1
|
Giacomini JJ, Torres-Morales J, Dewhirst FE, Borisy GG, Mark Welch JL. Spatial ecology of the Neisseriaceae family in the human oral cavity. Microbiol Spectr 2025; 13:e0327524. [PMID: 40197060 PMCID: PMC12054151 DOI: 10.1128/spectrum.03275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The human oral microbiome is a diverse ecosystem in which bacterial species have evolved to occupy specific niches within the oral cavity. The Neisseriaceae family, which includes human oral species in the genera Neisseria, Eikenella, Kingella, and Simonsiella, plays a significant role in both commensal and pathogenic relationships. In this study, we investigate the distribution and functional adaptations of Neisseriaceae species across oral habitats, focusing on their site tropisms and ecological roles. We employed a metapangenomic approach in which a curated set of reference genomes representing Neisseriaceae diversity was used for competitive mapping of metagenomic reads. Our analysis revealed distinct habitat preferences among Neisseriaceae species, with Kingella oralis, Neisseria elongata, and Neisseria mucosa primarily found in dental plaque; Neisseria subflava on the tongue dorsum; and Neisseria cinerea in the keratinized gingiva. Functional enrichment analyses identified genes and pathways underpinning habitat-specific adaptations. Plaque specialists showed metabolic versatility, with adaptations in nitrogen metabolism, including nitrate reduction and denitrification, lysine degradation, and galactose metabolism. Tongue dorsum specialists exhibited adaptations including enhanced capabilities for amino acid biosynthesis, short-chain fatty acid and glycerol transport, as well as lipopolysaccharide glycosylation, which may aid in resisting antimicrobial peptides and maintaining membrane integrity. These findings provide insights into the ecological roles and adaptive strategies of Neisseriaceae species within the human oral microbiome and establish a foundation for exploring functional specialization and microbial interactions in these niches.IMPORTANCEUnraveling the distribution and functional adaptations of Neisseriaceae within the human oral microbiome is essential for understanding the roles of these abundant and prevalent commensals in both health and disease. Through a metapangenomic approach, we uncovered distinct habitat preferences of various Neisseriaceae taxa across the oral cavity and identified key genetic traits that may drive their habitat specialization and role in host-microbe interactions. These insights enhance our understanding of the microbial dynamics that shape oral microbial ecology, offering potential pathways for advancing oral health research.
Collapse
Affiliation(s)
| | | | - Floyd E. Dewhirst
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Jessica L. Mark Welch
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Bisaro F, Jackson-Litteken CD, McGuffey JC, Hooppaw AJ, Bodrog S, Jebeli L, Janet-Maitre M, Ortiz-Marquez JC, van Opijnen T, Scott NE, Di Venanzio G, Feldman MF. Diclofenac sensitizes multi-drug resistant Acinetobacter baumannii to colistin. PLoS Pathog 2024; 20:e1012705. [PMID: 39571043 PMCID: PMC11620633 DOI: 10.1371/journal.ppat.1012705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii. Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a non-steroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin minimal inhibitory concentration (MIC) of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro, implying a stronger synergistic effect in vivo compared to in vitro. A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that diclofenac can be repurposed with colistin to treat MDR A. baumannii.
Collapse
Affiliation(s)
- Fabiana Bisaro
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Clay D. Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Jenna C. McGuffey
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Anna J. Hooppaw
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Sophie Bodrog
- Biology Department, Boston College; Chestnut Hill, Massachusetts, United States of America
| | - Leila Jebeli
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne, Australia
| | - Manon Janet-Maitre
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Juan C. Ortiz-Marquez
- Biology Department, Boston College; Chestnut Hill, Massachusetts, United States of America
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne, Australia
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Bisaro F, Jackson-Litteken CD, McGuffey JC, Hooppaw AJ, Bodrog S, Jebeli L, Ortiz-Marquez JC, van Opijnen T, Scott NE, Di Venanzio G, Feldman MF. Diclofenac sensitizes multi-drug resistant Acinetobacter baumannii to colistin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594771. [PMID: 38798593 PMCID: PMC11118529 DOI: 10.1101/2024.05.17.594771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii . Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a nonsteroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin, in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin MIC of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro , implying a stronger synergistic effect in vivo compared to in vitro . A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that the diclofenac can be repurposed with colistin to treat MDR A. baumannii .
Collapse
|
4
|
Fernandez-Martinez D, Kong Y, Goussard S, Zavala A, Gastineau P, Rey M, Ayme G, Chamot-Rooke J, Lafaye P, Vos M, Mechaly A, Duménil G. Cryo-EM structures of type IV pili complexed with nanobodies reveal immune escape mechanisms. Nat Commun 2024; 15:2414. [PMID: 38499587 PMCID: PMC10948894 DOI: 10.1038/s41467-024-46677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Type IV pili (T4P) are prevalent, polymeric surface structures in pathogenic bacteria, making them ideal targets for effective vaccines. However, bacteria have evolved efficient strategies to evade type IV pili-directed antibody responses. Neisseria meningitidis are prototypical type IV pili-expressing Gram-negative bacteria responsible for life threatening sepsis and meningitis. This species has evolved several genetic strategies to modify the surface of its type IV pili, changing pilin subunit amino acid sequence, nature of glycosylation and phosphoforms, but how these modifications affect antibody binding at the structural level is still unknown. Here, to explore this question, we determine cryo-electron microscopy (cryo-EM) structures of pili of different sequence types with sufficiently high resolution to visualize posttranslational modifications. We then generate nanobodies directed against type IV pili which alter pilus function in vitro and in vivo. Cyro-EM in combination with molecular dynamics simulation of the nanobody-pilus complexes reveals how the different types of pili surface modifications alter nanobody binding. Our findings shed light on the impressive complementarity between the different strategies used by bacteria to avoid antibody binding. Importantly, we also show that structural information can be used to make informed modifications in nanobodies as countermeasures to these immune evasion mechanisms.
Collapse
Affiliation(s)
- David Fernandez-Martinez
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Youxin Kong
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
- Sanofi R&D, Integrated Drug Discovery, CRVA, 94403, Vitry-sur-Seine, France
| | - Sylvie Goussard
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Agustin Zavala
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Pauline Gastineau
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France
| | - Martial Rey
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Gabriel Ayme
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris-Cité, CNRS, UAR 2024, Mass Spectrometry for Biology, 75015, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris-Cité, CNRS-UMR 3528, Antibody Engineering Platform, 75015, Paris, France
| | - Matthijn Vos
- NanoImaging Core Facility, Center for Technological Resources and Research, Institut Pasteur, 75015, Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Crystallography Platform-C2RT, CNRS-UMR 3528, Université Paris Cité, Paris, France
| | - Guillaume Duménil
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, 75015, Paris, France.
| |
Collapse
|
5
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Schönherr-Hellec S, Chatzopoulou E, Barnier JP, Atlas Y, Dupichaud S, Guilbert T, Dupraz Y, Meyer J, Chaussain C, Gorin C, Nassif X, Germain S, Muller L, Coureuil M. Implantation of engineered human microvasculature to study human infectious diseases in mouse models. iScience 2023; 26:106286. [PMID: 36942053 PMCID: PMC10024136 DOI: 10.1016/j.isci.2023.106286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Animal models for studying human pathogens are crucially lacking. We describe the implantation in mice of engineered human mature microvasculature consisting of endothelial and perivascular cells embedded in collagen hydrogel that allows investigation of pathogen interactions with the endothelium, including in vivo functional studies. Using Neisseria meningitidis as a paradigm of human-restricted infection, we demonstrated the strength and opportunities associated with the use of this approach.
