1
|
Trouche B, Schrieke H, Duron O, Eren AM, Reveillaud J. Wolbachia populations across organs of individual Culex pipiens: highly conserved intra-individual core pangenome with inter-individual polymorphisms. ISME COMMUNICATIONS 2024; 4:ycae078. [PMID: 38915450 PMCID: PMC11195471 DOI: 10.1093/ismeco/ycae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Wolbachia is a maternally inherited intracellular bacterium that infects a wide range of arthropods including mosquitoes. The endosymbiont is widely used in biocontrol strategies due to its capacity to modulate arthropod reproduction and limit pathogen transmission. Wolbachia infections in Culex spp. are generally assumed to be monoclonal but the potential presence of genetically distinct Wolbachia subpopulations within and between individual organs has not been investigated using whole genome sequencing. Here we reconstructed Wolbachia genomes from ovary and midgut metagenomes of single naturally infected Culex pipiens mosquitoes from Southern France to investigate patterns of intra- and inter-individual differences across mosquito organs. Our analyses revealed a remarkable degree of intra-individual conservancy among Wolbachia genomes from distinct organs of the same mosquito both at the level of gene presence-absence signal and single-nucleotide polymorphisms (SNPs). Yet, we identified several synonymous and non-synonymous substitutions between individuals, demonstrating the presence of some level of genomic heterogeneity among Wolbachia that infect the same C. pipiens field population. Overall, the absence of genetic heterogeneity within Wolbachia populations in a single individual confirms the presence of a dominant Wolbachia that is maintained under strong purifying forces of evolution.
Collapse
Affiliation(s)
- Blandine Trouche
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| | - Hans Schrieke
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| | - Olivier Duron
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| | - A Murat Eren
- Marine Biological Laboratory, Woods Hole, MA 02543, United States
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, 26129 Oldenburg, Germany
| | - Julie Reveillaud
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| |
Collapse
|
2
|
Liu B, Ren YS, Su CY, Abe Y, Zhu DH. Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes. Front Microbiol 2023; 14:1084839. [PMID: 36819029 PMCID: PMC9937081 DOI: 10.3389/fmicb.2023.1084839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level. Methods Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection. Results Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains. Discussion This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ye-Song Ren
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Yoshihisa Abe
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Dao-Hong Zhu, ✉
| |
Collapse
|
3
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wang Z, Li H, Zhou X, Tang M, Sun L, Zhan S, Xiao Q. Comparative characterization of microbiota between the sibling species of tea geometrid moth Ectropis obliqua Prout and E. grisescens Warren. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:684-693. [PMID: 32741378 DOI: 10.1017/s0007485320000164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For a wide range of insect species, the microbiota has potential roles in determining host developmental programme, immunity and reproductive biology. The tea geometrid moths Ectropis obliqua and E. grisescens are two closely related species that mainly feed on tea leaves. Although they can mate, infertile hybrids are produced. Therefore, these species provide a pair of model species for studying the molecular mechanisms of microbiotal involvement in host reproductive biology. In this study, we first identified and compared the compositions of microbiota between these sibling species, revealing higher microbiotal diversity for E. grisescens. The microbiota of E. obliqua mainly comprised the phyla Firmicutes, Proteobacteria and Cyanobacteria, whereas that of E. grisescens was dominated by Proteobacteria, Actinobacteria and Firmicutes. At the genus level, the dominant microbiota of E. grisescens included Wolbachia, Enterobacter and Pseudomonas and that of E. obliqua included Melissococcus, Staphylococcus and Enterobacter. Furthermore, we verified the rate of Wolbachia to infect 80 samples from eight different geographical populations, and the results supported that only E. grisescens harboured Wolbachia. Taken together, our findings indicate significantly different microbiotal compositions for E. obliqua and E. grisescens, with Wolbachia possibly being a curial factor influencing the reproductive isolation of these species. This study provides new insight into the mechanisms by which endosymbiotic bacteria, particularly Wolbachia, interact with sibling species.
