1
|
Xiong K, Deng L, Li Z, Gong H, Chen J, Huang M, Rao X, Cong Y. A TonB dependent transporter YncD of Salmonella enterica Serovar Typhi possesses vaccine potential. World J Microbiol Biotechnol 2024; 40:131. [PMID: 38470539 DOI: 10.1007/s11274-024-03937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Multiple TonB dependent transporters (TBDTs) contribute to bacterial virulence due to the importance roles that their substrates play in bacterial growth, and possess vaccine potential. A putative TBDT, YncD, had been identified as one of in vivo induced antigens during human infection of typhoid fever, and is required for the pathogenicity of Salmonella enterica Serovar Typhi. The present study was aimed to determine the function and immunogenicity of YncD. Homologous recombination method was used to construct an yncD-deletion mutant and cirA-iroN-fepA-deletion mutant from the wild-type S. Typhi Ty2. The growth of mutants and the wild-type strain were assessed in iron-deficient medium, as well as in human macrophage cells. Recombinant YncD protein was expressed and purified using Ni-NTA affinity chromatography and anion exchange. A mouse model was then used to evaluate the immunogenicity and protection efficacy of the recombinant YncD. Antibody levels, serum bactericidal efficiency, passive immune protection, opsonophagocysis were assayed to analyse the immunoprotection mechanism of the recombinant YncD. Our results showed that YncD is associated with the iron-uptake of S. Typhi. The yncD-deletion mutant displayed impaired growth in iron-deficient medium, comparable to that the cirA-iroN-fepA-deletion mutant did. The mutation of yncD markedly decreased bacterial growth within human macrophage cells. Moreover, subcutaneous immunization of mice with recombinant YncD elicited high levels of specific anti-YncD IgG, IgG1 and IgG2a, which protected the immunized mice against the intraperitoneal challenge of S. Typhi, and decreased bacterial burdens in the livers and spleens of the infected mice. Passive immunization using the immunized sera also efficiently protected the mice from the challenge of S. Typhi. Moreover, the immunized sera enhanced in vitro bactericidal activity of complement, and opsonophagocytosis. Our results showed that YncD displays a role in the iron-uptake of S. Typhi and possesses immunogenicity.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Luxin Deng
- Department of Blood Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan province, 646000, China
| | - Zhan Li
- Department of Blood Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan province, 646000, China
| | - Haiyan Gong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Jie Chen
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Mintao Huang
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqiong, 400038, China.
| | - Yanguang Cong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China.
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China.
| |
Collapse
|
2
|
Duan M, Li T, Liu B, Yin S, Zang J, Lv C, Zhao G, Zhang T. Zinc nutrition and dietary zinc supplements. Crit Rev Food Sci Nutr 2023; 63:1277-1292. [PMID: 34382897 DOI: 10.1080/10408398.2021.1963664] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As the second most abundant trace element in the human body, zinc nutrition is constantly a hot topic. More than one-third population is suffering zinc deficiency, which results in various types of diseases or nutritional deficiencies. Traditional ways of zinc supplementation seem with low absorption rates and significant side effects. Zinc supplements with dietary components are easily accessible and improve zinc utilization rate significantly. Also, mechanisms of maintaining zinc homeostasis are of broad interest. The present review focuses on zinc nutrition in human health in inductive methods. Mainly elaborate on different diseases relating to zinc disorder, highlighting the impact on the immune system and the recent COVID-19. Then raise food-derived zinc-binding compounds, including protein, peptide, polysaccharide, and polyphenol, and also analyze their possibilities to serve as zinc complementary. Finally, illustrate the way to maintain zinc homeostasis and the corresponding mechanisms. The review provides data information for maintaining zinc homeostasis with the food-derived matrix.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuhua Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Abstract
Bacterial pathogens and their hosts engage in intense competition for critical nutrients during infection, including metals such as iron, copper, and zinc. Some metals are limited by the host, and some are deployed by the host as antimicrobials. To counter metal limitation, pathogens deploy high-affinity metal acquisition systems, best exemplified by siderophores to acquire iron. Although pathogen strategies to resist the toxic effects of high Cu have been elucidated, the role of Cu starvation and the existence of Cu acquisition systems are less well characterized. In this study, we examined the role of diisonitrile chalkophores of pathogenic mycobacteria, synthesized by the enzymes encoded by the virulence-associated nrp gene cluster, in metal acquisition. nrp gene cluster expression is strongly induced by starvation or chelation of Cu but not starvation of Zn or excess Cu. Mycobacterium tuberculosis and Mycobacterium marinum strains lacking the nrp-encoded nonribosomal peptide sythetase, the fadD10 adenylate-forming enzyme, or the uncharacterized upstream gene ppe1 are all sensitized to Cu, but not Zn, starvation. This low Cu sensitivity is rescued by genetic complementation or by provision of a synthetic diisonitrile chalkophore. These data demonstrate that diisonitrile lipopeptides in mycobacteria are chalkophores that facilitate survival under Cu-limiting conditions and suggest that Cu starvation is a relevant stress for M. tuberculosis in the host.
Collapse
|
5
|
Nasiri O, Hajihassani M, Noori Goodarzi N, Fereshteh S, Bolourchi N, Firoozeh F, Azizi O, Badmasti F. Reverse vaccinology approach to identify novel and immunogenic targets against Porphyromonas gingivalis: An in silico study. PLoS One 2022; 17:e0273770. [PMID: 36040920 PMCID: PMC9426909 DOI: 10.1371/journal.pone.0273770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Porphyromonas gingivalis is a primary causative agent of chronic periodontitis. Moreover, it leads to several systemic diseases, including rheumatoid arthritis, cardiovascular, neurodegenerative, and Alzheimer’s diseases. It seems that the development of a vaccine against this bacterium is necessary. Thus, this study decided to identify novel immunogenic targets and developed multiple epitope-based vaccines against P. gingivalis. For this purpose, the pan/core-proteome of this bacterium was studied, and the suitable vaccine targets were selected based on different properties, including exposed localization of proteins, antigenicity, non-allergenicity, non-similarity to host proteome, stability, B-cell epitopes and MHC II binding sites, sequence conservation, molecular docking, and immune simulation. Through the quartile scoring method, 12 proteins with ≥ 20 scores were considered as suitable immunogenic targets. The results of the protein domain and functional class search showed that most of the immunogenic proteins were involved in the transport and metabolism of inorganic ions and lipids. In addition, two unknown function proteins, including WP_004584259.1 and WP_099780539.1 were detected as immunogenic targets. Three constructions carrying multi-epitopes were generated including Naked, LCL, and as chimeric structures. Among them, FliC chimeric protein had the strongest affinity to the human TLR2, 4, and 6, while the LCL platform represented the highest level of immune stimulation response. The obtained results from this study revealed new insights into prophylactic routes against P. gingivalis by introducing novel immunogenic targets. However, further investigations, including site-directed mutation and immunoassay are needed to confirm the pathogenic role and protectivity of these novel proteins.
