Kettani S, Srinivas N, Lei KC, Lange A, Becker JC, Sarosi EM, Sartelet H, von Deimling A, Touzé A, Guyétant S, Samimi M, Schrama D, Houben R. Analyses of combined Merkel cell carcinomas with neuroblastic components suggests that loss of T antigen expression in Merkel cell carcinoma may result in cell cycle arrest and neuroblastic transdifferentiation. J Pathol 2024; 264:112-124. [PMID: 39049595 DOI: 10.1002/path.6304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by genomic integration of the Merkel cell polyomavirus (MCPyV). MCPyV-negative cases often present as combined MCCs, which represent a distinctive subset of tumors characterized by association of an MCC with a second tumor component, mostly squamous cell carcinoma. Up to now, only exceptional cases of combined MCC with neuroblastic differentiation have been reported. Herein we describe two additional combined MCCs with neuroblastic differentiation and provide comprehensive morphologic, immunohistochemical, transcriptomic, genetic and epigenetic characterization of these tumors, which both arose in elderly men and appeared as an isolated inguinal adenopathy. Microscopic examination revealed biphasic tumors combining a poorly differentiated high-grade carcinoma with a poorly differentiated neuroblastic component lacking signs of proliferation. Immunohistochemical investigation revealed keratin 20 and MCPyV T antigen (TA) in the MCC parts, while neuroblastic differentiation was confirmed in the other component in both cases. A clonal relation of the two components can be deduced from 20 and 14 shared acquired point mutations detected by whole exome analysis in both combined tumors, respectively. Spatial transcriptomics demonstrated a lower expression of stem cell marker genes such as SOX2 and MCM2 in the neuroblastic component. Interestingly, although the neuroblastic part lacked TA expression, the same genomic MCPyV integration and the same large T-truncating mutations were observed in both tumor parts. Given that neuronal transdifferentiation upon TA repression has been reported for MCC cell lines, the most likely scenario for the two combined MCC/neuroblastic tumors is that neuroblastic transdifferentiation resulted from loss of TA expression in a subset of MCC cells. Indeed, DNA methylation profiling suggests an MCC-typical cellular origin for the combined MCC/neuroblastomas. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/virology
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Male
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/virology
- Skin Neoplasms/metabolism
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/metabolism
- Cell Transdifferentiation
- Merkel cell polyomavirus/genetics
- Cell Cycle Checkpoints/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Aged, 80 and over
- Aged
- Neoplasms, Complex and Mixed/pathology
- Neoplasms, Complex and Mixed/genetics
- Neoplasms, Complex and Mixed/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
- CARADERM Network
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Gramlich
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Kamel Bachiri
- PRISM INSERM U1192, Université de Lille, Lille, France
| | - Romain Appay
- Department of Pathology, Université de Marseille, Assistance publique des Hopitaux de Marseille, Marseille, France
| | - Nicolas Macagno
- CARADERM Network
- Department of Pathology, Université de Marseille, Assistance publique des Hopitaux de Marseille, Marseille, France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Christine Bonenfant
- Platform of Somatic Tumor Molecular Genetics, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Yannick Lecorre
- Dermatology Department, LUNAM Université, CHU Angers, Angers, France
| | | | | | - Nalini Srinivas
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
| | - Kuan Cheok Lei
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Lange
- Bioinformatics & Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Jürgen C Becker
- Department of Translational Skin Cancer Research and Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Maria Sarosi
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Hervé Sartelet
- Laboratoire de Biopathologie, CHRU de Nancy, Nancy, France
- INSERM U1256, Université de Lorraine, Nancy, France
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Antoine Touzé
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
| | - Mahtab Samimi
- "Biologie des infections à polyomavirus" team, UMR INRAE ISP 1282, Université de Tours, Tours, France
- CARADERM Network
- Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Ohnezeit D, Huang J, Westerkamp U, Brinschwitz V, Schmidt C, Günther T, Czech-Sioli M, Weißelberg S, Schlemeyer T, Nakel J, Mai J, Schreiner S, Schneider C, Friedel CC, Schwanke H, Brinkmann MM, Grundhoff A, Fischer N. Merkel cell polyomavirus small tumor antigen contributes to immune evasion by interfering with type I interferon signaling. PLoS Pathog 2024; 20:e1012426. [PMID: 39110744 PMCID: PMC11333005 DOI: 10.1371/journal.ppat.1012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/19/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the causative agent of the majority of Merkel cell carcinomas (MCC). The virus has limited coding capacity, with its early viral proteins, large T (LT) and small T (sT), being multifunctional and contributing to infection and transformation. A fundamental difference in early viral gene expression between infection and MCPyV-driven tumorigenesis is the expression of a truncated LT (LTtr) in the tumor. In contrast, sT is expressed in both conditions and contributes significantly to oncogenesis. Here, we identified novel functions of early viral proteins by performing genome-wide transcriptome and chromatin studies in primary human fibroblasts. Due to current limitations in infection and tumorigenesis models, we mimic these conditions by ectopically expressing sT, LT or LTtr, individually or in combination, at different time points. In addition to its known function in cell cycle and inflammation modulation, we reveal a fundamentally new function of sT. We show that sT regulates the type I interferon (IFN) response downstream of the type I interferon receptor (IFNAR) by interfering with the interferon-stimulated gene factor 3 (ISGF3)-induced interferon-stimulated gene (ISG) response. Expression of sT leads to a reduction in the expression of interferon regulatory factor 9 (IRF9) which is a central component of the ISGF3 complex. We further show that this function of sT is conserved in BKPyV. We provide a first mechanistic understanding of which early viral proteins trigger and control the type I IFN response, which may influence MCPyV infection, persistence and, during MCC progression, regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Denise Ohnezeit
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Westerkamp
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Brinschwitz
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schmidt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samira Weißelberg
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tabea Schlemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | - Sabrina Schreiner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | | | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Khattri M, Amako Y, Gibbs JR, Collura JL, Arora R, Harold A, Li MY, Harms PW, Ezhkova E, Shuda M. Methyltransferase-independent function of enhancer of zeste homologue 2 maintains tumorigenicity induced by human oncogenic papillomavirus and polyomavirus. Tumour Virus Res 2023; 16:200264. [PMID: 37244352 PMCID: PMC10258072 DOI: 10.1016/j.tvr.2023.200264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Merkel cell polyomavirus (MCV) and high-risk human papillomavirus (HPV) are human tumor viruses that cause Merkel cell carcinoma (MCC) and oropharyngeal squamous cell carcinoma (OSCC), respectively. HPV E7 and MCV large T (LT) oncoproteins target the retinoblastoma tumor suppressor protein (pRb) through the conserved LxCxE motif. We identified enhancer of zeste homolog 2 (EZH2) as a common host oncoprotein activated by both viral oncoproteins through the pRb binding motif. EZH2 is a catalytic subunit of the polycomb 2 (PRC2) complex that trimethylates histone H3 at lysine 27 (H3K27me3). In MCC tissues EZH2 was highly expressed, irrespective of MCV status. Loss-of-function studies revealed that viral HPV E6/E7 and T antigen expression are required for Ezh2 mRNA expression and that EZH2 is essential for HPV(+)OSCC and MCV(+)MCC cell growth. Furthermore, EZH2 protein degraders reduced cell viability efficiently and rapidly in HPV(+)OSCC and MCV(+)MCC cells, whereas EZH2 histone methyltransferase inhibitors did not affect cell proliferation or viability within the same treatment period. These results suggest that a methyltransferase-independent function of EZH2 contributes to tumorigenesis downstream of two viral oncoproteins, and that direct targeting of EZH2 protein expression could be a promising strategy for the inhibition of tumor growth in HPV(+)OSCC and MCV(+)MCC patients.
Collapse
Affiliation(s)
- Michelle Khattri
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yutaka Amako
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia R Gibbs
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joseph L Collura
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Reety Arora
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Alexis Harold
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Meng Yen Li
- Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena Ezhkova
- Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY, USA; Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Weber M, Nguyen MB, Li MY, Flora P, Shuda M, Ezhkova E. Merkel Cell Polyomavirus T Antigen-Mediated Reprogramming in Adult Merkel Cell Progenitors. J Invest Dermatol 2023; 143:2163-2176.e6. [PMID: 37257637 PMCID: PMC10592583 DOI: 10.1016/j.jid.2023.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Whether Merkel cells regenerate in adult skin and from which progenitor cells they regenerate are a subject of debate. Understanding Merkel cell regeneration is of interest to the study of Merkel cell carcinoma, a rare neuroendocrine skin cancer hypothesized to originate in a Merkel cell progenitor transformed by Merkel cell polyomavirus small and large T antigens. We sought to understand what the adult Merkel cell progenitors are and whether they can give rise to Merkel cell carcinoma. We used lineage tracing to identify SOX9-expressing cells (SOX9+ cells) as Merkel cell progenitors in postnatal murine skin. Merkel cell regeneration from SOX9+ progenitors occurs rarely in mature skin unless in response to minor mechanical injury. Merkel cell polyomavirus small T antigen and functional imitation of large T antigen in SOX9+ cells enforced neuroendocrine and Merkel cell lineage reprogramming in a subset of cells. These results identify SOX9+ cells as postnatal Merkel cell progenitors that can be reprogrammed by Merkel cell polyomavirus T antigens to express neuroendocrine markers.