Collapse
Affiliation(s)
- Sophia Schönherr-Hellec
- Université Paris Cité, UFR de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Eirini Chatzopoulou
- Université Paris Cité, UPR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, UFR Odontologie, Paris, France
| | - Jean-Philippe Barnier
- Université Paris Cité, UFR de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Yoann Atlas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Sébastien Dupichaud
- Cell Imaging Platform, Structure Fédérative de Recherche Necker INSERM US24/CNRS UMS3633, Paris, France
| | - Thomas Guilbert
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Yves Dupraz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Julie Meyer
- Université Paris Cité, UFR de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Catherine Chaussain
- Université Paris Cité, UPR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, UFR Odontologie, Paris, France
- AP-HP, Services Médecines bucco-dentaire (GH Paris Sud-Sorbonne Université, Paris Nord-Université Paris Cité), Paris, France
| | - Caroline Gorin
- Université Paris Cité, UPR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, UFR Odontologie, Paris, France
- AP-HP, Services Médecines bucco-dentaire (GH Paris Sud-Sorbonne Université, Paris Nord-Université Paris Cité), Paris, France
| | - Xavier Nassif
- Université Paris Cité, UFR de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Stephane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
- Corresponding author
| | - Mathieu Coureuil
- Université Paris Cité, UFR de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Corresponding author
| |
Collapse
|
7
|
Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med 2023; 13:e1170. [PMID: 36629024 PMCID: PMC9832433 DOI: 10.1002/ctm2.1170] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sepsis is a persistent systemic inflammatory condition involving multiple organ failures resulting from a dysregulated immune response to infection, and one of the hallmarks of sepsis is endothelial dysfunction. During its progression, neutrophils are the first line of innate immune defence against infection. Aside from traditional mechanisms, such as phagocytosis or the release of inflammatory cytokines, reactive oxygen species and other antibacterial substances, activated neutrophils also release web-like structures composed of tangled decondensed DNA, histone, myeloperoxidase and other granules called neutrophil extracellular traps (NETs), which can efficiently ensnare bacteria in the circulation. In contrast, excessive neutrophil activation and NET release may induce endothelial cells to shift toward a pro-inflammatory and pro-coagulant phenotype. Furthermore, neutrophils and NETs can degrade glycocalyx on the endothelial cell surface and increase endothelium permeability. Consequently, the endothelial barrier collapses, contributing to impaired microcirculatory blood flow, tissue hypoperfusion and life-threatening organ failure in the late phase of sepsis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Mengdi Qu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Wenqian Li
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
| | - Dan Wu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative MedicineThe University of Texas‐MD Anderson Cancer CenterHoustonTexasUSA
- Anesthesiology and Surgical Oncology Research GroupHoustonTexasUSA
| | - Changhong Miao
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| |
Collapse
|
8
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
9
|
Contou D, Urbina T, de Prost N. Understanding purpura fulminans in adult patients. Intensive Care Med 2022; 48:106-110. [PMID: 34846563 DOI: 10.1007/s00134-021-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Damien Contou
- Service de Réanimation Polyvalente, Centre Hospitalier Victor Dupouy, 69, Rue du Lieutenant-Colonel Prud'hon, 95100, Argenteuil, France.
| | - Tomas Urbina
- Service de Médecine Intensive Réanimation, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Groupe de Recherche CARMAS, Centre Hospitalier Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil, France
| |
Collapse
|
10
|
Ellison CK, Whitfield GB, Brun YV. Type IV Pili: Dynamic Bacterial Nanomachines. FEMS Microbiol Rev 2021; 46:6425739. [PMID: 34788436 DOI: 10.1093/femsre/fuab053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria and archaea rely on appendages called type IV pili (T4P) to participate in diverse behaviors including surface sensing, biofilm formation, virulence, protein secretion, and motility across surfaces. T4P are broadly distributed fibers that dynamically extend and retract, and this dynamic activity is essential for their function in broad processes. Despite the essentiality of dynamics in T4P function, little is known about the role of these dynamics and molecular mechanisms controlling them. Recent advances in microscopy have yielded insight into the role of T4P dynamics in their diverse functions and recent structural work has expanded what is known about the inner workings of the T4P motor. This review discusses recent progress in understanding the function, regulation, and mechanisms of T4P dynamics.
Collapse
Affiliation(s)
- Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Cristóbal L, Asúnsolo Á, Sánchez J, Ortega MA, Álvarez-Mon M, García-Honduvilla N, Buján J, Maldonado AA. Mouse Models for Human Skin Transplantation: A Systematic Review. Cells Tissues Organs 2021; 210:250-259. [PMID: 34521089 DOI: 10.1159/000516154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Immunodeficient mouse models with human skin xenografts have been developed in the past decades to study different conditions of the skin. Features such as follow-up period and size of the graft are of different relevance depending on the purpose of an investigation. The aim of this study is to analyze the different mouse models grafted with human skin. A systematic review of the literature was performed in line with the PRISMA statement using MEDLINE/PubMed databases from January 1970 to June 2020. Articles describing human skin grafted onto mice were included. Animal models other than mice, skin substitutes, bioengineered skin, postmortem or fetal skin, and duplicated studies were excluded. The mouse strain, origin of human skin, graft dimensions, follow-up of the skin graft, and goals of the study were analyzed. Ninety-one models were included in the final review. Five different applications were found: physiology of the skin (25 models, mean human skin graft size 1.43 cm2 and follow-up 72.92 days), immunology and graft rejection (17 models, mean human skin graft size 1.34 cm2 and follow-up 86 days), carcinogenesis (9 models, mean human skin graft size 1.98 cm2 and follow-up 253 days), skin diseases (25 models, mean human skin graft size 1.55 cm2 and follow-up 86.48 days), and would healing/scars (15 models, mean human skin graft size 2.54 cm2 and follow-up 129 days). The follow-up period was longer in carcinogenesis models (253 ± 233.73 days), and the skin graft size was bigger in wound healing applications (2.54 ± 3.08 cm2). Depending on the research application, different models are suggested. Careful consideration regarding graft size, follow-up, immunosuppression, and costs should be analyzed and compared before choosing any of these mouse models. To our knowledge, this is the first systematic review of mouse models with human skin transplantation.
Collapse
Affiliation(s)
- Lara Cristóbal
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain.,Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, The City University of New York, New York, New York, USA
| | - Jorge Sánchez
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain,
| | - Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, CIBEREHD, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Andrés A Maldonado
- Department of Plastic Surgery and Burn Unit, University Hospital of Getafe, Madrid, Spain.,Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain.,Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain.,Department for Plastic, Hand and Reconstructive Surgery, BG Trauma Center Frankfurt am Main, Academic Hospital of the Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Manriquez V, Nivoit P, Urbina T, Echenique-Rivera H, Melican K, Fernandez-Gerlinger MP, Flamant P, Schmitt T, Bruneval P, Obino D, Duménil G. Colonization of dermal arterioles by Neisseria meningitidis provides a safe haven from neutrophils. Nat Commun 2021; 12:4547. [PMID: 34315900 PMCID: PMC8316345 DOI: 10.1038/s41467-021-24797-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
The human pathogen Neisseria meningitidis can cause meningitis and fatal systemic disease. The bacteria colonize blood vessels and rapidly cause vascular damage, despite a neutrophil-rich inflammatory infiltrate. Here, we use a humanized mouse model to show that vascular colonization leads to the recruitment of neutrophils, which partially reduce bacterial burden and vascular damage. This partial effect is due to the ability of bacteria to colonize capillaries, venules and arterioles, as observed in human samples. In venules, potent neutrophil recruitment allows efficient bacterial phagocytosis. In contrast, in infected capillaries and arterioles, adhesion molecules such as E-Selectin are not expressed on the endothelium, and intravascular neutrophil recruitment is minimal. Our results indicate that the colonization of capillaries and arterioles by N. meningitidis creates an intravascular niche that precludes the action of neutrophils, resulting in immune escape and progression of the infection.
Collapse
Affiliation(s)
- Valeria Manriquez
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
| | - Pierre Nivoit
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
| | - Tomas Urbina
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
| | | | - Keira Melican
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Patricia Flamant
- Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | | | - Patrick Bruneval
- Service d'Anatomie Pathologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Dorian Obino
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France.
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections unit, INSERM, Institut Pasteur, Paris, France.
| |
Collapse
|
13
|
Dos Santos Souza I, Ziveri J, Bouzinba-Segard H, Morand P, Bourdoulous S. Meningococcus, this famous unknown. C R Biol 2021; 344:127-143. [PMID: 34213851 DOI: 10.5802/crbiol.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023]
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Since the first description of the epidemic nature of the illness at the dawn of the nineteenth century, the scientific knowledge of meningococcal infection has increased greatly. Major advances have been made in the management of the disease with the advent of antimicrobial therapy and the implementation of meningococcal vaccines. More recently, an extensive knowledge has been accumulated on meningococcal interaction with its human host, revealing key processes involved in disease progression and new promising therapeutic approaches.
