1
|
Ilboudo H, N'Djetchi MK, Kaboré WJ, Kaboré J, Traoré BM, Tahita MC, Ahouty BA, Deborggraeve S, Eloiflin R, Ségard A, Bucheton B, Koffi M, Jamonneau V. Evaluation of the AnTat A/B and LiTat A/B primers for the detection of Trypanosoma bruceigambiense. Exp Parasitol 2025; 271:108929. [PMID: 40044069 DOI: 10.1016/j.exppara.2025.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/14/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025]
Abstract
Elimination of gambiense human African trypanosomiasis (gHAT) as a public health problem has been reached or is in sight in a number of endemic foci and the next step is now to reach the elimination of transmission. The ability to detect Trypanosomabruceigambiense (T.b.gambiense) in both the last human cases and in a suspected animal reservoir becomes increasingly important to reach this goal. We have evaluated here the diagnostic performance of the AnTat A/B and LiTat A/B primers in comparison with the TBR, TgsGP and nested TgsGP PCRs that are currently used for the molecular diagnosis of gHAT. The evaluation was based on serial DNA dilutions from two T.b.gambiense strains for sensitivity, purified reference strains for specificity and field strains isolated from pigs in Côte d'Ivoire for field application. Results showed that the two PCRs (AnTat A/B and LiTat A/B) are not specific for T.b.gambiense, limiting their relevance for studies on suspected animal reservoirs. However, they could represent complementary tools to improve the molecular diagnosis of gHAT in the elimination process even if the detection limit was lowest than for the TgsGP PCR. The results also once more suggest that nested TgsGP PCR should be interpreted with caution as they may lead to an over-estimation of the T.b.gambiense prevalence particularly in animal studies.
Collapse
Affiliation(s)
- Hamidou Ilboudo
- Institut de Recherche en Sciences de la Santé/Unité de Recherche Clinique de Nanoro, CMS 11, 11 BP 218, Ouagadougou, Burkina Faso.
| | - Martial Kassi N'Djetchi
- Université Jean Lorougnon Guédé, Unité de Recherche en Génétique et Épidémiologie Moléculaire, UFR Environnement, BP 150, Daloa, Côte d'Ivoire
| | - Windingoudi Justin Kaboré
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, 01, 01 BP 454, Bobo- Dioulasso, Burkina Faso
| | - Jacques Kaboré
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, 01, 01 BP 454, Bobo- Dioulasso, Burkina Faso; Université Nazi Boni, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre (UFR/SVT), 01 BP 1091, Bobo-Dioulasso, Burkina Faso
| | - Barkissa Mélika Traoré
- Université Jean Lorougnon Guédé, Unité de Recherche en Génétique et Épidémiologie Moléculaire, UFR Environnement, BP 150, Daloa, Côte d'Ivoire
| | - Marc Christian Tahita
- Institut de Recherche en Sciences de la Santé/Unité de Recherche Clinique de Nanoro, CMS 11, 11 BP 218, Ouagadougou, Burkina Faso
| | - Bernardin Ahouty Ahouty
- Université Jean Lorougnon Guédé, Unité de Recherche en Génétique et Épidémiologie Moléculaire, UFR Environnement, BP 150, Daloa, Côte d'Ivoire
| | - Stijn Deborggraeve
- Institute of Tropical Medicine Antwerp, Nationalestraat 155, B-2000, Antwerp, Belgium
| | - Roger Eloiflin
- Intertryp, IRD-CIRAD-University of Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398, Montpellier, France
| | - Adeline Ségard
- Intertryp, IRD-CIRAD-University of Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398, Montpellier, France
| | - Bruno Bucheton
- Intertryp, IRD-CIRAD-University of Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398, Montpellier, France
| | - Mathurin Koffi
- Université Jean Lorougnon Guédé, Unité de Recherche en Génétique et Épidémiologie Moléculaire, UFR Environnement, BP 150, Daloa, Côte d'Ivoire
| | - Vincent Jamonneau
- Intertryp, IRD-CIRAD-University of Montpellier, TA A-17/G, Campus International de Baillarguet, F-34398, Montpellier, France
| |
Collapse
|
2
|
Banerjee S, Minshall N, Webb H, Carrington M. How are Trypanosoma brucei receptors protected from host antibody-mediated attack? Bioessays 2024; 46:e2400053. [PMID: 38713161 DOI: 10.1002/bies.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Lorentzen J, Olesen HG, Hansen AG, Thiel S, Birkelund S, Andersen CBF, Andersen GR. Trypanosoma brucei Invariant Surface gp65 Inhibits the Alternative Pathway of Complement by Accelerating C3b Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:862-873. [PMID: 37466368 DOI: 10.4049/jimmunol.2300128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.
Collapse
Affiliation(s)
- Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Heidi G Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
5
|
African trypanosome strategies for conquering new hosts and territories: the end of monophyly? Trends Parasitol 2022; 38:724-736. [DOI: 10.1016/j.pt.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
|
6
|
Kumar R, Gupta S, Bhutia WD, Vaid RK, Kumar S. Atypical human trypanosomosis: Potentially emerging disease with lack of understanding. Zoonoses Public Health 2022; 69:259-276. [PMID: 35355422 DOI: 10.1111/zph.12945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/03/2023]
Abstract
Trypanosomes are the hemoflagellate kinetoplastid protozoan parasites affecting a wide range of vertebrate hosts having insufficient host specificity. Climatic change, deforestation, globalization, trade agreements, close association and genetic selection in links with environmental, vector, reservoir and potential susceptible hosts' parameters have led to emergence of atypical human trypanosomosis (a-HT). Poor recording of such neglected tropical disease, low awareness in health professions and farming community has approached a serious intimidation for mankind. Reports of animal Trypanosoma species are now gradually increasing in humans, and lack of any compiled literature has diluted the issue. In the present review, global reports of livestock and rodent trypanosomes reported from human beings are assembled and discrepancies with the available literature are discussed along with morphological features of Trypanosoma species. We have described 21 human cases from the published information. Majority of cases 10 (47%) are due to T. lewisi, followed by 5 (24%) cases of T. evansi, 4 (19%) cases of T. brucei and 1 (5%) case each of T. vivax and T. congolense. Indian subcontinent witnessed 13 cases of a-HT, of which 9 cases are reported from India, which includes 7 cases of T. lewisi and 2 cases of T. evansi. Apart from, a-HT case reports, epidemiological investigation and treatment aspects are also discussed. An attempt has been made to provide an overview of the current situation of atypical human trypanosomosis caused by salivarian animal Trypanosoma globally. The probable role of Trypanosoma lytic factors (TLF) present in normal human serum (NHS) in providing innate immunity against salivarian animal Trypanosoma species and the existing paradox in medical science after the finding on intact functional apolipoprotein L1 (ApoL1) in Vietnam T. evansi Type A case is also discussed to provide an update on all aspects of a-HT. Insufficient data and poor reporting in Asian and African countries are the major hurdle resulting in under-reporting of a-HT, which is a potential emerging threat. Therefore, concerted efforts must be directed to address attentiveness, preparedness and regular surveillance in suspected areas with training of field technicians, medical health professionals and veterinarians. Enhancing a one health approach is specifically important in case of trypanosomosis.
Collapse
Affiliation(s)
- Rajender Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| | - Snehil Gupta
- Department of Veterinary Parasitology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | | | - Sanjay Kumar
- Parasitology Lab, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
7
|
Kim HC, Jolly ER. LncRNAs Are Differentially Expressed between Wildtype and Cell Line Strains of African Trypanosomes. Noncoding RNA 2022; 8:ncrna8010007. [PMID: 35076577 PMCID: PMC8788480 DOI: 10.3390/ncrna8010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma brucei is a parasitic protist that causes African sleeping sickness. The establishment of T. brucei cell lines has provided a significant advantage for the majority of T. brucei research. However, these cell lines were isolated and maintained in culture for decades, occasionally accumulating changes in gene expression. Since trypanosome strains have been maintained in culture for decades, it is possible that difference may have accumulated in fast-evolving non-coding RNAs between trypanosomes from the wild and those maintained extensively in cultures. To address this, we compared the lncRNA expression profile of trypanosomes maintained as cultured cell lines (CL) to those extracted from human patients, wildtype (WT). We identified lncRNAs from CL and WT from available transcriptomic data and demonstrate that CL and WT have unique sets of lncRNAs expressed. We further demonstrate that the unique and shared lncRNAs are differentially expressed between CL and WT parasites, and that these lncRNAs are more evenly up-regulated and down-regulated than protein-coding genes. We validated the expression of these lncRNAs using qPCR. Taken together, this study demonstrates that lncRNAs are differentially expressed between cell lines and wildtype T. brucei and provides evidence for potential evolution of lncRNAs, specifically in T. brucei maintained in culture.