Collapse
Affiliation(s)
- Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minh Binh Nguyen
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meng Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Masahiro Shuda
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
6
|
Yang JF, Liu W, You J. Characterization of molecular mechanisms driving Merkel cell polyomavirus oncogene transcription and tumorigenic potential. PLoS Pathog 2023; 19:e1011598. [PMID: 37647312 PMCID: PMC10468096 DOI: 10.1371/journal.ppat.1011598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with approximately 80% of cases of Merkel cell carcinoma (MCC), an aggressive type of skin cancer. The incidence of MCC has tripled over the past twenty years, but there are currently very few effective targeted treatments. A better understanding of the MCPyV life cycle and its oncogenic mechanisms is needed to unveil novel strategies for the prevention and treatment of MCC. MCPyV infection and oncogenesis are reliant on the expression of the early viral oncoproteins, which drive the viral life cycle and MCPyV+ MCC tumor cell growth. To date, the molecular mechanisms regulating the transcription of the MCPyV oncogenes remain largely uncharacterized. In this study, we investigated how MCPyV early transcription is regulated to support viral infection and MCC tumorigenesis. Our studies established the roles of multiple cellular factors in the control of MCPyV gene expression. Inhibitor screening experiments revealed that the histone acetyltransferases p300 and CBP positively regulate MCPyV transcription. Their regulation of viral gene expression occurs through coactivation of the transcription factor NF-κB, which binds to the viral genome to drive MCPyV oncogene expression in a manner that is tightly controlled through a negative feedback loop. Furthermore, we discovered that small molecule inhibitors specifically targeting p300/CBP histone acetyltransferase activity are effective at blocking MCPyV tumor antigen expression and MCPyV+ MCC cell proliferation. Together, our work establishes key cellular factors regulating MCPyV transcription, providing the basis for understanding the largely unknown mechanisms governing MCPyV transcription that defines its infectious host cell tropism, viral life cycle, and oncogenic potential. Our studies also identify a novel therapeutic strategy against MCPyV+ MCC through specific blockage of MCPyV oncogene expression and MCC tumor growth.
Collapse
Affiliation(s)
- June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Wang R, Yang JF, Senay TE, Liu W, You J. Characterization of the Impact of Merkel Cell Polyomavirus-Induced Interferon Signaling on Viral Infection. J Virol 2023; 97:e0190722. [PMID: 36946735 PMCID: PMC10134799 DOI: 10.1128/jvi.01907-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) has been associated with approximately 80% of Merkel cell carcinoma (MCC), an aggressive and increasingly incident skin cancer. The link between host innate immunity, viral load control, and carcinogenesis has been established but poorly characterized. We previously established the importance of the STING and NF-κB pathways in the host innate immune response to viral infection. In this study, we further discovered that MCPyV infection of human dermal fibroblasts (HDFs) induces the expression of type I and III interferons (IFNs), which in turn stimulate robust expression of IFN-stimulated genes (ISGs). Blocking type I IFN downstream signaling using an IFN-β antibody, JAK inhibitors, and CRISPR knockout of the receptor dramatically repressed MCPyV infection-induced ISG expression but did not significantly restore viral replication activities. These findings suggest that IFN-mediated induction of ISGs in response to MCPyV infection is not crucial to viral control. Instead, we found that type I IFN exerts a more direct effect on MCPyV infection postentry by repressing early viral transcription. We further demonstrated that growth factors normally upregulated in wounded or UV-irradiated human skin can significantly stimulate MCPyV gene expression and replication. Together, these data suggest that in healthy individuals, host antiviral responses, such as IFN production induced by viral activity, may restrict viral propagation to reduce MCPyV burden. Meanwhile, growth factors induced by skin abrasion or UV irradiation may stimulate infected dermal fibroblasts to promote MCPyV propagation. A delicate balance of these mutually antagonizing factors provides a mechanism to support persistent MCPyV infection. IMPORTANCE Merkel cell carcinoma is an aggressive skin cancer that is particularly lethal to immunocompromised individuals. Though rare, MCC incidence has increased significantly in recent years. There are no lasting and effective treatments for metastatic disease, highlighting the need for additional treatment and prevention strategies. By investigating how the host innate immune system interfaces with Merkel cell polyomavirus, the etiological agent of most of these cancers, our studies identified key factors necessary for viral control, as well as conditions that support viral propagation. These studies provide new insights for understanding how the virus balances the effects of the host immune defenses and of growth factor stimulation to achieve persistent infection. Since virus-positive MCC requires the expression of viral oncogenes to survive, our observation that type I IFN can repress viral oncogene transcription indicates that these cytokines could be explored as a viable therapeutic option for treating patients with virus-positive MCC.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taylor E. Senay
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Chen IP, Ott M. Viral Hijacking of BET Proteins. Viruses 2022; 14:2274. [PMID: 36298829 PMCID: PMC9609653 DOI: 10.3390/v14102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.
Collapse
Affiliation(s)
- Irene P. Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Goudarzi Far F, Tambrchi V, Nahid Samiei R, Nahid Samiei M, Saadati H, Moradi P, Keyvanlou Z, Advay S, Nili M, Abdi S, Jamalvandi T, Arash Letafati, Behzadpour M, Kamalpour M, Ebrahimdamavandi N, Khatami A, Kiani SJ, Ghorbani S. Association between human polyomavirus infection and brain cancer: A systematic review and meta-analysis. Microb Pathog 2022; 173:105797. [PMID: 36183958 DOI: 10.1016/j.micpath.2022.105797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
AIM The aim of this study was to investigate the prevalence and potential association between the infection with some members of the polyomaviridae family of viruses and development of the brain tumors. METHODS A systematic literature search was performed by finding relevant cross-sectional and case-control studies from a large online database. Heterogeneity, OR, and corresponding 95% CI were applied to all studies by meta-analysis and forest plots. The analysis was performed using Stata Software v.14. RESULTS Twenty-three articles (33 datasets) were included in the meta-analysis, four (four datasets) of which were case/control studies and the rest were cross-sectional. The pooled prevalence of polyomaviruses among brain cancer patients was 13% (95% CI: 8-20%; I2 = 96.91%). In subgroup analysis, the pooled prevalence of JCV, SV40, BKV and Merkel cell polyomavirus was 20%, 8%, 6%, and 16%, respectively. An association was found between polyomavirus infection and brain cancer [summary OR 7.22 (95% CI (2.36-22.05); I2 = 0%)]. The subgroup analysis, based on the virus type, demonstrated a strong association between JCV infection and brain cancer development [summary OR 10.34 (95% CI 1.10-97.42; I2 = 0%)]. CONCLUSION The present study showed a significant association between polyomavirus infection and brain tumors. Moreover, these results suggest that polyomavirus infection may be a potential risk factor for the development of brain cancer.
Collapse
Affiliation(s)
- Fariba Goudarzi Far
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Vahid Tambrchi
- Department of Microbiology, Golestan University of Medical Sciences, Golesatn, Iran
| | - Rahil Nahid Samiei
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | - Hassan Saadati
- Department of Epidemiology and Biostatistics, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Pouya Moradi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Keyvanlou
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shoaib Advay
- Department of Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzie Nili
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Abdi
- Animal Virology Department, Research and Diagnosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Tasnim Jamalvandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Behzadpour
- Faculty of Medicine, Islamic Azad University, Tehran Medical Science Branch, Tehran, Iran
| | - Maryam Kamalpour
- Khorramshahr University of Marine Sciences and Technology, School of Marine Science and Ocean, Iran
| | | | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Saied Ghorbani
- Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
10
|
Merkel cell carcinoma and immune evasion: Merkel cell polyomavirus small T-antigen induced surface changes can be reverted by therapeutic intervention. J Invest Dermatol 2022; 142:3071-3081.e13. [DOI: 10.1016/j.jid.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
|
11
|
Gaubitz C, Liu X, Pajak J, Stone NP, Hayes JA, Demo G, Kelch BA. Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. eLife 2022; 11:e74175. [PMID: 35179493 PMCID: PMC8893722 DOI: 10.7554/elife.74175] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.
