1
|
Wang Y, Shi Z, Wu S, Zeng W, Wang C, Zhao Y, Deng R, Shi R, Xiao Y, Tan L. Differential pathogenicity of heterologous nucleopolyhedroviruses on Spodoptera frugiperda corresponds to modulated expression of immune-response-related genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106232. [PMID: 40015841 DOI: 10.1016/j.pestbp.2024.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 03/01/2025]
Abstract
The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a notorious invasive pest wreaking havoc on various crops globally. Nucleopolyhedroviruses (NPVs) are viral pathogens that specially target lepidopteran pests. However, the homologous virus, Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), has not been commercialized in China. Therefore, understanding the molecular mechanisms underlying heterologous virus-host interactions can inform the design of virus-based insecticides for controlling S. frugiperda. The pathogenicity of the four heterologous NPVs on S. frugiperda varied greatly. Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) exhibited the most potent virulence on larvae and induced the most robust sublethal effects on adults. Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection was characterized by more moderate pathogenicity, and larvae were relatively resistant to Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) and Spodoptera litura multiple nucleopolyhedrovirus (SlMNPV). Larval mortality was virus-concentration and larval stage dependent. Specifically, the corrected mortality rate of third instar larvae after treatment with 1 × 106, 1 × 107, and 1 × 108 OBs/mL MbMNPV was 88.9 %, 100.0 %, and 100.0 %, respectively. All four NPVs negatively affected the longevity and fecundity of S. frugiperda adults. Female adults surviving treatment with MbMNPV and SeMNPV were unable to lay eggs. Transcriptomic analysis revealed that MbMNPV infection might suppress the antiviral immune response, and dysregulate biological pathways of S. frugiperda larvae to facilitate systemic infection. However, the overall transcript profiles remain unchanged after SlMNPV infection. The results reinforce the potential of NPVs, specifically MbMNPV, as potent biocontrol agents for S. frugiperda. These findings yield valuable insights into the complex arms race between S. frugiperda and NPVs that may advance the development of virus-based strategies to mitigate the destructive impact of this pest.
Collapse
Affiliation(s)
- Yusheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zihan Shi
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Shaolong Wu
- Tobacco Company of Hunan Province, Changsha 410004, China
| | - Weiai Zeng
- Changsha Tobacco Company of Hunan Province, Changsha 410128, China
| | - Can Wang
- Tobacco Company of Hunan Province, Changsha 410004, China
| | - Yingying Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Rujing Deng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Chenzhou Tobacco Company of Hunan Province, Chenzhou 423000, China
| | - Rui Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou 423000, China.
| | - Lin Tan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Suraporn S, Liu J, Ren F, Wang L, Feng M, Terenius O, Swevers L. Towards a Rational Basis for the Selection of Probiotics to Improve Silkworm Health and Performance. INSECTS 2025; 16:162. [PMID: 40003792 PMCID: PMC11856270 DOI: 10.3390/insects16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Pathogenic infections of silkworms constitute the greatest threat to sericulture. An attractive approach to the improvement in silkworm health and performance comprises the use of probiotics, i.e., microorganisms that confer beneficial properties such as an increased growth rate and resistance against pathogens. While this method has already resulted in promising results, generally, there is a lack of a rational basis for guidance on the selection of probiotics. This review attempts to organize useful information that needs to be considered for the successful application of probiotics: the constitution of the microbiota in silkworms and its origins; the interaction of the major silkworm pathogens with the microbiota; and the microorganisms that have been used so far as silkworm probiotics. Our analysis points to two major issues that seem of vital importance: (1) the absence of a "core microbiota" in silkworms which necessitates continuous supply of beneficial microorganisms according to environmental conditions and (2) the apparent negative impact that some other microorganisms can have on resistance against baculovirus infections. Recent findings have reported the beneficial effects of lactic acid bacteria (Lactobacillus sp.) when applied as probiotics in improving silkworm health and performance.
Collapse
Affiliation(s)
- Siripuk Suraporn
- Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Mahasarakham 44150, Thailand;
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Feifei Ren
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi 563006, China;
| | - Luoluo Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, Regional Sericulture Training Centre for Asia-Pacific, South China Agricultural University, Guangzhou 510642, China;
| | - Olle Terenius
- Department of Cell and Molecular Biology, Microbiology and Immunology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden;
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
3
|
Liu SH, Zhang Y, Guo ZX, Ayaz S, Wang YX, Huang ZH, Cao HH, Xu JP. Effects of baculovirus infection on intestinal microflora of BmNPV resistant and susceptible strain silkworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1141-1151. [PMID: 38706118 DOI: 10.1093/jee/toae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.
Collapse
Affiliation(s)
- Shi-Huo Liu
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Ying Zhang
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhe-Xiao Guo
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Sadaf Ayaz
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Yan-Xiang Wang
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Zhi-Hao Huang
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Hui-Hua Cao
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| | - Jia-Ping Xu
- Anhui Province Key Laboratory of Resource Insects Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei 230036, China
| |
Collapse
|
4
|
Li C, Han G, Huang L, Lu Y, Xia Y, Zhang N, Liu Q, Xu J. Metagenomic Analyses Reveal Gut Microbial Profiles of Cnaphalocrocis medinalis Driven by the Infection of Baculovirus CnmeGV. Microorganisms 2024; 12:757. [PMID: 38674701 PMCID: PMC11052019 DOI: 10.3390/microorganisms12040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The composition of microbiota in the digestive tract gut is essential for insect physiology, homeostasis, and pathogen infection. Little is known about the interactions between microbiota load and oral infection with baculoviruses. CnmeGV is an obligative baculovirus to Cnaphalocrocis medinalis. We investigated the impact of CnmeGV infection on the structure of intestinal microbes of C. medinalis during the initial infection stage. The results revealed that the gut microbiota profiles were dynamically driven by pathogen infection of CnmeGV. The numbers of all the OTU counts were relatively higher at the early and later stages, while the microbial diversity significantly increased early but dropped sharply following the infection. The compositional abundance of domain bacteria Firmicutes developed substantially higher. The significantly enriched and depleted species can be divided into four groups at the species level. Fifteen of these species were ultimately predicted as the biomarkers of CnmeGV infection. CnmeGV infection induces significant enrichment of alterations in functional genes related to metabolism and the immune system, encompassing processes such as carbohydrate, amino acid, cofactor, and vitamin metabolism. Finally, the study may provide an in-depth analysis of the relationship between host microbiota, baculovirus infection, and pest control of C. medinalis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jian Xu
- National Experimental Station of Yangzhou for Agricultural Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou 225008, China; (C.L.); (G.H.); (L.H.); (Y.L.); (Y.X.); (N.Z.); (Q.L.)
| |
Collapse
|
5
|
Zhang J, Zafar J, Kong J, Wang F, Shao X, Zhang R, Pang R, Xu H, Xu X, Jin F. MicroRNA-Mediated Host Immune Genes Manipulation Benefits AcMNPV Proliferation in Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71. [PMID: 37917564 PMCID: PMC10655178 DOI: 10.1021/acs.jafc.3c05012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Spodoptera frugiperda is a highly destructive migratory pest that threatens various crops globally. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an effective biocontrol agent against lepidopteran pests. Here, we explored the molecular mechanisms underlying the immune response to AcMNPV infection in S. frugiperda. RNA-seq and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses identified the Toll, IMD, and apoptosis pathways as primary immune responses. Investigation into AcMNPV-induced apoptosis in the S. frugiperda cell line (Sf9) revealed that the Toll pathway activated the JNK via the TRAF6 (TNF receptor-associated factor 6) adapter. In addition, AcMNPV-induced the differential expression of several host-encoded microRNAs (miRNAs), with significant negative regulatory effects, on S. frugiperda antiviral immune genes. RNAi and miRNA-mimic mediated silencing of these genes resulted in increased AcMNPV proliferation. Our findings reinforce the potential of AcMNPV as a potent biocontrol agent and further our understanding of developing biotechnology-based targeted pest control agents.