Collapse
Affiliation(s)
- Hyung Chul Kim
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
8
|
Silva Pereira S, Jackson AP, Figueiredo LM. Evolution of the variant surface glycoprotein family in African trypanosomes. Trends Parasitol 2021; 38:23-36. [PMID: 34376326 DOI: 10.1016/j.pt.2021.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
An intriguing and remarkable feature of African trypanosomes is their antigenic variation system, mediated by the variant surface glycoprotein (VSG) family and fundamental to both immune evasion and disease epidemiology within host populations. Recent studies have revealed that the VSG repertoire has a complex evolutionary history. Sequence diversity, genomic organization, and expression patterns are species-specific, which may explain other variations in parasite virulence and disease pathology. Evidence also shows that we may be underestimating the extent to what VSGs are repurposed beyond their roles as variant antigens, establishing a need to examine VSG functionality more deeply. Here, we review sequence variation within the VSG gene family, and highlight the many opportunities to explore their likely diverse contributions to parasite survival.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
9
|
Abstract
African trypanosomes are responsible for important diseases of humans and animals in sub-Saharan Africa. The best-studied species is Trypanosoma brucei, which is characterized by development in the mammalian host between morphologically slender and stumpy forms. The latter are adapted for transmission by the parasite's vector, the tsetse fly. The development of stumpy forms is driven by density-dependent quorum-sensing (QS), the molecular basis for which is now coming to light. In this review, I discuss the historical context and biological features of trypanosome QS and how it contributes to the parasite's infection dynamics within its mammalian host. Also, I discuss how QS can be lost in different trypanosome species, such as T. brucei evansi and T. brucei equiperdum, or modulated when parasites find themselves competing with others of different genotypes or of different trypanosome species in the same host. Finally, I consider the potential to exploit trypanosome QS therapeutically. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
10
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
11
|
Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens 2021; 10:pathogens10060679. [PMID: 34072674 PMCID: PMC8229994 DOI: 10.3390/pathogens10060679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites affecting humans, livestock and game animals. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense are human infective sub-species of T. brucei causing human African trypanosomiasis (HAT—sleeping sickness). The related T. b. brucei parasite lacks the resistance to survive in human serum, and only inflicts animal infections. Animal trypanosomiasis (AT) is not restricted to Africa, but is present on all continents. T. congolense and T. vivax are the most widespread pathogenic trypanosomes in sub-Saharan Africa. Through mechanical transmission, T. vivax has also been introduced into South America. T. evansi is a unique animal trypanosome that is found in vast territories around the world and can cause atypical human trypanosomiasis (aHT). All salivarian trypanosomes are well adapted to survival inside the host’s immune system. This is not a hostile environment for these parasites, but the place where they thrive. Here we provide an overview of the latest insights into the host-parasite interaction and the unique survival strategies that allow trypanosomes to outsmart the immune system. In addition, we review new developments in treatment and diagnosis as well as the issues that have hampered the development of field-applicable anti-trypanosome vaccines for the implementation of sustainable disease control.
Collapse
|
12
|
De Simone G, Pasquadibisceglie A, Polticelli F, di Masi A, Ascenzi P. Haptoglobin and the related haptoglobin protein: the N-terminus makes the difference. J Biomol Struct Dyn 2020; 40:2244-2253. [DOI: 10.1080/07391102.2020.1837675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Fabio Polticelli
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Roma Tre Section, Roma, Italy
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy
| |
Collapse
|
13
|
Giovinazzo JA, Thomson RP, Khalizova N, Zager PJ, Malani N, Rodriguez-Boulan E, Raper J, Schreiner R. Apolipoprotein L-1 renal risk variants form active channels at the plasma membrane driving cytotoxicity. eLife 2020; 9:51185. [PMID: 32427098 PMCID: PMC7292663 DOI: 10.7554/elife.51185] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Recently evolved alleles of Apolipoprotein L-1 (APOL1) provide increased protection against African trypanosome parasites while also significantly increasing the risk of developing kidney disease in humans. APOL1 protects against trypanosome infections by forming ion channels within the parasite, causing lysis. While the correlation to kidney disease is robust, there is little consensus concerning the underlying disease mechanism. We show in human cells that the APOL1 renal risk variants have a population of active channels at the plasma membrane, which results in an influx of both Na+ and Ca2+. We propose a model wherein APOL1 channel activity is the upstream event causing cell death, and that the activate-state, plasma membrane-localized channel represents the ideal drug target to combat APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Russell P Thomson
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Nailya Khalizova
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Patrick J Zager
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | | | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| | - Jayne Raper
- Department of Biological Sciences, Hunter College at City University of New York, New York, United States
| | - Ryan Schreiner
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, United States
| |
Collapse
|
14
|
Xu ZS, Li FJ, Hide G, Lun ZR, Lai DH. Vacuolar ATPase depletion contributes to dysregulation of endocytosis in bloodstream forms of Trypanosoma brucei. Parasit Vectors 2020; 13:214. [PMID: 32334612 PMCID: PMC7183646 DOI: 10.1186/s13071-020-04068-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/09/2020] [Indexed: 12/04/2022] Open
Abstract
Background Vacuolar H+-ATPase (V-ATPase) is a highly conserved protein complex which hydrolyzes ATP and pumps protons to acidify vacuolar vesicles. Beyond its role in pH maintenance, the involvement of V-ATPase in endocytosis is well documented in mammals and plants but is less clear in Trypanosoma brucei. Methods In this study, the subcellular localization of V-ATPase subunit B (TbVAB) of T. brucei was assessed via in situ N-terminal YFP-tagging and immunofluorescence assays. Transgenic bloodstream forms (BSF) of T. brucei were generated which comprised either a V-ATPase subunit B (TbVAB) conditional knockout or a V-ATPase subunit A (TbVAA) knockdown. Acridine orange and BCECF-AM were employed to assess the roles of V-ATPase in the pH regulation of BSF T. brucei. The endocytic activities of three markers were also characterized by flow cytometry analyses. Furthermore, trypanosomes were counted from trypanolysis treatment groups (either containing 1% or 5% NHS) and endocytosed trypanosome lytic factor (TLF) was also analyzed by an immunoblotting assay. Results TbVAB was found to localize to acidocalcisomes, lysosomes and probably also to endosomes of BSF of T. brucei and was demonstrated to be essential for cell growth. TbVAB depletion neutralized acidic organelles at 24 hours post-tetracycline depletion (hpd), meanwhile the steady state intracellular pH increased from 7.016 ± 0.013 to 7.422 ± 0.058. Trypanosomes with TbVAB depletion at 24 hpd were found to take up more transferrin (2.068 ± 0.277 fold) but less tomato lectin (49.31 ± 22.57%) by endocytosis, while no significant change was detected in dextran uptake. Similar endocytic dysregulated phenotypes were also observed in TbVAA knockdown cells. In addition, TbVAB depleted trypanosomes showed a low uptake of TLF and exhibited less sensitive to lysis in both 1% and 5% NHS treatments. Conclusions TbVAB is a key component of V-ATPase and was found to play a key function in endocytosis as well as exhibiting different effects in a receptor/cargo dependent manner in BSF of T. brucei. Besides vacuolar alkalinization, the dysregulation of endocytosis in TbVAB depleted T. brucei is considered to contribute to the reduced sensitivity to lysis by normal human serum.![]()
Collapse
Affiliation(s)
- Zhi-Shen Xu
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore, 11754, Singapore
| | - Geoff Hide
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China. .,Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK.