Collapse
Affiliation(s)
- Christl Gaubitz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Xingchen Liu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Nicholas P Stone
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Janelle A Hayes
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Gabriel Demo
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester MA & Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
12
|
Zhou N, Zhang Y, Lei G, Chen Y, Lin T, Liu Q, Zhao Y, Mao J, Jiang Y, Mao R. Inhibition of BETs prevents heat shock-induced cell death via upregulating HSPs in SV40 large T antigen transfected cells. Genes Genomics 2022; 44:1259-1269. [PMID: 35175516 DOI: 10.1007/s13258-022-01228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Heat shock response is a protected mechanism against environmental changes for the organism, which must be tightly regulated. Bromodomain and extra terminal-containing protein family (BETs) regulate numerous gene expression in many physiological and pathological conditions, including viral infection. SV40 is considered as a highly human disease-associated virus. OBJECTIVE We aimed to explore whether BETs play a role in heat shock in SV40 large T antigen transfected cells. METHODS SV40LTA was transfected in HeLa cells using the Lipofectamine 8000. BETs inhibitor JQ1 and I-BET-762 was employed to treat transfected cells and HEK-293 T cells. Heat shock treatment was performed to determine the effect of JQ1 and I-BET-762 on these cells. Western blot and quantitative RT-PCR were carried out to assess the expression of HSP70 and other HSPs. RESULTS We found that inhibition of BETs by JQ1 and I-BET-762 protects cells from heat shock-induced death in HEK293T cells. Both JQ1 and I-BET-762 induce the expression of HSPs and HSF1 in HEK-293 T cells. However, neither JQ1 nor I-BET-762 fail to induce the expression of HSPs in either HeLa or HBL-1 cells. When SV40 large T antigen was transfected into HeLa cells, the induction of HSP70 expressing and the protection of heat shock-induced cell death are reproduced by JQ1 and IBET treatment in these transfected cells. CONCLUSIONS Inhibition of BETs by JQ1 and I-BET-762 prevents heat shock-induced cell death via upregulating HSPs in SV40 large T antigen transfected cells. Our data indicate a novel function of BETs in SV40 large T antigen transformed cells, affecting HSPs and HSF1 as well as its function on heat shock response.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ye Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Gongyun Lei
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yifan Chen
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qin Liu
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yinshuang Zhao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiahui Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Krump NA, You J. From Merkel Cell Polyomavirus Infection to Merkel Cell Carcinoma Oncogenesis. Front Microbiol 2021; 12:739695. [PMID: 34566942 PMCID: PMC8457551 DOI: 10.3389/fmicb.2021.739695] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) infection causes near-ubiquitous, asymptomatic infection in the skin, but occasionally leads to an aggressive skin cancer called Merkel cell carcinoma (MCC). Epidemiological evidence suggests that poorly controlled MCPyV infection may be a precursor to MCPyV-associated MCC. Clearer understanding of host responses that normally control MCPyV infection could inform prophylactic measures in at-risk groups. Similarly, the presence of MCPyV in most MCCs could imbue them with vulnerabilities that-if better characterized-could yield targeted intervention solutions for metastatic MCC cases. In this review, we discuss recent developments in elucidating the interplay between host cells and MCPyV within the context of viral infection and MCC oncogenesis. We also propose a model in which insufficient restriction of MCPyV infection in aging and chronically UV-damaged skin causes unbridled viral replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Krump NA, Wang R, Liu W, Yang JF, Ma T, You J. Merkel Cell Polyomavirus Infection Induces an Antiviral Innate Immune Response in Human Dermal Fibroblasts. J Virol 2021; 95:e0221120. [PMID: 33883226 PMCID: PMC8437356 DOI: 10.1128/jvi.02211-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) infects most of the human population asymptomatically, but in rare cases it leads to a highly aggressive skin cancer called Merkel cell carcinoma (MCC). MCC incidence is much higher in aging and immunocompromised populations. The epidemiology of MCC suggests that dysbiosis between the host immune response and the MCPyV infectious cycle could contribute to the development of MCPyV-associated MCC. Insufficient restriction of MCPyV by normal cellular processes, for example, could promote the incidental oncogenic MCPyV integration events and/or entry into the original cell of MCC. Progress toward understanding MCPyV biology has been hindered by its narrow cellular tropism. Our discovery that primary human dermal fibroblasts (HDFs) support MCPyV infection has made it possible to closely model cellular responses to different stages of the infectious cycle. The present study reveals that the onset of MCPyV replication and early gene expression induces an inflammatory cytokine and interferon-stimulated gene (ISG) response. The cGAS-STING pathway, in coordination with NF-κB, mediates induction of this innate immune gene expression program. Further, silencing of cGAS or NF-κB pathway factors led to elevated MCPyV replication. We also discovered that the PYHIN protein IFI16 localizes to MCPyV replication centers but does not contribute to the induction of ISGs. Instead, IFI16 upregulates inflammatory cytokines in response to MCPyV infection by an alternative mechanism. The work described herein establishes a foundation for exploring how changes to the skin microenvironment induced by aging or immunodeficiency might alter the fate of MCPyV and its host cell to encourage carcinogenesis. IMPORTANCE MCC has a high rate of mortality and an increasing incidence. Immune-checkpoint therapies have improved the prognosis of patients with metastatic MCC. Still, a significant proportion of the patients fail to respond to immune-checkpoint therapies or have a medical need for iatrogenic immune-suppression. A greater understanding of MCPyV biology could inform targeted therapies for MCPyV-associated MCC. Moreover, cellular events preceding MCC oncogenesis remain largely unknown. The present study aims to explore how MCPyV interfaces with innate immunity during its infectious cycle. We describe how MCPyV replication and/or transcription elicit an innate immune response via cGAS-STING, NF-κB, and IFI16. We also explore the effects of this response on MCPyV replication. Our findings illustrate how healthy cellular conditions may allow low-level infection that evades immune destruction until highly active replication is restricted by host responses. Conversely, pathological conditions could result in unbridled MCPyV replication that licenses MCC tumorigenesis.
Collapse
Affiliation(s)
- Nathan A. Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tongcui Ma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Abstract
Merkel cell polyomavirus (MCPyV) is the most recently discovered human oncogenic virus. MCPyV asymptomatically infects most of the human population. In the elderly and immunocompromised, however, it can cause a highly lethal form of human skin cancer called Merkel cell carcinoma (MCC). Distinct from the productive MCPyV infection that replicates the viral genome as episomes, MCC tumors contain replication-incompetent, integrated viral genomes. Mutant MCPyV tumor antigen genes expressed from the integrated viral genomes are essential for driving the oncogenic development of MCPyV-associated MCC. In this chapter, we summarize recent discoveries on MCPyV virology, mechanisms of MCPyV-mediated oncogenesis, and the current therapeutic strategies for MCPyV-associated MCCs.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Merkel Cell Polyomavirus Encodes Circular RNAs (circRNAs) Enabling a Dynamic circRNA/microRNA/mRNA Regulatory Network. mBio 2020; 11:mBio.03059-20. [PMID: 33323517 PMCID: PMC7773998 DOI: 10.1128/mbio.03059-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viral noncoding RNAs have acquired increasing prominence as important regulators of infection and mediators of pathogenesis. Circular RNAs (circRNAs) generated by backsplicing events have been identified in several oncogenic human DNA viruses. Here, we show that Merkel cell polyomavirus (MCV), the etiologic cause of ∼80% of Merkel cell carcinomas (MCCs), also expresses circular RNAs. By RNase R-resistant RNA sequencing, four putative circRNA backsplice junctions (BSJs) were identified from the MCV early region (ER). The most abundantly expressed MCV circRNA, designated circMCV-T, is generated through backsplicing of all of ER exon II to form a 762-nucleotide (nt) circular RNA molecule. Curiously, circMCV-T, as well as two other less abundantly expressed putative MCV circRNAs, overlaps in a complementary fashion with the MCV microRNA (miRNA) locus that encodes MCV-miR-M1. circMCV-T is consistently detected in concert with linear T antigen transcripts throughout infection, suggesting a crucial role for this RNA molecule in the regulatory functions of the early region, known to be vital for viral replication. Knocking out the hairpin structure of MCV-miR-M1 in genomic early region expression constructs and using a new high-efficiency, recombinase-mediated, recircularized MCV molecular clone demonstrates that circMCV-T levels decrease in the presence of MCV-miR-M1, underscoring the interplay between MCV circRNA and miRNA. Furthermore, circMCV-T partially reverses the known inhibitory effect of MCV-miR-M1 on early gene expression. RNase R-resistant RNA sequencing of lytic rat polyomavirus 2 (RatPyV2) identified an analogously located circRNA, stipulating a crucial, conserved regulatory function of this class of RNA molecules in the family of polyomaviruses.IMPORTANCE Covalently closed circular RNAs were recently described in the human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV). Here, we show that MCV, another DNA tumor virus, generates circRNAs from its early regulatory region in concert with T antigen linear transcripts. MCV circMCV-T interacts with another MCV noncoding RNA, miR-M1, to functionally modulate early region transcript expression important for viral replication and long-term episomal persistence. This work describes a dynamic regulatory network integrating circRNA/miRNA/mRNA biomolecules and underscores the intricate functional modulation between several classes of polyomavirus-encoded RNAs in the control of viral replication.
Collapse
|
17
|
DeCaprio JA. Molecular Pathogenesis of Merkel Cell Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:69-91. [PMID: 33228463 DOI: 10.1146/annurev-pathmechdis-012419-032817] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine carcinoma of the skin with two distinct etiologies. Clonal integration of Merkel cell polyomavirus DNA into the tumor genome with persistent expression of viral T antigens causes at least 60% of all MCC. UV damage leading to highly mutated genomes causes a nonviral form of MCC. Despite these distinct etiologies, both forms of MCC are similar in presentation, prognosis, and response to therapy. At least three oncogenic transcriptional programs feature prominently in both forms of MCC driven by the virus or by mutation. Both forms of MCC have a high proliferative growth rate with increased levels of cell cycle-dependent genes due to inactivation of the tumor suppressors RB and p53, a strong MYC signature due to MYCL activation by the virus or gene amplification, and an attenuated neuroendocrine differentiation program driven by the ATOH1 transcription factor.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; .,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Lotke R, Schneeweiß U, Pietrek M, Günther T, Grundhoff A, Weidner-Glunde M, Schulz TF. Brd/BET Proteins Influence the Genome-Wide Localization of the Kaposi's Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus Major Latency Proteins. Front Microbiol 2020; 11:591778. [PMID: 33193257 PMCID: PMC7642799 DOI: 10.3389/fmicb.2020.591778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
The rhadinoviruses Kaposi’s Sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus (MHV-68) persist in infected hosts in a latent state that is characterized by the absence of virus production and by restricted viral gene expression. Their major latency protein, the latency-associated nuclear antigen (kLANA for KSHV and mLANA for MHV-68), is essential for viral genome maintenance and replication and involved in transcriptional regulation. Both kLANA and mLANA interact with cellular chromatin-associated proteins, among them the Bromodomain and Extra Terminal domain (Brd/BET) proteins, which recruit cellular and viral proteins to acetylated histones through their bromodomains and modulate cellular gene expression. Brd/BET proteins also play a role in the tethering, replication, segregation or integration of a diverse group of viral DNA genomes. In this study we explored if Brd/BET proteins influence the localization of the LANAs to preferential regions in the host chromatin and thereby contribute to kLANA- or mLANA-mediated transcriptional regulation. Using ChIP-Seq, we revealed a genome-wide co-enrichment of kLANA with Brd2/4 near cellular and viral transcriptional start sites (TSS). Treatment with I-BET151, an inhibitor of Brd/BET, displaced kLANA and Brd2/4 from TSS in the viral and host chromatin, but did not affect the direct binding of kLANA to kLANA-binding sites (LBS) in the KSHV latent origin of replication. Similarly, mLANA, but not a mLANA mutant deficient for binding to Brd2/4, also associated with cellular TSS. We compared the transcriptome of KSHV-infected with uninfected and kLANA-expressing human B cell lines, as well as a murine B cell line expressing mLANA or a Brd2/4-binding deficient mLANA mutant. We found that only a minority of cellular genes, whose TSS are occupied by kLANA or mLANA, is transcriptionally regulated by these latency proteins. Our findings extend previous reports on a preferential deposition of kLANA on cellular TSS and show that this characteristic chromatin association pattern is at least partially determined by the interaction of these viral latency proteins with members of the Brd/BET family of chromatin modulators.