Collapse
Affiliation(s)
- Omid Nasiri
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Tehran, Iran
| | - Mahsa Hajihassani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Tehran, Iran
| | - Sepideh Fereshteh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Tehran, Iran
| | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Tehran, Iran
| | - Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Science, Karaj, Alborz, Iran
| | - Omid Azizi
- Health Sciences Research Center, Torbat-e Heydarieh University of Medical Sciences, Torbat-e Heydarieh, Razavi Khorasan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
6
|
Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol 2022; 12:909888. [PMID: 35846739 PMCID: PMC9280163 DOI: 10.3389/fcimb.2022.909888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.
Collapse
Affiliation(s)
- Alexis Hope Branch
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Julie L. Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
7
|
Ray JC, Smirnov A, Maurakis SA, Harrison SA, Ke E, Chazin WJ, Cornelissen CN, Criss AK. Adherence Enables Neisseria gonorrhoeae to Overcome Zinc Limitation Imposed by Nutritional Immunity Proteins. Infect Immun 2022; 90:e0000922. [PMID: 35156850 PMCID: PMC8929345 DOI: 10.1128/iai.00009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (Gc) must overcome the limitation of metals such as zinc to colonize mucosal surfaces in its obligate human host. While the zinc-binding nutritional immunity proteins calprotectin (S100A8/A9) and psoriasin (S100A7) are abundant in human cervicovaginal lavage fluid, Gc possesses TonB-dependent transporters TdfH and TdfJ that bind and extract zinc from the human version of these proteins, respectively. Here we investigated the contribution of zinc acquisition to Gc infection of epithelial cells of the female genital tract. We found that TdfH and TdfJ were dispensable for survival of strain FA1090 Gc that was associated with Ect1 human immortalized epithelial cells, when zinc was limited by calprotectin and psoriasin. In contrast, suspension-grown bacteria declined in viability under the same conditions. Exposure to murine calprotectin, which Gc cannot use as a zinc source, similarly reduced survival of suspension-grown Gc, but not Ect1-associated Gc. We ruled out epithelial cells as a contributor to the enhanced growth of cell-associated Gc under zinc limitation. Instead, we found that attachment to glass was sufficient to enhance bacterial growth when zinc was sequestered. We compared the transcriptional profiles of WT Gc adherent to glass coverslips or in suspension, when zinc was sequestered with murine calprotectin or provided in excess, from which we identified open reading frames that were increased by zinc sequestration in adherent Gc. One of these, ZnuA, was necessary but not sufficient for survival of Gc under zinc-limiting conditions. These results show that adherence protects Gc from zinc-dependent growth restriction by host nutritional immunity proteins.
Collapse
Affiliation(s)
| | - Asya Smirnov
- University of Virginia, Charlottesville, Virginia, USA
| | - Stavros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Eugene Ke
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Zn2+ ions are essential in many physiological processes, including enzyme catalysis, protein structural stabilization, and the regulation of many proteins. The affinities of proteins for Zn2+ ions span several orders of magnitude, with catalytic Zn2+ ions generally held more tightly than structural or regulatory ones. Metal carrier proteins, most of which are not specific for Zn2+, bind these ions with a broad range of affinities that overlap those of catalytic, structural, and regulatory Zn2+ ions and are thought to be responsible for distributing the metal through most cells, tissues, and fluid compartments. While little is known about how many proteins obtain or release these ions, there is now considerable experimental evidence suggesting that metal carrier proteins may be responsible for transferring metals to and from some Zn2+-dependent proteins, thus serving as a major regulatory factor for them. In this review, the biological roles of Zn2+ and structures of Zn2+ binding sites are examined, and experimental evidence demonstrating the direct participation of metal carrier proteins in enzyme regulation is discussed. Mechanisms of metal ion transfer are also offered, and the potential physiological significance of this phenomenon is explored.
Collapse
|
9
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface. Curr Opin Chem Biol 2022; 66:102103. [PMID: 34864439 PMCID: PMC8860843 DOI: 10.1016/j.cbpa.2021.102103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent hydrolases that inactivate virtually all β-lactam antibiotics. The expression of MBLs by Gram-negative bacteria severely limits the therapeutic options to treat infections. MBLs bind the essential metal ions in the bacterial periplasm, and their activity is challenged upon the zinc starvation conditions elicited by the native immune response. Metal depletion compromises both the enzyme activity and stability in the periplasm, impacting on the resistance profile in vivo. Thus, novel inhibitory approaches involve the use of chelating agents or metal-based drugs that displace the native metal ion. However, newer MBL variants incorporate mutations that improve their metal binding abilities or stabilize the metal-depleted form, revealing that metal starvation is a driving force acting on MBL evolution. Future challenges require addressing the gap between in cell and in vitro studies, dissecting the mechanism for MBL metalation and determining the metal content in situ.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
10
|
TdfH selectively binds metal-loaded tetrameric calprotectin for zinc import. Commun Biol 2022; 5:103. [PMID: 35102276 PMCID: PMC8803948 DOI: 10.1038/s42003-022-03039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/06/2022] [Indexed: 01/31/2023] Open
Abstract
To combat nutritional immunity, N. gonorrhoeae has evolved systems to hijack zinc and other metals directly from host metal-binding proteins such as calprotectin (CP). Here, we report the 6.1 Å cryoEM structure of the gonococcal surface receptor TdfH in complex with a zinc-bound CP tetramer. We further show that TdfH can also interact with CP in the presence of copper and manganese, but not with cobalt. The human defense mechanism against pathogens involves limiting essential nutrients, such as zinc which is countered by surface receptor TdfH pirating zinc from human calprotectin. The TdfH cryo-EM structure from N. gonorrhoeae in complex with a calprotectin tetramer provides insights into the protein-protein interaction and the role of metal ions.
Collapse
|
11
|
Charbonnier M, González-Espinoza G, Kehl-Fie TE, Lalaouna D. Battle for Metals: Regulatory RNAs at the Front Line. Front Cell Infect Microbiol 2022; 12:952948. [PMID: 35865816 PMCID: PMC9294342 DOI: 10.3389/fcimb.2022.952948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Metal such as iron, zinc, manganese, and nickel are essential elements for bacteria. These nutrients are required in crucial structural and catalytic roles in biological processes, including precursor biosynthesis, DNA replication, transcription, respiration, and oxidative stress responses. While essential, in excess these nutrients can also be toxic. The immune system leverages both of these facets, to limit bacterial proliferation and combat invaders. Metal binding immune proteins reduce the bioavailability of metals at the infection sites starving intruders, while immune cells intoxicate pathogens by providing metals in excess leading to enzyme mismetallation and/or reactive oxygen species generation. In this dynamic metal environment, maintaining metal homeostasis is a critical process that must be precisely coordinated. To achieve this, bacteria utilize diverse metal uptake and efflux systems controlled by metalloregulatory proteins. Recently, small regulatory RNAs (sRNAs) have been revealed to be critical post-transcriptional regulators, working in conjunction with transcription factors to promote rapid adaptation and to fine-tune bacterial adaptation to metal abundance. In this mini review, we discuss the expanding role for sRNAs in iron homeostasis, but also in orchestrating adaptation to the availability of other metals like manganese and nickel. Furthermore, we describe the sRNA-mediated interdependency between metal homeostasis and oxidative stress responses, and how regulatory networks controlled by sRNAs contribute to survival and virulence.