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, The People's Republic of China.
| |
Collapse
|
15
|
Silva Pereira S, Heap J, Jones AR, Jackson AP. VAPPER: High-throughput variant antigen profiling in African trypanosomes of livestock. Gigascience 2020; 8:5556439. [PMID: 31494667 PMCID: PMC6735694 DOI: 10.1093/gigascience/giz091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Analysing variant antigen gene families on a population scale is a difficult challenge for conventional methods of read mapping and variant calling due to the great variability in sequence, copy number, and genomic loci. In African trypanosomes, hemoparasites of humans and animals, this is complicated by variant antigen repertoires containing hundreds of genes subject to various degrees of sequence recombination. FINDINGS We introduce Variant Antigen Profiler (VAPPER), a tool that allows automated analysis of the variant surface glycoprotein repertoires of the most prevalent livestock African trypanosomes. VAPPER produces variant antigen profiles for any isolate of the veterinary pathogens Trypanosoma congolense and Trypanosoma vivax from genomic and transcriptomic sequencing data and delivers publication-ready figures that show how the queried isolate compares with a database of existing strains. VAPPER is implemented in Python. It can be installed to a local Galaxy instance from the ToolShed (https://toolshed.g2.bx.psu.edu/) or locally on a Linux platform via the command line (https://github.com/PGB-LIV/VAPPER). The documentation, requirements, examples, and test data are provided in the Github repository. CONCLUSION By establishing two different, yet comparable methodologies, our approach is the first to allow large-scale analysis of African trypanosome variant antigens, large multi-copy gene families that are otherwise refractory to high-throughput analysis.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool L3 5RF, UK
- Correspondence addres. Sara Silva Pereira, E-mail:
| | - John Heap
- Computational Biology Facility, University of Liverpool, Liverpool L69 7ZB, UK
| | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park Ic2, 146 Brownlow Hill, Liverpool L3 5RF, UK
- Correspondence addres. Andrew P. Jackson, E-mail:
| |
Collapse
|
16
|
Magez S, Pinto Torres JE, Obishakin E, Radwanska M. Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front Immunol 2020; 11:382. [PMID: 32218784 PMCID: PMC7078162 DOI: 10.3389/fimmu.2020.00382] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites that affect humans, livestock, and game animals around the world. Through co-evolution with the mammalian immune system, trypanosomes have developed defense mechanisms that allow them to thrive in blood, lymphoid vessels, and tissue environments such as the brain, the fat tissue, and testes. Trypanosomes have developed ways to circumvent antibody-mediated killing and block the activation of the lytic arm of the complement pathway. Hence, this makes the innate immune control of the infection a crucial part of the host-parasite interaction, determining infection susceptibility, and parasitemia control. Indeed, trypanosomes use a combination of several independent mechanisms to avoid clearance by the humoral immune system. First, perpetuated antigenic variation of the surface coat allows to escape antibody-mediated elimination. Secondly, when antibodies bind to the coat, they are efficiently transported toward the endocytosis pathway, where they are removed from the coat proteins. Finally, trypanosomes engage in the active destruction of the mammalian humoral immune response. This provides them with a rescue solution in case antigenic variation does not confer total immunological invisibility. Both antigenic variation and B cell destruction pose significant hurdles for the development of anti-trypanosome vaccine strategies. However, developing total immune escape capacity and unlimited growth capabilities within a mammalian host is not beneficial for any parasite, as it will result in the accelerated death of the host itself. Hence, trypanosomes have acquired a system of quorum sensing that results in density-dependent population growth arrest in order to prevent overpopulating the host. The same system could possibly sense the infection-associated host tissue damage resulting from inflammatory innate immune responses, in which case the quorum sensing serves to prevent excessive immunopathology and as such also promotes host survival. In order to put these concepts together, this review summarizes current knowledge on the interaction between trypanosomes and the mammalian innate immune system, the mechanisms involved in population growth regulation, antigenic variation and the immuno-destructive effect of trypanosomes on the humoral immune system. Vaccine trials and a discussion on the role of innate immune modulation in these trials are discussed at the end.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Emmanuel Obishakin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Onyilagha C, Uzonna JE. Host Immune Responses and Immune Evasion Strategies in African Trypanosomiasis. Front Immunol 2019; 10:2738. [PMID: 31824512 PMCID: PMC6883386 DOI: 10.3389/fimmu.2019.02738] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/08/2019] [Indexed: 01/11/2023] Open
Abstract
Parasites, including African trypanosomes, utilize several immune evasion strategies to ensure their survival and completion of their life cycles within their hosts. The defense factors activated by the host to resolve inflammation and restore homeostasis during active infection could be exploited and/or manipulated by the parasites in an attempt to ensure their survival and propagation. This often results in the parasites evading the host immune responses as well as the host sustaining some self-inflicted collateral tissue damage. During infection with African trypanosomes, both effector and suppressor cells are activated and the balance between these opposing arms of immunity determines susceptibility or resistance of infected host to the parasites. Immune evasion by the parasites could be directly related to parasite factors, (e.g., antigenic variation), or indirectly through the induction of suppressor cells following infection. Several cell types, including suppressive macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells have been shown to contribute to immunosuppression in African trypanosomiasis. In this review, we discuss the key factors that contribute to immunity and immunosuppression during T. congolense infection, and how these factors could aid immune evasion by African trypanosomes. Understanding the regulatory mechanisms that influence resistance and/or susceptibility during African trypanosomiasis could be beneficial in designing effective vaccination and therapeutic strategies against the disease.
Collapse
Affiliation(s)
- Chukwunonso Onyilagha
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jude Ezeh Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Akazue PI, Ebiloma GU, Ajibola O, Isaac C, Onyekwelu K, Ezeh CO, Eze AA. Sustainable Elimination (Zero Cases) of Sleeping Sickness: How Far Are We from Achieving This Goal? Pathogens 2019; 8:E135. [PMID: 31470522 PMCID: PMC6789789 DOI: 10.3390/pathogens8030135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
The recent massive reduction in the numbers of fresh Human African Trypanosomiasis (HAT) infection has presented an opportunity for the global elimination of this disease. To prevent a possible resurgence, as was the case after the reduced transmission of the 1960s, surveillance needs to be sustained and the necessary tools for detection and treatment of cases need to be made available at the points of care. In this review, we examine the available resources and make recommendations for improvement to ensure the sustenance of the already achieved gains to keep the trend moving towards elimination.
Collapse
Affiliation(s)
- Pearl Ihuoma Akazue
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City 300283, Nigeria
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Olumide Ajibola
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul PO Box 273, The Gambia
| | - Clement Isaac
- Department of Zoology, Faculty of Life Sciences, Ambrose Alli University, Ekpoma 310101, Nigeria
| | - Kenechukwu Onyekwelu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Charles O Ezeh
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Anthonius Anayochukwu Eze
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria.
| |
Collapse
|
19
|
MacGregor P, Gonzalez-Munoz AL, Jobe F, Taylor MC, Rust S, Sandercock AM, Macleod OJS, Van Bocxlaer K, Francisco AF, D’Hooge F, Tiberghien A, Barry CS, Howard P, Higgins MK, Vaughan TJ, Minter R, Carrington M. A single dose of antibody-drug conjugate cures a stage 1 model of African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007373. [PMID: 31120889 PMCID: PMC6532856 DOI: 10.1371/journal.pntd.0007373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
Infections of humans and livestock with African trypanosomes are treated with drugs introduced decades ago that are not always fully effective and often have severe side effects. Here, the trypanosome haptoglobin-haemoglobin receptor (HpHbR) has been exploited as a route of uptake for an antibody-drug conjugate (ADC) that is completely effective against Trypanosoma brucei in the standard mouse model of infection. Recombinant human anti-HpHbR monoclonal antibodies were isolated and shown to be internalised in a receptor-dependent manner. Antibodies were conjugated to a pyrrolobenzodiazepine (PBD) toxin and killed T. brucei in vitro at picomolar concentrations. A single therapeutic dose (0.25 mg/kg) of a HpHbR antibody-PBD conjugate completely cured a T. brucei mouse infection within 2 days with no re-emergence of infection over a subsequent time course of 77 days. These experiments provide a demonstration of how ADCs can be exploited to treat protozoal diseases that desperately require new therapeutics.