Collapse
Affiliation(s)
- Rishikesh Lotke
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Ulrike Schneeweiß
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Marcel Pietrek
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Thomas Günther
- Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Adam Grundhoff
- German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany.,Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Magdalena Weidner-Glunde
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| |
Collapse
|
19
|
Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. When STING Meets Viruses: Sensing, Trafficking and Response. Front Immunol 2020; 11:2064. [PMID: 33133062 PMCID: PMC7550420 DOI: 10.3389/fimmu.2020.02064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
To effectively defend against microbial pathogens, the host cells mount antiviral innate immune responses by producing interferons (IFNs), and hundreds of IFN-stimulated genes (ISGs). Upon recognition of cytoplasmic viral or bacterial DNAs and abnormal endogenous DNAs, the DNA sensor cGAS synthesizes 2',3'-cGAMP that induces STING (stimulator of interferon genes) undergoing conformational changes, cellular trafficking, and the activation of downstream factors. Therefore, STING plays a pivotal role in preventing microbial pathogen infection by sensing DNAs during pathogen invasion. This review is dedicated to the recent advances in the dynamic regulations of STING activation, intracellular trafficking, and post-translational modifications (PTMs) by the host and microbial proteins.
Collapse
Affiliation(s)
- Zhaohe Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Siqi Cai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yutong Sun
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Siyuan Ding
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| |
Collapse
|
20
|
Yang JF, You J. Regulation of Polyomavirus Transcription by Viral and Cellular Factors. Viruses 2020; 12:E1072. [PMID: 32987952 PMCID: PMC7601649 DOI: 10.3390/v12101072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Polyomavirus infection is widespread in the human population. This family of viruses normally maintains latent infection within the host cell but can cause a range of human pathologies, especially in immunocompromised individuals. Among several known pathogenic human polyomaviruses, JC polyomavirus (JCPyV) has the potential to cause the demyelinating disease progressive multifocal leukoencephalopathy (PML); BK polyomavirus (BKPyV) can cause nephropathy in kidney transplant recipients, and Merkel cell polyomavirus (MCPyV) is associated with a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). While the mechanisms by which these viruses give rise to the relevant diseases are not well understood, it is clear that the control of gene expression in each polyomavirus plays an important role in determining the infectious tropism of the virus as well as their potential to promote disease progression. In this review, we discuss the mechanisms governing the transcriptional regulation of these pathogenic human polyomaviruses in addition to the best-studied simian vacuolating virus 40 (SV40). We highlight the roles of viral cis-acting DNA elements, encoded proteins and miRNAs that control the viral gene expression. We will also underline the cellular transcription factors and epigenetic modifications that regulate the gene expression of these viruses.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
21
|
Merkel Cell Polyomavirus Large T Antigen Unique Domain Regulates Its Own Protein Stability and Cell Growth. Viruses 2020; 12:v12091043. [PMID: 32962090 PMCID: PMC7551350 DOI: 10.3390/v12091043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Merkel cell polyomavirus (MCV) is the only known human oncogenic virus in the polyomaviridae family and the etiological agent of most Merkel cell carcinomas (MCC). MCC is an aggressive and highly metastatic skin cancer with a propensity for recurrence and poor prognosis. Large tumor antigen (LT), is an essential oncoprotein for MCV transcription, viral replication, and cancer cell proliferation. MCV LT is a short-lived protein that encodes a unique domain: MCV LT unique regions (MURs). These domains consist of phosphorylation sites that interact with multiple E3 ligases, thus limiting LT expression and consequently, viral replication. In this study, we show that MURs are necessary for regulating LT stability via multiple E3 ligase interactions, resulting in cell growth arrest. While expression of wild-type MCV LT induced a decrease in cellular proliferation, deletion of the MUR domains resulted in increased LT stability and cell proliferation. Conversely, addition of MURs to SV40 LT propagated E3 ligase interactions, which in turn, reduced SV40 LT stability and decreased cell growth activity. Our results demonstrate that compared to other human polyomaviruses (HPyVs), MCV LT has evolved to acquire the MUR domains that are essential for MCV LT autoregulation, potentially leading to viral latency and MCC.
Collapse
|
22
|
Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Proc Natl Acad Sci U S A 2020; 117:23571-23580. [PMID: 32907938 DOI: 10.1073/pnas.2007437117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5'-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a "limited change/induced fit" mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.
Collapse
|
23
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
24
|
Abstract
Viral infection underlies a significant share of the global cancer burden. Merkel cell polyomavirus (MCPyV) is the newest member of the human oncogenic virus family. Its discovery over a decade ago marked the beginning of an exciting era in human tumor virology. Since then, significant evidence has emerged to support the etiologic role of MCPyV in Merkel cell carcinoma (MCC), an extremely lethal form of skin cancer. MCPyV infection is widespread in the general population. MCC diagnoses have tripled over the past 20 years, but effective treatments are currently lacking. In this review, we highlight recent discoveries that have shaped our understanding of MCPyV oncogenic mechanism and host cellular tropism, as well as the molecular events occurring in the viral infectious life cycle. These insights will guide future efforts in developing novel virus-targeted therapeutic strategies for treating the devastating human cancers associated with this new tumorigenic virus.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6076, USA;
| |
Collapse
|
25
|
Siebels S, Czech-Sioli M, Spohn M, Schmidt C, Theiss J, Indenbirken D, Günther T, Grundhoff A, Fischer N. Merkel Cell Polyomavirus DNA Replication Induces Senescence in Human Dermal Fibroblasts in a Kap1/Trim28-Dependent Manner. mBio 2020; 11:e00142-20. [PMID: 32156811 PMCID: PMC7064754 DOI: 10.1128/mbio.00142-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only polyomavirus known to be associated with tumorigenesis in humans. Similarly to other polyomaviruses, MCPyV expresses a large tumor antigen (LT-Ag) that, together with a small tumor antigen (sT-Ag), contributes to cellular transformation and that is of critical importance for the initiation of the viral DNA replication. Understanding the cellular protein network regulated by MCPyV early proteins will significantly contribute to our understanding of the natural MCPyV life cycle as well as of the mechanisms by which the virus contributes to cellular transformation. We here describe KRAB-associated protein 1 (Kap1), a chromatin remodeling factor involved in cotranscriptional regulation, as a novel protein interaction partner of MCPyV T antigens sT and LT. Kap1 knockout results in a significant increase in the level of viral DNA replication that is highly suggestive of Kap1 being an important host restriction factor during MCPyV infection. Differently from other DNA viruses, MCPyV gene expression is unaffected in the absence of Kap1 and Kap1 does not associate with the viral genome. Instead, we show that in primary normal human dermal fibroblast (nHDF) cells, MCPyV DNA replication, but not T antigen expression alone, induces ataxia telangiectasia mutated (ATM) kinase-dependent Kap1 S824 phosphorylation, a mechanism that typically facilitates repair of double-strand breaks in heterochromatin by arresting the cells in G2 We show that MCPyV-induced inhibition of cell proliferation is mainly conferred by residues within the origin binding domain and thereby by viral DNA replication. Our data suggest that phosphorylation of Kap1 and subsequent Kap1-dependent G2 arrest/senescence represent host defense mechanisms against MCPyV replication in nHDF cells.IMPORTANCE We here describe Kap1 as a restriction factor in MCPyV infection. We report a novel, indirect mechanism by which Kap1 affects MCPyV replication. In contrast with from other DNA viruses, Kap1 does not associate with the viral genome in MCPyV infection and has no impact on viral gene expression. In MCPyV-infected nHDF cells, Kap1 phosphorylation (pKap1 S824) accumulates because of genomic stress mainly induced by viral DNA replication. In contrast, ectopic expression of LT or LT MCPyV mutants, previously shown to be important for induction of genotoxic stress, does not result in a similar extent of pKap1 accumulation. We show that cells actively replicating MCPyV accumulate pKap1 (in a manner dependent on the presence of ATM) and display a senescence phenotype reflected by G2 arrest. These results are supported by transcriptome analyses showing that LT antigen, in a manner dependent on the presence of Kap1, induces expression of secreted factors, which is known as the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Svenja Siebels
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Claudia Schmidt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Theiss
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
The Ubiquitin-Specific Protease Usp7, a Novel Merkel Cell Polyomavirus Large T-Antigen Interaction Partner, Modulates Viral DNA Replication. J Virol 2020; 94:JVI.01638-19. [PMID: 31801860 DOI: 10.1128/jvi.01638-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the major cause for Merkel cell carcinoma (MCC), a rare but highly aggressive skin cancer predominantly found in elderly and immunosuppressed patients. The early viral gene products large T-antigen (LT) and small T-antigen (sT) are important for efficient viral DNA replication, and both contribute to transformation processes. These functions are executed mainly through interactions with host factors. Here, we identify the cellular ubiquitin-specific processing protease 7 (Usp7) as a new interaction partner of the MCPyV LT. Using glutathione S-transferase pulldown experiments, we show that MCPyV LT directly binds to Usp7 and that N- as well as C-terminal regions of LT bind to the TRAF (tumor necrosis factor receptor-associated) domain of Usp7. We demonstrate that endogenous Usp7 coprecipitates with MCPyV T-antigens and relocalizes to viral DNA replication centers in cells actively replicating MCPyV genomes. We show that Usp7 does not alter ubiquitination levels of the T-antigens; however, Usp7 binding increases the binding affinity of LT to the origin of replication, thereby negatively regulating viral DNA replication. Together, these data identify Usp7 as a restriction factor of MCPyV replication. In contrast to other DNA viruses, Usp7 does not affect MCPyV gene expression via its ubiquitination activity but influences MCPyV DNA replication solely via a novel mechanism that modulates binding of LT to viral DNA.IMPORTANCE MCPyV is the only human polyomavirus that is associated with cancer; the majority of Merkel cell cancers have a viral etiology. While much emphasis was placed on investigations to understand the transformation process by MCPyV oncoproteins and cellular factors, we have only limited knowledge of cellular factors participating in the MCPyV life cycle. Here, we describe Usp7, a cellular deubiquitination enzyme, as a new factor involved in MCPyV replication. Usp7 is known in the context of large DNA tumor viruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus, to restrict viral replication. Similar to EBV, where Usp7 binding to EBNA1 increases EBNA1 binding affinity to viral DNA, we find MCPyV LT binding to the origin of replication to be increased in the presence of Usp7, resulting in restriction of viral DNA replication. However, Usp7-induced restriction of MCPyV replication is independent of its enzymatic activity, thereby constituting a novel mechanism of Usp7-induced restriction of viral replication.