Collapse
Affiliation(s)
- Jie Zhang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jinrong Kong
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fei Wang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xuehua Shao
- Institute
of Fruit Tree Research, Guangdong Academy of Agricultural Sciences,
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource
Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and
Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Ruonan Zhang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National
Key Laboratory of Green Pesticide, “Belt and Road” Technology
Industry and Innovation Institute for Green and Biological Control
of Agricultural Pests, College of Plant
Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Wang Y, Gao P, Zheng J, Li H, Meng L, Li B. Effects of parasitism by a parasitoid wasp on the gut microbiota in a predaceous lady beetle host. PEST MANAGEMENT SCIENCE 2023; 79:4501-4507. [PMID: 37418555 DOI: 10.1002/ps.7652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The gut microbiota has an intimate relationship with insect hosts and this relationship can become complicated with parasitic organisms being involved with the host. To date there has been limited evidence for the relevance of parasitism of the host by parasitoids to host gut microbiota, especially in host insect predators. Here, our study examined gut microbiotas in larvae of the predaceous lady beetle, Coccinella septempunctata, in response to their parasitism by Homalotylus eytelweinii regarding the development progress of offspring parasitoids. RESULTS Overall 58.5% of gut bacterial operational taxonomic units (OTUs) in the parasitized lady beetle were different from those in the unparasitized host. The phylum Proteobacteria abundance increased while Firmicutes decreased in parasitized hosts compared to the unparasitized. The abundance of genus Aeribacillus decreased substantially in the parasitized lady beetle across all stages of the offspring development compared to the unparasitized host. The α-diversity of the gut microbiota in a parasitized lady beetle larva increased at the early stage of offspring parasitoids and then returned over the intermediate and later stages. Analyses of β-diversity indicated that the gut microbial community in a parasitized lady beetle was distinct from that in an unparasitized one and different between early or middle and late stages of offspring parasitoids in parasitized hosts. CONCLUSION Our results provide evidence for the relevance of the gut microbiota to interactions between a lady beetle host and its parasitoid. Our study provides a starting point for further investigations of the role the gut microbiota may play in host-parasitoid interactions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yansong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Du XX, Cao SK, Xiao HY, Yang CJ, Zeng AP, Chen G, Yu H. Feeding Spodoptera exigua larvae with gut-derived Escherichia sp. increases larval juvenile hormone levels inhibiting cannibalism. Commun Biol 2023; 6:1086. [PMID: 37884600 PMCID: PMC10603045 DOI: 10.1038/s42003-023-05466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Feed quality influences insect cannibalistic behavior and gut microbial communities. In the present study, Spodoptera exigua larvae were fed six different artificial diets, and one of these diets (Diet 3) delayed larval cannibalistic behavior and reduced the cannibalism ratio after ingestion. Diet 3-fed larvae had the highest gut bacterial load (1.396 ± 0.556 × 1014 bacteria/mg gut), whereas Diet 2-fed larvae had the lowest gut bacterial load (3.076 ± 1.368 × 1012 bacteria/mg gut). The gut bacterial composition and diversity of different diet-fed S. exigua larvae varied according to the 16S rRNA gene sequence analysis. Enterobacteriaceae was specific to the Diet 3-fed larval gut. Fifteen culturable bacterial isolates were obtained from the midgut of Diet 3-fed larvae. Of these, ten belonged to Escherichia sp. After administration with Diet 1- or 2-fed S. exigua larvae, two bacterial isolates (SePC-12 and -37) delayed cannibalistic behavior in both tested larval groups. Diet 2-fed larvae had the lowest Juvenile hormone (JH) concentration and were more aggressive against intraspecific predation. However, SePC-12 loading increased the JH hormone levels in Diet 2-fed larvae and inhibited their cannibalism. Bacteria in the larval midgut are involved in the stabilization of JH levels, thereby regulating host larval cannibalistic behavior.
Collapse
Affiliation(s)
- Xing-Xing Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Sheng-Kai Cao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hua-Yan Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ai-Ping Zeng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
8
|
Han G, Li C, Zhang N, Liu Q, Huang L, Xia Y, Xu J. CmHem, a hemolin-like gene identified from Cnaphalocrocis medinalis, involved in metamorphosis and baculovirus infection. PeerJ 2023; 11:e16225. [PMID: 37810787 PMCID: PMC10559889 DOI: 10.7717/peerj.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Background As a member of the immunoglobulin superfamily, hemolins play a vital role in insect development and defense against pathogens. However, the innate immune response of hemolin to baculovirus infection varies among different insects. Methods and results In this study, the hemolin-like gene from a Crambidae insect, Cnaphalocrocis medinalis, CmHem was cloned, and its role in insect development and baculovirus infection was analyzed. A 1,528 bp contig as potential hemolin-like gene of C. medinalis was reassembled from the transcriptome. Further, the complete hemolin sequence of C. medinalis (CmHem) was cloned and sequenced. The cDNA of CmHem was 1,515 bp in length and encoded 408 amino acids. The deduced amino acid of CmHem has relatively low identities (41.9-62.3%) to various insect hemolins. However, it contains four Ig domains similarity to other insect hemolins. The expression level of CmHem was the highest in eggs, followed by pupae and adults, and maintained a low expression level at larval stage. The synthesized siRNAs were injected into mature larvae, and the CmHem transcription decreased by 51.7%. Moreover, the abdominal somites of larvae became straightened, could not pupate normally, and then died. Infection with a baculovirus, C. medinalis granulovirus (CnmeGV), the expression levels of CmHem in the midgut and fat body of C. medinalis significantly increased at 12 and 24 h, respectively, and then soon returned to normal levels. Conclusions Our results suggested that hemolin may be related to the metamorphosis of C. medinalis. Exposure to baculovirus induced the phased expression of hemolin gene in the midgut and fat body of C. medinalis, indicated that hemolin involved in the immune recognition of Crambidae insects to baculovirus.
Collapse
Affiliation(s)
- Guangjie Han
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Chuanming Li
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Nan Zhang
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Qin Liu
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Lixin Huang
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Yang Xia
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| | - Jian Xu
- Lixiahe District Institute of Agricultural Sciences in Jiangsu, Yangzhou, China
| |
Collapse
|
9
|
Tian Z, Guo X, Michaud JP, Zha M, Zhu L, Liu X, Liu X. The gut microbiome of Helicoverpa armigera enhances immune response to baculovirus infection via suppression of Duox-mediated reactive oxygen species. PEST MANAGEMENT SCIENCE 2023; 79:3611-3621. [PMID: 37184157 DOI: 10.1002/ps.7546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Baculoviruses such as Helicoverpa armigera nucleopolyhedrovirus (HearNPV) infect their lepidopteran hosts via the larval midgut where they interact with host immune responses and gut microbiota. Here we demonstrate that gut microbiota proliferating in response to HearNPV infection promote larval immune responses which impede the infection process. RESULTS The microbial load of the larval midgut increased following HearNPV infection, due primarily to increases in Enterococcus spp., whereas most other bacterial genera declined, with Firmicutes replacing Proteobacteria as the dominant phylum. Injection of abdominal prolegs of infected larvae with H2 O2 promoted viral infection, diminished microbial abundance, and accelerated larval death, mimicking the effects of HearNPV infection, which up-regulated dual oxidase (Duox) expression, increasing H2 O2 levels in the midgut. Knockdown of Duox with RNAi reduced H2 O2 production in the guts of infected larvae, increased bacterial loads, decreased viral replication, and improved larval survival. Germ-free larvae were more susceptible to HearNPV than control larvae, exhibiting greater expression of Duox, higher levels of H2 O2 , and lower survival. Replenishment of gut bacteria in germ-free larvae restored the base-line immunity to HearNPV observed in normal larvae. Enterococcus spp., Levilactobacillus brevis, and Lactobacillus sp. bacteria were isolated and implicated in immunity restoration via replenishment in germ-free larvae. CONCLUSION These findings illuminate how gut microbiota play important roles in larval defense against oral baculovirus infection, and suggest novel avenues of investigation to enhance the efficacy of baculoviruses and improve control of lepidopteran pests. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xi Guo
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS, USA
| | - Meng Zha
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Li S, Yu X, Fan B, Hao D. A gut-isolated Enterococcus strain (HcM7) triggers the expression of antimicrobial peptides that aid resistance to nucleopolyhedrovirus infection of Hyphantria cunea larvae. PEST MANAGEMENT SCIENCE 2023; 79:3529-3537. [PMID: 37198147 DOI: 10.1002/ps.7533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Commensal microorganisms are widely distributed in insect gut tissues and play important roles in host nutrition, metabolism, reproductive regulation, and especially immune functioning and tolerance to pathogens. Consequently, gut microbiota represent a promising resource for the development of microbial-based products for pest control and management. However, the interactions among host immunity, entomopathogen infections, and gut microbiota remain poorly understood for many arthropod pests. RESULTS We previously isolated an Enterococcus strain (HcM7) from Hyphantria cunea larvae guts that increased the survival rates of larvae challenged with nucleopolyhedrovirus (NPV). Here, we further investigated whether this Enterococcus strain stimulates a protective immune response against NPV proliferation. Infection bioassays demonstrated that re-introduction of the HcM7 strain to germfree larvae preactivated the expression of several antimicrobial peptides (particularly H. cunea gloverin 1, HcGlv1), resulting in the significant repression of virus replication in host guts and hemolymph, and consequently improved host survivorship after NPV infection. Furthermore, silencing of the HcGlv1 gene by RNA interference markedly enhanced the deleterious effects of NPV infection, revealing a role of this gut symbiont-induced gene in host defenses against pathogenic infections. CONCLUSION These results show that some gut microorganisms can stimulate host immune systems, thereby contributing to resistance to entomopathogens. Furthermore, HcM7, as a functional symbiotic bacteria of H. cunea larvae, may be a potential target for increasing the effectiveness of biocontrol agents against this devastating pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shouyin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xiaohang Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Binqi Fan
- Forest Station of Shanghai, Shanghai, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Zhao P, Rensing C, Wang D. Symbiotic Bacteria Modulate Lymantria dispar Immunity by Altering Community Proportions after Infection with LdMNPV. Int J Mol Sci 2023; 24:9694. [PMID: 37298643 PMCID: PMC10254028 DOI: 10.3390/ijms24119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The symbiotic bacteria-insect interaction is considered to be associated with immunity and drug resistance. However, the wide variety of insect species and habitats is thought to have a significant impact on the symbiotic community, leading to disparate results. Here, we demonstrated that symbiotic bacteria regulated the immune response by changing the proportion of the Gram-positive and the Gram-negative bacterial community in Lymantria dispar (L. dispar) after infection with its viral pathogen, L. dispar Nucleopolyhedrovirus (LdMNPV). After oral infection, the immune deficiency pathway was activated immediately, and the expression of Relish was up-regulated to promote the secretion of antimicrobial peptides. Meanwhile, the abundance of the Gram-negative bacterial community increased at the same time. Moreover, the Toll pathway was not regulated in the same way as the Imd pathway was after infection. However, the change in the Toll pathway's expression remained positively correlated to the abundance of Gram-positive bacteria. This finding implied that the ratio of Gram-negative to Gram-positive bacteria in the LdMNPV infected larvae had an effect on the immune response. Our findings revealed that the immune regulation of L. dispar was regulated by the relative abundance of its symbiotic bacteria at different infection times with LdMNPV, which provides a new way to understand symbiotic bacteria-insect interactions.