Collapse
Affiliation(s)
- Zhibo Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hong Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogui Zhou
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Meijun Tang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
6
|
Shropshire JD, Kalra M, Bordenstein SR. Evolution-guided mutagenesis of the cytoplasmic incompatibility proteins: Identifying CifA's complex functional repertoire and new essential regions in CifB. PLoS Pathog 2020; 16:e1008794. [PMID: 32813725 PMCID: PMC7458348 DOI: 10.1371/journal.ppat.1008794] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
Wolbachia are the world's most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due, in part, to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate with uninfected females but not infected females. Under the Two-by-One genetic model of CI, males expressing the two phage WO proteins CifA and CifB cause CI, and females expressing CifA rescue CI. While each protein is predicted to harbor three functional domains, there is no knowledge on how sites across these Cif domains, rather than in any one particular domain, contribute to CI and rescue. Here, we use evolution-guided, substitution mutagenesis of conserved amino acids across the Cif proteins, coupled with transgenic expression in uninfected Drosophila melanogaster, to determine the functional impacts of conserved residues evolving mostly under purifying selection. We report that amino acids in CifA's N-terminal unannotated region and annotated catalase-related domain are important for both complete CI and rescue, whereas C-terminal residues in CifA's putative domain of unknown function are solely important for CI. Moreover, conserved CifB amino acids in the predicted nucleases, peptidase, and unannotated regions are essential for CI. Taken together, these findings indicate that (i) all CifA amino acids determined to be crucial in rescue are correspondingly crucial in CI, (ii) an additional set of CifA amino acids are uniquely important in CI, and (iii) CifB amino acids across the protein, rather than in one particular domain, are all crucial for CI. We discuss how these findings advance an expanded view of Cif protein evolution and function, inform the mechanistic and biochemical bases of Cif-induced CI/rescue, and continue to substantiate the Two-by-One genetic model of CI.
Collapse
Affiliation(s)
- J. Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JDS); (SRB)
| | - Mahip Kalra
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (JDS); (SRB)
| |
Collapse
|
7
|
Ant TH, Herd C, Louis F, Failloux AB, Sinkins SP. Wolbachia transinfections in Culex quinquefasciatus generate cytoplasmic incompatibility. INSECT MOLECULAR BIOLOGY 2020; 29:1-8. [PMID: 31194893 PMCID: PMC7027843 DOI: 10.1111/imb.12604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 05/26/2023]
Abstract
Culex quinquefasciatus is an important mosquito vector of a number of viral and protozoan pathogens of humans and animals, and naturally carries the endosymbiont Wolbachia pipientis, strain wPip. Wolbachia are used in two distinct vector control strategies: firstly, population suppression caused by mating incompatibilities between mass-released transinfected males and wild females; and secondly, the spread of pathogen transmission-blocking strains through populations. Using embryonic microinjection, two novel Wolbachia transinfections were generated in C. quinquefasciatus using strains native to the mosquito Aedes albopictus: a wAlbB single infection, and a wPip plus wAlbA superinfection. The wAlbB infection showed full bidirectional cytoplasmic incompatibility (CI) with wild-type C. quinquefasciatus in reciprocal crosses. The wPipwAlbA superinfection showed complete unidirectional CI, and therefore population invasion potential. Whereas the wAlbB strain showed comparatively low overall densities, similar to the native wPip, the wPipwAlbA superinfection reached over 400-fold higher densities in the salivary glands compared to the native wPip, suggesting it may be a candidate for pathogen transmission blocking.
Collapse
Affiliation(s)
- T. H. Ant
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
- Biomedical and Life SciencesLancaster UniversityLancasterUK
| | - C. Herd
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
- Biomedical and Life SciencesLancaster UniversityLancasterUK
| | - F. Louis
- Department of Virology, Arboviruses and Insect VectorsInstitut PasteurParisFrance
| | - A. B. Failloux
- Department of Virology, Arboviruses and Insect VectorsInstitut PasteurParisFrance
| | - S. P. Sinkins
- MRC‐University of Glasgow Centre for Virus ResearchUniversity of GlasgowGlasgowUK
- Biomedical and Life SciencesLancaster UniversityLancasterUK
| |
Collapse
|
8
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
9
|
The phage gene wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog 2019; 15:e1007936. [PMID: 31504075 PMCID: PMC6736233 DOI: 10.1371/journal.ppat.1007936] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive mechanism wherein the sons of infected females are selectively killed. Despite decades of research, the gene(s) underlying Wolbachia-induced male killing remain unknown. Here using comparative genomic, transgenic, and cytological approaches in fruit flies, we identify a candidate gene in the eukaryotic association module of Wolbachia prophage WO, termed WO-mediated killing (wmk), which transgenically causes male-specific lethality during early embryogenesis and cytological defects typical of the pathology of male killing. The discovery of wmk establishes new hypotheses for the potential role of phage genes in sex-specific lethality, including the control of arthropod pests and vectors.