Collapse
Affiliation(s)
- Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Fatoumatta Jobe
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Martin C. Taylor
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven Rust
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Alan M. Sandercock
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tristan J. Vaughan
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Ralph Minter
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Cayla M, Rojas F, Silvester E, Venter F, Matthews KR. African trypanosomes. Parasit Vectors 2019; 12:190. [PMID: 31036044 PMCID: PMC6489224 DOI: 10.1186/s13071-019-3355-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector. This Primer overviews current research themes focused on these parasites and discusses how these biological insights and the development of new technologies to interrogate gene function are being used in the search for new approaches to control the parasite. The new insights into the biology of trypanosomes in their host and vector highlight that we are in a ‘golden age’ of discovery for these fascinating parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
21
|
Chiweshe SM, Steketee PC, Jayaraman S, Paxton E, Neophytou K, Erasmus H, Labuschagne M, Cooper A, MacLeod A, Grey FE, Morrison LJ. Parasite specific 7SL-derived small RNA is an effective target for diagnosis of active trypanosomiasis infection. PLoS Negl Trop Dis 2019; 13:e0007189. [PMID: 30779758 PMCID: PMC6413958 DOI: 10.1371/journal.pntd.0007189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/12/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Human and animal African trypanosomiasis (HAT & AAT, respectively) remain a significant health and economic issue across much of sub-Saharan Africa. Effective control of AAT and potential eradication of HAT requires affordable, sensitive and specific diagnostic tests that can be used in the field. Small RNAs in the blood or serum are attractive disease biomarkers due to their stability, accessibility and available technologies for detection. Using RNAseq, we have identified a trypanosome specific small RNA to be present at high levels in the serum of infected cattle. The small RNA is derived from the non-coding 7SL RNA of the peptide signal recognition particle and is detected in the serum of infected cattle at significantly higher levels than in the parasite, suggesting active processing and secretion. We show effective detection of the small RNA in the serum of infected cattle using a custom RT-qPCR assay. Strikingly, the RNA can be detected before microscopy detection of parasitaemia in the blood, and it can also be detected during remission periods of infection when no parasitaemia is detectable by microscopy. However, RNA levels drop following treatment with trypanocides, demonstrating accurate prediction of active infection. While the small RNA sequence is conserved between different species of trypanosome, nucleotide differences within the sequence allow generation of highly specific assays that can distinguish between infections with Trypanosoma brucei, Trypanosoma congolense and Trypanosoma vivax. Finally, we demonstrate effective detection of the small RNA directly from serum, without the need for pre-processing, with a single step RT-qPCR assay. Our findings identify a species-specific trypanosome small RNA that can be detected at high levels in the serum of cattle with active parasite infections. This provides the basis for the development of a cheap, non-invasive and highly effective diagnostic test for trypanosomiasis. African trypanosomes cause significant disease in humans and animals across sub-Saharan Africa. For both human and animal infections diagnostics that can accurately identify an active infection are lacking–this is particularly the case in animal disease where most diagnosis is based upon clinical signs, which is not a specific or sensitive means of detecting infection. There is therefore a significant unmet need for a pathogen marker of active infection that accurately indicates whether an animal or human is currently infected. Through analysing the blood of cattle infected with trypanosomes, we identified a short sequence of RNA that was present at very high levels. This small RNA derives from the trypanosome genome, and we could identify its presence in the genome of all three species that are responsible for human and animal disease. We were able to design species-specific tests, and showed that in samples from infected animals the assays were more sensitive than the traditional microscope-based detection, importantly the signal disappeared relatively quickly after successful treatment, and when treatment failed, the assay was able to accurately identify when infection persisted. We also demonstrated that the causative agent of human trypanosomiasis secretes the marker at similar levels to that seen in the animal-infective trypanosomes. Therefore, we have discovered a marker of trypanosome infection that is present at high levels in the blood of infected animals, disappears quickly upon successful treatment, but is effective at detecting instances of unsuccessful treatment and persistent infection. This represents a potentially powerful diagnostic tool for human and animal trypanosomiasis.
Collapse
Affiliation(s)
- Stephen M Chiweshe
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Pieter C Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Kyriaki Neophytou
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Heidi Erasmus
- Clinvet Research Innovation, Uitzich Road, Bainsvlei, Bloemfontein, South Africa
| | - Michel Labuschagne
- Clinvet Research Innovation, Uitzich Road, Bainsvlei, Bloemfontein, South Africa
| | - Anneli Cooper
- Wellcome Centre for Molecular Parasitology, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, Bearsden Road, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, Bearsden Road, University of Glasgow, Glasgow, United Kingdom
| | - Finn E Grey
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
22
|
Mozzi A, Forni D, Clerici M, Cagliani R, Sironi M. The Diversity of Mammalian Hemoproteins and Microbial Heme Scavengers Is Shaped by an Arms Race for Iron Piracy. Front Immunol 2018; 9:2086. [PMID: 30271410 PMCID: PMC6142043 DOI: 10.3389/fimmu.2018.02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential micronutrient for most living species. In mammals, hemoglobin (Hb) stores more than two thirds of the body's iron content. In the bloodstream, haptoglobin (Hp) and hemopexin (Hpx) sequester free Hb or heme. Pathogenic microorganisms usually acquire iron from their hosts and have evolved complex systems of iron piracy to circumvent nutritional immunity. Herein, we performed an evolutionary analysis of genes coding for mammalian heme-binding proteins and heme-scavengers in pathogen species. The underlying hypothesis is that these molecules are engaged in a molecular arms race. We show that positive selection drove the evolution of mammalian Hb and Hpx. Positively selected sites in Hb are located at the interaction surface with Neisseria meningitidis heme scavenger HpuA and with Staphylococcus aureus iron-regulated surface determinant B (IsdB). In turn, positively selected sites in HpuA and IsdB are located in the flexible protein regions that contact Hb. A residue in Hb (S45H) was also selected on the Caprinae branch. This site stabilizes the interaction with Trypanosoma brucei hemoglobin-haptoglobin (HbHp) receptor (TbHpHbR), a molecule that also mediates trypanosome lytic factor (TLF) entry. In TbHpHbR, positive selection drove the evolution of a variant (L210S) which allows evasion from TLF but reduces affinity for HbHp. Finally, selected sites in Hpx are located at the interaction surface with the Haemophilus influenzae hemophore HxuA, which in turn displays fast evolving sites at the Hpx-binding interface. These results shed light into host-pathogens conflicts and establish the importance of nutritional immunity as an evolutionary force.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| |
Collapse
|
23
|
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Front Immunol 2018; 9:2253. [PMID: 30333827 PMCID: PMC6175991 DOI: 10.3389/fimmu.2018.02253] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and T. equiperdum, (iii) Trypanosoma congolense and (iv) Trypanosoma vivax. Infections with these parasites are marked by excessive immune dysfunction and immunopathology, both related to prolonged inflammatory host immune responses. Here we review the classification and global distribution of these parasites, highlight the adaptation of human infective trypanosomes that allow them to survive innate defense molecules unique to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction of trypanosomes in the tsetse vector. With respect to the immunology of mammalian host-parasite interactions, the review highlights recent findings with respect to the B cell destruction capacity of trypanosomes and the role of T cells in the governance of infection control. Understanding infection-associated dysfunction and regulation of both these immune compartments is crucial to explain the continued failures of anti-trypanosome vaccine developments as well as the lack of any field-applicable vaccine based anti-trypanosomosis intervention strategy. Finally, the link between infection-associated inflammation and trypanosomosis induced anemia is covered in the context of both livestock and human infections.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Nick Vereecke
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Deleeuw
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joar Pinto
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Silva Pereira S, Casas-Sánchez A, Haines LR, Ogugo M, Absolomon K, Sanders M, Kemp S, Acosta-Serrano Á, Noyes H, Berriman M, Jackson AP. Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs. Genome Res 2018; 28:1383-1394. [PMID: 30006414 PMCID: PMC6120623 DOI: 10.1101/gr.234146.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the variant surface glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number, and chromosomal position. Thus, analyzing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analyzing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSGs segregate into defined “phylotypes” that do not recombine. In our data set comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the “variant antigen profile.” We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines the T. congolense VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host–parasite interaction at population and individual scales.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Lee R Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Moses Ogugo
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Kihara Absolomon
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Steve Kemp
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Álvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom
| |
Collapse
|
25
|
Currier RB, Cooper A, Burrell-Saward H, MacLeod A, Alsford S. Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1. PLoS Pathog 2018; 14:e1006855. [PMID: 29346416 PMCID: PMC5790291 DOI: 10.1371/journal.ppat.1006855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/30/2018] [Accepted: 01/05/2018] [Indexed: 12/27/2022] Open
Abstract
In contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T. b. brucei is lysed by apolipoprotein-L1 (apoL1)-containing human serum trypanolytic factors (TLF), rendering it non-infectious to humans. While the mechanisms of TLF1 uptake, apoL1 membrane integration, and T. b. gambiense and T. b. rhodesiense apoL1-resistance have been extensively characterised, our understanding of the range of factors that drive apoL1 action in T. b. brucei is limited. Selecting our bloodstream-form T. b. brucei RNAi library with recombinant apoL1 identified an array of factors that supports the trypanocidal action of apoL1, including six putative ubiquitin modifiers and several proteins putatively involved in membrane trafficking; we also identified the known apoL1 sensitivity determinants, TbKIFC1 and the V-ATPase. Most prominent amongst the novel apoL1 sensitivity determinants was a putative ubiquitin ligase. Intriguingly, while loss of this ubiquitin ligase reduces parasite sensitivity to apoL1, its loss enhances parasite sensitivity to TLF1-dominated normal human serum, indicating that free and TLF1-bound apoL1 have contrasting modes-of-action. Indeed, loss of the known human serum sensitivity determinants, p67 (lysosomal associated membrane protein) and the cathepsin-L regulator, 'inhibitor of cysteine peptidase', had no effect on sensitivity to free apoL1. Our findings highlight a complex network of proteins that influences apoL1 action, with implications for our understanding of the anti-trypanosomal action of human serum.