Collapse
Affiliation(s)
- Isabel Dos Santos Souza
- CNRS, UMR8104, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Jason Ziveri
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Haniaa Bouzinba-Segard
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Philippe Morand
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| | - Sandrine Bourdoulous
- Inserm, U1016, Institut Cochin, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,Université de Paris, Faculté de Santé, France
| |
Collapse
|
14
|
Dos Santos Souza I, Maïssa N, Ziveri J, Morand PC, Coureuil M, Nassif X, Bourdoulous S. Meningococcal disease: A paradigm of type-IV pilus dependent pathogenesis. Cell Microbiol 2021; 22:e13185. [PMID: 32185901 DOI: 10.1111/cmi.13185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023]
Abstract
Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Interaction with both peripheral and cerebral microvascular endothelial cells is at the heart of meningococcal pathogenesis. During the last two decades, an essential role for meningococcal type IV pili in vascular colonisation and disease progression has been unravelled. This review summarises 20 years of research on meningococcal type IV pilus-dependent virulence mechanisms, up to the identification of promising anti-virulence compounds that target type IV pili.
Collapse
Affiliation(s)
- Isabel Dos Santos Souza
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Nawal Maïssa
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Jason Ziveri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Philippe C Morand
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Mathieu Coureuil
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Xavier Nassif
- Faculté de Santé, Université de Paris, Paris, France.,Inserm, U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
15
|
Laudanski K. Humanized Mice as a Tool to Study Sepsis-More Than Meets the Eye. Int J Mol Sci 2021; 22:2403. [PMID: 33673691 PMCID: PMC7957591 DOI: 10.3390/ijms22052403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background. Repetitive animal studies that have disappointed upon translation into clinical therapies have led to an increased appreciation of humanized mice as a remedy to the shortcomings of rodent-based models. However, their limitations have to be understood in depth. (2) Methods. This is a narrative, comprehensive review of humanized mice and sepsis literature to understand the model's benefits and shortcomings. (3) Results: Studies involving humanized models of sepsis include bacterial, viral, and protozoan etiology. Humanized mice provided several unique insights into the etiology and natural history of sepsis and are particularly useful in studying Ebola, and certain viral and protozoan infections. However, studies are relatively sparse and based on several different models of sepsis and humanized animals. (4) Conclusions. The utilization of humanized mice as a model for sepsis presents complex limitations that, once surpassed, hold some potential for the advancement of sepsis etiology and treatment.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, Department of Neurology, Leonard Davis Institute of Healthcare Economics, University of Pennsylvania, Philadelphia, PA 19194, USA
| |
Collapse
|
16
|
Barnier JP, Euphrasie D, Join-Lambert O, Audry M, Schonherr-Hellec S, Schmitt T, Bourdoulous S, Coureuil M, Nassif X, El Behi M. Type IV pilus retraction enables sustained bacteremia and plays a key role in the outcome of meningococcal sepsis in a humanized mouse model. PLoS Pathog 2021; 17:e1009299. [PMID: 33592056 PMCID: PMC7909687 DOI: 10.1371/journal.ppat.1009299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/26/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Neisseria meningitidis (the meningococcus) remains a major cause of bacterial meningitis and fatal sepsis. This commensal bacterium of the human nasopharynx can cause invasive diseases when it leaves its niche and reaches the bloodstream. Blood-borne meningococci have the ability to adhere to human endothelial cells and rapidly colonize microvessels. This crucial step enables dissemination into tissues and promotes deregulated inflammation and coagulation, leading to extensive necrotic purpura in the most severe cases. Adhesion to blood vessels relies on type IV pili (TFP). These long filamentous structures are highly dynamic as they can rapidly elongate and retract by the antagonistic action of two ATPases, PilF and PilT. However, the consequences of TFP dynamics on the pathophysiology and the outcome of meningococcal sepsis in vivo have been poorly studied. Here, we show that human graft microvessels are replicative niches for meningococci, that seed the bloodstream and promote sustained bacteremia and lethality in a humanized mouse model. Intriguingly, although pilus-retraction deficient N. meningitidis strain (ΔpilT) efficiently colonizes human graft tissue, this mutant did not promote sustained bacteremia nor induce mouse lethality. This effect was not due to a decreased inflammatory response, nor defects in bacterial clearance by the innate immune system. Rather, TFP-retraction was necessary to promote the release of TFP-dependent contacts between bacteria and, in turn, the detachment from colonized microvessels. The resulting sustained bacteremia was directly correlated with lethality. Altogether, these results demonstrate that pilus retraction plays a key role in the occurrence and outcome of meningococcal sepsis by supporting sustained bacteremia. These findings open new perspectives on the role of circulating bacteria in the pathological alterations leading to lethal sepsis.
Collapse
Affiliation(s)
- Jean-Philippe Barnier
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Olivier Join-Lambert
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathilde Audry
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Sophia Schonherr-Hellec
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Taliah Schmitt
- Service de chirurgie reconstructrice et plastique, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| | - Xavier Nassif
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
- Service de microbiologie, Assistance Publique–Hôpitaux de Paris. Centre–Université de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mohamed El Behi
- Université de Paris, Faculté de Médecine, Paris, France
- Institut Necker Enfants-Malades, Inserm U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
17
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
18
|
Schulz A, Jiang L, de Vor L, Ehrström M, Wermeling F, Eidsmo L, Melican K. Neutrophil Recruitment to Noninvasive MRSA at the Stratum Corneum of Human Skin Mediates Transient Colonization. Cell Rep 2020; 29:1074-1081.e5. [PMID: 31665625 DOI: 10.1016/j.celrep.2019.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/16/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft issue infection, but paradoxically, it also transiently, and often harmlessly, colonizes human skin. An obstacle to understanding this contradiction has been a shortage of in vivo models reproducing the unique structure and immunology of human skin. In this work, we developed a humanized model to study how healthy adult human skin responds to colonizing methicillin-resistant S. aureus (MRSA). We demonstrate the importance of the outer stratum corneum as the major site of bacterial colonization and how noninvasive MRSA adhesion to corneocytes induces a local inflammatory response in underlying skin layers. This signaling recruits neutrophils to the skin, where they control bacterial numbers, mediating transiency in colonization. This work highlights the spatiotemporal aspects of human skin colonization and demonstrates a subclinical inflammatory response to noninvasive MRSA that allows human skin to regulate the bacterial population at its outer surface.
Collapse
Affiliation(s)
- Anette Schulz
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Long Jiang
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Lisanne de Vor
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 77, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden.
| |
Collapse
|
19
|
Levy M, Aouiti Trabelsi M, Taha MK. Evidence for Multi-Organ Infection During Experimental Meningococcal Sepsis due to ST-11 Isolates in Human Transferrin-Transgenic Mice. Microorganisms 2020; 8:microorganisms8101456. [PMID: 32977487 PMCID: PMC7598264 DOI: 10.3390/microorganisms8101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
The description of invasive meningococcal disease that is provoked by Neisseria meningitidis (Nm) is frequently restricted to meningitis. However, a wide panel of clinical presentations can be encountered including severe forms with intense inflammatory reaction leading to multi-organ failure. Several human factors are involved in the development of invasive infections such as transferrin, factor H or CEACAM1. In this study, we used an experimental meningococcal infection in transgenic mice expressing the human transferrin to show multi-organ infection. Mice were infected by an intraperitoneal injection of bacterial suspension (1.5 × 107 colony-forming unit/mouse) of a bioluminescent serogroup C strain belonging to the clonal complex ST-11. Dynamic imaging and histological analysis were performed. The results showed invasion of tissues by Nm with bacteria observed, outside blood vessels, in the kidneys, the heart and the brain as well as skin involvement. These data further support the systemic aspect of invasive meningococcal disease with involvement of several organs including skin as in humans. Thus, our model can be used to study severe forms of meningococcal invasive infections with multi-organ failure.