Collapse
|
10
|
Meany MK, Conner WR, Richter SV, Bailey JA, Turelli M, Cooper BS. Loss of cytoplasmic incompatibility and minimal fecundity effects explain relatively low Wolbachia frequencies in Drosophila mauritiana. Evolution 2019; 73:1278-1295. [PMID: 31001816 PMCID: PMC6554066 DOI: 10.1111/evo.13745] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Maternally transmitted Wolbachia bacteria infect about half of all insect species. Many Wolbachia cause cytoplasmic incompatibility (CI) and reduced egg hatch when uninfected females mate with infected males. Although CI produces a frequency-dependent fitness advantage that leads to high equilibrium Wolbachia frequencies, it does not aid Wolbachia spread from low frequencies. Indeed, the fitness advantages that produce initial Wolbachia spread and maintain non-CI Wolbachia remain elusive. wMau Wolbachia infecting Drosophila mauritiana do not cause CI, despite being very similar to CI-causing wNo from Drosophila simulans (0.068% sequence divergence over 682,494 bp), suggesting recent CI loss. Using draft wMau genomes, we identify a deletion in a CI-associated gene, consistent with theory predicting that selection within host lineages does not act to increase or maintain CI. In the laboratory, wMau shows near-perfect maternal transmission; but we find no significant effect on host fecundity, in contrast to published data. Intermediate wMau frequencies on the island of Mauritius are consistent with a balance between unidentified small, positive fitness effects and imperfect maternal transmission. Our phylogenomic analyses suggest that group-B Wolbachia, including wMau and wPip, diverged from group-A Wolbachia, such as wMel and wRi, 6-46 million years ago, more recently than previously estimated.
Collapse
Affiliation(s)
- Megan K. Meany
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - William R. Conner
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Sophia V. Richter
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Jessica A. Bailey
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Michael Turelli
- Department of Evolution and Ecology, University of
California, Davis, CA USA
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| |
Collapse
|
11
|
Transcriptome Sequencing Reveals Novel Candidate Genes for Cardinium hertigii-Caused Cytoplasmic Incompatibility and Host-Cell Interaction. mSystems 2017; 2:mSystems00141-17. [PMID: 29181449 PMCID: PMC5698495 DOI: 10.1128/msystems.00141-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes. Cytoplasmic incompatibility (CI) is an intriguing, widespread, symbiont-induced reproductive failure that decreases offspring production of arthropods through crossing incompatibility of infected males with uninfected females or with females infected with a distinct symbiont genotype. For years, the molecular mechanism of CI remained unknown. Recent genomic, proteomic, biochemical, and cell biological studies have contributed to understanding of CI in the alphaproteobacterium Wolbachia and implicate genes associated with the WO prophage. Besides a recently discovered additional lineage of alphaproteobacterial symbionts only moderately related to Wolbachia, Cardinium (Bacteroidetes) is the only other symbiont known to cause CI, and genomic evidence suggests that it has very little homology with Wolbachia and evolved this phenotype independently. Here, we present the first transcriptomic study of the CI Cardinium strain cEper1, in its natural host, Encarsia suzannae, to detect important CI candidates and genes involved in the insect-Cardinium symbiosis. Highly expressed transcripts included genes involved in manipulating ubiquitination, apoptosis, and host DNA. Female-biased genes encoding ribosomal proteins suggest an increase in general translational activity of Cardinium in female wasps. The results confirm previous genomic analyses that indicated that Wolbachia and Cardinium utilize different genes to induce CI, and transcriptome patterns further highlight expression of some common pathways that these bacteria use to interact with the host and potentially cause this enigmatic and fundamental manipulation of host reproduction. IMPORTANCE The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes.