Collapse
Affiliation(s)
- Peixu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China;
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
12
|
Spodoptera exigua Multiple Nucleopolyhedrovirus Increases the Susceptibility to Insecticides: A Promising Efficient Way for Pest Resistance Management. BIOLOGY 2023; 12:biology12020260. [PMID: 36829536 PMCID: PMC9953395 DOI: 10.3390/biology12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Spodoptera exigua is a polyphagous pest of diverse crops and causes considerable economic losses. The overuse of chemical insecticides for controlling this pest results in insecticide resistance, environmental pollution and toxicity to other non-target organisms. Therefore, a sustainable and efficient way for pest management is urgently required. In this study, laboratory bioassays of eleven commonly used insecticides, the specific entomopathogen of S. exigua (Spodoptera exigua multiple nucleopolyhedrovirus, SeMNPV), and SeMNPV-insecticide combinations against the S. exigua laboratory population and two field populations were tested. Our results indicated that the two field populations had developed resistance to almost half of the tested insecticides, while SeMNPV had good virulence in all populations. Interestingly, the combined use of SeMNPV enhanced the toxicity of the tested insecticides against all populations to a different extent and considerably reduced the insecticide resistance of S. exigua field populations or even recovered the susceptibility to above insecticides. Furthermore, the field trial showed that the combined application of SeMNPV contributed to promoting the control efficacy of emamectin benzonate and chlorfenapyr. These results provide a promising efficient way for pest resistance management and an environmentally friendly approach for controlling S. exigua with the combined application of nucleopolyhedroviruses and insecticides.
Collapse
|
13
|
Frattini A, Martínez‐Solís M, Llopis‐Giménez Á, Pozo MJ, Rivero J, Crava CM, Herrero S. Compatibility of mycorrhiza-induced resistance with viral and bacterial entomopathogens in the control of Spodoptera exigua in tomato. PEST MANAGEMENT SCIENCE 2022; 78:4388-4396. [PMID: 35767223 PMCID: PMC9543428 DOI: 10.1002/ps.7058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal fungi (AMF) are soil-borne microorganisms that establish mutualistic associations with roots of most terrestrial plants. This symbiosis results in nutritional and defensive benefits to the host plant, usually conferring protection against biotic stresses, but its indirect impact on third trophic levels is still unknown. In the present work, we explore whether the symbiosis of tomato plants with Funneliformis mosseae (and/or exposition to herbivory) influences the interaction of the generalist pest Spodoptera exigua (Lepidoptera: Noctuidae) with bacterial (Bacillus thuringiensis) and viral (baculovirus, SeMNPV) natural entomopathogens. RESULTS Symbiosis with AMF and previous herbivory reduces the relative growth of S. exigua, increases its susceptibility to a sublethal dose of B. thuringiensis and has positive or neutral impact on the lethality of SeMNPV. Reduction of the phenoloxidase activity, a marker of the insect immune response, was associated with the larval feeding on plant material previously exposed to herbivory but not to the AMF. In addition, no changes in the insect gut microbiota could be associated with the observed changes in larval growth and susceptibility to the entomopathogens. CONCLUSION Our findings provide the first evidence of compatibility of AMF symbiosis in tomato with the use of bacterial and viral entomopathogens, contributing to the development of novel approaches to combine the beneficial effect of AMF and entomopathogens in biological pest control. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ada Frattini
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - María Martínez‐Solís
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - Ángel Llopis‐Giménez
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - María J. Pozo
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Javier Rivero
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín – Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Cristina M. Crava
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED)Universitat de ValènciaValenciaSpain
| |
Collapse
|
14
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
15
|
Topical Fungal Infection Induces Shifts in the Gut Microbiota Structure of Brown Planthopper, Nilaparvata lugens (Homoptera: Delphacidae). INSECTS 2022; 13:insects13060528. [PMID: 35735865 PMCID: PMC9225076 DOI: 10.3390/insects13060528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
Simple Summary Fungal entomopathogens are important natural enemies of insect pests and widely applied for biocontrol. Gut microbiota play important roles in mediating insect physiology and behavior. There is growing evidence that alteration of gut microbial communities due to pathological and environmental exposure can have detrimental impacts on host health and pathogen resistance. Here, we investigated the effects of topical infection with Metarhizium anisopliae fungus on the gut microbial community structure of the brown planthopper (Nilaparvata lugens, BPH), a destructive insect pest of rice. Our results demonstrated dramatic changes of gut bacterial community structure after topical fungal infection in BPH, as indicated by a significant increase in bacterial load, a significant decrease in bacterial community evenness and significant shifts in dominant bacterial abundance at the taxonomic level below the class. The dysbiosis of the gut bacteria might partly be due to the suppression of gut immunity caused by topical fungal infection. Our results highlighted the importance of the gut microbial community in fungal pathogenesis in insects. Abstract The brown planthopper (Nilaparvata lugens, BPH) is a destructive insect pest posing a serious threat to rice production. The fungal entomopathogen Metarhizium anisopliae is a promising alternative that can be used for BPH biocontrol. Recent studies have highlighted the significant involvement of gut microbiota in the insect–fungus interactions. In the presented study, we investigated the effects of topical fungal infection on the gut microbial community structure in BPH. Our results revealed that topical infection with M. anisopliae increased the bacterial load and altered the bacterial community structure in the gut of BPH. The relative abundances of the dominant gut bacteria at the order, family and genus level were significantly different between fungus-infected and uninfected groups. At the genus level, the uninfected BPH harbored high proportions of Pantoea and Enterobacter in the gut, whereas the fungus-infected BPH gut was absolutely dominated by Acinetobacter. Moreover, topical fungal infection significantly inhibited the expressions of immune-related genes encoding anti-microbial protein and dual oxidase that were involved in the maintenance of gut microbiota homeostasis, indicating that gut bacteria imbalance might be attributed in part to the suppression of gut immunity caused by fungal pathogen. Our results highlighted the importance of the gut microbial community during interactions between fungal pathogens and insect hosts.