Collapse
Affiliation(s)
- Michael Levy
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
- Paediatric Intensive Care Unit, Robert-Debré University Hospital, Assistance Publique Hôpitaux de Paris, 75019 Paris, France
- Université de Paris, 75019 Paris, France
- Correspondence:
| | - Myriam Aouiti Trabelsi
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
| | - Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infection Unit, 28 rue du Dr Roux, 75724 Paris, France; (M.A.T.); (M.-K.T.)
| |
Collapse
|
20
|
Agarwal Y, Beatty C, Ho S, Thurlow L, Das A, Kelly S, Castronova I, Salunke R, Biradar S, Yeshi T, Richardson A, Bility M. Development of humanized mouse and rat models with full-thickness human skin and autologous immune cells. Sci Rep 2020; 10:14598. [PMID: 32884084 PMCID: PMC7471691 DOI: 10.1038/s41598-020-71548-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin is a significant barrier for protection against pathogen transmission. Rodent models used to investigate human-specific pathogens that target the skin are generated by introducing human skin grafts to immunocompromised rodent strains. Infection-induced immunopathogenesis has been separately studied in humanized rodent models developed with human lymphoid tissue and hematopoietic stem cell transplants. Successful co-engraftment of human skin, autologous lymphoid tissues, and autologous immune cells in a rodent model has not yet been achieved, though it could provide a means of studying the human immune response to infection in the human skin. Here, we introduce the human Skin and Immune System (hSIS)-humanized NOD-scid IL2Rγnull (NSG) mouse and Sprague–Dawley-Rag2tm2hera Il2rγtm1hera (SRG) rat models, co-engrafted with human full-thickness fetal skin, autologous fetal lymphoid tissues, and autologous fetal liver-derived hematopoietic stem cells. hSIS-humanized rodents demonstrate the development of human full-thickness skin, along with autologous lymphoid tissues, and autologous immune cells. These models also support human skin infection following intradermal inoculation with community-associated methicillin-resistant Staphylococcus aureus. The co-engraftment of these human skin and immune system components into a single humanized rodent model could provide a platform for studying human skin infections.
Collapse
Affiliation(s)
- Yash Agarwal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - Cole Beatty
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - Lance Thurlow
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Antu Das
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - Samantha Kelly
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - Rajeev Salunke
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA
| | | | - Anthony Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Moses Bility
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
21
|
Characteristics of Neisseria Species Colonized in the Human’s Nasopharynx. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.99915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Neisseria meningitidis is the causative agent of a life-threatening infection with high mortality and morbidity worldwide. The most common types of this bacterium are serogroups A, B, C, W135, X, and Y. Although in some countries, such as Iran, the meningococcal meningitis has been well monitored and controlled by the use of divalent and quadrivalent vaccines, other fatal infections caused by these bacteria are still an important threat. For the above reason, this review focused on the differences of Neisseria characteristics, particularly in capsular composition, pathogenic and commensal stages to a better understanding of how to manage Neisseria infections. Evidence Acquisition: In this review, PubMed, EMBASE, ScienceDirect, Scopus, and Google Scholar were searched for English-language publications on pathogenic or commensal strains of Neisseria, meningococcal disease, Neisseria biology, genetic diversity, molecular typing, serogroups, diagnostic, and epidemiology around the world up to July 2019. All articles and academic reports in the defined area of this research were considered too. The data were extracted and descriptively discussed. Results: We included 85 studies in the survey. The data analysis revealed that the distribution of meningococcal serogroups was different regionally. For example, the serogroups C and W-135 accounted for Africa and Latin America regions, serogroup B in the European countries, and rarely in the Western Pacific, and serogroups A and C were dominant in Asian countries. Although data set for laboratory-based diagnosis of N. meningitidis are available for all countries, only 30% of the countries rely on reference laboratories for serogroup determination, and more than half of the countries lack the ability of surveillance system. Nevertheless, molecular detection procedure is also available for all countries. The use of the meningococcal vaccine is a variable country by country, but most countries have applied the meningococcal vaccine, either divalent or quadrivalent, for the protection of high-risk groups. Conclusions: Owing to the geographical distribution of N. meningitidis serogroups in circulating, each country has to monitor for changes in serogroups diversity and its control management. Furthermore, laboratories should scale up the epidemiology and disease burden. It should be mentioned that quadrivalent meningococcal vaccines reduce the meningococcal disease burden sharply.
Collapse
|
22
|
Brusletto BS, Løberg EM, Hellerud BC, Goverud IL, Berg JP, Olstad OK, Gopinathan U, Brandtzaeg P, Øvstebø R. Extensive Changes in Transcriptomic "Fingerprints" and Immunological Cells in the Large Organs of Patients Dying of Acute Septic Shock and Multiple Organ Failure Caused by Neisseria meningitidis. Front Cell Infect Microbiol 2020; 10:42. [PMID: 32154187 PMCID: PMC7045056 DOI: 10.3389/fcimb.2020.00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Patients developing meningococcal septic shock reveal levels of Neisseria meningitidis (106-108/mL) and endotoxin (101-103 EU/mL) in the circulation and organs, leading to acute cardiovascular, pulmonary and renal failure, coagulopathy and a high case fatality rate within 24 h. Objective: To investigate transcriptional profiles in heart, lungs, kidneys, liver, and spleen and immunostain key inflammatory cells and proteins in post mortem formalin-fixed, paraffin-embedded (FFPE) tissue samples from meningococcal septic shock patients. Patients and Methods: Total RNA was isolated from FFPE and fresh frozen (FF) tissue samples from five patients and two controls (acute non-infectious death). Differential expression of genes was detected using Affymetrix microarray analysis. Lung and heart tissue samples were immunostained for T-and B cells, macrophages, neutrophils and the inflammatory markers PAI-1 and MCP-1. Inflammatory mediators were quantified in lysates from FF tissues. Results: The transcriptional profiles showed a complex pattern of protein-coding and non-coding RNAs with significant regulation of pathways associated with organismal death, cell death and survival, leukocyte migration, cellular movement, proliferation of cells, cell-to-cell signaling, immune cell trafficking, and inflammatory responses in an organ-specific clustering manner. The canonical pathways including acute phase response-, EIF2-, TREM1-, IL-6-, HMBG1-, PPAR signaling, and LXR/RXR activation were associated with acute heart, pulmonary, and renal failure. Fewer genes were regulated in the liver and particularly in the spleen. The main upstream regulators were TNF, IL-1β, IL-6, RICTOR, miR-6739-3p, and CD3. Increased numbers of inflammatory cells (CD68+, MPO+, CD3+, and CD20+) were found in lungs and heart. PAI-1 inhibiting fibrinolysis and MCP-1 attracting leukocyte were found significantly present in the septic tissue samples compared to the controls. Conclusions: FFPE tissue samples can be suitable for gene expression studies as well as immunostaining of specific cells or molecules. The most pronounced gene expression patterns were found in the organs with highest levels of Neisseria meningitidis DNA. Thousands of protein-coding and non-coding RNA transcripts were altered in lungs, heart and kidneys. We identified specific biomarker panels both protein-coding and non-coding RNA transcripts, which differed from organ to organ. Involvement of many genes and pathways add up and the combined effect induce organ failure.
Collapse
Affiliation(s)
- Berit Sletbakk Brusletto
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Else Marit Løberg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Ingeborg Løstegaard Goverud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Jens Petter Berg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Unni Gopinathan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petter Brandtzaeg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Meehan GR, Scales HE, Osii R, De Niz M, Lawton JC, Marti M, Garside P, Craig A, Brewer JM. Developing a xenograft model of human vasculature in the mouse ear pinna. Sci Rep 2020; 10:2058. [PMID: 32029768 PMCID: PMC7004987 DOI: 10.1038/s41598-020-58650-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/14/2020] [Indexed: 12/31/2022] Open
Abstract
Humanised xenograft models allow for the analysis of human tissue within a physiological environment in vivo. However, current models often rely on the angiogenesis and ingrowth of recipient vasculature to perfuse tissues, preventing analysis of biological processes and diseases involving human blood vessels. This limits the effectiveness of xenografts in replicating human physiology and may lead to issues with translating findings into human research. We have designed a xenograft model of human vasculature to address this issue. Human subcutaneous fat was cultured in vitro to promote blood vessel outgrowth prior to implantation into immunocompromised mice. We demonstrate that implants survived, retained human vasculature and anastomosed with the circulatory system of the recipient mouse. Significantly, by performing transplants into the ear pinna, this system enabled intravital observation of xenografts by multiphoton microscopy, allowing us to visualise the steps leading to vascular cytoadherence of erythrocytes infected with the human parasite Plasmodium falciparum. This model represents a useful tool for imaging the interactions that occur within human tissues in vivo and permits visualization of blood flow and cellular recruitment in a system which is amenable to intervention for various studies in basic biology together with drug evaluation and mechanism of action studies.