Collapse
|
27
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
28
|
Harms PW, Harms KL, Moore PS, DeCaprio JA, Nghiem P, Wong MKK, Brownell I. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat Rev Clin Oncol 2019; 15:763-776. [PMID: 30287935 PMCID: PMC6319370 DOI: 10.1038/s41571-018-0103-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer associated with advanced age and immunosuppression. Over the past decade, an association has been discovered between MCC and either integration of the Merkel cell polyomavirus, which likely drives tumorigenesis, or somatic mutations owing to ultraviolet-induced DNA damage. Both virus-positive and virus-negative MCCs are immunogenic, and inhibition of the programmed cell death protein 1 (PD-1)–programmed cell death 1 ligand 1 (PD-L1) immune checkpoint has proved to be highly effective in treating patients with metastatic MCC; however, not all patients have a durable response to immunotherapy. Despite these rapid advances in the understanding and management of patients with MCC, many basic, translational and clinical research questions remain unanswered. In March 2018, an International Workshop on Merkel Cell Carcinoma Research was held at the US National Cancer Institute, at which academic, government and industry experts met to identify the highest-priority research questions. Here, we review the biology and treatment of MCC and report the consensus-based recommendations agreed upon during the workshop. Merkel cell carcinoma (MCC) is a rare and aggressive form of nonmelanoma skin cancer. The availability of immune checkpoint inhibition has improved the outcomes of a subset of patients with MCC, although many unmet needs continue to exist. In this Consensus Statement, the authors summarize developments in our understanding of MCC while also providing consensus recommendations for future research.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Michael K K Wong
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) and National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| | | |
Collapse
|
29
|
Abstract
Among Polyomaviridae family of viruses, Merkel Cell Polyomavirus (MCV) is the only human polyomavirus with convincing data supporting its classification as a direct causative agent of a human skin malignancy, Merkel Cell Carcinoma. Oncogenic transformation by MCV requires the integration of the viral genome into the human genome, truncation of the large T antigen (LT) to render the viral genome replication deficient and expression of small T antigen oncoprotein. The chromatin binding protein BRD4, was recently shown to transcriptionally regulate the expression of virus oncoproteins, thereby enhancing the tumorigenesis of virus-associated cancers, such as HPV associated cervical cancer. Previous work by Wang et al. revealed that BRD4 interacts with MCV full length LT during viral replication. In this study, we demonstrated that MCV truncated tumor LT antigen also interacts with BRD4 protein. We showed that the MCV tumor LT antigen and BRD4 protein complex co-localizes within the nucleus. Furthermore, we tested whether BRD4 protein transcriptionally regulates MCV Non Coding Control Region (NCCR), where we found that though full length LT and sT together, along with the BRD4 protein showed enhanced transcriptional activity whereas tumor truncated LT did not. These findings on the interactions of the MCV tumor truncated LT antigen with the BRD4 protein add to existing knowledge about interactions with LT and its role in tumorigenesis, and assist in efforts to more precisely define new therapy targets for this disease.
Collapse
Affiliation(s)
- Reety Arora
- Sudhir Krishna Group, National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Arushi Vats
- Sudhir Krishna Group, National Centre for Biological Sciences, TIFR, Bangalore, India.,Lawrence Banks Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vrushali Chimankar
- Sudhir Krishna Group, National Centre for Biological Sciences, TIFR, Bangalore, India.,Hunter Medical Research Institute, University of Newcastle, Australia
| |
Collapse
|
30
|
Akhbari P, Tobin D, Poterlowicz K, Roberts W, Boyne JR. MCV-miR-M1 Targets the Host-Cell Immune Response Resulting in the Attenuation of Neutrophil Chemotaxis. J Invest Dermatol 2018; 138:2343-2354. [PMID: 29777657 DOI: 10.1016/j.jid.2018.03.1527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/02/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Virus-encoded microRNAs are emerging as key regulators of persistent infection and host-cell immune evasion. Merkel cell polyomavirus, the predominant etiological agent of Merkel cell carcinoma, encodes a single microRNA, MCV-miR-M1, which targets the oncogenic Merkel cell polyomavirus large T antigen. MCV-miR-M1 has previously been shown to play an important role in the establishment of long-term infection, however, the underlying mechanism is not fully understood. A key unanswered question is whether, in addition to autoregulating large T antigen, MCV-miR-M1 also targets cellular transcripts to orchestrate an environment conducive to persistent infection. To address this, we adopted an RNA sequencing-based approach to identify cellular targets of MCV-miR-M1. Intriguingly, bioinformatics analysis of transcripts that are differentially expressed in cells expressing MCV-miR-M1 revealed several genes implicated in immune evasion. Subsequent target validation led to the identification of the innate immunity protein, SP100, as a direct target of MCV-miR-M1. Moreover, MCV-miR-M1-mediated modulation of SP100 was associated with a significant decrease in CXCL8 secretion, resulting in the attenuation of neutrophil chemotaxis toward Merkel cells harboring synthetic Merkel cell polyomavirus. Based on these observations, we propose that MCV-miR-M1 targets key immune response regulators to help facilitate persistent infection, which is a prerequisite for cellular transformation in Merkel cell carcinoma.
Collapse
Affiliation(s)
- Pouria Akhbari
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Desmond Tobin
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Krzysztof Poterlowicz
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Wayne Roberts
- Pharmacology and Experimental Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK
| | - James R Boyne
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
31
|
Krump NA, Liu W, You J. Mechanisms of persistence by small DNA tumor viruses. Curr Opin Virol 2018; 32:71-79. [PMID: 30278284 DOI: 10.1016/j.coviro.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Virus infection contributes to nearly 15% of human cancers worldwide. Many of the oncogenic viruses tend to cause cancer in immunosuppressed individuals, but maintain asymptomatic, persistent infection for decades in the general population. In this review, we discuss the tactics employed by two small DNA tumor viruses, Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV), to establish persistent infection. We will also highlight recent key findings as well as outstanding questions regarding the mechanisms by which HPV and MCPyV evade host immune control to promote their survival. Since persistent infection enables virus-induced tumorigenesis, identifying the mechanisms by which small DNA tumor viruses achieve latent infection may inform new approaches for preventing and treating their respective human cancers.
Collapse
Affiliation(s)
- Nathan A Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
DeCaprio JA. Merkel cell polyomavirus and Merkel cell carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0276. [PMID: 28893943 DOI: 10.1098/rstb.2016.0276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA .,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
33
|
Becker JC, Stang A, Hausen AZ, Fischer N, DeCaprio JA, Tothill RW, Lyngaa R, Hansen UK, Ritter C, Nghiem P, Bichakjian CK, Ugurel S, Schrama D. Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunol Immunother 2018; 67:341-351. [PMID: 29188306 PMCID: PMC6015651 DOI: 10.1007/s00262-017-2099-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive, often lethal neuroendocrine cancer. Its carcinogenesis may be either caused by the clonal integration of the Merkel cell polyomavirus into the host genome or by UV-induced mutations. Notably, virally-encoded oncoproteins and UV-induced mutations affect comparable signaling pathways such as RB restriction of cell cycle progression or p53 inactivation. Despite its low incidence, MCC recently received much attention based on its exquisite immunogenicity and the resulting major success of immune modulating therapies. Here, we summarize current knowledge on epidemiology, biology and therapy of MCC as conclusion of the project 'Immune Modulating strategies for treatment of Merkel Cell Carcinoma', which was funded over a 5-year period by the European Commission to investigate innovative immunotherapies for MCC.