Collapse
|
16
|
Yuan C, Xing L, Wang M, Hu Z, Zou Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1766-1779. [PMID: 33463036 DOI: 10.1111/1744-7917.12894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/07/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Baculoviruses are natural enemies of agricultural and forest insect pests and play an important role in biological pest control. Oral infection by baculovirus in the insect midgut is necessary for establishing systemic infection and eventually killing the insect. Since the insect midgut continuously encounters microbiota, the gut microbiota could affect baculovirus infection. Here, we demonstrated that gut microbiota modulates immune responses and promotes baculovirus infection in the cotton bollworm, Helicoverpa armigera. After oral infection, numerous host immunity-related genes including genes encoding Toll and immune deficiency (IMD) pathway components were upregulated in the midgut. Elimination of the gut microbiota significantly increased the resistance to viral infection in H. armigera. Quantitative real-time reverse transcription polymerase chain reaction and proteomic analysis showed that downregulation of the antiviral factor prophenoloxidase (PPO) could be mediated by microbiota during infection. It implied that midgut microbiota diminishes the expression of PPO to facilitate viral infection in H. armigera. Our findings revealed that the microbiota plays an important role in modulating the resistance of H. armigera to baculovirus infection, providing new insights in applying biopesticide.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Longsheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Llopis-Giménez A, Caballero-Vidal G, Jacquin-Joly E, Crava CM, Herrero S. Baculovirus infection affects caterpillar chemoperception. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103648. [PMID: 34536505 DOI: 10.1016/j.ibmb.2021.103648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Baculoviruses are double-stranded DNA entomopathogenic viruses that infect predominantly insects of the order Lepidoptera. Research in the last decade has started to disentangle the mechanisms underlying the insect-virus interaction, particularly focusing on the effects of the baculovirus infection in the host's physiology. Among crucial physiological functions, olfaction has a key role in reproductive tasks, food source detection and enemy avoidance. In this work, we describe that Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induces expression changes in some odorant receptors (ORs) - the centrepiece of insect's olfaction - when infecting larvae from its natural host Spodoptera exigua (Lepidoptera: Noctuidae). Different ORs are up-regulated in larvae after SeMNPV infection, and two of them, SexiOR35 and SexiOR23, were selected for further functional characterization by heterologous expression in empty neurons of Drosophila melanogaster coupled to single-sensillum recordings. SexiOR35 appears to be a broadly tuned receptor able to recognise multiple and different chemical compounds. SexiOR23, although correctly expressed in Drosophila neurons, did not display any significant response to a panel of 58 stimuli. Behavioural experiments revealed that larvae infected by SeMNPV exhibit altered olfactory-driven behaviour to diet when it is supplemented with the plant volatiles linalool or estragole, two of the main SexiOR35 ligands, supporting the hypothesis that viral infection triggers changes in host perception through changes in the expression level of specific ORs.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain
| | - Gabriela Caballero-Vidal
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, F78026, Versailles Cedex, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, F78026, Versailles Cedex, France
| | - Cristina Maria Crava
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain.
| | - Salvador Herrero
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain.
| |
Collapse
|
18
|
Comparative transcriptome analysis reveals a potential mechanism for host nutritional manipulation after parasitization by Leptopilina boulardi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100862. [PMID: 34120097 DOI: 10.1016/j.cbd.2021.100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023]
Abstract
Parasitoids have been extensively found to manipulate nutrient amounts of their hosts to benefit their own development and survival, but the underlying mechanisms are largely unknown. Leptopilina boulardi (Hymenoptera: Figitidae) is a larval-pupal endoparasitoid wasp of Drosophila melanogaster whose survival relies on the nutrients provided by its Drosophila host. Here, we used RNA-seq to compare the gene expression levels of the host midgut at 24 h and 48 h post L. boulardi parasitization. We obtained 95 and 191 differentially expressed genes (DEGs) in the parasitized host midgut at 24 h and 48 h post L. boulardi parasitization, respectively. A KEGG analysis revealed that several metabolic pathways were significantly enriched in the upregulated DEGs, and these pathways included "starch and sucrose metabolism" and "galactose metabolism". A functional annotation analysis showed that four classes of genes involved in carbohydrate digestion process had increased expression levels in the midgut post L.boulardi parasitization than nonparasitized groups: glucosidase, mannosidase, chitinase and amylase. Genes involved in protein digestion process were also found among the DEGs, and most of these genes, which belonged to the metallopeptidase and serine-type endopeptidase families, were found at higher expression levels in the parasitized host midgut comparing with nonparasitized hosts. Moreover, some immune genes, particularly those involved in the Toll and Imd pathways, also exhibited high expression levels after L.boulardi parasitization. Our study provides large-scale transcriptome data and identifies sets of DEGs between parasitized and nonparasitized host midgut tissues at 24 h and 48 h post L. boulardi parasitization. These resources help improve our understanding of how parasitoid infection affects the nutrient components in the hosts.
Collapse
|
19
|
Wang JY, Zhang H, Siemann E, Fan NN, Ji XY, Chen YJ, Jiang JX, Wan NF. Plants impact cellular immunity of caterpillars to an entomovirus. PEST MANAGEMENT SCIENCE 2021; 77:2415-2424. [PMID: 33432688 DOI: 10.1002/ps.6270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Tri-trophic interactions among plants, insect herbivores and entomopathogens are one of the hot topics in ecology. Although plants have been shown to impact the interactions between herbivores and entomopathogens, it is still unclear how plants affect the cellular immunity of herbivores to entomopathogens. RESULTS The number of hemocytes and the proportion of two main cell types (granular hemocytes and plasmatocytes), plasmatocyte-spreading rate, apoptosis rate, two Spodoptera exigua caspase (SeCasp-1, SeCasp-5) activities and gene expressions were all higher and the activities and gene expression of S. exigua inhibitor of apoptosis protein (SeIAP) were lower in nucleopolyhedrovirus (NPV)-infected caterpillars fed Ipomoea aquatica than those fed other plants or artificial diet. Scanning electron microscopy images were consistent with molecular patterns of immune responses. CONCLUSION This study suggests that host plants affect the immune responses of herbivores to entomopathogens by manipulating the composition, morphology and apoptosis of herbivore hemocytes, which sheds light on the mechanisms that allow host plants to influence multi-trophic interactions. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Hao Zhang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Neng-Neng Fan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Xiang-Yun Ji
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Yi-Juan Chen
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| | - Nian-Feng Wan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, 201403, China
| |
Collapse
|
20
|
Mogren CL, Shikano I. Microbiota, pathogens, and parasites as mediators of tritrophic interactions between insect herbivores, plants, and pollinators. J Invertebr Pathol 2021; 186:107589. [PMID: 33865846 DOI: 10.1016/j.jip.2021.107589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Insect-associated microbes, including pathogens, parasites, and symbionts, influence the interactions of herbivorous insects and pollinators with their host plants. Moreover, herbivory-induced changes in plant resource allocation and defensive chemistry can influence pollinator behavior. This suggests that the outcomes of interactions between herbivores, their microbes and host plants could have implications for pollinators. As epizootic diseases occur at high population densities, pathogen and parasite-mediated effects on plants could have landscape-level impacts on foraging pollinators. The goal of this minireview is to highlight the potential for an herbivore's multitrophic interactions to trigger plant-mediated effects on the immunity and health of pollinators. We highlight the importance of plant quality and gut microbiomes in bee health, and how caterpillars as model herbivores interact with pathogens, parasites, and symbionts to affect plant quality, which forms the centerpiece of multitrophic interactions between herbivores and pollinators. We also discuss the impacts of other herbivore-associated factors, such as agricultural inputs aimed at decreasing herbivorous pests, on pollinator microbiomes.
Collapse
Affiliation(s)
- Christina L Mogren
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA
| | - Ikkei Shikano
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Mānoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, HI 96822, USA.
| |
Collapse
|
21
|
The gut microbiota composition of Trichoplusia ni is altered by diet and may influence its polyphagous behavior. Sci Rep 2021; 11:5786. [PMID: 33707556 PMCID: PMC7970945 DOI: 10.1038/s41598-021-85057-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Insects are known plant pests, and some of them such as Trichoplusia ni feed on a variety of crops. In this study, Trichoplusia ni was fed distinct diets of leaves of Arabidopsis thaliana or Solanum lycopersicum as well as an artificial diet. After four generations, the microbial composition of the insect gut was evaluated to determine if the diet influenced the structure and function of the microbial communities. The population fed with A. thaliana had higher proportions of Shinella, Terribacillus and Propionibacterium, and these genera are known to have tolerance to glucosinolate activity, which is produced by A. thaliana to deter insects. The population fed with S. lycopersicum expressed increased relative abundances of the Agrobacterium and Rhizobium genera. These microbial members can degrade alkaloids, which are produced by S. lycopersicum. All five of these genera were also present in the respective leaves of either A. thaliana or S. lycopersicum, suggesting that these microbes are acquired by the insects from the diet itself. This study describes a potential mechanism used by generalist insects to become habituated to their available diet based on acquisition of phytochemical degrading gut bacteria.
Collapse
|
22
|
Bogale HN, Cannon MV, Keita K, Camara D, Barry Y, Keita M, Coulibaly D, Kone AK, Doumbo OK, Thera MA, Plowe CV, Travassos M, Irish S, Serre D. Relative contributions of various endogenous and exogenous factors to the mosquito microbiota. Parasit Vectors 2020; 13:619. [PMID: 33303025 PMCID: PMC7726613 DOI: 10.1186/s13071-020-04491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The commensal microbiota of mosquitoes impacts their development, immunity, and competency, and could provide a target for alternative entomological control approaches. However, despite the importance of the mosquito/microbiota interactions, little is known about the relative contribution of endogenous and exogenous factors in shaping the bacterial communities of mosquitoes. METHODS We used a high-throughput sequencing-based assay to characterize the bacterial composition and diversity of 665 individual field-caught mosquitoes, as well as their species, genotype at an insecticide resistance locus, blood-meal composition, and the eukaryotic parasites and viruses they carry. We then used these data to rigorously estimate the individual effect of each parameter on the bacterial diversity as well as the relative contribution of each parameter to the microbial composition. RESULTS Overall, multivariate analyses did not reveal any significant contribution of the mosquito species, insecticide resistance, or blood meal to the bacterial composition of the mosquitoes surveyed, and infection with parasites and viruses only contributed very marginally. The main driver of the bacterial diversity was the location at which each mosquito was collected, which explained roughly 20% of the variance observed. CONCLUSIONS This analysis shows that when confounding factors are taken into account, the site at which the mosquitoes are collected is the main driver of the bacterial diversity of wild-caught mosquitoes, although further studies will be needed to determine which specific components of the local environment affect bacterial composition.