Collapse
Affiliation(s)
- Gavin R Meehan
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK
| | - Hannah E Scales
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK
| | - Rowland Osii
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK
| | - Mariana De Niz
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK
- Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Jennifer C Lawton
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK
| | - Matthias Marti
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK
| | - Paul Garside
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - James M Brewer
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Scotland, UK.
| |
Collapse
|
24
|
Guo P, Zhu B, Liang H, Gao W, Zhou G, Xu L, Gao Y, Yu J, Zhang M, Shao Z. Comparison of Pathogenicity of Invasive and Carried Meningococcal Isolates of ST-4821 Complex in China. Infect Immun 2019; 87:e00584-19. [PMID: 31570554 PMCID: PMC6867847 DOI: 10.1128/iai.00584-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022] Open
Abstract
Serotype 4821 (ST-4821) clonal complex (cc4821) Neisseria meningitidis strains are divided into two groups (groups I and II) according to the core genome-based phylogenetic analysis. Group I contains the greater number of invasive disease isolates. However, the differences in pathogenicity between the two groups are unclear. In this study, the pathogenicity of cc4821 isolates (n = 28) belonging to group I and group II (each containing eight invasive isolates and six isolates from healthy carriers) was investigated, including adhesion, invasion, and induction of interleukin-6 (IL-6) and interleukin-8 (IL-8) release from host cells (Hep2 and A549). The invasive isolates had higher adhesion and invasion capabilities than the carried isolates in both groups. The carried cc4821 isolates in group I had stronger invasion capability than those in group II. Invasive isolates induced more IL-6 and IL-8 secretion than carried isolates in both groups. The carried cc4821 isolates stimulated higher levels of IL-8 in group I than in group II. The isolates were defined as hyperadherent and hypoadherent groups according to their adhesion ability and as hyperinvasive and hypoinvasive groups based on their invasion ability. The hyperadherent and hyperinvasive isolates mediated more IL-6 and IL-8 release than the hypoadherent and hypoinvasive isolates. There was no difference in the level of cytokine release when cc4821 isolates lost their adhesion and invasion capability after lysis. The results revealed that differences in pathogenicity existed between the two groups and that the differences were mainly determined by differences in adhesion and invasion capabilities.
Collapse
Affiliation(s)
- Pengbo Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bingqing Zhu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hao Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guilan Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxing Yu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| |
Collapse
|
25
|
Kennouche P, Charles‐Orszag A, Nishiguchi D, Goussard S, Imhaus A, Dupré M, Chamot‐Rooke J, Duménil G. Deep mutational scanning of the Neisseria meningitidis major pilin reveals the importance of pilus tip-mediated adhesion. EMBO J 2019; 38:e102145. [PMID: 31609039 PMCID: PMC6856618 DOI: 10.15252/embj.2019102145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
Type IV pili (TFP) are multifunctional micrometer-long filaments expressed at the surface of many prokaryotes. In Neisseria meningitidis, TFP are crucial for virulence. Indeed, these homopolymers of the major pilin PilE mediate interbacterial aggregation and adhesion to host cells. However, the mechanisms behind these functions remain unclear. Here, we simultaneously determined regions of PilE involved in pilus display, auto-aggregation, and adhesion by using deep mutational scanning and started mining this extensive functional map. For auto-aggregation, pili must reach a minimum length to allow pilus-pilus interactions through an electropositive cluster of residues centered around Lys140. For adhesion, results point to a key role for the tip of the pilus. Accordingly, purified pili interacting with host cells initially bind via their tip-located major pilin and then along their length. Overall, these results identify functional domains of PilE and support a direct role of the major pilin in TFP-dependent aggregation and adhesion.
Collapse
Affiliation(s)
- Paul Kennouche
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
- Université Paris DescartesParisFrance
| | | | - Daiki Nishiguchi
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| | - Sylvie Goussard
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| | - Anne‐Flore Imhaus
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| | - Mathieu Dupré
- Institut PasteurCNRS USR 2000Mass Spectrometry for Biology UnitParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurCNRS USR 2000Mass Spectrometry for Biology UnitParisFrance
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections UnitINSERMInstitut PasteurParisFrance
| |
Collapse
|
26
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
27
|
A new role for host annexin A2 in establishing bacterial adhesion to vascular endothelial cells: lines of evidence from atomic force microscopy and an in vivo study. J Transl Med 2019; 99:1650-1660. [PMID: 31253864 PMCID: PMC6913097 DOI: 10.1038/s41374-019-0284-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding bacterial adhesion is challenging and critical to our understanding of the initial stages of the pathogenesis of endovascular bacterial infections. The vascular endothelial cell (EC) is the main target of Rickettsia, an obligately intracellular bacterium that causes serious systemic disease in humans and animals. But the mechanism(s) underlying bacterial adherence to ECs under shear stress from flowing blood prior to activation are unknown for any bacteria. Although host surface annexin a2 (ANXA2) has been identified to participate in efficient bacterial invasion of epithelial cells, direct evidence is lacking in the field of bacterial infections of ECs. In the present study, we employ a novel, anatomically based, in vivo quantitative bacterial-adhesion-to-vascular-EC system, combined with atomic force microscopy (AFM), to examine the role of endothelial luminal surface ANXA2 during rickettsial adherence to ECs. We also examined whether ANXA2 antibody affected binding of Staphylococcus aureus to ECs. We found that deletion of ANXA2 impeded rickettsial attachment to the ECs in vitro and blocked rickettsial adherence to the blood vessel luminal surface in vivo. The AFM studies established that EC surface ANXA2 acts as an adherence receptor for rickettsiae, and that rickettsial adhesin OmpB is the associated bacterial ligand. Furthermore, pretreatment of ECs with anti-ANXA2 antibody reduced EC surface-associated S. aureus. We conclude that the endothelial surface ANXA2 plays an important role in initiating pathogen-host interactions, ultimately leading to bacterial anchoring on the vascular luminal surface.
Collapse
|
28
|
|
29
|
Type IV Pili as a Therapeutic Target. Trends Microbiol 2019; 27:658-661. [DOI: 10.1016/j.tim.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
|
30
|
Richter-Dahlfors A, Melican K. A Cinematic View of Tissue Microbiology in the Live Infected Host. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0007-2019. [PMID: 31152520 PMCID: PMC11026076 DOI: 10.1128/microbiolspec.bai-0007-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Tissue microbiology allows for the study of bacterial infection in the most clinically relevant microenvironment, the living host. Advancements in techniques and technology have facilitated the development of novel ways of studying infection. Many of these advancements have come from outside the field of microbiology. In this article, we outline the progression from bacteriology through cellular microbiology to tissue microbiology, highlighting seminal studies along the way. We outline the enormous potential but also some of the challenges of the tissue microbiology approach. We focus on the role of emerging technologies in the continual development of infectious disease research and highlight future possibilities in our ongoing quest to understand host-pathogen interaction.
Collapse
Affiliation(s)
- Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Centre, Department of Neuroscience, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
31
|
Inhibitors of the Neisseria meningitidis PilF ATPase provoke type IV pilus disassembly. Proc Natl Acad Sci U S A 2019; 116:8481-8486. [PMID: 30948644 DOI: 10.1073/pnas.1817757116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the availability of antibiotics and vaccines, Neisseria meningitidis remains a major cause of meningitis and sepsis in humans. Due to its extracellular lifestyle, bacterial adhesion to host cells constitutes an attractive therapeutic target. Here, we present a high-throughput microscopy-based approach that allowed the identification of compounds able to decrease type IV pilus-mediated interaction of bacteria with endothelial cells in the absence of bacterial or host cell toxicity. Compounds specifically inhibit the PilF ATPase enzymatic activity that powers type IV pilus extension but remain inefficient on the ATPase that promotes pilus retraction, thus leading to rapid pilus disappearance from the bacterial surface and loss of pili-mediated functions. Structure activity relationship of the most active compound identifies specific moieties required for the activity of this compound and highlights its specificity. This study therefore provides compounds targeting pilus biogenesis, thereby inhibiting bacterial adhesion, and paves the way for a novel therapeutic option for meningococcal infections.