Collapse
Affiliation(s)
- Jürgen C Becker
- Translational Skin Cancer Research (tscr), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, S05 T05 B, 45141, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, University Hospital of Essen, Essen, Germany.
| | - Andreas Stang
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center of Clinical Epidemiology; c/o Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Axel Zur Hausen
- Department of Pathology, Academisch Ziekenhuis Maastricht, Maastricht, The Netherlands
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James A DeCaprio
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - Rikke Lyngaa
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Ulla Kring Hansen
- George F. Odland Endowed Chair in Dermatology, University of Washington, Seattle, WA, USA
| | - Cathrin Ritter
- Translational Skin Cancer Research (tscr), German Cancer Consortium (DKTK), University Hospital of Essen, Universitätsstrasse 1, S05 T05 B, 45141, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Nghiem
- George F. Odland Endowed Chair in Dermatology, University of Washington, Seattle, WA, USA
| | | | - Selma Ugurel
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
34
|
Hesbacher S, Pfitzer L, Wiedorfer K, Angermeyer S, Borst A, Haferkamp S, Scholz CJ, Wobser M, Schrama D, Houben R. RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells. Oncotarget 2018; 7:32956-68. [PMID: 27121059 PMCID: PMC5078066 DOI: 10.18632/oncotarget.8793] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The pocket protein (PP) family consists of the three members RB1, p107 and p130 all possessing tumor suppressive properties. Indeed, the PPs jointly control the G1/S transition mainly by inhibiting E2F transcription factors. Notably, several viral oncoproteins are capable of binding and inhibiting PPs. Merkel cell polyomavirus (MCPyV) is considered as etiological factor for Merkel cell carcinoma (MCC) with expression of the viral Large T antigen (LT) harboring an intact PP binding domain being required for proliferation of most MCC cells. Therefore, we analyzed the interaction of MCPyV-LT with the PPs. Co-IP experiments indicate that MCPyV-LT binds potently only to RB1. Moreover, MCPyV-LT knockdown-induced growth arrest in MCC cells can be rescued by knockdown of RB1, but not by p107 or p130 knockdown. Accordingly, cell cycle arrest and E2F target gene repression mediated by the single PPs can only in the case of RB1 be significantly reverted by MCPyV-LT expression. Moreover, data from an MCC patient indicate that loss of RB1 rendered the MCPyV-positive MCC cells LT independent. Thus, our results suggest that RB1 is the dominant tumor suppressor PP in MCC, and that inactivation of RB1 by MCPyV-LT is largely sufficient for its growth supporting function in established MCPyV-positive MCC cells.
Collapse
Affiliation(s)
- Sonja Hesbacher
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Lisa Pfitzer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany.,Department of Pharmacy, Center for Drug Research, University of Munich (Ludwigs-Maximilians-Universität), Munich, Germany
| | - Katharina Wiedorfer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Angermeyer
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Borst
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Marion Wobser
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts. J Virol 2018; 92:JVI.01610-17. [PMID: 29167345 DOI: 10.1128/jvi.01610-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse (Mus musculus), rabbit (Oryctolagus cuniculus), rat (Rattus norvegicus), chimpanzee (Pan troglodytes), rhesus macaque (Macaca mulatta), patas monkey (Erythrocebus patas), common woolly monkey (Lagothrix lagotricha), red-chested mustached tamarin (Saguinus labiatus), and tree shrew (Tupaia belangeri). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression.IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). With the increasing number of MCC diagnoses, there is a need to better understand the virus and its oncogenic potential. However, studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. To pinpoint the best candidate for developing an MCPyV infection animal model, we examined MCPyV's ability to infect dermal fibroblasts isolated from various established model animals. Of the animal cell types we tested, chimpanzee dermal fibroblasts were the only isolates that supported the full MCPyV infectious cycle. To overcome the infection blockade in the other model animals, we constructed chimeric viruses that achieved robust MCPyV entry and oncogene expression in rat fibroblasts. Our results suggest that the rat may serve as an in vivo model to study MCV oncogenesis.
Collapse
|
36
|
Stathis A, Bertoni F. BET Proteins as Targets for Anticancer Treatment. Cancer Discov 2017; 8:24-36. [PMID: 29263030 DOI: 10.1158/2159-8290.cd-17-0605] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
Affiliation(s)
| | - Francesco Bertoni
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Università della Svizzera italiana, Istituto Oncologico di Ricerca, Bellinzona, Switzerland
| |
Collapse
|
37
|
Merkel Cell Polyomavirus: A New DNA Virus Associated with Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:35-56. [PMID: 29052131 DOI: 10.1007/978-981-10-5765-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Merkel cell polyomavirus (MCPyV or MCV) is a novel human polyomavirus that has been discovered in Merkel cell carcinoma (MCC), a highly aggressive skin cancer. MCPyV infection is widespread in the general population. MCPyV-associated MCC is one of the most aggressive skin cancers, killing more patients than other well-known cancers such as cutaneous T-cell lymphoma and chronic myelogenous leukemia (CML). Currently, however, there is no effective drug for curing this cancer. The incidence of MCC has tripled over the past two decades. With the widespread infection of MCPyV and the increase in MCC diagnoses, it is critical to better understand the biology of MCPyV and its oncogenic potential. In this chapter, we summarize recent discoveries regarding MCPyV molecular virology, host cellular tropism, mechanisms of MCPyV oncoprotein-mediated oncogenesis, and current therapeutic strategies for MCPyV-associated MCC. We also present epidemiological evidence for MCPyV infection in HIV patients and links between MCPyV and non-MCC human cancers.
Collapse
|
38
|
Huang H, Liu S, Jean M, Simpson S, Huang H, Merkley M, Hayashi T, Kong W, Rodríguez-Sánchez I, Zhang X, Yosief HO, Miao H, Que J, Kobie JJ, Bradner J, Santoso NG, Zhang W, Zhu J. A Novel Bromodomain Inhibitor Reverses HIV-1 Latency through Specific Binding with BRD4 to Promote Tat and P-TEFb Association. Front Microbiol 2017. [PMID: 28638377 PMCID: PMC5461361 DOI: 10.3389/fmicb.2017.01035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While combinatory antiretroviral therapy (cART) can effectively reduce HIV-1 viremia, it cannot eliminate HIV-1 infection. In the presence of cART, viral reservoirs remain latent, impeding the cure of HIV-1/AIDS. Recently, latency-reversing agents (LRAs) have been developed with the intent of purging latent HIV-1, providing an intriguing strategy for the eradication of the residual viral reservoirs. Our earlier studies show that the first-generation, methyl-triazolo bromodomain, and extra-terminal domain inhibitor (BETi), JQ1, facilitates the reversal of HIV-1 latency. BETis have emerged as a new class of compounds that are promising for this HIV-1 "shock and kill" eradication approach. However, when used as a single drug, JQ1 only modestly reverses HIV-1 latency, which complicates studying the underlining mechanisms. Meanwhile, it has been widely discussed that the induction of latent proviruses is stochastic (Ho et al., 2013). Thus, new BETis are currently under active development with focus on improving potency, ease of synthesis and structural diversity. Using fluorous-tagged multicomponent reactions, we developed a novel second-generation, 3,5-dimethylisoxazole BETi based on an imidazo[1,2-a] pyrazine scaffold, UMB-32. Furthermore, we screened 37 UMB-32 derivatives and identified that one, UMB-136, reactivates HIV-1 in multiple cell models of HIV-1 latency with better efficiency than either JQ1 or UMB-32. UMB-136 enhances HIV-1 transcription and increases viral production through the release of P-TEFb. Importantly, UMB-136 enhances the latency-reversing effects of PKC agonists (prostratin, bryostatin-1) in CD8-depleted PBMCs containing latent viral reservoirs. Our results illustrate that structurally improved BETis, such as UMB-136, may be useful as promising LRAs for HIV-1 eradication.
Collapse
Affiliation(s)
- Huachao Huang
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - Shuai Liu
- Department of Chemistry, University of Massachusetts BostonBoston, MA, United States
| | - Maxime Jean
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - Sydney Simpson
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - He Huang
- Department of Chemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony Brook, NY, United States
| | - Mark Merkley
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - Weili Kong
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - Irene Rodríguez-Sánchez
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - Xiaofeng Zhang
- Department of Chemistry, University of Massachusetts BostonBoston, MA, United States
| | - Hailemichael O Yosief
- Department of Chemistry, University of Massachusetts BostonBoston, MA, United States
| | - Hongyu Miao
- Department of Biostatistics, School of Public Health, University of Texas Health Science CenterHouston, TX, United States
| | - Jianwen Que
- Department of Medicine, Columbia University Medical CenterNew York, NY, United States
| | - James J Kobie
- Department of Medicine, University of Rochester Medical CenterRochester, NY, United States
| | - James Bradner
- Harvard Medical School, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Netty G Santoso
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts BostonBoston, MA, United States
| | - Jian Zhu
- Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, United States
| |
Collapse
|
39
|
Ackloo S, Brown PJ, Müller S. Chemical probes targeting epigenetic proteins: Applications beyond oncology. Epigenetics 2017; 12:378-400. [PMID: 28080202 PMCID: PMC5453191 DOI: 10.1080/15592294.2017.1279371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
Epigenetic chemical probes are potent, cell-active, small molecule inhibitors or antagonists of specific domains in a protein; they have been indispensable for studying bromodomains and protein methyltransferases. The Structural Genomics Consortium (SGC), comprising scientists from academic and pharmaceutical laboratories, has generated most of the current epigenetic chemical probes. Moreover, the SGC has shared about 4 thousand aliquots of these probes, which have been used primarily for phenotypic profiling or to validate targets in cell lines or primary patient samples cultured in vitro. Epigenetic chemical probes have been critical tools in oncology research and have uncovered mechanistic insights into well-established targets, as well as identify new therapeutic starting points. Indeed, the literature primarily links epigenetic proteins to oncology, but applications in inflammation, viral, metabolic and neurodegenerative diseases are now being reported. We summarize the literature of these emerging applications and provide examples where existing probes might be used.