Collapse
Affiliation(s)
- Mathilde Charbonnier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | | | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana IL, United States.,Carl R. Woese Institute for Genomic Biology University of Illinois Urbana-Champaign, Urbana IL, United States
| | - David Lalaouna
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| |
Collapse
|
12
|
Abstract
Iron (Fe) plays important roles in both essential cellular processes and virulence pathways for many bacteria. Consequently, Fe withholding by the human innate immune system is an effective form of defense against bacterial infection. In this Perspective, we review recent studies that have established a foundation for our understanding of the impact of the metal-sequestering host defense protein calprotectin (CP) on bacterial Fe homeostasis. We also discuss two recently uncovered strategies for bacterial adaptation to Fe withholding by CP. Together, these studies provide insight into how Fe sequestration by CP affects bacterial pathogens that include Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. Overall, recent studies suggest that Fe withholding by CP may have implications for bacterial survival and virulence in the host, and further explorations that directly address this possibility present an important area for discovery.
Collapse
Affiliation(s)
- Adunoluwa O. Obisesan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Yadav R, Govindan S, Daczkowski C, Mesecar A, Chakravarthy S, Noinaj N. Structural insight into the dual function of LbpB in mediating Neisserial pathogenesis. eLife 2021; 10:71683. [PMID: 34751649 PMCID: PMC8577839 DOI: 10.7554/elife.71683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Lactoferrin-binding protein B (LbpB) is a lipoprotein present on the surface of Neisseria that has been postulated to serve dual functions during pathogenesis in both iron acquisition from lactoferrin (Lf), and in providing protection against the cationic antimicrobial peptide lactoferricin (Lfcn). While previous studies support a dual role for LbpB, exactly how these ligands interact with LbpB has remained unknown. Here, we present the structures of LbpB from N. meningitidis and N. gonorrhoeae in complex with human holo-Lf, forming a 1:1 complex and confirmed by size-exclusion chromatography small-angle X-ray scattering. LbpB consists of N- and C-lobes with the N-lobe interacting extensively with the C-lobe of Lf. Our structures provide insight into LbpB’s preference towards holo-Lf, and our mutagenesis and binding studies show that Lf and Lfcn bind independently. Our studies provide the molecular details for how LbpB serves to capture and preserve Lf in an iron-bound state for delivery to the membrane transporter LbpA for iron piracy, and as an antimicrobial peptide sink to evade host immune defenses.
Collapse
Affiliation(s)
- Ravi Yadav
- Purdue University Interdisciplinary Life Sciences Program, West Lafayette, United States.,Department of Biological Sciences,Purdue University, West Lafayette, United States
| | - Srinivas Govindan
- Weldon School of BiomedicalEngineering, Purdue University, West Lafayette, United States
| | - Courtney Daczkowski
- Department of Biochemistry, Purdue University, West Lafayette, United States
| | - Andrew Mesecar
- Department of Biological Sciences,Purdue University, West Lafayette, United States.,Department of Biochemistry, Purdue University, West Lafayette, United States
| | | | - Nicholas Noinaj
- Department of Biological Sciences,Purdue University, West Lafayette, United States.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, United States
| |
Collapse
|
14
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
15
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
16
|
Li R, Shen W, Yang Y, Du J, Li M, Yang S. Investigation of the impact of a broad range of temperatures on the physiological and transcriptional profiles of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:146. [PMID: 34176507 PMCID: PMC8237431 DOI: 10.1186/s13068-021-02000-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/18/2021] [Indexed: 05/11/2023]
Abstract
The model ethanologenic bacterium Zymomonas mobilis has many advantages for diverse biochemical production. Although the impact of temperature especially high temperature on the growth and ethanol production of Z. mobilis has been reported, the transcriptional profiles of Z. mobilis grown at different temperatures have not been systematically investigated. In this study, Z. mobilis wild-type strain ZM4 was used to study the effect of a broad range of temperatures of 24, 30, 36, 40, and 45 °C on cell growth and morphology, glucose utilization and ethanol production, as well as the corresponding global gene expression profiles using RNA-Seq-based transcriptomics. In addition, a recombinant Z. mobilis strain expressing reporter gene EGFP (ZM4_EGFP) was constructed to study the effect of temperature on heterologous protein expression at different temperatures. Our result demonstrated that the effect of temperature on the growth and morphology of ZM4 and ZM4_EGFP were similar. The biomass of these two strains decreased along with the temperature increase, and an optimal temperature range is needed for efficient glucose utilization and ethanol production. Temperatures lower or higher than normal temperature investigated in this work was not favorable for the glucose utilization and ethanol production as well as the expression of exogenous protein EGFP based on the results of flow cytometry and Western blot. Temperature also affected the transcriptional profiles of Z. mobilis especially under high temperature. Compared with ZM4 cultured at 30 °C, 478 genes were up-regulated and 481 genes were down-regulated at 45 °C. The number of differentially expressed genes of ZM4 cultured at other temperatures (24, 36 or 40 °C) was relatively small though compared with those at 30 °C. Since temperature usually increases during the fermentation process, and heat tolerance is one of the important robustness traits of industrial strains, candidate genes related to heat resistance based on our RNA-Seq result and literature report were then selected for genetics study using the strategies of plasmid overexpression of candidate gene or replacement of the native promoter of candidate gene by an inducible Ptet promoter. The genetics studies indicated that ZMO0236, ZMO1335, ZMO0994, operon groESL, and cspL, which encodes Mrp family chromosome partitioning ATPase, flavoprotein WrbA, an uncharacterized protein, chaperonin Cpn10 and GroEL, and an exogenous cold shock protein, respectively, were associated with heat tolerance, and recombinant strains over-expressing these genes can improve their heat tolerance. Our work thus not only explored the effects of temperature on the expression of exogenous gene EGFP and endogenous genes, but also selected and confirmed several genes associated with heat tolerance in Z. mobilis, which provided a guidance on identifying candidate genes associated with phenotypic improvement through systems biology strategy and genetics studies for other microorganisms.
Collapse
Affiliation(s)
- Runxia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wei Shen
- Department of Biological and Chemical Engineering, Zhixing College of Hubei University, Wuhan, 430011 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Du
- China Biotech Fermentation Industry Association, Beijing, 100833 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
17
|
Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface. Trends Microbiol 2021; 29:441-457. [PMID: 32951986 PMCID: PMC7969482 DOI: 10.1016/j.tim.2020.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
The molecular evolution of the adaptive response at the host-pathogen interface has been frequently referred to as an 'arms race' between the host and bacterial pathogens. The innate immune system employs multiple strategies to starve microbes of metals. Pathogens, in turn, develop successful strategies to maintain access to bioavailable metal ions under conditions of extreme restriction of transition metals, or nutritional immunity. However, the processes by which evolution repurposes or re-engineers host and pathogen proteins to perform or refine new functions have been explored only recently. Here we review the molecular evolution of several human metalloproteins charged with restricting bacterial access to transition metals. These include the transition metal-chelating S100 proteins, natural resistance-associated macrophage protein-1 (NRAMP-1), transferrin, lactoferrin, and heme-binding proteins. We examine their coevolution with bacterial transition metal acquisition systems, involving siderophores and membrane-spanning metal importers, and the biological specificity of allosteric transcriptional regulatory proteins tasked with maintaining bacterial metallostasis. We also discuss the evolution of metallo-β-lactamases; this illustrates how rapid antibiotic-mediated evolution of a zinc metalloenzyme obligatorily occurs in the context of host-imposed nutritional immunity.