Collapse
|
12
|
Abstract
Most species have one or more natural enemies, e.g., predators, parasites, pathogens, and herbivores, among others. These species in turn typically attack multiple victim species. This leads to the possibility of indirect interactions among those victims, both positive and negative. The term apparent competition commonly denotes negative indirect interactions between victim species that arise because they share a natural enemy. This indirect interaction, which in principle can be reflected in many facets of the distribution and abundance of individual species and more broadly govern the structure of ecological communities in time and space, pervades many natural ecosystems. It also is a central theme in many applied ecological problems, including the control of agricultural pests, harvesting, the conservation of endangered species, and the dynamics of emerging diseases. At one end of the scale of life, apparent competition characterizes intriguing aspects of dynamics within individual organisms—for example, the immune system is akin in many ways to a predator that can induce negative indirect interactions among different pathogens. At intermediate scales of biological organization, the existence and strength of apparent competition depend upon many contingent details of individual behavior and life history, as well as the community and spatial context within which indirect interactions play out. At the broadest scale of macroecology and macroevolution, apparent competition may play a major, if poorly understood, role in the evolution of species’ geographical ranges and adaptive radiations.
Collapse
Affiliation(s)
- Robert D. Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
13
|
Bhattacharya T, Newton ILG. Mi Casa es Su Casa: how an intracellular symbiont manipulates host biology. Environ Microbiol 2017; 21:10.1111/1462-2920.13964. [PMID: 29076641 PMCID: PMC5924462 DOI: 10.1111/1462-2920.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022]
Abstract
Wolbachia pipientis, the most common intracellular infection on the planet, infects 40% of insects as well as nematodes, isopods and arachnids. Wolbachia are obligately intracellular and challenging to study; there are no genetic tools for manipulating Wolbachia nor can they be cultured outside of host cells. Despite these roadblocks, the research community has defined a set of Wolbachia loci involved in host interaction: Wolbachia effectors. Through the use of Drosophila genetics, surrogate systems and biochemistry, the field has begun to define the toolkit Wolbachia use for host manipulation. Below we review recent findings identifying these Wolbachia effectors and point to potential, as yet uncharacterized, links between known phenotypes induced by Wolbachia infection and predicted effectors.
Collapse
Affiliation(s)
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Wang GH, Sun BF, Xiong TL, Wang YK, Murfin KE, Xiao JH, Huang DW. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes. Front Microbiol 2016; 7:1867. [PMID: 27965627 PMCID: PMC5126046 DOI: 10.3389/fmicb.2016.01867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022] Open
Abstract
Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria.
Collapse
Affiliation(s)
- Guan H Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Bao F Sun
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Tuan L Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Yan K Wang
- College of Life Sciences, Hebei University Baoding, China
| | - Kristen E Murfin
- Section of Infectious Diseases, Yale University School of Medicine New Haven, CT, USA
| | - Jin H Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Da W Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, Hebei UniversityBaoding, China
| |
Collapse
|
15
|
Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3-GENES GENOMES GENETICS 2016; 6:3343-3349. [PMID: 27543297 PMCID: PMC5068953 DOI: 10.1534/g3.116.031237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia. Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.
Collapse
|
16
|
Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 2016; 7:13155. [PMID: 27727237 PMCID: PMC5062602 DOI: 10.1038/ncomms13155] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/08/2016] [Indexed: 01/13/2023] Open
Abstract
Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between eukaryotes and bacteriophages. Here we report a metagenomic analysis of purified bacteriophage WO particles of Wolbachia and uncover a eukaryotic association module in the complete WO genome. It harbours predicted domains, such as the black widow latrotoxin C-terminal domain, that are uninterrupted in bacteriophage genomes, enriched with eukaryotic protease cleavage sites and combined with additional domains to forge one of the largest bacteriophage genes to date (14,256 bp). To the best of our knowledge, these eukaryotic-like domains have never before been reported in packaged bacteriophages and their phylogeny, distribution and sequence diversity imply lateral transfers between bacteriophage/prophage and animal genomes. Finally, the WO genome sequences and identification of attachment sites will potentially advance genetic manipulation of Wolbachia. Viruses commonly exchange genetic material with their hosts, but not with species from other domains of life. Here, the authors find that the bacteriophage WO of Wolbachia contains eukaryotic-like genes, implicating lateral genetic transfer between eukaryotes and viruses infecting bacteria.