Collapse
Affiliation(s)
- Rachel B. Currier
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anneli Cooper
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
26
|
Zhang X, Hong XK, Li SJ, Lai DH, Hide G, Lun ZR, Wen YZ. The effect of normal human serum on the mouse trypanosome Trypanosoma musculi in vitro and in vivo. Exp Parasitol 2017; 184:115-120. [PMID: 29246831 DOI: 10.1016/j.exppara.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Trypanosoma musculi, a common blood flagellate found in mice, is similar in morphology and life cycle to the rat trypanosome T. lewisi. Both species belong to the subgenus Herpetosoma, and as T. lewisi has recently been shown to be a zoonotic pathogen, there is concern that T. musculi could also be potentially infective to humans. To test this hypothesis, a well-established method, the normal human serum (NHS) incubation test, was carried out which distinguishes human and non-human infective trypanosomes. We found that T. musculi could grow in 0.31% NHS in vitro, and even kept their infectivity to mice after incubation with 10% NHS for 24 h. In in vivo experiments, T. musculi were only slightly affected by NHS injection, confirming that it was less sensitive to the NHS than T. b. brucei, but more sensitive than T. lewisi. This resistance probably does not rely on a restricted uptake of ApoL-1. Due to this partial resistance, we cannot definitively confirm that T. musculi has the potential for infection to humans. As resistance is less than that of T. lewisi, our data suggest that it is unlikely to be a zoonotic pathogen although we would advise caution in the case of immunocompromised people such as AIDS and cancer patients.
Collapse
Affiliation(s)
- Xuan Zhang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiao-Kun Hong
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Su-Jin Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Yan-Zi Wen
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
27
|
Fontaine F, Lecordier L, Vanwalleghem G, Uzureau P, Van Reet N, Fontaine M, Tebabi P, Vanhollebeke B, Büscher P, Pérez-Morga D, Pays E. APOLs with low pH dependence can kill all African trypanosomes. Nat Microbiol 2017; 2:1500-1506. [PMID: 28924146 PMCID: PMC5660622 DOI: 10.1038/s41564-017-0034-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2017] [Indexed: 02/02/2023]
Abstract
The primate-specific serum protein apolipoprotein L1 (APOL1) is the only secreted member of a family of cell death promoting proteins 1-4 . APOL1 kills the bloodstream parasite Trypanosoma brucei brucei, but not the human sleeping sickness agents T.b. rhodesiense and T.b. gambiense 3 . We considered the possibility that intracellular members of the APOL1 family, against which extracellular trypanosomes could not have evolved resistance, could kill pathogenic T. brucei subspecies. Here we show that recombinant APOL3 (rAPOL3) kills all African trypanosomes, including T.b. rhodesiense, T.b. gambiense and the animal pathogens Trypanosoma evansi, Trypanosoma congolense and Trypanosoma vivax. However, rAPOL3 did not kill more distant trypanosomes such as Trypanosoma theileri or Trypanosoma cruzi. This trypanolytic potential was partially shared by rAPOL1 from Papio papio (rPpAPOL1). The differential killing ability of rAPOL3 and rAPOL1 was associated with a distinct dependence on acidic pH for activity. Due both to its instability and toxicity when injected into mice, rAPOL3 cannot be used for the treatment of infection, but an experimental rPpAPOL1 mutant inspired by APOL3 exhibited enhanced trypanolytic activity in vitro and the ability to completely inhibit T.b. gambiense infection in mice. We conclude that pH dependence influences the trypanolytic potential of rAPOLs.
Collapse
Affiliation(s)
- Frédéric Fontaine
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Gilles Vanwalleghem
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.,School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Pierrick Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.,Laboratoire de Médecine Expérimentale (ULB222), Hôpital André Vésale, Université Libre de Bruxelles, 706, route de Gozée, B-6110, Montigny le Tilleul, Belgium
| | - Nick Van Reet
- Unit of Parasite Diagnostics, Institute of Tropical Medicine, 155, Nationalestraat, B-2000, Antwerpen, Belgium
| | - Martina Fontaine
- Laboratory of Immunobiology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Philippe Büscher
- Unit of Parasite Diagnostics, Institute of Tropical Medicine, 155, Nationalestraat, B-2000, Antwerpen, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B-6041, Gosselies, Belgium.
| |
Collapse
|
28
|
Cooper A, Ilboudo H, Alibu VP, Ravel S, Enyaru J, Weir W, Noyes H, Capewell P, Camara M, Milet J, Jamonneau V, Camara O, Matovu E, Bucheton B, MacLeod A. APOL1 renal risk variants have contrasting resistance and susceptibility associations with African trypanosomiasis. eLife 2017; 6. [PMID: 28537557 PMCID: PMC5495568 DOI: 10.7554/elife.25461] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Reduced susceptibility to infectious disease can increase the frequency of otherwise deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic carriage and undetectable parasitemia. These results implicate both forms of human African trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease variants. DOI:http://dx.doi.org/10.7554/eLife.25461.001 African-Americans have a greater risk of developing chronic kidney disease than Americans with European ancestry. Much of this increased risk is explained by two versions of a gene called APOL1 that are common in people with African ancestry. These two versions of the gene, known as G1 and G2, suddenly became much more common in people in sub-Saharan Africa in the last 10,000 years. One theory for their rapid spread is that they might protect against a deadly parasitic disease known as African sleeping sickness. This disease is caused by two related parasites of a species known as Trypanosoma brucei, one of which is found in East Africa, while the other affects West Africa. Laboratory studies have shown that blood from individuals who carry the G1 and G2 variants is better at killing the East African parasites. However, it is not clear if these gene versions help people living in the rural communities, where African sleeping sickness is common, to fight off the disease. Now, Cooper, Ilboudo et al. show that G1 and G2 do indeed influence how susceptible individuals in these communities are to African sleeping sickness. Individuals with the G2 version were five-times less likely to get the disease from the East African parasite. Neither version could protect individuals from infection with the West African parasite, but infected individuals with the G1 version had fewer parasites in their blood and were less likely to become severely ill. The ability of the G1 version to control the disease and prolong life could explain why this gene version has become so common amongst people in West Africa. Unexpectedly, the experiments also revealed that people with the G2 version were more likely to become severely unwell when they were infected by the West African parasite. This indicates that whether this gene variant is helpful or harmful depends on where an individual lives. The next step following on from this work will be to investigate exactly how the G1 version reduces the severity of the West African disease. This may aid the development of new drugs for African sleeping sickness and kidney disease. DOI:http://dx.doi.org/10.7554/eLife.25461.002
Collapse
Affiliation(s)
- Anneli Cooper
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Hamidou Ilboudo
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso.,TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda
| | - V Pius Alibu
- TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda.,College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Sophie Ravel
- Unité Mixte de Recherche IRD-CIRAD 177, Institut de Recherche pour le Développement, Montpellier, France
| | - John Enyaru
- TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda.,College of Natural Sciences, Makerere University, Kampala, Uganda
| | - William Weir
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry Noyes
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda.,Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul Capewell
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mamadou Camara
- TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda.,Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Jacqueline Milet
- Unité Mixte de Recherche IRD-CIRAD 177, Institut de Recherche pour le Développement, Montpellier, France
| | - Vincent Jamonneau
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso.,TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda.,Unité Mixte de Recherche IRD-CIRAD 177, Institut de Recherche pour le Développement, Montpellier, France
| | - Oumou Camara
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Enock Matovu
- TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda.,College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Bruno Bucheton
- TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda.,Unité Mixte de Recherche IRD-CIRAD 177, Institut de Recherche pour le Développement, Montpellier, France.,Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Annette MacLeod
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,TrypanoGEN, H3Africa Consortium, Makerere University, Kampala, Uganda
| |
Collapse
|
29
|
A co-evolutionary arms race: trypanosomes shaping the human genome, humans shaping the trypanosome genome. Parasitology 2017; 142 Suppl 1:S108-19. [PMID: 25656360 PMCID: PMC4413828 DOI: 10.1017/s0031182014000602] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness in humans and one of several pathogens that cause the related veterinary disease Nagana. A complex co-evolution has occurred between these parasites and primates that led to the emergence of trypanosome-specific defences and counter-measures. The first line of defence in humans and several other catarrhine primates is the trypanolytic protein apolipoprotein-L1 (APOL1) found within two serum protein complexes, trypanosome lytic factor 1 and 2 (TLF-1 and TLF-2). Two sub-species of T. brucei have evolved specific mechanisms to overcome this innate resistance, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. In T. b. rhodesiense, the presence of the serum resistance associated (SRA) gene, a truncated variable surface glycoprotein (VSG), is sufficient to confer resistance to lysis. The resistance mechanism of T. b. gambiense is more complex, involving multiple components: reduction in binding affinity of a receptor for TLF, increased cysteine protease activity and the presence of the truncated VSG, T. b. gambiense-specific glycoprotein (TgsGP). In a striking example of co-evolution, evidence is emerging that primates are responding to challenge by T. b. gambiense and T. b. rhodesiense, with several populations of humans and primates displaying resistance to infection by these two sub-species.