Collapse
|
32
|
Denis K, Le Bris M, Le Guennec L, Barnier JP, Faure C, Gouge A, Bouzinba-Ségard H, Jamet A, Euphrasie D, Durel B, Barois N, Pelissier P, Morand PC, Coureuil M, Lafont F, Join-Lambert O, Nassif X, Bourdoulous S. Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease. Nat Microbiol 2019; 4:972-984. [PMID: 30911127 DOI: 10.1038/s41564-019-0395-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/30/2019] [Indexed: 11/09/2022]
Abstract
Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.
Collapse
Affiliation(s)
- Kevin Denis
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marion Le Bris
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Loic Le Guennec
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Philippe Barnier
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Camille Faure
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Gouge
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Haniaa Bouzinba-Ségard
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Jamet
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Daniel Euphrasie
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Beatrice Durel
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicolas Barois
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Philippe Pelissier
- Service de Chirurgie Reconstructrice et Plastique, Fondation Hôpital Saint Joseph, Paris, France
| | - Philippe C Morand
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Olivier Join-Lambert
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Xavier Nassif
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sandrine Bourdoulous
- U1016, Institut Cochin, Inserm, Paris, France. .,UMR8104, CNRS, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
33
|
Obino D, Duménil G. The Many Faces of Bacterium-Endothelium Interactions during Systemic Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0010-2019. [PMID: 30848239 PMCID: PMC11588304 DOI: 10.1128/microbiolspec.bai-0010-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
A wide variety of pathogens reach the circulatory system during viral, parasitic, fungal, and bacterial infections, causing clinically diverse pathologies. Such systemic infections are usually severe and frequently life-threatening despite intensive care, in particular during the age of antibiotic resistance. Because of its position at the interface between the blood and the rest of the organism, the endothelium plays a central role during these infections. Using several examples of systemic infections, we explore the diversity of interactions between pathogens and the endothelium. These examples reveal that bacterial pathogens target specific vascular beds and affect most aspects of endothelial cell biology, ranging from cellular junction stability to endothelial cell proliferation and inflammation.
Collapse
Affiliation(s)
- Dorian Obino
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Institut Pasteur, INSERM, Paris, France
| |
Collapse
|
34
|
Dutcher JR. Nanofibres induce remodelling of cell membranes. Nature 2018; 563:481-482. [PMID: 30459369 DOI: 10.1038/d41586-018-07261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Charles-Orszag A, Tsai FC, Bonazzi D, Manriquez V, Sachse M, Mallet A, Salles A, Melican K, Staneva R, Bertin A, Millien C, Goussard S, Lafaye P, Shorte S, Piel M, Krijnse-Locker J, Brochard-Wyart F, Bassereau P, Duménil G. Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting. Nat Commun 2018; 9:4450. [PMID: 30361638 PMCID: PMC6202395 DOI: 10.1038/s41467-018-06948-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term 'one-dimensional' membrane wetting. We provide a theoretical model that describes the physical basis of one-dimensional wetting and show that this mechanism occurs in model membranes interacting with nanofibers, and in human cells interacting with extracellular matrix meshworks. We propose one-dimensional wetting as a new general principle driving the interaction of cells with their environment at the nanoscale that is diverted by meningococci during infection.
Collapse
Affiliation(s)
- Arthur Charles-Orszag
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, 75015, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France
| | - Feng-Ching Tsai
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, 75005, France.,Sorbonne Université, Paris, 75005, France
| | - Daria Bonazzi
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, 75015, France
| | - Valeria Manriquez
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, 75015, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France
| | | | | | | | - Keira Melican
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, 75015, France.,Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, 171 77, Sweden
| | - Ralitza Staneva
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, 75005, France
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, 75005, France.,Sorbonne Université, Paris, 75005, France
| | | | - Sylvie Goussard
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, 75015, France
| | - Pierre Lafaye
- Antibody Engineering, Institut Pasteur, Paris, 75015, France
| | | | - Matthieu Piel
- Systems Biology of Cell Polarity and Cell Division, Institut Pierre-Gilles De Gennes, Paris, 75005, France.,Institut Curie, Paris, 75005, France
| | | | - Françoise Brochard-Wyart
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, 75005, France.,Sorbonne Université, Paris, 75005, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, 75005, France.,Sorbonne Université, Paris, 75005, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
36
|
Mutreja D, Moorchung N, Manasa SJ, Varghese J. Fatal meningococcal septicemia without meningeal signs, contribution of the peripheral smear in diagnosis: Report of a case. INDIAN J PATHOL MICR 2018; 61:284-286. [PMID: 29676380 DOI: 10.4103/ijpm.ijpm_209_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acute meningococcemia is characterized by extensive purpurae consisting of both petechiae and ecchymoses. This condition can be rapidly fatal without treatment due to shock and severe consumptive coagulopathy. We report a case of fatal meningococcal septicemia in a military recruit who presented with fever and associated rapidly progressive purpuric rash (purpura fulminans) without any meningeal signs. Evaluation revealed evidence of disseminated intravascular coagulopathy and multiorgan failure. Diplococci were demonstrated in peripheral blood neutrophils and monocytes. On autopsy, extensive hemorrhages were found in both adrenals, lungs, liver, skin, and kidneys with secondary hemophagocytic lymphohistiocytosis in bone marrow. This report highlights useful information obtained from examination of peripheral blood smear in purpura fulminans.
Collapse
Affiliation(s)
- Deepti Mutreja
- Department of Pathology, Command Hospital Air Force, Bengaluru, Karnataka, India
| | - Nikhil Moorchung
- Department of Pathology, Command Hospital Air Force, Bengaluru, Karnataka, India
| | - S J Manasa
- Department of Dermatology, Command Hospital Air Force, Bengaluru, Karnataka, India
| | - Jeenu Varghese
- Department of Pathology, Command Hospital Air Force, Bengaluru, Karnataka, India
| |
Collapse
|
37
|
Abstract
Like many other pathological infectious processes, sepsis is mainly studied in vivo using mice models. Over the past 30 years, such studies have led to significant achievements in understanding of the sepsis pathophysiology. However, unfortunately, none of them led to any «discoveries» in the treatment of patients. In this review, we question the relevance of the experimental models applied, list some aspects rarely taken into account and discuss ways to resolve the deadlock.The text is a translation of the article: Cavail-lon J. M. New methods of treating sepsis: failure of animal models, Bull. Assoc. Anc. El. Inst. Pastor, 2017, 59,230, 58—60. Translation from French by «Akademperevod», Moscow, Russia.
Collapse
|
38
|
Bonazzi D, Lo Schiavo V, Machata S, Djafer-Cherif I, Nivoit P, Manriquez V, Tanimoto H, Husson J, Henry N, Chaté H, Voituriez R, Duménil G. Intermittent Pili-Mediated Forces Fluidize Neisseria meningitidis Aggregates Promoting Vascular Colonization. Cell 2018; 174:143-155.e16. [PMID: 29779947 DOI: 10.1016/j.cell.2018.04.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/11/2018] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Neisseria meningitidis, a bacterium responsible for meningitis and septicemia, proliferates and eventually fills the lumen of blood capillaries with multicellular aggregates. The impact of this aggregation process and its specific properties are unknown. We first show that aggregative properties are necessary for efficient infection and study their underlying physical mechanisms. Micropipette aspiration and single-cell tracking unravel unique features of an atypical fluidized phase, with single-cell diffusion exceeding that of isolated cells. A quantitative description of the bacterial pair interactions combined with active matter physics-based modeling show that this behavior relies on type IV pili active dynamics that mediate alternating phases of bacteria fast mutual approach, contact, and release. These peculiar fluid properties proved necessary to adjust to the geometry of capillaries upon bacterial proliferation. Intermittent attractive forces thus generate a fluidized phase that allows for efficient colonization of the blood capillary network during infection.