Collapse
|
17
|
Karami M, Moosa-Kazemi SH, Oshaghi MA, Vatandoost H, Sedaghat MM, Rajabnia R, Hosseini M, Maleki-Ravasan N, Yahyapour Y, Ferdosi-Shahandashti E. Wolbachia Endobacteria in Natural Populations of Culex pipiens of Iran and Its Phylogenetic Congruence. J Arthropod Borne Dis 2016; 10:347-63. [PMID: 27308293 PMCID: PMC4906741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/03/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Wolbachia are common intracellular bacteria that infect different groups of arthropods including mosquitoes. These bacteria modify host biology and may induce feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI). Recently Wolbachia is being nominated as a bio-agent and paratransgenic candidate to control mosquito borne diseases. METHODS Here we report the results of a survey for presence, frequency, and phylogenetic congruence of these endosymbiont bacteria in Culex pipiens populations in Northern, Central, and Southern parts of Iran using nested-PCR amplification of wsp gene. RESULTS Wolbachia DNA were found in 227 (87.3%) out of 260 wild-caught mosquitoes. The rate of infection in adult females ranged from 61.5% to 100%, while in males were from 80% to 100%. The Blast search and phylogenetic analysis of the wsp gene sequence revealed that the Wolbachia strain from Iranian Cx. pipiens was identical to the Wolbachia strains of supergroup B previously reported in members of the Cx. pipiens complex. They had also identical sequence homology with the Wolbachia strains from a group of distinct arthropods including lepidopteran, wasps, flies, damselfly, thrips, and mites from remote geographical areas of the world. CONCLUSION It is suggested that Wolbachia strains horizontally transfer between unrelated host organisms over evolutionary time. Also results of this study indicates that Wolbachia infections were highly prevalent infecting all Cx. pipiens populations throughout the country, however further study needs to define Wolbachia inter-population reproductive incompatibility pattern and its usefulness as a bio-agent control measure.
Collapse
Affiliation(s)
- Mohsen Karami
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rajabnia
- Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yousef Yahyapour
- Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Elaheh Ferdosi-Shahandashti
- Department of Advanced Technologies in Medicine (SATiM), Medical Biotechnology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Abstract
Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.
Collapse
|
19
|
Sun JX, Guo Y, Zhang X, Zhu WC, Chen YT, Hong XY. Effects of host interaction withWolbachiaon cytoplasmic incompatibility in the two-spotted spider miteTetranychus urticae. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian-Xin Sun
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Yan Guo
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xu Zhang
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Wen-Chao Zhu
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Ya-Ting Chen
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xiao-Yue Hong
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| |
Collapse
|
20
|
Correa CC, Ballard JWO. Wolbachia Associations with Insects: Winning or Losing Against a Master Manipulator. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2015.00153] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Johnson KN. The Impact of Wolbachia on Virus Infection in Mosquitoes. Viruses 2015; 7:5705-17. [PMID: 26556361 PMCID: PMC4664976 DOI: 10.3390/v7112903] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022] Open
Abstract
Mosquito-borne viruses such as dengue, West Nile and chikungunya viruses cause significant morbidity and mortality in human populations. Since current methods are not sufficient to control disease occurrence, novel methods to control transmission of arboviruses would be beneficial. Recent studies have shown that virus infection and transmission in insects can be impeded by co-infection with the bacterium Wolbachia pipientis. Wolbachia is a maternally inherited endosymbiont that is commonly found in insects, including a number of mosquito vector species. In Drosophila, Wolbachia mediates antiviral protection against a broad range of RNA viruses. This discovery pointed to a potential strategy to interfere with mosquito transmission of arboviruses by artificially infecting mosquitoes with Wolbachia. This review outlines research on the prevalence of Wolbachia in mosquito vector species and the impact of antiviral effects in both naturally and artificially Wolbachia-infected mosquitoes.