Collapse
|
30
|
Higgins MK, Lane-Serff H, MacGregor P, Carrington M. A Receptor's Tale: An Eon in the Life of a Trypanosome Receptor. PLoS Pathog 2017; 13:e1006055. [PMID: 28125726 PMCID: PMC5268388 DOI: 10.1371/journal.ppat.1006055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African trypanosomes have complex life cycles comprising at least ten developmental forms, variously adapted to different niches in their tsetse fly vector and their mammalian hosts. Unlike many other protozoan pathogens, they are always extracellular and have evolved intricate surface coats that allow them to obtain nutrients while also protecting them from the immune defenses of either insects or mammals. The acquisition of macromolecular nutrients requires receptors that function within the context of these surface coats. The best understood of these is the haptoglobin-hemoglobin receptor (HpHbR) of Trypanosoma brucei, which is used by the mammalian bloodstream form of the parasite, allowing heme acquisition. However, in some primates it also provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. Recent studies have shown that during the evolution of African trypanosome species the receptor has diversified in function from a hemoglobin receptor predominantly expressed in the tsetse fly to a haptoglobin-hemoglobin receptor predominantly expressed in the mammalian bloodstream. Structural and functional studies of homologous receptors from different trypanosome species have allowed us to propose an evolutionary history for how one receptor has adapted to different roles in different trypanosome species. They also highlight the challenges that a receptor faces in operating on the complex trypanosome surface and show how these challenges can be met.
Collapse
Affiliation(s)
- Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Harriet Lane-Serff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
31
|
Evaluation of Antigens for Development of a Serological Test for Human African Trypanosomiasis. PLoS One 2016; 11:e0168074. [PMID: 27936225 PMCID: PMC5148118 DOI: 10.1371/journal.pone.0168074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background Control and elimination of human African trypanosomiasis (HAT) can be accelerated through the use of diagnostic tests that are more accurate and easier to deploy. The goal of this work was to evaluate the immuno-reactivity of antigens and identify candidates to be considered for development of a simple serological test for the detection of Trypanosoma brucei gambiense or T. b. rhodesiense infections, ideally both. Methodology/Principal Findings The reactivity of 35 antigens was independently evaluated by slot blot and ELISA against sera from both T. b. gambiense and T. b. rhodesiense infected patients and controls. The antigens that were most reactive by both tests to T. b. gambiense sera were the membrane proteins VSG LiTat 1.3, VSG LiTat 1.5 and ISG64. Reactivity to T. b. rhodesiense sera was highest with VSG LiTat 1.3, VSG LiTat 1.5 and SRA, although much lower than with T. b. gambiense samples. The reactivity of all possible combinations of antigens was also calculated. When the slot blot results of 2 antigens were paired, a VSG LiTat 1.3- ISG75 combination performed best on T. b. gambiense sera, while a VSG LiTat 1.3-VSG LiTat 1.5 combination was the most reactive using ELISA. A combination of SRA and either VSG LiTat 1.3 or VSG LiTat 1.5 had the highest reactivity on T. b. rhodesiense sera according to slot blot, while in ELISA, pairing SRA with either GM6 or VSG LiTat 1.3 yielded the best results. Conclusions This study identified antigens that were highly reactive to T. b. gambiense sera, which could be considered for developing a serological test for gambiense HAT, either individually or in combination. Antigens with potential for inclusion in a test for T. b. rhodesiense HAT were also identified, but because their reactivity was comparatively lower, a search for additional antigens would be required before developing a test for this form of the disease.
Collapse
|
32
|
Cooper A, Capewell P, Clucas C, Veitch N, Weir W, Thomson R, Raper J, MacLeod A. A Primate APOL1 Variant That Kills Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2016; 10:e0004903. [PMID: 27494254 PMCID: PMC4975595 DOI: 10.1371/journal.pntd.0004903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/14/2016] [Indexed: 01/19/2023] Open
Abstract
Humans are protected against infection from most African trypanosomes by lipoprotein complexes present in serum that contain the trypanolytic pore-forming protein, Apolipoprotein L1 (APOL1). The human-infective trypanosomes, Trypanosoma brucei rhodesiense in East Africa and T. b. gambiense in West Africa have separately evolved mechanisms that allow them to resist APOL1-mediated lysis and cause human African trypanosomiasis, or sleeping sickness, in man. Recently, APOL1 variants were identified from a subset of Old World monkeys, that are able to lyse East African T. b. rhodesiense, by virtue of C-terminal polymorphisms in the APOL1 protein that hinder that parasite’s resistance mechanism. Such variants have been proposed as candidates for developing therapeutic alternatives to the unsatisfactory anti-trypanosomal drugs currently in use. Here we demonstrate the in vitro lytic ability of serum and purified recombinant protein of an APOL1 ortholog from the West African Guinea baboon (Papio papio), which is able to lyse examples of all sub-species of T. brucei including T. b. gambiense group 1 parasites, the most common agent of human African trypanosomiasis. The identification of a variant of APOL1 with trypanolytic ability for both human-infective T. brucei sub-species could be a candidate for universal APOL1-based therapeutic strategies, targeted against all pathogenic African trypanosomes. African trypanosomes are protozoan parasites that affect both humans and animals in poor rural areas of sub-Saharan Africa, and are a major constraint on health and agricultural development. Disease control is principally dependent on the administration of drugs, which are old and largely unsatisfactory. Humans are naturally resistant to infection by most African trypanosomes species because of a lytic protein component in their blood, called APOL1. However, human-infective trypanosomes, T. b. rhodesiense in East Africa, and T. b. gambiense in West Africa, have evolved separate mechanisms to disarm this lytic protein and cause disease. Recently, variants of APOL1 were discovered in some primates that are able to kill the East African human disease-causing sub-species. These APOL1 variants form the basis of current attempts to create novel therapeutic interventions that can kill both animal and human-infective trypanosomes. In this study, we show that another variant of the same protein from a West African baboon species is able to kill, not only East African human-infective trypanosomes, but also the West African parasites, which causes the majority of human African trypanosomiasis cases. This new APOL1 variant could be a potential candidate for anti-trypanosomal therapies targeted at all pathogenic trypanosome species.