Collapse
Affiliation(s)
- Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Matthew V. Cannon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kalil Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Denka Camara
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Yaya Barry
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Moussa Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Drissa Coulibaly
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Mark Travassos
- Malaria Research Program, Center of Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Seth Irish
- U.S. President’s Malaria Initiative and Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Prevention, Atlanta, GA USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
23
|
Cavichiolli de Oliveira N, Cônsoli FL. Beyond host regulation: Changes in gut microbiome of permissive and non-permissive hosts following parasitization by the wasp Cotesia flavipes. FEMS Microbiol Ecol 2020; 96:5682488. [PMID: 31860060 DOI: 10.1093/femsec/fiz206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023] Open
Abstract
Koinobiont parasitoids regulate the physiology of their hosts, possibly interfering with the host gut microbiota and ultimately impacting parasitoid development. We used the parasitoid Cotesia flavipes to investigate if the regulation of the host would also affect the host gut microbiota. We also wondered if the effects of parasitization on the gut microbiota would depend on the host-parasitoid association by testing the permissive Diatraea saccharalis and the non-permissive Spodoptera frugiperda hosts. We determined the structure and potential functional contribution of the gut microbiota of the fore-midgut and hindgut of the hosts at different stages of development of the immature parasitoid. The abundance and diversity of operational taxonomic units of the anteromedial (fore-midgut) gut and posterior (hindgut) region from larvae of the analyzed hosts were affected by parasitization. Changes in the gut microbiota induced by parasitization altered the potential functional contribution of the gut microbiota associated with both hosts. Our data also indicated that the mechanism by which C. flavipes interferes with the gut microbiota of the host does not require a host-parasitoid coevolutionary history. Changes observed in the potential contribution of the gut microbiota of parasitized hosts impact the host's nutritional quality, and could favor host exploitation by C. flavipes.
Collapse
Affiliation(s)
- Nathalia Cavichiolli de Oliveira
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, São Paulo, Brazil
| | - Fernando Luís Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, São Paulo, Brazil
| |
Collapse
|
24
|
Pyszko P, Višňovská D, Drgová M, Šigut M, Drozd P. Effect of Bacterial and Fungal Microbiota Removal on the Survival and Development of Bryophagous Beetles. ENVIRONMENTAL ENTOMOLOGY 2020; 49:902-911. [PMID: 32514554 DOI: 10.1093/ee/nvaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 06/11/2023]
Abstract
Insect microbiota may play a wide range of roles in host physiology. Among others, microbiota can be involved in diet processing or protection against pathogens, both of which are potentially important in bryophagous (moss-feeding) insects, which survive on extreme diets and live in the stable environment of moss clumps suitable for the growth of fungi and bacteria. We treated Cytilus sericeus (Forster, 1771) (Coleoptera: Byrrhidae) as a model organism with bactericides and fungicides to test the effect of bacterial and fungal removal on egg hatching and larval development. Furthermore, we supplied larvae with adult feces to determine whether feces is a source of beneficial microbiota or pathogens. Bactericides had a positive effect, but fungicides had a negative effect on beetle fitness, both of which manifested during egg hatching. The feces did not play a positive role. Our conclusions indicate the presence of beneficial fungal microbiota associated with eggs but not transmitted through feces. Based on preliminary cultivation and fungicide tests, Fusarium or Penicillium may be important for suppressing pathogens, but their exact role needs to be further studied.
Collapse
Affiliation(s)
- Petr Pyszko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Denisa Višňovská
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Michaela Drgová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| | - Pavel Drozd
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho, Ostrava, Czech Republic
| |
Collapse
|
25
|
The Tripartite Interaction of Host Immunity- Bacillus thuringiensis Infection-Gut Microbiota. Toxins (Basel) 2020; 12:toxins12080514. [PMID: 32806491 PMCID: PMC7472377 DOI: 10.3390/toxins12080514] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Bacillus thuringiensis (Bt) is an important cosmopolitan bacterial entomopathogen, which produces various protein toxins that have been expressed in transgenic crops. The evolved molecular interaction between the insect immune system and gut microbiota is changed during the Bt infection process. The host immune response, such as the expression of induced antimicrobial peptides (AMPs), the melanization response, and the production of reactive oxygen species (ROS), varies with different doses of Bt infection. Moreover, B. thuringiensis infection changes the abundance and structural composition of the intestinal bacteria community. The activated immune response, together with dysbiosis of the gut microbiota, also has an important effect on Bt pathogenicity and insect resistance to Bt. In this review, we attempt to clarify this tripartite interaction of host immunity, Bt infection, and gut microbiota, especially the important role of key immune regulators and symbiotic bacteria in the Bt killing activity. Increasing the effectiveness of biocontrol agents by interfering with insect resistance and controlling symbiotic bacteria can be important steps for the successful application of microbial biopesticides.
Collapse
|
26
|
Prabu S, Jing D, Shabbir MZ, Yuan W, Wang Z, He K. Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer. Int J Biol Macromol 2020; 153:88-99. [DOI: 10.1016/j.ijbiomac.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
|
27
|
Martínez-Solís M, Collado MC, Herrero S. Influence of Diet, Sex, and Viral Infections on the Gut Microbiota Composition of Spodoptera exigua Caterpillars. Front Microbiol 2020; 11:753. [PMID: 32435237 PMCID: PMC7218101 DOI: 10.3389/fmicb.2020.00753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
The gut microbiota plays essential roles in processes related with metabolism, physiology, and immunity in all organisms, including insects. In the present work, we performed a broad analysis of the Spodoptera exigua gut microbiota, a major agricultural pest. We analyzed the influence of multiple parameters such as diet, geographic location, sex, or viral infections on S. exigua caterpillar gut microbiota composition. Our study revealed a high variability in bacterial composition among individuals, and a major influence of environmental bacteria (including those acquired through diet) on the gut microbiota composition, supporting previous studies that claim resident microbiota are lacking in caterpillars. Previous studies with laboratory-reared insects showed that changes in caterpillar gut bacterial composition affect the insecticidal properties of entomopathogenic viruses and bacteria. Our study revealed different microbiota composition in field insects carrying a natural viral infection with Spodoptera exigua nucleopolyhedrovirus (SeMNPV) and/or Spodoptera exigua iflavirus 1 (SeIV1). Few taxa can be specifically associated with the infection, suggesting microbiota influence the infective process of these natural pathogens, and providing new strategies for insect pest management.