Collapse
Affiliation(s)
- Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
22
|
Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle. G3-GENES GENOMES GENETICS 2015; 5:2843-56. [PMID: 26497146 PMCID: PMC4683655 DOI: 10.1534/g3.115.021931] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome.
Collapse
|
23
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Ormeño-Orrillo E, Vera-Ponce de León A, Rosenblueth M, Delaye L, Martínez J, Martínez-Romero E. Species in Wolbachia? Proposal for the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxteri', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylori', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitum' for the different species within Wolbachia supergroups. Syst Appl Microbiol 2015; 38:390-9. [PMID: 26189661 DOI: 10.1016/j.syapm.2015.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
Wolbachia are highly extended bacterial endosymbionts that infect arthropods and filarial nematodes and produce contrasting phenotypes on their hosts. Wolbachia taxonomy has been understudied. Currently, Wolbachia strains are classified into phylogenetic supergroups. Here we applied phylogenomic analyses to study Wolbachia evolutionary relationships and examined metrics derived from their genome sequences such as average nucleotide identity (ANI), in silico DNA-DNA hybridization (DDH), G+C content, and synteny to shed light on the taxonomy of these bacteria. Draft genome sequences of strains wDacA and wDacB obtained from the carmine cochineal insect Dactylopius coccus were included. Although all analyses indicated that each Wolbachia supergroup represents a distinct evolutionary lineage, we found that some of the analyzed supergroups showed enough internal heterogeneity to be considered as assemblages of more than one species. Thus, supergroups would represent supraspecific groupings. Consequently, Wolbachia pipientis nomen species would apply only to strains of supergroup B and we propose the designation of 'Candidatus Wolbachia bourtzisii', 'Candidatus Wolbachia onchocercicola', 'Candidatus Wolbachia blaxterii', 'Candidatus Wolbachia brugii', 'Candidatus Wolbachia taylorii', 'Candidatus Wolbachia collembolicola' and 'Candidatus Wolbachia multihospitis' for other supergroups.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis Delaye
- Departamento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| | - Julio Martínez
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
24
|
Wolbachia Influences the Production of Octopamine and Affects Drosophila Male Aggression. Appl Environ Microbiol 2015; 81:4573-80. [PMID: 25934616 DOI: 10.1128/aem.00573-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/10/2015] [Indexed: 12/26/2022] Open
Abstract
Wolbachia bacteria are endosymbionts that infect approximately 40% of all insect species and are best known for their ability to manipulate host reproductive systems. Though the effect Wolbachia infection has on somatic tissues is less well understood, when present in cells of the adult Drosophila melanogaster brain, Wolbachia exerts an influence over behaviors related to olfaction. Here, we show that a strain of Wolbachia influences male aggression in flies, which is critically important in mate competition. A specific strain of Wolbachia was observed to reduce the initiation of aggressive encounters in Drosophila males compared to the behavior of their uninfected controls. To determine how Wolbachia was able to alter aggressive behavior, we investigated the role of octopamine, a neurotransmitter known to influence male aggressive behavior in many insect species. Transcriptional analysis of the octopamine biosynthesis pathway revealed that two essential genes, the tyrosine decarboxylase and tyramine β-hydroxylase genes, were significantly downregulated in Wolbachia-infected flies. Quantitative chemical analysis also showed that total octopamine levels were significantly reduced in the adult heads.