Collapse
Affiliation(s)
- Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Kandari D, Joshi H, Bhatnagar R. Zur: Zinc-Sensing Transcriptional Regulator in a Diverse Set of Bacterial Species. Pathogens 2021; 10:344. [PMID: 33804265 PMCID: PMC8000910 DOI: 10.3390/pathogens10030344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
Zinc (Zn) is the quintessential d block metal, needed for survival in all living organisms. While Zn is an essential element, its excess is deleterious, therefore, maintenance of its intracellular concentrations is needed for survival. The living organisms, during the course of evolution, developed proteins that can track the limitation or excess of necessary metal ions, thus providing survival benefits under variable environmental conditions. Zinc uptake regulator (Zur) is a regulatory transcriptional factor of the FUR superfamily of proteins, abundant among the bacterial species and known for its intracellular Zn sensing ability. In this study, we highlight the roles played by Zur in maintaining the Zn levels in various bacterial species as well as the fact that in recent years Zur has emerged not only as a Zn homeostatic regulator but also as a protein involved directly or indirectly in virulence of some pathogens. This functional aspect of Zur could be exploited in the ventures for the identification of newer antimicrobial targets. Despite extensive research on Zur, the insights into its overall regulon and its moonlighting functions in various pathogens yet remain to be explored. Here in this review, we aim to summarise the disparate functional aspects of Zur proteins present in various bacterial species.
Collapse
Affiliation(s)
- Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (D.K.); (H.J.)
- Banaras Hindu University, Banaras 221005, India
| |
Collapse
|
19
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|
20
|
Sun Q, Li N, Jia L, Guo W, Jiang H, Liu B, Bao C, Liu M, Huang J, Lei L. Ribosomal Protein SA-Positive Neutrophil Elicits Stronger Phagocytosis and Neutrophil Extracellular Trap Formation and Subdues Pro-Inflammatory Cytokine Secretion Against Streptococcus suis Serotype 2 Infection. Front Immunol 2021; 11:585399. [PMID: 33603733 PMCID: PMC7884477 DOI: 10.3389/fimmu.2020.585399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/15/2020] [Indexed: 01/21/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2), an important zoonotic pathogen that causes septicemia, arthritis, and irreversible meningitis in pigs and humans, can be transmitted to humans from pigs. S. suis causes huge economic losses to the swine industry and poses a serious threat to public health. Previously, we found that the brain tissues of mice with SS2-induced meningitis showed disrupted structural integrity and significantly enhanced polymorphonuclear neutrophil (PMN) infiltration. We showed that the brain tissues of SS2-infected mice had increased ribosomal protein SA (RPSA)-positive PMN counts. However, the inflammatory responses of RPSA+ PMNs to SS2 and their effects on the blood-brain barrier (BBB) remain unclear. Therefore, in studying the pathogenesis of SS2-induced meningitis, it is essential that we explore the functions of RPSA+ PMNs and their effects on the BBB. Herein, using flow cytometry and immunofluorescence microscopy analyses, we found that RPSA expression enhances PMN-induced phagocytosis and PMN-induced formation of neutrophil extracellular traps (NETs), which facilitate further elimination of bacteria. PMN surface expression of RPSA also alleviates local inflammation and tissue injuries by inhibiting secretion of the pro-inflammatory cytokines, TNF-α and IL-6. Moreover, the single-cell BBB model showed that RPSA disrupts BBB integrity by downregulating expression of tight junction-associated membrane proteins on PMNs. Taken together, our data suggest that PMN-surface expression of RPSA is a double-edged sword. RPSA+ PMN owns a stronger ability of bacterial cleaning and weakens inflammatory cytokines release which are useful to anti-infection, but does hurt BBB. Partly, RPSA+ PMN may be extremely useful to control the infection as a therapeutic cellular population, following novel insights into the special PMN population.
Collapse
Affiliation(s)
- Qiang Sun
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Na Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Jia
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenfei Guo
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Hexiang Jiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baijun Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chuntong Bao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengmeng Liu
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Jing Huang
- The Laboratory Department of First Hospital, Jilin University, Changchun, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Sciences, Yangtze University, Jingzhou, China
| |
Collapse
|
21
|
Wang J, Xiong K, Pan Q, He W, Cong Y. Application of TonB-Dependent Transporters in Vaccine Development of Gram-Negative Bacteria. Front Cell Infect Microbiol 2021; 10:589115. [PMID: 33585268 PMCID: PMC7873555 DOI: 10.3389/fcimb.2020.589115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Multiple scarce nutrients, such as iron and nickel, are essential for bacterial growth. Gram-negative bacteria secrete chelators to bind these nutrients from the environment competitively. The transport of the resulting complexes into bacterial cells is mediated by TonB-dependent transporters (TBDTs) located at the outer membrane in Gram-negative bacteria. The characteristics of TBDTs, including surface exposure, protective immunogenicity, wide distribution, inducible expression in vivo, and essential roles in pathogenicity, make them excellent candidates for vaccine development. The possible application of a large number of TBDTs in immune control of the corresponding pathogens has been recently investigated. This paper summarizes the latest progresses and current major issues in the application.