Collapse
Affiliation(s)
- Daria Bonazzi
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Valentina Lo Schiavo
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Silke Machata
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Ilyas Djafer-Cherif
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Pierre Nivoit
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Valeria Manriquez
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, 75015 Paris, France
| | | | - Julien Husson
- Laboratoire d'Hydrodynamique (LadHyX), Department of Mechanics, Ecole Polytechnique-CNRS UMR7646, 91128 Palaiseau, France
| | - Nelly Henry
- Laboratoire Jean Perrin, CNRS UMR 3231, Université Pierre et Marie Curie, 75005 Paris, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; Computational Science Research Center, Beijing 100193, China; Laboratoire de Physique Théorique de la Matière Condensée, CNRS, Université Pierre et Marie Curie, 75005 Paris, France
| | - Raphael Voituriez
- Laboratoire Jean Perrin, CNRS UMR 3231, Université Pierre et Marie Curie, 75005 Paris, France; Laboratoire de Physique Théorique de la Matière Condensée, CNRS, Université Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
39
|
Complement C5a Receptor 1 Exacerbates the Pathophysiology of N. meningitidis Sepsis and Is a Potential Target for Disease Treatment. mBio 2018; 9:mBio.01755-17. [PMID: 29362231 PMCID: PMC5784250 DOI: 10.1128/mbio.01755-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1−/− mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1−/− mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. The devastating consequences of N. meningitidis sepsis arise due to the rapidly arising and self-propagating inflammatory response that mobilizes antibacterial defenses but also drives the immunopathology associated with meningococcemia. The complement cascade provides innate broad-spectrum protection against infection by directly damaging the envelope of pathogenic microbes through the membrane attack complex and triggers an inflammatory response via the C5a peptide and its receptor C5aR1 aimed at mobilizing cellular effectors of immunity. Here, we consider the potential of separating the bactericidal activities of the complement cascade from its immune activating function to improve outcome of N. meningitidis sepsis. Our findings demonstrate that the specific genetic or pharmacological disruption of C5aR1 rapidly ameliorates disease by suppressing the pathogenic inflammatory response and, surprisingly, allows faster clearance of the bacterial infection. This outcome provides a clear demonstration of the therapeutic benefit of the use of C5aR1-specific inhibitors to improve the outcome of invasive meningococcal disease.
Collapse
|
40
|
Capel E, Barnier JP, Zomer AL, Bole-Feysot C, Nussbaumer T, Jamet A, Lécuyer H, Euphrasie D, Virion Z, Frapy E, Pélissier P, Join-Lambert O, Rattei T, Bourdoulous S, Nassif X, Coureuil M. Peripheral blood vessels are a niche for blood-borne meningococci. Virulence 2017; 8:1808-1819. [PMID: 29099305 DOI: 10.1080/21505594.2017.1391446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Neisseria meningitidis is the causative agent of cerebrospinal meningitis and that of a rapidly progressing fatal septic shock known as purpura fulminans. Meningococcemia is characterized by bacterial adhesion to human endothelial cells of the microvessels. Host specificity has hampered studies on the role of blood vessels colonization in N. meningitidis associated pathogenesis. In this work, using a humanized model of SCID mice allowing the study of bacterial adhesion to human cells in an in vivo context we demonstrate that meningococcal colonization of human blood vessels is a prerequisite to the establishment of sepsis and lethality. To identify the molecular pathways involved in bacterial virulence, we performed transposon insertion site sequencing (Tn-seq) in vivo. Our results demonstrate that 36% of the genes that are important for growth in the blood of mice are dispensable when bacteria colonize human blood vessels, suggesting that human endothelial cells lining the blood vessels are feeding niches for N. meningitidis in vivo. Altogether, our work proposes a new paradigm for meningococcal virulence in which colonization of blood vessels is associated with metabolic adaptation and sustained bacteremia responsible for sepsis and subsequent lethality.
Collapse
Affiliation(s)
- Elena Capel
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Jean-Philippe Barnier
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Aldert L Zomer
- d Department of Infectious Diseases and Immunology , Faculty of Veterinary Medicine, Utrecht University , Utrecht , The Netherlands
| | - Christine Bole-Feysot
- e Plateforme génomique de l'Institut Imagine, INSERM UMR 1163, Paris Descartes Sorbonne Université Paris Cité , Paris , France
| | - Thomas Nussbaumer
- f CUBE - Division of Computational Systems Biology, Dept. of Microbiology and Ecosystem Science , University of Vienna , Vienna , Austria
| | - Anne Jamet
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Hervé Lécuyer
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Daniel Euphrasie
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Zoé Virion
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Eric Frapy
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| | - Philippe Pélissier
- g Service de Chirurgie Plastique Reconstructrice et Esthétique, Groupe Hospitalier Paris Saint Joseph , Paris , France
| | - Olivier Join-Lambert
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Thomas Rattei
- f CUBE - Division of Computational Systems Biology, Dept. of Microbiology and Ecosystem Science , University of Vienna , Vienna , Austria
| | - Sandrine Bourdoulous
- b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,h INSERM U1016, Institut Cochin , Paris , France.,i CNRS UMR8104 , Paris , France
| | - Xavier Nassif
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France.,c Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades , Paris , France
| | - Mathieu Coureuil
- a Institut Necker Enfants-Malades, INSERM U1151, Equipe 11 , Paris , France.,b Université Paris Descartes; Sorbonne Paris Cité, Faculté de Médecine , Paris , France
| |
Collapse
|
41
|
Genomic, Transcriptomic, and Phenotypic Analyses of Neisseria meningitidis Isolates from Disease Patients and Their Household Contacts. mSystems 2017; 2:mSystems00127-17. [PMID: 29152586 PMCID: PMC5686521 DOI: 10.1128/msystems.00127-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022] Open
Abstract
Neisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response. Neisseria meningitidis (meningococcus) can cause meningococcal disease, a rapidly progressing and often fatal disease that can occur in previously healthy children. Meningococci are found in healthy carriers, where they reside in the nasopharynx as commensals. While carriage is relatively common, invasive disease, associated with hypervirulent strains, is a comparatively rare event. The basis of increased virulence in some strains is not well understood. New Zealand suffered a protracted meningococcal disease epidemic, from 1991 to 2008. During this time, a household carriage study was carried out in Auckland: household contacts of index meningococcal disease patients were swabbed for isolation of carriage strains. In many households, healthy carriers harbored strains identical, as determined by laboratory typing, to the ones infecting the associated patient. We carried out more-detailed analyses of carriage and disease isolates from a select number of households. We found that isolates, although indistinguishable by laboratory typing methods and likely closely related, had many differences. We identified multiple genome variants and transcriptional differences between isolates. These studies enabled the identification of two new phase-variable genes. We also found that several carriage strains had lost their type IV pili and that this loss correlated with reduced tumor necrosis factor alpha (TNF-α) expression when cultured with epithelial cells. While nonpiliated meningococcal isolates have been previously found in carriage strains, this is the first evidence of an association between type IV pili from meningococci and a proinflammatory epithelial response. We also identified potentially important metabolic differences between carriage and disease isolates, including the sulfate assimilation pathway. IMPORTANCENeisseria meningitidis causes meningococcal disease but is frequently carried in the throats of healthy individuals; the factors that determine whether invasive disease develops are not completely understood. We carried out detailed studies of isolates, collected from patients and their household contacts, to identify differences between commensal throat isolates and those that caused invasive disease. Though isolates were identical by laboratory typing methods, we uncovered many differences in their genomes, in gene expression, and in their interactions with host cells. In particular, we found that several carriage isolates had lost their type IV pili, a surprising finding since pili are often described as essential for colonization. However, loss of type IV pili correlated with reduced secretion of a proinflammatory cytokine, TNF-α, when meningococci were cocultured with human bronchial epithelial cells; hence, the loss of pili could provide an advantage to meningococci, by resulting in a dampened localized host immune response.
Collapse
|
42
|
Neck injury and conjunctival petechiae in a woman who underwent cardiopulmonary resuscitation and subsequently died from meningococcal sepsis. Forensic Sci Med Pathol 2017; 13:432-435. [PMID: 28776217 DOI: 10.1007/s12024-017-9901-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Cardiopulmonary resuscitation (CPR) can create a range of unusual lesions and injuries, which may complicate forensic evaluation. Although potentially sinister findings, neck injury and conjunctival petechiae may also be seen in patients who have undergone CPR. We report a case of an individual with subcutaneous bruising and hemorrhage in the deep structures of the neck and florid conjunctival petechiae at autopsy that can be explained by cardiopulmonary resuscitation and meningococcal sepsis.