Collapse
|
25
|
Toomey ME, Frydman HM. Extreme divergence of Wolbachia tropism for the stem-cell-niche in the Drosophila testis. PLoS Pathog 2014; 10:e1004577. [PMID: 25521619 PMCID: PMC4270793 DOI: 10.1371/journal.ppat.1004577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/13/2014] [Indexed: 12/01/2022] Open
Abstract
Microbial tropism, the infection of specific cells and tissues by a microorganism, is a fundamental aspect of host-microbe interactions. The intracellular bacteria Wolbachia have a peculiar tropism for the stem cell niches in the Drosophila ovary, the microenvironments that support the cells producing the eggs. The molecular underpinnings of Wolbachia stem cell niche tropism are unknown. We have previously shown that the patterns of tropism in the ovary show a high degree of conservation across the Wolbachia lineage, with closely related Wolbachia strains usually displaying the same pattern of stem cell niche tropism. It has also been shown that tropism to these structures in the ovary facilitates both vertical and horizontal transmission, providing a strong selective pressure towards evolutionary conservation of tropism. Here we show great disparity in the evolutionary conservation and underlying mechanisms of stem cell niche tropism between male and female gonads. In contrast to females, niche tropism in the male testis is not pervasive, present in only 45% of niches analyzed. The patterns of niche tropism in the testis are not evolutionarily maintained across the Wolbachia lineage, unlike what was shown in the females. Furthermore, hub tropism does not correlate with cytoplasmic incompatibility, a Wolbachia-driven phenotype imprinted during spermatogenesis. Towards identifying the molecular mechanism of hub tropism, we performed hybrid analyses of Wolbachia strains in non-native hosts. These results indicate that both Wolbachia and host derived factors play a role in the targeting of the stem cell niche in the testis. Surprisingly, even closely related Wolbachia strains in Drosophila melanogaster, derived from a single ancestor only 8,000 years ago, have significantly different tropisms to the hub, highlighting that stem cell niche tropism is rapidly diverging in males. These findings provide a powerful system to investigate the mechanisms and evolution of microbial tissue tropism. Microbes evolve to infect structures favoring their transmission in host populations. A large fraction of insects are infected with Wolbachia bacteria. Usually Wolbachia are transmitted the same way we inherit our mitochondria, via the eggs from the mother. In fruit flies, to favor maternal transmission, Wolbachia infect the microenvironment containing the egg producing stem cells, called the “stem cell niche”. Targeting of the stem cell niche is evolutionary conserved in female fruit flies, observed in all Wolbachia strains analyzed to date. Remarkably, in males, we find many Wolbachia strains not infecting the stem cell niche present in the testis. We report a surprising diversity in stem cell niche infection in males, contrasting with extreme conservation in females. We further show that even closely related Wolbachia strains in D. melanogaster display rapidly evolving patterns of stem cell niche targeting in males. Understanding the molecular mechanisms driving these differences will identify sex specific features of stem cell niche biology. Because Wolbachia promote insect resistance against human diseases transmitted by mosquitos, Wolbachia are becoming a valuable tool in the control of several diseases, including Dengue and malaria. Knowledge emerging from this research will also provide novel tools towards Wolbachia based strategies of disease control.
Collapse
Affiliation(s)
- Michelle E. Toomey
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Horacio M. Frydman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sutton ER, Harris SR, Parkhill J, Sinkins SP. Comparative genome analysis of Wolbachia strain wAu. BMC Genomics 2014; 15:928. [PMID: 25341639 PMCID: PMC4223829 DOI: 10.1186/1471-2164-15-928] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Wolbachia intracellular bacteria can manipulate the reproduction of their arthropod hosts, including inducing sterility between populations known as cytoplasmic incompatibility (CI). Certain strains have been identified that are unable to induce or rescue CI, including wAu from Drosophila. Genome sequencing and comparison with CI-inducing related strain wMel was undertaken in order to better understand the molecular basis of the phenotype. RESULTS Although the genomes were broadly similar, several rearrangements were identified, particularly in the prophage regions. Many orthologous genes contained single nucleotide polymorphisms (SNPs) between the two strains, but a subset containing major differences that would likely cause inactivation in wAu were identified, including the absence of the wMel ortholog of a gene recently identified as a CI candidate in a proteomic study. The comparative analyses also focused on a family of transcriptional regulator genes implicated in CI in previous work, and revealed numerous differences between the strains, including those that would have major effects on predicted function. CONCLUSIONS The study provides support for existing candidates and novel genes that may be involved in CI, and provides a basis for further functional studies to examine the molecular basis of the phenotype.