Collapse
Affiliation(s)
- Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straβe 15, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Pesavento PA, Brostoff T, Church ME, Dela Cruz FN, Woolard KD. Polyomavirus and Naturally Occuring Neuroglial Tumors in Raccoons (Procyon Lotor). ILAR J 2016; 56:297-305. [PMID: 26912716 DOI: 10.1093/ilar/ilv036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polyomavirus (PyV) infections are widespread in human populations and, although generally associated with silent persistence, rarely cause severe disease. Among diseases convincingly associated with natural PyV infections of humans, there are remarkably different tissue tropisms and outcomes, including progressive multifocal leukoencephalopathy, transient or progressive nephropathy, and cancer. The variable character and unpredictable outcomes of infection attest to large gaps in our basic understanding of PyV biology. In particular, the rich history of research demonstrating the oncogenic potential of PyVs in laboratory animals begs the question of why cancer is not more often associated with infection. Raccoon polyomavirus (RacPyV), discovered in 2010, is consistently identified in neuroglial tumors in free-ranging raccoons in the western United States. Exposure to RacPyV is widespread, and RacPyV is detected in tissues of raccoons without tumors. Studying the relationship of RacPyV with its natural host is a unique opportunity to uncover cogent cellular targets and protein interactions between the virus and its host. Our hypothesis is that RacPyV, as an intact episome, alters cellular pathways within neural progenitor cells and drives oncogenesis.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Terza Brostoff
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Molly E Church
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Florante N Dela Cruz
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| | - Kevin D Woolard
- Patricia A. Pesavento, DVM, PhD, is a professor, Terza Brostoff, is a graduate and veterinary student, Molly E. Church, MS, VMD, is a graduate student, Florante N. Dela Cruz Jr., BS, is a staff research associate, and Kevin D. Woolard, DVM, PhD, is an assistant professor in the Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine at the University of California, Davis
| |
Collapse
|
41
|
Neumann F, Czech-Sioli M, Dobner T, Grundhoff A, Schreiner S, Fischer N. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies. J Gen Virol 2016; 97:2926-2938. [PMID: 27580912 DOI: 10.1099/jgv.0.000593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.
Collapse
MESH Headings
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- DNA Replication
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Humans
- Inclusion Bodies, Viral/genetics
- Inclusion Bodies, Viral/metabolism
- Inclusion Bodies, Viral/virology
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- Friederike Neumann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Church ME, Estrada M, Leutenegger CM, Dela Cruz FN, Pesavento PA, Woolard KD. BRD4 is associated with raccoon polyomavirus genome and mediates viral gene transcription and maintenance of a stem cell state in neuroglial tumour cells. J Gen Virol 2016; 97:2939-2948. [PMID: 27600312 DOI: 10.1099/jgv.0.000594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.
Collapse
Affiliation(s)
- Molly E Church
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | - Florante N Dela Cruz
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
43
|
Grundhoff A, Fischer N. Merkel cell polyomavirus, a highly prevalent virus with tumorigenic potential. Curr Opin Virol 2016; 14:129-37. [PMID: 26447560 DOI: 10.1016/j.coviro.2015.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus known to be involved in tumorigenesis. Like other human polyomaviruses, MCPyV is highly prevalent in the healthy population, yet the MCPyV-associated Merkel cell carcinoma (MCC) is a very rare disease. Although in vitro and in vivo models have provided significant details regarding molecular functions of viral oncoproteins during cellular transformation, many open questions about the natural life cycle of the virus, its mechanisms of persistence and the precise role of MCPyV during MCC pathogenesis remain. This review will carve out the specifics of MCPyV biology and discuss unresolved issues to help the reader gain a better understanding of what may differentiate MCPyV from other polyomaviruses.
Collapse
Affiliation(s)
- Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Department Virus Genomics, Martinistrasse 52, 20252 Hamburg, Germany.
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University-Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
44
|
Liu W, Yang R, Payne AS, Schowalter RM, Spurgeon ME, Lambert PF, Xu X, Buck CB, You J. Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host Microbe 2016; 19:775-87. [PMID: 27212661 DOI: 10.1016/j.chom.2016.04.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/10/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
Infection with Merkel cell polyomavirus (MCPyV) can lead to Merkel cell carcinoma (MCC), a lethal form of skin cancer. However, the skin cell type productively infected by MCPyV remains a central question. We combined cell culture and ex vivo approaches to identify human dermal fibroblasts as natural host cells that support productive MCPyV infection. Based on this, we established a cell culture model for MCPyV infection, which will facilitate investigation of the oncogenic mechanisms for this DNA virus. Using this model, we discovered that induction of matrix metalloproteinase (MMP) genes by the WNT/β-catenin signaling pathway and other growth factors stimulates MCPyV infection. This suggests that MCC risk factors such as UV radiation and aging, which are known to stimulate WNT signaling and MMP expression, may promote viral infection and thus drive MCC. Our study also introduces the FDA-approved MEK antagonist trametinib as an effective inhibitor for controlling MCPyV infection.
Collapse
Affiliation(s)
- Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruifeng Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel M Schowalter
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher B Buck
- Tumor Virus Molecular Biology Section, Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Wollebo HS, Bellizzi A, Cossari DH, Salkind J, Safak M, White MK. The Brd4 acetyllysine-binding protein is involved in activation of polyomavirus JC. J Neurovirol 2016; 22:615-625. [PMID: 27007123 DOI: 10.1007/s13365-016-0435-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
Brd4 is an epigenetic reader protein and a member of the BET (bromodomain and extra terminal domain) family of proteins with two bromodomains that recognize acetylated lysine residues. Brd4 specifically binds to acetylated transcription factor NF-κB p65 and coactivates transcription. Polyomavirus JC (JCV) is regulated by a noncoding control region (NCCR) containing promoter/enhancer elements for viral gene expression including a binding site for NF-κB, which responds to proinflammatory cytokines such as TNF-α, the DNA damage response, calcium signaling and acetylation of the NF-κB p65 subunit on lysine residues K218 and K221. Earlier studies indicated that NF-κB is involved in the reactivation of persistent/latent JCV in glial cells to cause progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the brain caused by replication of JCV in glial cells. To investigate the mechanism of action of NF-κB acetylation on JCV transcription, we examined Brd4 and found that JCV early transcription was stimulated by Brd4 via the JCV NF-κB site and that p65 K218 and K221 were involved. Treatment with the Brd4 inhibitor JQ1(+) or mutation of either K218 or K221 to glutamine (K218R or K221) inhibited this stimulation and decreased the proportion of p65 in the nucleus. We conclude that Brd4 is involved in the regulation of the activation status of JCV in glial cells.
Collapse
Affiliation(s)
- Hassen S Wollebo
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Anna Bellizzi
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Dominique H Cossari
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Julian Salkind
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Martyn K White
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
46
|
Toptan T, Yousem SA, Ho J, Matsushima Y, Stabile LP, Fernández-Figueras MT, Bhargava R, Ryo A, Moore PS, Chang Y. Survey for human polyomaviruses in cancer. JCI Insight 2016; 1. [PMID: 27034991 DOI: 10.1172/jci.insight.85562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past 8 years, the discovery of 11 new human polyomaviruses (HPyVs) has revived interest in this DNA tumor virus family. Although HPyV infection is widespread and largely asymptomatic, one of these HPyVs, Merkel cell polyomavirus (MCV), is a bona fide human tumor virus. JC virus (JCV), BK virus, HPyV7, and trichodysplasia-spinulosa virus (TSV) can cause nonneoplastic diseases in the setting of immunosuppression. Few specific reagents are available to study the biology of the newly discovered HPyVs. We developed a pan-HPyV-screening method using a cocktail of 3 antibodies that, when combined, recognize T antigen proteins of all HPyVs. We validated detection characteristics of the antibody cocktail by immunoblotting and immunohistochemistry and screened 1,184 cases, including well-defined diseases and tumor tissue microarrays. This assay robustly detected MCV, TSV, JCV, and HPyV7 in etiologically related diseases. We further identified WU polyomavirus in a case of chronic lymphocytic lymphoma-associated bronchitis. Except for scattered, incidentally infected cells in 5% of lung squamous cell carcinomas and colon adenocarcinomas, a broad panel of tumor tissues was largely negative for infection by any HPyV. This method eliminates known HPyVs as suspected causes of cancers investigated in this study. Pan-HPyV survey can be applied to identify diseases associated with recently discovered polyomaviruses.