Collapse
Affiliation(s)
- Jia Wang
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Kun Xiong
- Department of Cold Environmental Medicine, Institute of High Altitude Military Medicine, Army Medical University, Chongqiong, China
| | - Qu Pan
- Department of Microbiology, Chengdu Medical College, Chengdu, China
| | - Weifeng He
- Department of Burn, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanguang Cong
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China.,Precision Medicine Center, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Zhang Y, Sen S, Giedroc DP. Iron Acquisition by Bacterial Pathogens: Beyond Tris-Catecholate Complexes. Chembiochem 2020; 21:1955-1967. [PMID: 32180318 PMCID: PMC7367709 DOI: 10.1002/cbic.201900778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Sequestration of the essential nutrient iron from bacterial invaders that colonize the vertebrate host is a central feature of nutritional immunity and the "fight over transition metals" at the host-pathogen interface. The iron quota for many bacterial pathogens is large, as iron enzymes often make up a significant share of the metalloproteome. Iron enzymes play critical roles in respiration, energy metabolism, and other cellular processes by catalyzing a wide range of oxidation-reduction, electron transfer, and oxygen activation reactions. In this Concept article, we discuss recent insights into the diverse ways that bacterial pathogens acquire this essential nutrient, beyond the well-characterized tris-catecholate FeIII complexes, in competition and cooperation with significant host efforts to cripple these processes. We also discuss pathogen strategies to adapt their metabolism to less-than-optimal iron concentrations, and briefly speculate on what might be an integrated adaptive response to the concurrent limitation of both iron and zinc in the infected host.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sambuddha Sen
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
23
|
Abstract
The dramatic rise in antimicrobial resistance among Neisseria gonorrhoeae isolates over the last few decades, paired with dwindling treatment options and the lack of a protective vaccine, has prompted increased interest in identifying new bacterial targets for the treatment and, ideally, prevention of gonococcal disease. TonB-dependent transporters are a conserved set of proteins that serve crucial functions for bacterial survival within the host. In this study, binding between the gonococcal transporter, TdfH, and calprotectin was determined to be of high affinity and host restricted. The current study identified a preferential TdfH interaction at the calprotectin dimer interface. An antigonococcal therapeutic could potentially block this site on calprotectin, interrupting Zn uptake by N. gonorrhoeae and thereby prohibiting continued bacterial growth. We describe protein-protein interactions between TdfH and calprotectin, and our findings provide the building blocks for future therapeutic or prophylactic targets. Neisseria gonorrhoeae, responsible for the sexually transmitted infection gonorrhea, is an obligate human pathogen exquisitely adapted for survival on mucosal surfaces of humans. This host-pathogen relationship has resulted in evolution by N. gonorrhoeae of pathways that enable the use of host metalloproteins as required nutrients through the deployment of outer membrane-bound TonB-dependent transporters (TdTs). Recently, a TdT called TdfH was implicated in binding to calprotectin (CP) and in removal of the bound zinc (Zn), enabling gonococcal growth. TdfH is highly conserved among the pathogenic Neisseria species, making it a potentially promising candidate for inclusion into a gonococcal vaccine. Currently, the nature and specificity of the TdfH-CP interaction have not been determined. In this study, we found that TdfH specifically interacted with human calprotectin (hCP) and that growth of the gonococcus was supported in a TdfH-dependent manner only when hCP was available as a sole zinc source and not when mouse CP was provided. The binding interactions between TdfH and hCP were assessed using isothermal titration calorimetry where we observed a multistate model having both high-affinity and low-affinity sites of interaction. hCP has two Zn binding sites, and gonococcal growth assays using hCP mutants deficient in one or both of the Zn binding sites revealed that TdfH exhibited a site preference during Zn piracy and utilization. This report provides the first insights into the molecular mechanism of Zn piracy by neisserial TdfH and further highlights the obligate human nature of N. gonorrhoeae and the high-affinity interactions occurring between TdTs and their human ligands during pathogenesis.
Collapse
|
24
|
Grim KP, Radin JN, Solórzano PKP, Morey JR, Frye KA, Ganio K, Neville SL, McDevitt CA, Kehl-Fie TE. Intracellular Accumulation of Staphylopine Can Sensitize Staphylococcus aureus to Host-Imposed Zinc Starvation by Chelation-Independent Toxicity. J Bacteriol 2020; 202:e00014-20. [PMID: 32071094 PMCID: PMC7148132 DOI: 10.1128/jb.00014-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The host restricts the availability of zinc to prevent infection. To overcome this defense, Staphylococcus aureus and Pseudomonas aeruginosa rely on zincophore-dependent zinc importers. Synthesis of the zincophore staphylopine by S. aureus and its import are both necessary for the bacterium to cause infection. In this study, we sought to elucidate how loss of zincophore efflux impacts bacterial resistance to host-imposed zinc starvation. In culture and during infection, mutants lacking CntE, the staphylopine efflux pump, were more sensitive to zinc starvation imposed by the metal-binding immune effector calprotectin than those lacking the ability to import staphylopine. However, disruption of staphylopine synthesis reversed the enhanced sensitivity phenotype of the ΔcntE mutant to calprotectin, indicating that intracellular toxicity of staphylopine is more detrimental than the impaired ability to acquire zinc. Unexpectedly, intracellular accumulation of staphylopine does not increase the expression of metal importers or alter cellular metal concentrations, suggesting that, contrary to prevailing models, the toxicity associated with staphylopine is not strictly due to intracellular chelation of metals. As P. aeruginosa and other pathogens produce zincophores with similar chemistry, our observations on the crucial importance of zincophore efflux are likely to be broadly relevant.IMPORTANCEStaphylococcus aureus and many other bacterial pathogens rely on metal-binding small molecules to obtain the essential metal zinc during infection. In this study, we reveal that export of these small molecules is critical for overcoming host-imposed metal starvation during infection and prevents toxicity due to accumulation of the metal-binding molecule within the cell. Surprisingly, we found that intracellular toxicity of the molecule is not due to chelation of cellular metals.
Collapse
Affiliation(s)
- Kyle P Grim
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jacqueline R Morey
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katie A Frye
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie L Neville
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
25
|
Maurakis S, Cornelissen CN. Metal-Limited Growth of Neisseria gonorrhoeae for Characterization of Metal-Responsive Genes and Metal Acquisition from Host Ligands. J Vis Exp 2020. [PMID: 32202529 DOI: 10.3791/60903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Trace metals such as iron and zinc are vital nutrients known to play key roles in prokaryotic processes including gene regulation, catalysis, and protein structure. Metal sequestration by hosts often leads to metal limitation for the bacterium. This limitation induces bacterial gene expression whose protein products allow bacteria to overcome their metal-limited environment. Characterization of such genes is challenging. Bacteria must be grown in meticulously prepared media that allows sufficient access to nutritional metals to permit bacterial growth while maintaining a metal profile conducive to achieving expression of the aforementioned genes. As such, a delicate balance must be established for the concentrations of these metals. Growing a nutritionally fastidious organism such as Neisseria gonorrhoeae, which has evolved to survive only in the human host, adds an additional level of complexity. Here, we describe the preparation of a defined metal-limited medium sufficient to allow gonococcal growth and the desired gene expression. This method allows the investigator to chelate iron and zinc from undesired sources while supplementing the media with defined sources of iron or zinc, whose preparation is also described. Finally, we outline three experiments that utilize this media to help characterize the protein products of metal-regulated gonococcal genes.