Collapse
Affiliation(s)
- María Martínez-Solís
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| | - María Carmen Collado
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Salvador Herrero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| |
Collapse
|
28
|
Wang JY, Zhang H, Siemann E, Ji XY, Chen YJ, Wang Y, Jiang JX, Wan NF. Immunity of an insect herbivore to an entomovirus is affected by different host plants. PEST MANAGEMENT SCIENCE 2020; 76:1004-1010. [PMID: 31489764 DOI: 10.1002/ps.5609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Interactions between herbivorous insects and entomoviruses may depend on host plant, perhaps mediated through changes in herbivore innate immunity. RESULTS Caterpillars (Spodoptera exigua) fed Glycine max had high viral loads and low melanization rates together with low melanization enzyme [PO, DDC, TH] activities and gene expressions. Caterpillars fed Ipomoea aquatica had low viral loads and high melanization, gene activities and gene expressions while those fed Brassica oleracea or artificial diet had intermediate levels of each. Melanization rates were negatively correlated with viral loads and positively correlated with activity and expression of each of the three enzymes. Some diet effects on enzymes were constitutive because the same diets led to low (G. max) or high (I. aquatica) melanization related gene activities and expressions without infection. CONCLUSION Diet influences the interactions between insect herbivores and viruses by shaping the innate immune response both at the onset of infection and afterwards as viral loads accumulate over a period of days. In addition, diets that lead to low viral loads are associated with high activities and gene expressions of a variety of melanization related enzymes suggesting a common causative mechanism. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Hao Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Xiang-Yun Ji
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi-Juan Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi Wang
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jie-Xian Jiang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Nian-Feng Wan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| |
Collapse
|
29
|
Scholefield JA, Shikano I, Lowenberger CA, Cory JS. The impact of baculovirus challenge on immunity: The effect of dose and time after infection. J Invertebr Pathol 2019; 167:107232. [DOI: 10.1016/j.jip.2019.107232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
|
30
|
Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, Luthe DS, Hoover K, Felton GW. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc Natl Acad Sci U S A 2019; 116:15991-15996. [PMID: 31332013 PMCID: PMC6689943 DOI: 10.1073/pnas.1908748116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm (Spodoptera frugiperda) and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing Enterococcus, Klebsiella, and Enterobacter isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore's microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant-insect interactions should be considered in the context of potential mediation by the insect gut microbiome.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802;
| | - Swayamjit Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Ikkei Shikano
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Dawn S Luthe
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
31
|
Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, Luthe DS, Hoover K, Felton GW. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc Natl Acad Sci U S A 2019. [PMID: 31332013 DOI: 10.5061/dryad.7254t7d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm (Spodoptera frugiperda) and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing Enterococcus, Klebsiella, and Enterobacter isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore's microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant-insect interactions should be considered in the context of potential mediation by the insect gut microbiome.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802;
| | - Swayamjit Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Ikkei Shikano
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Dawn S Luthe
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
32
|
Transcriptional Responses of the Trichoplusia ni Midgut to Oral Infection by the Baculovirus Autographa californica Multiple Nucleopolyhedrovirus. J Virol 2019; 93:JVI.00353-19. [PMID: 31043536 DOI: 10.1128/jvi.00353-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Baculoviruses are large double-stranded DNA viruses that are virulent pathogens of certain insect species. In a natural host, Trichoplusia ni, infection by the model baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) begins when the occluded form of the virus disassembles in the midgut and virions infect midgut epithelial cells to establish the primary phase of the infection. To better understand the primary phase of the AcMNPV infection cycle, newly molted 5th-instar T. ni larvae were orally infected with AcMNPV occlusion bodies and the transcriptional responses of the T. ni midgut were analyzed at various times from 0 to 72 h postinfection, using transcriptome sequencing analysis and a T. ni reference genome. The numbers of differentially expressed host genes increased as the infection progressed, and we identified a total of 3,372 differentially expressed T. ni transcripts in the AcMNPV-infected midgut. Genes encoding orthologs of HMG176, atlastin, and CPH43 were among the most dramatically upregulated in response to AcMNPV infection. A number of cytochrome P450 genes were downregulated in response to infection. We also identified the effects of AcMNPV infection on a large variety of genes associated with innate immunity. This analysis provides an abundance of new and detailed information on host responses to baculovirus infection during the primary phase of the infection in the midgut and will be important for understanding how baculoviruses establish productive infections in the organism.IMPORTANCE Baculoviruses are virulent pathogens of a number of important insect pest species. In the host Trichoplusia ni, infection begins in the midgut when infectious virions of the occlusion-derived virus (ODV) phenotype enter and subsequently replicate in cells of the midgut epithelium. A second virion phenotype (budded virus [BV]) is produced there, and BV mediates systemic infection of the animal. Most prior detailed studies of baculovirus infections have focused on BV infections of cultured cells. In this study, we examined the transcriptional responses of the T. ni midgut to infection by ODV of the baculovirus AcMNPV and identified a variety of host genes that respond dramatically to viral infection. Understanding the transcriptional responses of the host midgut to viral infection is critically important for understanding the biphasic infection in the animal as a whole.
Collapse
|
33
|
Kumar D, Sun Z, Cao G, Xue R, Hu X, Gong C. Bombyx mori bidensovirus infection alters the intestinal microflora of fifth instar silkworm (Bombyx mori) larvae. J Invertebr Pathol 2019; 163:48-63. [DOI: 10.1016/j.jip.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/06/2023]
|
34
|
Sun L, Liu P, Sun S, Yan S, Cao C. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus. PEST MANAGEMENT SCIENCE 2019; 75:1024-1033. [PMID: 30230189 DOI: 10.1002/ps.5212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hyphantria cunea is a destructive forest pest. To utilise H. cunea nucleopolyhedrovirus (HcNPV) for biological control, understanding insect-virus interactions is essential. RESULTS Four cDNA libraries were constructed from H. cunea larvae (two HcNPV-infected and two uninfected groups) and 76 004 expressed genes were obtained by next-generation sequencing. Compared with controls, 272 differentially expressed genes (DEGs) were identified in infected groups, including 162 up-regulated and 110 down-regulated genes. Transcription levels of 20 random DEGs were consistent with the Solexa expression profiles obtained by quantitative real-time PCR. DEGs associated with innate immunity were grouped into several categories, including pattern recognition proteins, heat-shock proteins, UDP-glycosyltransferases, cytochrome P450s, antimicrobial peptides and hormonal signalling proteins. Interestingly, up-regulated host genes included farnesoic acid O-methyltransferase, two juvenile hormone (JH) binding proteins, and a circadian clock-controlled protein related to JH regulation. Pathway enrichment analysis indicates that mitogen-activated protein kinase (MAPK) signalling pathways, key candidate genes and important biological pathways may be associated with molecular modification in H. cunea larvae in response to virus stress. CONCLUSION These findings provide insight for future research on the molecular mechanisms of HcNPV invasion and anti-HcNPV mechanisms in H. cunea. A better understanding of gene regulation following HcNPV invasion could help to develop the virus as a bio-insecticide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lili Sun
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Peng Liu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Shouhui Sun
- Department of Forest Protection, College of Forestry, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Shanchun Yan
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| | - Chuanwang Cao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
35
|
Jones AG, Mason CJ, Felton GW, Hoover K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 2019; 9:2792. [PMID: 30808905 PMCID: PMC6391413 DOI: 10.1038/s41598-019-39163-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Symbioses between insects and microbes are ubiquitous, but vary greatly in terms of function, transmission mechanism, and location in the insect. Lepidoptera (butterflies and moths) are one of the largest and most economically important insect orders; yet, in many cases, the ecology and functions of their gut microbiomes are unresolved. We used high-throughput sequencing to determine factors that influence gut microbiomes of field-collected fall armyworm (Spodoptera frugiperda) and corn earworm (Helicoverpa zea). Fall armyworm midgut bacterial communities differed from those of corn earworm collected from the same host plant species at the same site. However, corn earworm bacterial communities differed between collection sites. Subsequent experiments using fall armyworm evaluating the influence of egg source and diet indicated that that host plant had a greater impact on gut communities. We also observed differences between regurgitant (foregut) and midgut bacterial communities of the same insect host, suggesting differential colonization. Our findings indicate that host plant is a major driver shaping gut microbiota, but differences in insect physiology, gut region, and local factors can also contribute to variation in microbiomes. Additional studies are needed to assess the mechanisms that affect variation in insect microbiomes, as well as the ecological implications of this variability in caterpillars.
Collapse
Affiliation(s)
- Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
36
|
Gasmi L, Martínez-Solís M, Frattini A, Ye M, Collado MC, Turlings TCJ, Erb M, Herrero S. Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores' Susceptibility to Natural Pathogens? Appl Environ Microbiol 2019; 85:e01468-18. [PMID: 30366995 PMCID: PMC6293100 DOI: 10.1128/aem.01468-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
In response to insect herbivory, plants mobilize various defenses. Defense responses include the release of herbivore-induced plant volatiles (HIPVs) that can serve as signals to alert undamaged tissues and to attract natural enemies of the herbivores. Some HIPVs can have a direct negative impact on herbivore survival, but it is not well understood by what mechanisms. Here, we tested the hypothesis that exposure to HIPVs renders insects more susceptible to natural pathogens. Exposure of the caterpillars of the noctuid Spodoptera exigua to indole and linalool, but not exposure to (Z)-3-hexenyl acetate, increased the susceptibility to Spodoptera exiguamultiple nucleopolyhedrovirus (SeMNPV). We also found that exposure to indole, but not exposure to linalool or (Z)-3-hexenyl acetate, increased the pathogenicity of Bacillus thuringiensis Additional experiments revealed significant changes in microbiota composition after forty-eight hours of larval exposure to indole. Overall, these results provide evidence that certain HIPVs can strongly enhance the susceptibility of caterpillars to pathogens, possibly through effects on the insect gut microbiota. These findings suggest a novel mechanism by which HIPVs can protect plants from herbivorous insects.IMPORTANCE Multitrophic interactions involving insect pests, their natural enemies, microorganisms, and plant hosts are increasingly being recognized as relevant factors in pest management. In response to herbivory attacks, plants activate a wide range of defenses that aim to mitigate the damage. Attacked plants release herbivore-induced plant volatiles (HIPVs), which can act as priming signals for other plants and attract natural enemies of herbivores, and which may have a direct negative impact on herbivore survival. In the present work, we show that exposure of the insects to the induced volatiles could increase the insects' susceptibility to the entomopathogens naturally occurring in the plant environment. These findings suggest a novel role for plant volatiles by influencing insect interactions with natural pathogens, probably mediated by alterations in the insect microbiota composition. In addition, this work provides evidence for selectable plant traits (production of secondary metabolites) that can have an influence on the ecology of the pests and could be relevant in the improvement of pest management strategies using natural entomopathogens.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - María Martínez-Solís
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Ada Frattini
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| | - Meng Ye
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Salvador Herrero
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
37
|
Wang ZZ, Zhan LQ, Chen XX. Two types of lysozymes from the whitefly Bemisia tabaci: Molecular characterization and functional diversification. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:252-261. [PMID: 29247722 DOI: 10.1016/j.dci.2017.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Lysozyme is well-known as an immune effector in the immune system. Here we identified three genes including one c-type lysozyme, Btlysc, and two i-type lysozymes, Btlysi1 and Btlysi2, from the whitefly Bemisia tabaci. All three lysozymes were constitutively expressed in different tissues and developmental stages, but the two types of lysozymes showed different expression patterns. The expression levels of Btlysi1 and Btlysi2 were dramatically induced after the whitefly fed with different host plants while the expression level of Btlysc kept unchanged. After fungal infection and begomovirus acquisition, Btlysc expression was significantly upregulated while Btlysi1 and Btlysi2 expression were basically not induced. Furthermore, we found that Btlysc showed muramidase and antibacterial activities. Altogether, our results suggest that the two types of lysozymes act in two different ways in B. tabaci, that is, Btlysc is involved in the whitefly immune system while Btlysi1 and Btlysi2 may play a role in digestion or nutrition absorption.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Le-Qing Zhan
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xue-Xin Chen
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
38
|
Abstract
The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus-host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh EH9 3FL UK.