Collapse
|
43
|
Abstract
Neisseria meningitidis is a harmless commensal bacterium finely adapted to humans. Unfortunately, under “privileged” conditions, it adopts a “devious” lifestyle leading to uncontrolled behavior characterized by the unleashing of molecular weapons causing potentially lethal disease such as sepsis and acute meningitis. Indeed, despite the lack of a classic repertoire of virulence genes in
N. meningitidis separating commensal from invasive strains, molecular epidemiology and functional genomics studies suggest that carriage and invasive strains belong to genetically distinct populations characterized by an exclusive pathogenic potential. In the last few years, “omics” technologies have helped scientists to unwrap the framework drawn by
N. meningitidis during different stages of colonization and disease. However, this scenario is still incomplete and would benefit from the implementation of physiological tissue models for the reproduction of mucosal and systemic interactions
in vitro. These emerging technologies supported by recent advances in the world of stem cell biology hold the promise for a further understanding of
N. meningitidis pathogenesis.
Collapse
|
44
|
Fujiwara S. Humanized mice: A brief overview on their diverse applications in biomedical research. J Cell Physiol 2017; 233:2889-2901. [PMID: 28543438 DOI: 10.1002/jcp.26022] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Model animals naturally differ from humans in various respects and results from the former are not directly translatable to the latter. One approach to address this issue is humanized mice that are defined as mice engrafted with functional human cells or tissues. In humanized mice, we can investigate the development and function of human cells or tissues (including their products encoded by human genes) in the in vivo context of a small animal. As such, humanized mouse models have played important roles that cannot be substituted by other animal models in various areas of biomedical research. Although there are obvious limitations in humanized mice and we may need some caution in interpreting the results obtained from them, it is reasonably expected that they will be utilized in increasingly diverse areas of biomedical research, as the technology for preparing humanized mice are rapidly improved. In this review, I will describe the methodology for generating humanized mice and overview their recent applications in various disciplines including immunology, infectious diseases, drug metabolism, and neuroscience.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.,Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
45
|
Klughammer J, Dittrich M, Blom J, Mitesser V, Vogel U, Frosch M, Goesmann A, Müller T, Schoen C. Comparative Genome Sequencing Reveals Within-Host Genetic Changes in Neisseria meningitidis during Invasive Disease. PLoS One 2017; 12:e0169892. [PMID: 28081260 PMCID: PMC5231331 DOI: 10.1371/journal.pone.0169892] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022] Open
Abstract
Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Institute of Human Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Mitesser
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- German Reference Laboratory for Meningococci and Haemophilus influenzae, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Matthias Frosch
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- German Reference Laboratory for Meningococci and Haemophilus influenzae, Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
46
|
Simonis A, Schubert-Unkmeir A. Interactions of meningococcal virulence factors with endothelial cells at the human blood-cerebrospinal fluid barrier and their role in pathogenicity. FEBS Lett 2016; 590:3854-3867. [PMID: 27498906 DOI: 10.1002/1873-3468.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 01/06/2023]
Abstract
The Gram-negative extracellular bacterium Neisseria meningitidis is one of the most common aetiological agents of bacterial meningitis affecting predominantly young children worldwide. This bacterium is normally a quiescent coloniser of the upper respiratory tract, but in some individuals it enters the blood stream and causes invasive diseases, such as septicaemia and meningitis. Interactions of N. meningitidis with human endothelial cells are crucially involved in pathogencitiy, and great efforts have been made to understand these molecular interactions. The aim of this review article is to provide an overview of the interactions of meningococcal virulence factors with host endothelial cells at the blood-cerebrospinal fluid barrier.
Collapse
Affiliation(s)
- Alexander Simonis
- Division of Hematology, University Hospital Zurich, Switzerland.,Institute of Hygiene and Microbiology, University of Wuerzburg, Germany
| | | |
Collapse
|
47
|
Ernst W. Humanized mice in infectious diseases. Comp Immunol Microbiol Infect Dis 2016; 49:29-38. [PMID: 27865261 DOI: 10.1016/j.cimid.2016.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023]
Abstract
The pathogenesis of infectious agents with human tropism can only be properly studied in an in vivo model featuring human cells or tissue. Humanized mice represent a small animal model featuring human cells or tissue that can be infected by human-specific viruses, bacteria, and parasites and also providing a functional human immune system. This makes the analysis of a human immune response to infection possible and allows for preclinical testing of new vaccines and therapeutic agents. Results of various studies using humanized mice to investigate pathogens with human tropism are presented in this review. In addition, the limitations of humanized mice and methods to improve this valuable animal model are discussed.
Collapse
Affiliation(s)
- W Ernst
- Clinic of Gynecology and Obstetrics St. Hedwig, University of Regensburg, Regensburg, Bavaria, Germany.
| |
Collapse
|
48
|
Stolp B, Melican K. Microbial pathogenesis revealed by intravital microscopy: pros, cons and cautions. FEBS Lett 2016; 590:2014-26. [PMID: 26938770 DOI: 10.1002/1873-3468.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Intravital multiphoton imaging allows visualization of infections and pathogenic mechanisms within intact organs in their physiological context. Today, most organs of mice and rats are applicable to in vivo or ex vivo imaging, opening completely new avenues for many researchers. Advances in fluorescent labeling of pathogens and infected cells, as well as improved small animal models for human pathogens, led to the increased application of in vivo imaging in infectious diseases research in recent years. Here, we review the latest literature on intravital or ex vivo imaging of viral and bacterial infections and critically discuss requirements, benefits and drawbacks of applied animal models, labeling strategies, and imaged organs.
Collapse
Affiliation(s)
- Bettina Stolp
- Heidelberg University Hospital, Center of Infectious Diseases, Integrative Virology, Heidelberg, Germany
| | - Keira Melican
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Rasid O, Cavaillon JM. Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiol 2016; 11:293-314. [PMID: 26849633 DOI: 10.2217/fmb.15.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe sepsis remains a worldwide threat, not only in industrialized countries, due to their aging population, but also in developing countries where there still are numerous cases of neonatal and puerperal sepsis. Tools for early diagnosis, a prerequisite for rapid and appropriate antibiotic therapy, are still required. In this review, we highlight some recent developments in our understanding of the associated systemic inflammatory response that help deciphering pathophysiology (e.g., epigenetic, miRNA, regulatory loops, compartmentalization, apoptosis and synergy) and discuss some of the consequences of sepsis (e.g., immune status, neurological and muscular alterations). We also emphasize the challenge to better define animal models and discuss past failures in clinical investigations in order to define new efficient therapies.
Collapse
Affiliation(s)
- Orhan Rasid
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| | - Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| |
Collapse
|
50
|
Charles-Orszag A, Lemichez E, Tran Van Nhieu G, Duménil G. Microbial pathogenesis meets biomechanics. Curr Opin Cell Biol 2016; 38:31-7. [PMID: 26849533 DOI: 10.1016/j.ceb.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Introducing concepts from soft matter physics and mechanics has largely contributed to our understanding of a variety of biological processes. In this review, we argue that this holds true for bacterial pathogenesis. We base this argument on three examples of bacterial pathogens and their interaction with host cells during infection: (i) Shigella flexneri exploits actin-dependent forces to come into close contact with epithelial cells prior to invasion of the epithelium; (ii) Neisseria meningitidis manipulates endothelial cells to resist shear stress during vascular colonization; (iii) bacterial toxins take advantage of the biophysical properties of the host cell plasma membrane to generate transcellular macroapertures in the vascular wall. Together, these examples show that a multidisciplinary approach integrating physics and biology is more necessary than ever to understand complex infectious phenomena. Moreover, this avenue of research will allow the exploration of general processes in cell biology, highlighted by pathogens, in the context of other non-communicable human diseases.
Collapse
Affiliation(s)
- Arthur Charles-Orszag
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Lemichez
- INSERM, U1065, Microbial Toxins in Host-Pathogen Interactions, Centre Méditerranéen De Médecine Moléculaire, C3M, 151 Route St Antoine de Ginestière, 06204 Nice, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR 7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Guillaume Duménil
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|