Collapse
|
26
|
Qamsari MM, Rasooli I, Chaudhuri S, Astaneh SDA, Schryvers AB. Hybrid Antigens Expressing Surface Loops of ZnuD From Acinetobacter baumannii Is Capable of Inducing Protection Against Infection. Front Immunol 2020; 11:158. [PMID: 32117294 PMCID: PMC7025491 DOI: 10.3389/fimmu.2020.00158] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an important human pathogen causing substantial mortality in hospitalized patients for which treatment with antibiotics has become problematic due to growing antibiotic resistance. In an attempt to develop alternative strategies for dealing with these serious infections surface antigens are being considered as targets for vaccines or immunotherapy. The surface receptor proteins required for zinc acquisition in Gram-negative bacterial pathogens have been proposed as vaccine targets due to their crucial role for growth in the human host. In this study we selected the putative ZnuD outer membrane receptor from A. baumannii as a target for vaccine development. Due to challenges in production of an integral outer membrane protein for vaccine production, we adopted a recently described hybrid antigen approach in which surface epitopes from the Neisseria meningitidis TbpA receptor protein were displayed on a derivative of the C-lobe of the surface lipoprotein TbpB, named the loopless C-lobe (LCL). A structural model for ZnuD was generated and four surface loops were selected for hybrid antigen production by computational approaches. Hybrid antigens were designed displaying the four selected loops (2, 5, 7, and 11) individually or together in a single hybrid antigen. The hybrid antigens along with ZnuD and the LCL scaffold were produced in the E. coli cytoplasm either as soluble antigens or as inclusion bodies, that were used to generate soluble antigens upon refolding. Mice were immunized with the hybrid antigens, ZnuD or LCL and then used in an A. baumannii sepsis model to evaluate their ability to protect against infection. As expected, the LCL scaffold did not induce a protective immune response, enabling us to attribute observed protection to the displayed loops. Immunization with the refolded ZnuD protein protected 63% of the mice while immunization with hybrid antigens displaying individual loops achieved between 25 and 50% protection. Notably, the mice immunized with the hybrid antigen displaying the four loops were completely protected from infection.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.,Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Somshukla Chaudhuri
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | | | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Yadav R, Noinaj N, Ostan N, Moraes T, Stoudenmire J, Maurakis S, Cornelissen CN. Structural Basis for Evasion of Nutritional Immunity by the Pathogenic Neisseriae. Front Microbiol 2020; 10:2981. [PMID: 31998268 PMCID: PMC6965322 DOI: 10.3389/fmicb.2019.02981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Neisseria species are human-adapted pathogens that cause quite distinct diseases. Neisseria gonorrhoeae causes the common sexually transmitted infection gonorrhea, while Neisseria meningitidis causes a potentially lethal form of bacterial meningitis. During infection, both pathogens deploy a number of virulence factors in order to thrive in the host. The focus of this review is on the outer membrane transport systems that enable the Neisseriae to utilize host-specific nutrients, including metal-binding proteins such as transferrin and calprotectin. Because acquisition of these critical metals is essential for growth and survival, understanding the structures of receptor-ligand complexes may be an important step in developing preventative or therapeutic strategies focused on thwarting these pathogens. Much can also be learned by comparing structures with antigenic diversity among the transporter sequences, as conserved functional domains in these essential transporters could represent the pathogens' "Achilles heel." Toward this goal, we present known or modeled structures for the transport systems produced by the pathogenic Neisseria species, overlapped with sequence diversity derived by comparing hundreds of neisserial protein sequences. Given the concerning increase in N. gonorrhoeae incidence and antibiotic resistance, these outer membrane transport systems appear to be excellent targets for new therapies and preventative vaccines.
Collapse
Affiliation(s)
- Ravi Yadav
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| | - Nicholas Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Trevor Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie Stoudenmire
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Stavros Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | | |
Collapse
|
28
|
Lonergan ZR, Skaar EP. Nutrient Zinc at the Host-Pathogen Interface. Trends Biochem Sci 2019; 44:1041-1056. [PMID: 31326221 PMCID: PMC6864270 DOI: 10.1016/j.tibs.2019.06.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential cofactor required for life and, as such, mechanisms exist for its homeostatic maintenance in biological systems. Despite the evolutionary distance between vertebrates and microbial life, there are parallel mechanisms to balance the essentiality of zinc with its inherent toxicity. Vertebrates regulate zinc homeostasis through a complex network of metal transporters and buffering systems that respond to changes in nutritional zinc availability or inflammation. Fine-tuning of this network becomes crucial during infections, where host nutritional immunity attempts to limit zinc availability to pathogens. However, accumulating evidence demonstrates that pathogens have evolved mechanisms to subvert host-mediated zinc withholding, and these metal homeostasis systems are important for survival within the host. We discuss here the mechanisms of vertebrate and bacterial zinc homeostasis and mobilization, as well as recent developments in our understanding of microbial zinc acquisition.
Collapse
Affiliation(s)
- Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
The Acinetobacter baumannii Znu System Overcomes Host-Imposed Nutrient Zinc Limitation. Infect Immun 2019; 87:IAI.00746-19. [PMID: 31548324 DOI: 10.1128/iai.00746-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen capable of causing a variety of infections, including pneumonia, sepsis, wound, and burn infections. A. baumannii is an increasing threat to public health due to the prevalence of multidrug-resistant strains, leading the World Health Organization to declare A. baumannii a "Priority 1: Critical" pathogen, for which the development of novel antimicrobials is desperately needed. Zinc (Zn) is an essential nutrient that pathogenic bacteria, including A. baumannii, must acquire from their hosts in order to survive. Consequently, vertebrate hosts have defense mechanisms to sequester Zn from invading bacteria through a process known as nutritional immunity. Here, we describe a Zn uptake (Znu) system that enables A. baumannii to overcome this host-imposed Zn limitation. The Znu system consists of an inner membrane ABC transporter and an outer membrane TonB-dependent receptor. Strains of A. baumannii lacking any individual Znu component are unable to grow in Zn-starved conditions, including in the presence of the host nutritional immunity protein calprotectin. The Znu system contributes to Zn-limited growth by aiding directly in the uptake of Zn into A. baumannii cells and is important for pathogenesis in murine models of A. baumannii infection. These results demonstrate that the Znu system allows A. baumannii to subvert host nutritional immunity and acquire Zn during infection.
Collapse
|
30
|
Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C. A Role for Zinc in Plant Defense Against Pathogens and Herbivores. FRONTIERS IN PLANT SCIENCE 2019; 10:1171. [PMID: 31649687 PMCID: PMC6794951 DOI: 10.3389/fpls.2019.01171] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/27/2019] [Indexed: 05/17/2023]
Abstract
Pests and diseases pose a threat to food security, which is nowadays aggravated by climate change and globalization. In this context, agricultural policies demand innovative approaches to more effectively manage resources and overcome the ecological issues raised by intensive farming. Optimization of plant mineral nutrition is a sustainable approach to ameliorate crop health and yield. Zinc is a micronutrient essential for all living organisms with a key role in growth, development, and defense. Competition for Zn affects the outcome of the host-attacker interaction in both plant and animal systems. In this review, we provide a clear framework of the different strategies involving low and high Zn concentrations launched by plants to fight their enemies. After briefly introducing the most relevant macro- and micronutrients for plant defense, the functions of Zn in plant protection are summarized with special emphasis on superoxide dismutases (SODs) and zinc finger proteins. Following, we cover recent meaningful studies identifying Zn-related passive and active mechanisms for plant protection. Finally, Zn-based strategies evolved by pathogens and pests to counteract plant defenses are discussed.
Collapse
Affiliation(s)
- Catalina Cabot
- Departament of Biology, Universitat de les Illes Balears, Palma, Spain
| | - Soledad Martos
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Gallego
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roser Tolrà
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Besold AN, Culbertson EM, Nam L, Hobbs RP, Boyko A, Maxwell CN, Chazin WJ, Marques AR, Culotta VC. Antimicrobial action of calprotectin that does not involve metal withholding. Metallomics 2019; 10:1728-1742. [PMID: 30206620 DOI: 10.1039/c8mt00133b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calprotectin is a potent antimicrobial that inhibits the growth of pathogens by tightly binding transition metals such as Mn and Zn, thereby preventing their uptake and utilization by invading microbes. At sites of infection, calprotectin is abundantly released from neutrophils, but calprotectin is also present in non-neutrophil cell types that may be relevant to infections. We show here that in patients infected with the Lyme disease pathogen Borreliella (Borrelia) burgdorferi, calprotectin is produced in neutrophil-free regions of the skin, in both epidermal keratinocytes and in immune cells infiltrating the dermis, including CD68 positive macrophages. In culture, B. burgdorferi's growth is inhibited by calprotectin, but surprisingly, the mechanism does not involve the classical withholding of metal nutrients. B. burgdorferi cells exposed to calprotectin cease growth with no reduction in intracellular Mn and no loss in activity of Mn enzymes including the SodA superoxide dismutase. Additionally, there is no obvious loss in intracellular Zn. Rather than metal depletion, we find that calprotectin inhibits B. burgdorferi growth through a mechanism that requires physical association of calprotectin with the bacteria. By comparison, calprotectin inhibited E. coli growth without physically interacting with the microbe, and calprotectin effectively depleted E. coli of intracellular Mn and Zn. Our studies with B. burgdorferi demonstrate that the antimicrobial capacity of calprotectin is complex and extends well beyond simple withholding of metal micronutrients.