Collapse
Affiliation(s)
- Anneli Cooper
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Paul Capewell
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Caroline Clucas
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicola Veitch
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William Weir
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Russell Thomson
- Department of Medical Parasitology, Langone School of Medicine, New York University, New York, New York, United States of America
| | - Jayne Raper
- Department of Medical Parasitology, Langone School of Medicine, New York University, New York, New York, United States of America
| | - Annette MacLeod
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Environmental sensing by African trypanosomes. Curr Opin Microbiol 2016; 32:26-30. [DOI: 10.1016/j.mib.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/15/2022]
|
34
|
Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S, De Trez C. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Front Immunol 2016; 7:233. [PMID: 27446070 PMCID: PMC4919330 DOI: 10.3389/fimmu.2016.00233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/26/2022] Open
Abstract
The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host's immune response (cellular as well as humoral) and via an elaborate and efficient (vector)-parasite-host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium; Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM) , Antwerp , Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
35
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
36
|
Matthews KR, McCulloch R, Morrison LJ. The within-host dynamics of African trypanosome infections. Philos Trans R Soc Lond B Biol Sci 2016; 370. [PMID: 26150654 PMCID: PMC4528486 DOI: 10.1098/rstb.2014.0288] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
African trypanosomes are single-celled protozoan parasites that are capable of long-term survival while living extracellularly in the bloodstream and tissues of mammalian hosts. Prolonged infections are possible because trypanosomes undergo antigenic variation-the expression of a large repertoire of antigenically distinct surface coats, which allows the parasite population to evade antibody-mediated elimination. The mechanisms by which antigen genes become activated influence their order of expression, most likely by influencing the frequency of productive antigen switching, which in turn is likely to contribute to infection chronicity. Superimposed upon antigen switching as a contributor to trypanosome infection dynamics is the density-dependent production of cell-cycle arrested parasite transmission stages, which limit the infection while ensuring parasite spread to new hosts via the bite of blood-feeding tsetse flies. Neither antigen switching nor developmental progression to transmission stages is driven by the host. However, the host can contribute to the infection dynamic through the selection of distinct antigen types, the influence of genetic susceptibility or trypanotolerance and the potential influence of host-dependent effects on parasite virulence, development of transmission stages and pathogenicity. In a zoonotic infection cycle where trypanosomes circulate within a range of host animal populations, and in some cases humans, there is considerable scope for a complex interplay between parasite immune evasion, transmission potential and host factors to govern the profile and outcome of infection.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Richard McCulloch
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
37
|
Sistrom M, Evans B, Benoit J, Balmer O, Aksoy S, Caccone A. De Novo Genome Assembly Shows Genome Wide Similarity between Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS One 2016; 11:e0147660. [PMID: 26910229 PMCID: PMC4766357 DOI: 10.1371/journal.pone.0147660] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
Background Trypanosoma brucei is a eukaryotic pathogen which causes African trypanosomiasis. It is notable for its variant surface glycoprotein (VSG) coat, which undergoes antigenic variation enabled by a large suite of VSG pseudogenes, allowing for persistent evasion of host adaptive immunity. While Trypanosoma brucei rhodesiense (Tbr) and T. b gambiense (Tbg) are human infective, related T. b. brucei (Tbb) is cleared by human sera. A single gene, the Serum Resistance Associated (SRA) gene, confers Tbr its human infectivity phenotype. Potential genetic recombination of this gene between Tbr and non-human infective Tbb strains has significant epidemiological consequences for Human African Trypanosomiasis outbreaks. Results Using long and short read whole genome sequencing, we generated a hybrid de novo assembly of a Tbr strain, producing 4,210 scaffolds totaling approximately 38.8 megabases, which comprise a significant proportion of the Tbr genome, and thus represents a valuable tool for a comparative genomics analyses among human and non-human infective T. brucei and future complete genome assembly. We detected 5,970 putative genes, of which two, an alcohol oxidoreductase and a pentatricopeptide repeat-containing protein, were members of gene families common to all T. brucei subspecies, but variants specific to the Tbr strain sequenced in this study. Our findings confirmed the extremely high level of genomic similarity between the two parasite subspecies found in other studies. Conclusions We confirm at the whole genome level high similarity between the two Tbb and Tbr strains studied. The discovery of extremely minor genomic differentiation between Tbb and Tbr suggests that the transference of the SRA gene via genetic recombination could potentially result in novel human infective strains, thus all genetic backgrounds of T. brucei should be considered potentially human infective in regions where Tbr is prevalent.
Collapse
Affiliation(s)
- Mark Sistrom
- School of Natural Sciences, University of California, Merced, 5200 N. Lake Rd, Merced, CA, 95343, United States of America
- * E-mail:
| | - Benjamin Evans
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street New Haven, CT 06520, United States of America
| | - Joshua Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, United States of America
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street New Haven, CT 06520, United States of America
| |
Collapse
|
38
|
Weir W, Capewell P, Foth B, Clucas C, Pountain A, Steketee P, Veitch N, Koffi M, De Meeûs T, Kaboré J, Camara M, Cooper A, Tait A, Jamonneau V, Bucheton B, Berriman M, MacLeod A. Population genomics reveals the origin and asexual evolution of human infective trypanosomes. eLife 2016; 5:e11473. [PMID: 26809473 PMCID: PMC4739771 DOI: 10.7554/elife.11473] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/26/2015] [Indexed: 12/28/2022] Open
Abstract
Evolutionary theory predicts that the lack of recombination and chromosomal re-assortment in strictly asexual organisms results in homologous chromosomes irreversibly accumulating mutations and thus evolving independently of each other, a phenomenon termed the Meselson effect. We apply a population genomics approach to examine this effect in an important human pathogen, Trypanosoma brucei gambiense. We determine that T.b. gambiense is evolving strictly asexually and is derived from a single progenitor, which emerged within the last 10,000 years. We demonstrate the Meselson effect for the first time at the genome-wide level in any organism and show large regions of loss of heterozygosity, which we hypothesise to be a short-term compensatory mechanism for counteracting deleterious mutations. Our study sheds new light on the genomic and evolutionary consequences of strict asexuality, which this pathogen uses as it exploits a new biological niche, the human population.
Collapse
Affiliation(s)
- William Weir
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Capewell
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Bernardo Foth
- Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Caroline Clucas
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Pountain
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Pieter Steketee
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Nicola Veitch
- West Medical Building, Office 350, University of Glasgow, Glasgow, Scotland
| | - Mathurin Koffi
- UFR Environnement, Laboratoire des Interactions Hôte-Microorganismes-Environnement et Evolution (LIHME), Université Jean Lorougnon GUEDE, Daloa, Côte d'Ivoire
| | - Thierry De Meeûs
- Institut de Recherche pour le Développement, Campus International de Baillarguet, Montpellier, France.,Centre International de Recherche-Développement de l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Jacques Kaboré
- Centre International de Recherche-Développement de l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso.,Université Polytechnique de Bobo-Dioulasso, UFR Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Mamadou Camara
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Anneli Cooper
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Andy Tait
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vincent Jamonneau
- Institut de Recherche pour le Développement, Campus International de Baillarguet, Montpellier, France.,Centre International de Recherche-Développement de l'Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Bruno Bucheton
- Institut de Recherche pour le Développement, Campus International de Baillarguet, Montpellier, France.,Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Matt Berriman
- Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
39
|
Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 2015; 31:539-555. [DOI: 10.1016/j.tig.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
|
40
|
Jirků M, Votýpka J, Petrželková KJ, Jirků-Pomajbíková K, Kriegová E, Vodička R, Lankester F, Leendertz SAJ, Wittig RM, Boesch C, Modrý D, Ayala FJ, Leendertz FH, Lukeš J. Wild chimpanzees are infected by Trypanosoma brucei. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:277-82. [PMID: 26110113 PMCID: PMC4477118 DOI: 10.1016/j.ijppaw.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 12/23/2022]
Abstract
Although wild chimpanzees and other African great apes live in regions endemic for African sleeping sickness, very little is known about their trypanosome infections, mainly due to major difficulties in obtaining their blood samples. In present work, we established a diagnostic ITS1-based PCR assay that allows detection of the DNA of all four Trypanosoma brucei subspecies (Trypanosoma bruceibrucei, Trypanosoma bruceirhodesiense, Trypanosoma bruceigambiense, and Trypanosoma bruceievansi) in feces of experimentally infected mice. Next, using this assay we revealed the presence of trypanosomes in the fecal samples of wild chimpanzees and this finding was further supported by results obtained using a set of primate tissue samples. Phylogenetic analysis of the ITS1 region showed that the majority of obtained sequences fell into the robust T. brucei group, providing strong evidence that these infections were caused by T. b. rhodesiense and/or T. b. gambiense. The optimized technique of trypanosome detection in feces will improve our knowledge about the epidemiology of trypanosomes in primates and possibly also other endangered mammals, from which blood and tissue samples cannot be obtained. Finally, we demonstrated that the mandrill serum was able to efficiently lyse T. b. brucei and T. b. rhodesiense, and to some extent T. b. gambiense, while the chimpanzee serum failed to lyse any of these subspecies. ITS1-based PCR allows the detection of the Trypanosoma brucei in feces of non-human primates. Wild chimpanzees are frequently infected with the T. brucei subspecies. Mandrill serum efficiently lyses also Trypanosoma bruceigambiense.