| | - Finny S Varghese
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
39
|
Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Sci Rep 2017; 7:16245. [PMID: 29176692 PMCID: PMC5701239 DOI: 10.1038/s41598-017-16406-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/12/2017] [Indexed: 01/24/2023] Open
Abstract
The insecticidal Vip3 proteins from Bacillus thuringiensis (Bt), along with the classical Bt Cry proteins, are currently used in Bt-crops to control insect pests, since they do not share the same mode of action. Here we characterized the response of Spodoptera exigua larvae after Vip3 challenge. The expression profile of 47 genes was analyzed in larvae challenged with three concentrations of Vip3Ca. Results showed that the up-regulated genes were mainly involved in immune response, whereas the down-regulated genes were mainly involved in the digestion process. Other mechanisms of cellular response to the damage such as apoptosis were analyzed. For this analysis, sections from the midguts were examined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The nuclei of the midgut epithelial cells were stained at the highest concentration of the Vip3Ca protein and at lower concentrations of Vip3Aa in agreement with the different potency of the two proteins. In addition, apoptosis was also examined by the analysis of the expression of five caspase genes. The present study shows that exposure of S. exigua larvae to sublethal concentrations of Vip3 proteins activates different insect response pathways which trigger the regulation of some genes, APN shedding, and apoptotic cell death.
Collapse
|
40
|
Martínez-Solís M, Jakubowska AK, Herrero S. Expression of the lef5 gene from Spodoptera exigua multiple nucleopolyhedrovirus contributes to the baculovirus stability in cell culture. Appl Microbiol Biotechnol 2017; 101:7579-7588. [DOI: 10.1007/s00253-017-8495-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
|
41
|
Shikano I, McCarthy EM, Elderd BD, Hoover K. Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral pathogen. J Invertebr Pathol 2017; 148:34-42. [PMID: 28483639 DOI: 10.1016/j.jip.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
Plant-mediated variations in the outcomes of host-pathogen interactions can strongly affect epizootics and the population dynamics of numerous species, including devastating agricultural pests such as the fall armyworm. Most studies of plant-mediated effects on insect pathogens focus on host mortality, but few have measured pathogen yield, which can affect whether or not an epizootic outbreak occurs. Insects challenged with baculoviruses on different plant species and parts can vary in levels of mortality and yield of infectious stages (occlusion bodies; OBs). We previously demonstrated that soybean genotypes and induced anti-herbivore defenses influence baculovirus infectivity. Here, we used a soybean genotype that strongly reduced baculovirus infectivity when virus was ingested on induced plants (Braxton) and another that did not reduce infectivity (Gasoy), to determine how soybean genotype and induced defenses influence OB yield and speed of kill. These are key fitness measures because baculoviruses are obligate-killing pathogens. We challenged fall armyworm, Spodoptera frugiperda, with the baculovirus S. frugiperda multi-nucleocapsid nucleopolyhedrovirus (SfMNPV) during short or long-term exposure to plant treatments (i.e., induced or non-induced genotypes). Caterpillars were either fed plant treatments only during virus ingestion (short-term exposure to foliage) or from the point of virus ingestion until death (long-term exposure). We found trade-offs of increasing OB yield with slower speed of kill and decreasing virus dose. OB yield increased more with longer time to death and decreased more with increasing virus dose after short-term feeding on Braxton compared with Gasoy. OB yield increased significantly more with time to death in larvae that fed until death on non-induced foliage than induced foliage. Moreover, fewer OBs per unit of host tissue were produced when larvae were fed induced foliage than non-induced foliage. These findings highlight the potential importance of plant effects, even at the individual plant level, on entomopathogen fitness, which may impact epizootic transmission events and host population dynamics.
Collapse
Affiliation(s)
- Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
42
|
Shikano I, Rosa C, Tan CW, Felton GW. Tritrophic Interactions: Microbe-Mediated Plant Effects on Insect Herbivores. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:313-331. [PMID: 28590879 DOI: 10.1146/annurev-phyto-080516-035319] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is becoming abundantly clear that the microbes associated with plants and insects can profoundly influence plant-insect interactions. Here, we focus on recent findings and propose directions for future research that involve microbe-induced changes to plant defenses and nutritive quality as well as the consequences of these changes for the behavior and fitness of insect herbivores. Insect (herbivore and parasitoid)-associated microbes can favor or improve insect fitness by suppressing plant defenses and detoxifying defensive phytochemicals. Phytopathogens can influence or manipulate insect behavior and fitness by altering plant quality and defense. Plant-beneficial microbes can promote plant growth and influence plant nutritional and phytochemical composition that can positively or negatively influence insect fitness. Lastly, we suggest that entomopathogens have the potential to influence plant defenses directly as endophytes or indirectly by altering insect physiology.
Collapse
Affiliation(s)
- Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ching-Wen Tan
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
43
|
Näpflin K, Schmid-Hempel P. Immune response and gut microbial community structure in bumblebees after microbiota transplants. Proc Biol Sci 2017; 283:rspb.2016.0312. [PMID: 27226466 DOI: 10.1098/rspb.2016.0312] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Microbial communities are a key component of host health. As the microbiota is initially 'foreign' to a host, the host's immune system should respond to its acquisition. Such variation in the response should relate not only to host genetic background, but also to differences in the beneficial properties of the microbiota. However, little is known about such interactions. Here, we investigate the gut microbiota of the bumblebee, Bombus terrestris, which has a protective function against the bee's natural trypanosome gut parasite, Crithidia bombi We transplanted 'resistant' and 'susceptible' microbiota into 'resistant' and 'susceptible' host backgrounds, and studied the activity of the host immune system. We found that bees from different resistance backgrounds receiving a microbiota differed in aspects of their immune response. At the same time, the elicited immune response also depended on the received microbiota's resistance phenotype. Furthermore, the microbial community composition differed between microbiota resistance phenotypes (resistant versus susceptible). Our results underline the complex feedback between the host's ability to potentially exert selection on the establishment of a microbial community and the influence of the microbial community on the host immune response in turn.
Collapse
Affiliation(s)
- Kathrin Näpflin
- ETH Zürich, Institute of Integrative Biology (IBZ), Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
44
|
Cory JS. Evolution of host resistance to insect pathogens. CURRENT OPINION IN INSECT SCIENCE 2017; 21:54-59. [PMID: 28822489 DOI: 10.1016/j.cois.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Insect pathogens are widely used as a tool for sustainable pest management. Their complex mode of action was thought to make them immune to the evolution of resistance; however, several examples of field-based resistance to the bacterium Bacillus thuringiensis and a granulovirus have been recorded. Here I review the scenarios where resistance has evolved and discuss the likelihood of it occurring in other entomopathogens. I highlight recent research on the factors which might influence the evolution of resistance to insect pathogens, including the role of pathogen diversity, host nutrition and transgenerational effects.