Collapse
Affiliation(s)
- Angelique N Besold
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hou Y, Yan T, Cao H, Liu P, Zheng K, Li Z, Deng Q, Hu S. Chimeric hepatitis B virus core particles displaying Neisserial surface protein A confer protection against virulent Neisseria meningitidis serogroup B in BALB/c mice. Int J Nanomedicine 2019; 14:6601-6613. [PMID: 31496701 PMCID: PMC6702424 DOI: 10.2147/ijn.s206210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose The primary goal of the present study was to explore and evaluate the highly conserved Neisserial surface protein A (NspA) molecule, fused with truncated HBV virus-like particles (VLPs), as a candidate vaccine against the virulent Neisseria meningitidis serogroup B (NMB). Methods NspA was inserted into the major immunodominant region of the truncated hepatitis B virus core protein (HBc; amino acids 1–144). The chimeric protein, HBc-N144-NspA, was expressed from a prokaryotic vector and generated HBc-like particles, as determined by transmission electron microscopy. Further, the chimeric protein and control proteins were used to immunize mice and the resulting immune responses evaluated by flow cytometry, enzyme-linked immunosorbent assay, and analysis of serum bactericidal activity (SBA) titer. Results Evaluation of the immunogenicity of the recombinant HBc-N144-NspA protein showed that it elicited the production of high levels of NspA-specific total IgG. The SBA titer of HBc-N144-NspA/F reached 1:16 2 weeks after the last immunization in BALB/c mice, when human serum complement was included in the vaccine. Immunization of HBc-N144-NspA, even without adjuvant, induced high levels of IL-4 and a high IgG1 to IgG2a ratio, confirming induction of an intense Th2 immune response. Levels of IL-17A increased rapidly in mice after the first immunization with HBc-N144-NspA, indicating the potential for this vaccine to induce a mucosal immune response. Meanwhile, the immunization of HBc-N144-NspA without adjuvant induced only mild inflammatory infiltration into the mouse muscle tissue. Conclusion This study demonstrates that modification using HBc renders NspA a candidate vaccine, which can trigger protective immunity against NMB.
Collapse
Affiliation(s)
- YongLi Hou
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Ting Yan
- Department of Health Services, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Hui Cao
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Peng Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Kang Zheng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Zhenyu Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Qing Deng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - SiHai Hu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
33
|
Maurakis S, Keller K, Maxwell CN, Pereira K, Chazin WJ, Criss AK, Cornelissen CN. The novel interaction between Neisseria gonorrhoeae TdfJ and human S100A7 allows gonococci to subvert host zinc restriction. PLoS Pathog 2019; 15:e1007937. [PMID: 31369630 PMCID: PMC6692053 DOI: 10.1371/journal.ppat.1007937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/13/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Neisseria gonorrhoeae causes the sexually-transmitted infection gonorrhea, a global disease that is difficult to treat and for which there is no vaccine. This pathogen employs an arsenal of conserved outer membrane proteins called TonB-dependent transporters (TdTs) that allow the gonococcus to overcome nutritional immunity, the host strategy of sequestering essential nutrients away from invading bacteria to handicap infectious ability. N. gonorrhoeae produces eight known TdTs, of which four are utilized for acquisition of iron or iron chelates from host-derived proteins or xenosiderophores produced by other bacteria. Of the remaining TdTs, two of them, TdfH and TdfJ, facilitate zinc uptake. TdfH was recently shown to bind Calprotectin, a member of the S100 protein family, and subsequently extract its zinc, which is then internalized by N. gonorrhoeae. Like Calprotectin, other S100s are also capable of binding transition metals such as zinc and copper, and thus have demonstrated growth suppression of numerous other pathogens via metal sequestration. Considering the functional and structural similarities of the TdTs and of the S100s, as well as the upregulation in response to Zn limitation shown by TdfH and TdfJ, we sought to evaluate whether other S100s have the ability to support gonococcal growth by means of zinc acquisition and to frame this growth in the context of the TdTs. We found that both S100A7 and S10012 are utilized by N. gonorrhoeae as a zinc source in a mechanism that depends on the zinc transport system ZnuABC. Moreover, TdfJ binds directly to S100A7, from which it internalizes zinc. This interaction is restricted to the human version of S100A7, and zinc presence in S100A7 is required to fully support gonococcal growth. These studies highlight how gonococci co-opt human nutritional immunity, by presenting a novel interaction between TdfJ and human S100A7 for overcoming host zinc restriction. Neisseria gonorrhoeae causes the common sexually-transmitted infection gonorrhea. This bacteria’s ability to rapidly acquire antibiotic resistance factors, coupled with the lack of any effective vaccine to prevent infection, has resulted in a disease that poses a global threat and may become untreatable. A group of gonococcal outer membrane proteins called TonB-dependent transporters (TdTs) have been implicated as promising vaccine targets, as they are well-conserved and expressed across gonococcal isolates and play a vital role in allowing the pathogen to acquire essential nutrients during infection of the human host. Here, we describe the conservation and regulation of TdfJ, a gonococcal TdT whose homologues are ubiquitous in the genus Neisseria. We show that TdfJ binds directly to S100A7, a host protein that normally sequesters zinc away from invading pathogens. This novel interaction enables N. gonorrhoeae to strip S100A7 of chelated zinc for its own use. Furthermore, we show that another zinc-binding human protein, S100A12, is also utilized by N. gonorrhoeae as a zinc source by an as-yet-unidentified mechanism. This study provides insight into the functional role of the TdTs during infection and highlights these proteins as promising targets for both vaccine and antimicrobial therapy development.