Collapse
Affiliation(s)
- Tuna Toptan
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Samuel A Yousem
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jonhan Ho
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kanagawa, Japan
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Rohit Bhargava
- Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Patrick S Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Delcuratolo M, Fertey J, Schneider M, Schuetz J, Leiprecht N, Hudjetz B, Brodbeck S, Corall S, Dreer M, Schwab RM, Grimm M, Wu SY, Stubenrauch F, Chiang CM, Iftner T. Papillomavirus-Associated Tumor Formation Critically Depends on c-Fos Expression Induced by Viral Protein E2 and Bromodomain Protein Brd4. PLoS Pathog 2016; 12:e1005366. [PMID: 26727473 PMCID: PMC4699637 DOI: 10.1371/journal.ppat.1005366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022] Open
Abstract
We investigated the mechanism of how the papillomavirus E2 transcription factor can activate promoters through activator protein (AP)1 binding sites. Using an unbiased approach with an inducible cell line expressing the viral transcription factor E2 and transcriptome analysis, we found that E2 induces the expression of the two AP1 components c-Fos and FosB in a Brd4-dependent manner. In vitro RNA interference confirmed that c-Fos is one of the AP1 members driving the expression of viral oncogenes E6/E7. Mutation analysis and in vivo RNA interference identified an essential role for c-Fos/AP1 and also for the bromodomain protein Brd4 for papillomavirus-induced tumorigenesis. Lastly, chromatin immunoprecipitation analysis demonstrated that E2 binds together with Brd4 to a canonical E2 binding site (E2BS) in the promoter of c-Fos, thus activating c-Fos expression. Thus, we identified a novel way how E2 activates the viral oncogene promoter and show that E2 may act as a viral oncogene by direct activation of c-Fos involved in skin tumorigenesis. Human Papillomaviruses (HPV) are the etiological agents of cervical cancer and of skin cancer in individuals with the inherited disease epidermodysplasia verruciformis (EV). While the role of the viral oncogenes E6/E7 as drivers of tumorigenesis in cervical cancer has been firmly established, the contribution of the early viral genes in skin cancer is less clear. For EV-associated HPV8 and for the skin cancer model system using cottontail rabbit PV, an important role of the viral E2 protein in tumorigenesis was suggested earlier and regulation of cellular genes by E2 through different mechanisms was demonstrated. We show now that the viral E2 and cellular Brd4 act together to induce the cellular gene c-Fos, which as a member of the AP-1 complex, is involved in the regulation of cellular genes and the viral promoter driving the expression of viral oncogenes. As c-Fos has also been shown to be essential for skin cancer, E2 contributes to tumorigenesis via expression of E6/E7 as well as by increasing c-Fos.
Collapse
Affiliation(s)
- Maria Delcuratolo
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Jasmin Fertey
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Markus Schneider
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Johanna Schuetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Natalie Leiprecht
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Hudjetz
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Brodbeck
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Silke Corall
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Marcel Dreer
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Roxana Michaela Schwab
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Shwu-Yuan Wu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Frank Stubenrauch
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Cheng-Ming Chiang
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, Dallas, Texas, United States of America
| | - Thomas Iftner
- Division of Experimental Virology, Institute of Medical Virology, University Hospital Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
48
|
Ferri E, Petosa C, McKenna CE. Bromodomains: Structure, function and pharmacology of inhibition. Biochem Pharmacol 2015; 106:1-18. [PMID: 26707800 DOI: 10.1016/j.bcp.2015.12.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022]
Abstract
Bromodomains are epigenetic readers of histone acetylation involved in chromatin remodeling and transcriptional regulation. The human proteome comprises 46 bromodomain-containing proteins with a total of 61 bromodomains, which, despite highly conserved structural features, recognize a wide array of natural peptide ligands. Over the past five years, bromodomains have attracted great interest as promising new epigenetic targets for diverse human diseases, including inflammation, cancer, and cardiovascular disease. The demonstration in 2010 that two small molecule compounds, JQ1 and I-BET762, potently inhibit proteins of the bromodomain and extra-terminal (BET) family with translational potential for cancer and inflammatory disease sparked intense efforts in academia and pharmaceutical industry to develop novel bromodomain antagonists for therapeutic applications. Several BET inhibitors are already in clinical trials for hematological malignancies, solid tumors and cardiovascular disease. Currently, the field faces the challenge of single-target selectivity, especially within the BET family, and of overcoming problems related to the development of drug resistance. At the same time, new trends in bromodomain inhibitor research are emerging, including an increased interest in non-BET bromodomains and a focus on drug synergy with established antitumor agents to improve chemotherapeutic efficacy. This review presents an updated view of the structure and function of bromodomains, traces the development of bromodomain inhibitors and their potential therapeutic applications, and surveys the current challenges and future directions of this vibrant new field in drug discovery.
Collapse
Affiliation(s)
- Elena Ferri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044 Grenoble, France; Centre National de la Recherche Scientifique, IBS, 38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, IBS, 38044 Grenoble, France
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089, United States.
| |
Collapse
|
49
|
The Oncogenic Small Tumor Antigen of Merkel Cell Polyomavirus Is an Iron-Sulfur Cluster Protein That Enhances Viral DNA Replication. J Virol 2015; 90:1544-56. [PMID: 26608318 DOI: 10.1128/jvi.02121-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Merkel cell polyomavirus (MCPyV) plays an important role in Merkel cell carcinoma (MCC). MCPyV small T (sT) antigen has emerged as the key oncogenic driver in MCC carcinogenesis. It has also been shown to promote MCPyV LT-mediated replication by stabilizing LT. The importance of MCPyV sT led us to investigate sT functions and to identify potential ways to target this protein. We discovered that MCPyV sT purified from bacteria contains iron-sulfur (Fe/S) clusters. Electron paramagnetic resonance analysis showed that MCPyV sT coordinates a [2Fe-2S] and a [4Fe-4S] cluster. We also observed phenotypic conservation of Fe/S coordination in the sTs of other polyomaviruses. Since Fe/S clusters are critical cofactors in many nucleic acid processing enzymes involved in DNA unwinding and polymerization, our results suggested the hypothesis that MCPyV sT might be directly involved in viral replication. Indeed, we demonstrated that MCPyV sT enhances LT-mediated replication in a manner that is independent of its previously reported ability to stabilize LT. MCPyV sT translocates to nuclear foci containing actively replicating viral DNA, supporting a direct role for sT in promoting viral replication. Mutations of Fe/S cluster-coordinating cysteines in MCPyV sT abolish its ability to stimulate viral replication. Moreover, treatment with cidofovir, a potent antiviral agent, robustly inhibits the sT-mediated enhancement of MCPyV replication but has little effect on the basal viral replication driven by LT alone. This finding further indicates that MCPyV sT plays a direct role in stimulating viral DNA replication and introduces cidofovir as a possible drug for controlling MCPyV infection. IMPORTANCE MCPyV is associated with a highly aggressive form of skin cancer in humans. Epidemiological surveys for MCPyV seropositivity and sequencing analyses of healthy human skin suggest that MCPyV may represent a common component of the human skin microbial flora. However, much of the biology of the virus and its oncogenic ability remain to be investigated. In this report, we identify MCPyV sT as a novel Fe/S cluster protein and show that conserved cysteine clusters are important for sT's ability to enhance viral replication. Moreover, we show that sT sensitizes MCPyV replication to cidofovir inhibition. The discovery of Fe/S clusters in MCPyV sT opens new avenues to the study of the structure and functionality of this protein. Moreover, this study supports the notion that sT is a potential drug target for dampening MCPyV infection.
Collapse
|
50
|
Moens U, Van Ghelue M, Ludvigsen M, Korup-Schulz S, Ehlers B. Early and late promoters of BK polyomavirus, Merkel cell polyomavirus, Trichodysplasia spinulosa-associated polyomavirus and human polyomavirus 12 are among the strongest of all known human polyomaviruses in 10 different cell lines. J Gen Virol 2015; 96:2293-2303. [PMID: 25968129 DOI: 10.1099/vir.0.000181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, 11 new human polyomaviruses (HPyVs) have been isolated and named KI, WU, Merkel cell polyomavirus (MCPyV), HPyV6, -7, -9, -10 and -12, Trichodysplasia spinulosa-associated polyomavirus (TSPyV), STLPyV and NJPyV-2013. Little is known about cell tropism of the novel HPyVs, and cell cultures allowing virus propagation are lacking. Because viral tropism partially depends on the interaction of cellular transcription factors with the viral promoter, we monitored the promoter activity of all known HPyVs. Therefore, we compared the relative early and late promoter activity of the BK polyomavirus (BKPyV) (WW strain) with the corresponding activities of the other HPyVs in 10 different cell lines derived from brain, colon, kidney, liver, lung, the oral cavity and skin. Our results show that the BKPyV, MCPyV, TSPyV and HPyV12 early promoters displayed the strongest activity in most cell lines tested, while the remaining HPyV had relative low early promoter activity. HPyV12 showed the highest late promoter activity of all HPyVs in most cell lines, but also the BKPyV, MCPyV and TSPyV late promoters belonged to the stronger ones among HPyVs. The HPyVs with weak early promoter activity had in general also weak late promoter activity, except for HPyV10 whose late promoter was relatively strong in six of the 10 cell lines. A 20 bp deletion in the promoter of an HPyV12 variant significantly affected both early and late promoter activity in most cell lines. In conclusion, our findings suggest which cell lines may be suitable for virus propagation and may give an indication of the cell tropism of the HPyVs.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Institute of Medical Biology, University of Tromsø, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, Norway.,Faculty of Health Sciences, Institute of Clinical Biology, University of Tromsø, Norway
| | - Maria Ludvigsen
- Faculty of Health Sciences, Institute of Medical Biology, University of Tromsø, Norway
| | - Sarah Korup-Schulz
- Division 12 Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, Berlin, Germany
| |
Collapse
|