Collapse
Affiliation(s)
- Jenny S Cory
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
45
|
Shikano I. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens. J Chem Ecol 2017; 43:586-598. [DOI: 10.1007/s10886-017-0850-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
46
|
Carballo A, Murillo R, Jakubowska A, Herrero S, Williams T, Caballero P. Co-infection with iflaviruses influences the insecticidal properties of Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies: Implications for the production and biosecurity of baculovirus insecticides. PLoS One 2017; 12:e0177301. [PMID: 28475633 PMCID: PMC5419652 DOI: 10.1371/journal.pone.0177301] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 11/18/2022] Open
Abstract
Biological insecticides based on Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) can efficiently control S. exigua larvae on field and greenhouse crops in many parts of the world. Spanish wild populations and laboratory colonies of S. exigua are infected by two iflaviruses (SeIV-1 and SeIV-2). Here we evaluated the effect of iflavirus co-infection on the insecticidal characteristics of SeMNPV occlusion bodies (OBs). Overall, iflavirus co-inoculation consistently reduced median lethal concentrations (LC50) for SeMNPV OBs compared to larvae infected with SeMNPV alone. However, the speed of kill of SeMNPV was similar in the presence or absence of the iflaviruses. A reduction of the weight gain (27%) associated with iflavirus infection resulted in a 30% reduction in total OB production per larva. Adult survivors of SeMNPV OB inoculation were examined for covert infection. SeMNPV DNA was found to be present at a high prevalence in all SeIV-1 and SeIV-2 co-infection treatments. Interestingly, co-inoculation of SeMNPV with SeIV-2 alone or in mixtures with SeIV-1 resulted in a significant increase in the SeMNPV load of sublethally infected adults, suggesting a role for SeIV-2 in vertical transmission or reactivation of sublethal SeMNPV infections. In conclusion, iflaviruses are not desirable in insect colonies used for large scale baculovirus production, as they may result in diminished larval growth, reduced OB production and, depending on their host-range, potential risks to non-target Lepidoptera.
Collapse
Affiliation(s)
- Arkaitz Carballo
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Navarra, Spain
- Departamento de Producción Agraria, Universidad Pública de Navarra, Navarra, Spain
| | - Rosa Murillo
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Navarra, Spain
- Departamento de Producción Agraria, Universidad Pública de Navarra, Navarra, Spain
| | - Agata Jakubowska
- Departamento de Genética, Universitat de Valencia, Valencia, Spain
| | - Salvador Herrero
- Departamento de Genética, Universitat de Valencia, Valencia, Spain
| | | | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Navarra, Spain
- Departamento de Producción Agraria, Universidad Pública de Navarra, Navarra, Spain
| |
Collapse
|
47
|
Xing L, Yuan C, Wang M, Lin Z, Shen B, Hu Z, Zou Z. Dynamics of the Interaction between Cotton Bollworm Helicoverpa armigera and Nucleopolyhedrovirus as Revealed by Integrated Transcriptomic and Proteomic Analyses. Mol Cell Proteomics 2017; 16:1009-1028. [PMID: 28404795 DOI: 10.1074/mcp.m116.062547] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/17/2017] [Indexed: 01/23/2023] Open
Abstract
Over the past decades, Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been widely used for biocontrol of cotton bollworm, which is one of the most destructive pest insects in agriculture worldwide. However, the molecular mechanism underlying the interaction between HearNPV and host insects remains poorly understood. In this study, high-throughput RNA-sequencing was integrated with label-free quantitative proteomics analysis to examine the dynamics of gene expression in the fat body of H. armigera larvae in response to challenge with HearNPV. RNA sequencing-based transcriptomic analysis indicated that host gene expression was substantially altered, yielding 3,850 differentially expressed genes (DEGs), whereas no global transcriptional shut-off effects were observed in the fat body. Among the DEGs, 60 immunity-related genes were down-regulated after baculovirus infection, a finding that was consistent with the results of quantitative real-time RT-PCR. Gene ontology and functional classification demonstrated that the majority of down-regulated genes were enriched in gene cohorts involved in energy, carbohydrate, and amino acid metabolic pathways. Proteomics analysis identified differentially expressed proteins in the fat body, among which 76 were up-regulated, whereas 373 were significantly down-regulated upon infection. The down-regulated proteins are involved in metabolic pathways such as energy metabolism, carbohydrate metabolism (CM), and amino acid metabolism, in agreement with the RNA-sequence data. Furthermore, correlation analysis suggested a strong association between the mRNA level and protein abundance in the H. armigera fat body. More importantly, the predicted gene interaction network indicated that a large subset of metabolic networks was significantly negatively regulated by viral infection, including CM-related enzymes such as aldolase, enolase, malate dehydrogenase, and triose-phosphate isomerase. Taken together, transcriptomic data combined with proteomic data elucidated that baculovirus established systemic infection of host larvae and manipulated the host mainly by suppressing the host immune response and down-regulating metabolism to allow viral self-replication and proliferation. Therefore, this study provided important insights into the mechanism of host-baculovirus interaction.
Collapse
Affiliation(s)
- Longsheng Xing
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101.,§University of Chinese Academy of Sciences, Beijing 100049
| | - Chuanfei Yuan
- §University of Chinese Academy of Sciences, Beijing 100049.,¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Manli Wang
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhe Lin
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
| | - Benchang Shen
- ‖Guangzhou Medical University, Guangzhou 510182, China
| | - Zhihong Hu
- ¶State Key Laboratory of Virology and Joint Laboratory of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071; and
| | - Zhen Zou
- From the ‡State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; .,§University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
48
|
Shikano I, Hua KN, Cory JS. Baculovirus-challenge and poor nutrition inflict within-generation fitness costs without triggering transgenerational immune priming. J Invertebr Pathol 2016; 136:35-42. [DOI: 10.1016/j.jip.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
|
49
|
Hu X, Jiang Y, Gong Y, Zhu M, Zhu L, Chen F, Liang Z, Kuang S, Zar MS, Kumar D, Cao G, Xue R, Gong C. Important roles played by TGF-β member of Bmdpp and Bmdaw in BmNPV infection. Mol Immunol 2016; 73:122-9. [PMID: 27077706 DOI: 10.1016/j.molimm.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 11/28/2022]
Abstract
Transforming growth factor (TGF)-β superfamily members inhibit Bombyx mori nucleohedrovirus (BmNPV) multiplication in silkworm are not determined. In this study, we first found that BmNPV RNA transcription and protein expression level were regulated by TGF-β members, Decapentaplegic (Bmdpp) and Dawdle (Bmdaw) in the domesticated silkworm, B. mori and silkworm ovary-derived cells. Furthermore, subcellular localization showed that Bmdpp and Bmdaw were mainly presented in cytomembrane of the cultured BmN cells. Tissues expression pattern analysis found that the highest expression levels of Bmdpp and Bmdaw genes were in the hemocyte of fifth instar larvae. During the immune response, the expression level of Bmdpp gene was elevated and Bmdaw gene was declined in BmNPV infected BmN cells and silkworm. The multiplication of BmNPV was inhibited by overexpression of Bmdpp and Bmdaw genes in BmN cells. RNA interference experiments found that the multiplication of BmNPV was raised with specific siRNAs of Bmdpp and Bmdaw genes in BmN cells. The antiviral immune pathways were not significantly regulated by the TGF-β superfamily members. Taken together, these findings provided a clue to understand the function of Bmdpp and Bmdaw gene in response to the BmNPV infection in silkworm.
Collapse
Affiliation(s)
- Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Yue Jiang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Yongchang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Fei Chen
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Sulan Kuang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Mian Sahib Zar
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Dhiraj Kumar
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China.
| |
Collapse
|
50
|
Jakubowska AK, Murillo R, Carballo A, Williams T, van Lent JWM, Caballero P, Herrero S. Iflavirus increases its infectivity and physical stability in association with baculovirus. PeerJ 2016; 4:e1687. [PMID: 26966651 PMCID: PMC4782719 DOI: 10.7717/peerj.1687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 11/20/2022] Open
Abstract
Virus transmission and the prevalence of infection depend on multiple factors, including the interaction with other viral pathogens infecting the same host. In this study, active replication of an iflavirus, Spodoptera exigua iflavirus 1 (order Picornavirales) was observed in the offspring of insects that survived following inoculation with a pathogenic baculovirus, Spodoptera exigua multiple nucleopolyhedrovirus. Tracking the origin of the iflavirus suggested the association of this virus with the occlusion bodies of the baculovirus. Here we investigated the effect of this association on the stability and infectivity of both viruses. A reduction in baculovirus pathogenicity, without affecting its infectivity and productivity, was observed when associated with the iflavirus. In contrast, viral association increased the infectivity of the iflavirus and its resistance to ultraviolet radiation and high temperature, two of the main factors affecting virus stability in the field. In addition, electron microscopy analysis revealed the presence of particles resembling iflavirus virions inside the occlusion bodies of the baculovirus, suggesting the possible co-occlusion of both viruses. Results reported here are indicative of facultative phoresis of a virus and suggest that virus–virus interactions may be more common than currently recognized, and may be influential in the ecology of baculovirus and host populations and in consequence in the use of baculoviruses as biological insecticides.
Collapse
Affiliation(s)
- Agata K Jakubowska
- Department of Genetics, Universitat de València, Burjassot, Valencia, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Rosa Murillo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, Pamplona, Spain; Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - Arkaitz Carballo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, Pamplona, Spain; Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | | | - Jan W M van Lent
- Laboratory of Virology, Dept. of Plant Sciences, Wageningen Agricultural University , Wageningen , Netherlands
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, Pamplona, Spain; Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - Salvador Herrero
- Department of Genetics, Universitat de València, Burjassot, Valencia, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| |
Collapse
|