Collapse
Affiliation(s)
- Milan Jirků
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (Budweiss), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweiss), Czech Republic
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (Budweiss), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klára J. Petrželková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (Budweiss), Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Liberec Zoo, Liberec, Czech Republic
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Kateřina Jirků-Pomajbíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (Budweiss), Czech Republic
| | - Eva Kriegová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (Budweiss), Czech Republic
| | | | - Felix Lankester
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, USA
| | - Siv Aina J. Leendertz
- Research Group for Epidemiology of Highly Pathogenic Microorganisms, Koch Institute, Berlin, Germany
| | - Roman M. Wittig
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre Suisse des Recherches Scientifiques, Abidjan, Cote d'Ivoire
| | | | - David Modrý
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (Budweiss), Czech Republic
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
- Central European Institute of Technology, Brno, Czech Republic
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Fabian H. Leendertz
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (Budweiss), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweiss), Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
- Corresponding author. Institute of Parasitology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
41
|
Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron. BIOMED RESEARCH INTERNATIONAL 2015; 2015:819389. [PMID: 26090446 PMCID: PMC4450282 DOI: 10.1155/2015/819389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 12/24/2022]
Abstract
African trypanosomosis is a chronic debilitating disease affecting the health and economic well-being of developing countries. The immune response during African trypanosome infection consisting of a strong proinflammatory M1-type activation of the myeloid phagocyte system (MYPS) results in iron deprivation for these extracellular parasites. Yet, the persistence of M1-type MYPS activation causes the development of anemia (anemia of chronic disease, ACD) as a most prominent pathological parameter in the mammalian host, due to enhanced erythrophagocytosis and retention of iron within the MYPS thereby depriving iron for erythropoiesis. In this review we give an overview of how parasites acquire iron from the host and how iron modulation of the host MYPS affects trypanosomosis-associated anemia development. Finally, we also discuss different strategies at the level of both the host and the parasite that can/might be used to modulate iron availability during African trypanosome infections.
Collapse
|
42
|
Austen JM, Ryan U, Ditcham WGF, Friend JA, Reid SA. The innate resistance of Trypanosoma copemani to human serum. Exp Parasitol 2015; 153:105-10. [PMID: 25816975 DOI: 10.1016/j.exppara.2015.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
Trypanosoma copemani is known to be infective to a variety of Australian marsupials. Characterisation of this parasite revealed the presence of stercorarian-like life-cycle stages in culture, which are similar to T. rangeli and T. cruzi. The blood incubation infectivity test (BIIT) was adapted and used to determine if T. copemani, like T. cruzi and T. rangeli, has the potential to grow in the presence of human serum. To eliminate any effects of anticoagulants on the complement system and on human high density lipoprotein (HDL), only fresh whole human blood was used. Trypanosoma copemani was observed by microscopy in all human blood cultures from day 5 to day 19 post inoculation (PI). The mechanism for normal human serum (NHS) resistance in T. copemani is not known. The results of this study show that at least one native Australian trypanosome species may have the potential to be infective for humans.
Collapse
Affiliation(s)
- J M Austen
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | - U Ryan
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia.
| | - W G F Ditcham
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | - J A Friend
- Department of Parks and Wildlife, 120 Albany Highway, Albany, Western Australia 6330, Australia
| | - S A Reid
- School of Population Health, Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston Road, Herston, QLD 4006, Australia
| |
Collapse
|
43
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
44
|
Human trypanolytic factor APOL1 forms pH-gated cation-selective channels in planar lipid bilayers: relevance to trypanosome lysis. Proc Natl Acad Sci U S A 2015; 112:2894-9. [PMID: 25730870 DOI: 10.1073/pnas.1421953112] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoprotein L-1 (APOL1), the trypanolytic factor of human serum, can lyse several African trypanosome species including Trypanosoma brucei brucei, but not the human-infective pathogens T. brucei rhodesiense and T. brucei gambiense, which are resistant to lysis by human serum. Lysis follows the uptake of APOL1 into acidic endosomes and is apparently caused by colloid-osmotic swelling due to an increased ion permeability of the plasma membrane. Here we demonstrate that nanogram quantities of full-length recombinant APOL1 induce ideally cation-selective macroscopic conductances in planar lipid bilayers. The conductances were highly sensitive to pH: their induction required acidic pH (pH 5.3), but their magnitude could be increased 3,000-fold upon alkalinization of the milieu (pK(a) = 7.1). We show that this phenomenon can be attributed to the association of APOL1 with the bilayer at acidic pH, followed by the opening of APOL1-induced cation-selective channels upon pH neutralization. Furthermore, the conductance increase at neutral pH (but not membrane association at acidic pH) was prevented by the interaction of APOL1 with the serum resistance-associated protein, which is produced by T. brucei rhodesiense and prevents trypanosome lysis by APOL1. These data are consistent with a model of lysis that involves endocytic recycling of APOL1 and the formation of cation-selective channels, at neutral pH, in the parasite plasma membrane.
Collapse
|
45
|
Lane-Serff H, MacGregor P, Lowe ED, Carrington M, Higgins MK. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor. eLife 2014; 3:e05553. [PMID: 25497229 PMCID: PMC4383175 DOI: 10.7554/elife.05553] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.
Collapse
Affiliation(s)
- Harriet Lane-Serff
- Department of
Biochemistry, University of Oxford,
Oxford, United Kingdom
| | - Paula MacGregor
- Department of
Biochemistry, University of Cambridge,
Cambridge, United Kingdom
| | - Edward D Lowe
- Department of
Biochemistry, University of Oxford,
Oxford, United Kingdom
| | - Mark Carrington
- Department of
Biochemistry, University of Cambridge,
Cambridge, United Kingdom
| | - Matthew K Higgins
- Department of
Biochemistry, University of Oxford,
Oxford, United Kingdom
| |
Collapse
|
46
|
Abstract
African trypanosomes have been around for more than 100 million years, and have adapted to survival in a very wide host range. While various indigenous African mammalian host species display a tolerant phenotype towards this parasitic infection, and hence serve as perpetual reservoirs, many commercially important livestock species are highly disease susceptible. When considering humans, they too display a highly sensitive disease progression phenotype for infections with Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, while being intrinsically resistant to infections with other trypanosome species. As extracellular trypanosomes proliferate and live freely in the bloodstream and lymphatics, they are constantly exposed to the immune system. Due to co-evolution, this environment however no longer poses a hostile threat, but has become the niche environment where trypanosomes thrive and obligatory await transmission through the bites of tsetse flies or other haematophagic vectors, ideally without causing severe side infection-associated pathology to their host. Hence, African trypanosomes have acquired various mechanisms to manipulate and control the host immune response, evading effective elimination. Despite the extensive research into trypanosomosis over the past 40 years, many aspects of the anti-parasite immune response remain to be solved and no vaccine is currently available. Here we review the recent work on the different escape mechanisms employed by African Trypanosomes to ensure infection chronicity and transmission potential.
Collapse
|
47
|
Merritt C, Silva L, Tanner AL, Stuart K, Pollastri MP. Kinases as druggable targets in trypanosomatid protozoan parasites. Chem Rev 2014; 114:11280-304. [PMID: 26443079 PMCID: PMC4254031 DOI: 10.1021/cr500197d] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher Merritt
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Lisseth
E. Silva
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Angela L. Tanner
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kenneth Stuart
- Seattle
Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109-5219, United States
| | - Michael P. Pollastri
- Department
of Chemistry & Chemical Biology, Northeastern
University, 417 Egan
Research Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
48
|
Structural basis for trypanosomal haem acquisition and susceptibility to the host innate immune system. Nat Commun 2014; 5:5487. [DOI: 10.1038/ncomms6487] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/06/2014] [Indexed: 11/08/2022] Open
|
49
|
Achcar F, Kerkhoven EJ, Barrett MP. Trypanosoma brucei: meet the system. Curr Opin Microbiol 2014; 20:162-9. [DOI: 10.1016/j.mib.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/30/2022]
|
50
|
Flórez-Vargas O, Bramhall M, Noyes H, Cruickshank S, Stevens R, Brass A. The quality of methods reporting in parasitology experiments. PLoS One 2014; 9:e101131. [PMID: 25076044 PMCID: PMC4116335 DOI: 10.1371/journal.pone.0101131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000-2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32-90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <-0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data.
Collapse
Affiliation(s)
- Oscar Flórez-Vargas
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Michael Bramhall
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Harry Noyes
- School of Biological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sheena Cruickshank
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Robert Stevens
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Andy Brass
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|