Collapse
Affiliation(s)
- Elizabeth R Sutton
- />Department of Zoology and Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Simon R Harris
- />Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge UK
| | - Julian Parkhill
- />Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge UK
| | - Steven P Sinkins
- />Department of Zoology and Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- />Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| |
Collapse
|
27
|
Abstract
The bacterium Wolbachia (order Rickettsiales) is probably the world's most successful vertically-transmitted symbiont, distributed among a staggering 40% of terrestrial arthropod species. Wolbachia has great potential in vector control due to its ability to manipulate its hosts' reproduction and to impede the replication and dissemination of arboviruses and other pathogens within haematophagous arthropods. In addition, the unexpected presence of Wolbachia in filarial nematodes of medical and veterinary importance has provided an opportunity to target the adult worms of Wuchereria bancrofti, Onchocerca volvulus, and Dirofilaria immitis with safe drugs such as doxycycline. A striking feature of Wolbachia is its phenotypic plasticity between (and sometimes within) hosts, which may be underpinned by its ability to integrate itself into several key processes within eukaryotic cells: oxidative stress, autophagy, and apoptosis. Importantly, despite significant differences in the genomes of arthropod and filarial Wolbachia strains, these nexuses appear to lie on a continuum in different hosts. Here, we consider how iron metabolism may represent a fundamental aspect of host homeostasis that is impacted by Wolbachia infection, connecting disparate pathways ranging from the provision of haem and ATP to programmed cell death, aging, and the recycling of intracellular resources. Depending on how Wolbachia and host cells interact across networks that depend on iron, the gradient between parasitism and mutualism may shift dynamically in some systems, or alternatively, stabilise on one or the other end of the spectrum.
Collapse
Affiliation(s)
- Alessandra Christina Gill
- Institute of Infection & Global Health, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Alistair C. Darby
- Institute of Integrative Biology and the Centre for Genomic Research, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Benjamin L. Makepeace
- Institute of Infection & Global Health, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Metcalf JA, Jo M, Bordenstein SR, Jaenike J, Bordenstein SR. Recent genome reduction of Wolbachia in Drosophila recens targets phage WO and narrows candidates for reproductive parasitism. PeerJ 2014; 2:e529. [PMID: 25165636 PMCID: PMC4137656 DOI: 10.7717/peerj.529] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022] Open
Abstract
Wolbachia are maternally transmitted endosymbionts that often alter their arthropod hosts’ biology to favor the success of infected females, and they may also serve as a speciation microbe driving reproductive isolation. Two of these host manipulations include killing males outright and reducing offspring survival when infected males mate with uninfected females, a phenomenon known as cytoplasmic incompatibility. Little is known about the mechanisms behind these phenotypes, but interestingly either effect can be caused by the same Wolbachia strain when infecting different hosts. For instance, wRec causes cytoplasmic incompatibility in its native host Drosophila recens and male killing in D. subquinaria. The discovery of prophage WO elements in most arthropod Wolbachia has generated the hypothesis that WO may encode genes involved in these reproductive manipulations. However, PCR screens for the WO minor capsid gene indicated that wRec lacks phage WO. Thus, wRec seemed to provide an example where phage WO is not needed for Wolbachia-induced reproductive manipulation. To enable investigation of the mechanism of phenotype switching in different host backgrounds, and to examine the unexpected absence of phage WO, we sequenced the genome of wRec. Analyses reveal that wRec diverged from wMel approximately 350,000 years ago, mainly by genome reduction in the phage regions. While it lost the minor capsid gene used in standard PCR screens for phage WO, it retained two regions encompassing 33 genes, several of which have previously been associated with reproductive parasitism. Thus, WO gene involvement in reproductive manipulation cannot be excluded and reliance on single gene PCR should not be used to rule out the presence of phage WO in Wolbachia. Additionally, the genome sequence for wRec will enable transcriptomic and proteomic studies that may help elucidate the Wolbachia mechanisms of altered reproductive manipulations associated with host switching, perhaps among the 33 remaining phage genes.
Collapse
Affiliation(s)
- Jason A Metcalf
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Minhee Jo
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - John Jaenike
- Department of Biology, University of Rochester , Rochester, NY , USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Pathology, Microbiology, and Immunology, Vanderbilt University , Nashville, TN , USA
| |
Collapse
|