Collapse
Affiliation(s)
- Stavros Maurakis
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - Kayla Keller
- Biomedical Sciences Doctoral Portal, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - C. Noel Maxwell
- Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin Pereira
- Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Walter J. Chazin
- Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States of America
| | - Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Stephan JR, Yu F, Costello RM, Bleier BS, Nolan EM. Oxidative Post-translational Modifications Accelerate Proteolytic Degradation of Calprotectin. J Am Chem Soc 2018; 140:17444-17455. [PMID: 30380834 PMCID: PMC6534964 DOI: 10.1021/jacs.8b06354] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative post-translational modifications affect the structure and function of many biomolecules. Herein we examine the biophysical and functional consequences of oxidative post-translational modifications to human calprotectin (CP, S100A8/S100A9 oligomer, MRP8/MRP14 oligomer, calgranulins A/B oligomer). This abundant metal-sequestering protein contributes to innate immunity by starving invading microbial pathogens of transition metal nutrients in the extracellular space. It also participates in the inflammatory response. Despite many decades of study, little is known about the fate of CP at sites of infection and inflammation. We present compelling evidence for methionine oxidation of CP in vivo, supported by using 15N-labeled CP-Ser (S100A8(C42S)/S100A9(C3S)) to monitor for adventitious oxidation following human sample collection. To elucidate the biochemical and functional consequences of oxidative post-translational modifications, we examine recombinant CP-Ser with methionine sulfoxide modifications generated by exposing the protein to hydrogen peroxide. These oxidized species coordinate transition metal ions and exert antibacterial activity. Nevertheless, oxidation of M81 in the S100A9 subunit disrupts Ca(II)-induced tetramerization and, in the absence of a transition metal ion bound at the His6 site, accelerates proteolytic degradation of CP. We demonstrate that native CP, which contains one Cys residue in each full-length subunit, forms disulfide bonds within and between S100A8/S100A9 heterodimers when exposed to hydrogen peroxide. Remarkably, disulfide bond formation accelerates proteolytic degradation of CP. We propose a new extension to the working model for extracellular CP where post-translational oxidation by reactive oxygen species generated during the neutrophil oxidative burst modulates its lifetime in the extracellular space.
Collapse
Affiliation(s)
- Jules R Stephan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Fangting Yu
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Rebekah M Costello
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Benjamin S Bleier
- Department of Otolaryngology , Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
35
|
Abstract
In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host-microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host-microbe interface and beyond.
Collapse
Affiliation(s)
- Emily M Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
36
|
Cunden LS, Nolan EM. Bioinorganic Explorations of Zn(II) Sequestration by Human S100 Host-Defense Proteins. Biochemistry 2018; 57:1673-1680. [PMID: 29381858 PMCID: PMC5989567 DOI: 10.1021/acs.biochem.7b01305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human innate immune system launches a metal-withholding response to starve invading microbial pathogens of essential metal nutrients. Zn(II)-sequestering proteins of the human S100 family contribute to this process and include calprotectin (CP, S100A8/S100A9 oligomer, calgranulin A/B oligomer), S100A12 (calgranulin C), and S100A7 (psoriasin). This Perspective highlights recent advances in the Zn(II) coordination chemistry of these three proteins, as well as select studies that evaluate Zn(II) sequestration as an antimicrobial mechanism.
Collapse
Affiliation(s)
- Lisa S. Cunden
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
37
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
38
|
Cornelissen CN. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathog Dis 2018; 76:4553517. [PMID: 29045638 PMCID: PMC6251569 DOI: 10.1093/femspd/ftx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenic Neisseria species, including Neisseria meningitidis and Neisseria gonorrhoeae, are obligate human pathogens that cause significant morbidity and mortality. The success of these pathogens, with regard to causing disease in humans, is inextricably linked to their ability to acquire necessary nutrients in the hostile environment of the host. Humans deploy a significant arsenal of weaponry to defend against bacterial pathogens, not least of which are the metal-sequestering proteins that entrap and withhold transition metals, including iron, zinc and manganese, from invaders. This review will discuss the general strategies that bacteria employ to overcome these metal-sequestering attempts by the host, and then will focus on the relatively uncommon 'metal piracy' approaches utilized by the pathogenic Neisseria for this purpose. Because acquiring metals from the environment is critical to microbial survival, interfering with this process could impede growth and therefore disease initiation or progression. This review will also discuss how interfering with metal uptake by the pathogenic Neisseriae could be deployed in the development of novel or improved preventative or therapeutic measures against these important pathogens.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Box 980678, Richmond, VA 23298-0678, USA
| |
Collapse
|
39
|
Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Zinc in Wound Healing Modulation. Nutrients 2017; 10:E16. [PMID: 29295546 PMCID: PMC5793244 DOI: 10.3390/nu10010016] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Wound care is a major healthcare expenditure. Treatment of burns, surgical and trauma wounds, diabetic lower limb ulcers and skin wounds is a major medical challenge with current therapies largely focused on supportive care measures. Successful wound repair requires a series of tightly coordinated steps including coagulation, inflammation, angiogenesis, new tissue formation and extracellular matrix remodelling. Zinc is an essential trace element (micronutrient) which plays important roles in human physiology. Zinc is a cofactor for many metalloenzymes required for cell membrane repair, cell proliferation, growth and immune system function. The pathological effects of zinc deficiency include the occurrence of skin lesions, growth retardation, impaired immune function and compromised would healing. Here, we discuss investigations on the cellular and molecular mechanisms of zinc in modulating the wound healing process. Knowledge gained from this body of research will help to translate these findings into future clinical management of wound healing.
Collapse
Affiliation(s)
- Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Matthew Sermersheim
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Haichang Li
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Peter H U Lee
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Steven M Steinberg
- Department of Surgery, Division of Trauma, Critical Care and Burn, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jianjie Ma
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
40
|
Dietary Manganese Promotes Staphylococcal Infection of the Heart. Cell Host Microbe 2017; 22:531-542.e8. [PMID: 28943329 DOI: 10.1016/j.chom.2017.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 01/25/2023]
Abstract
Diet, and specifically dietary metals, can modify the risk of infection. However, the mechanisms by which manganese (Mn), a common dietary supplement, alters infection remain unexplored. We report that dietary Mn levels dictate the outcome of systemic infections caused by Staphylococcus aureus, a leading cause of bacterial endocarditis. Mice fed a high Mn diet display alterations in Mn levels and localization within infected tissues, and S. aureus virulence and infection of the heart are enhanced. Although the canonical mammalian Mn-sequestering protein calprotectin surrounds staphylococcal heart abscesses, calprotectin is not released into the abscess nidus and does not limit Mn in this organ. Consequently, excess Mn is bioavailable to S. aureus in the heart. Bioavailable Mn is utilized by S. aureus to detoxify reactive oxygen species and protect against neutrophil killing, enhancing fitness within the heart. Therefore, a single dietary modification overwhelms vital host antimicrobial strategies, leading to fatal staphylococcal infection.
Collapse
|
41
|
Gammoh NZ, Rink L. Zinc in Infection and Inflammation. Nutrients 2017; 9:E624. [PMID: 28629136 PMCID: PMC5490603 DOI: 10.3390/nu9060624] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/09/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022] Open
Abstract
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.
Collapse
Affiliation(s)
- Nour Zahi Gammoh
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, University Hospital, Pauwelstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Transition metals at the host-pathogen interface: how Neisseria exploit human metalloproteins for acquiring iron and zinc. Essays Biochem 2017; 61:211-223. [PMID: 28487398 DOI: 10.1042/ebc20160084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Transition metals are essential nutrients for all organisms and important players in the host-microbe interaction. During bacterial infection, a tug-of-war between the host and microbe for nutrient metals occurs: the host innate immune system responds to the pathogen by reducing metal availability and the pathogen tries to outmaneuver this response. The outcome of this competition, which involves metal-sequestering host-defense proteins and microbial metal acquisition machinery, is an important determinant for whether infection occurs. One strategy bacterial pathogens employ to overcome metal restriction involves hijacking abundant host metalloproteins. The obligate human pathogens Neisseria meningitidis and N. gonorrhoeae express TonB-dependent transport systems that capture human metalloproteins, extract the bound metal ions, and deliver these nutrients into the bacterial cell. This review highlights structural and mechanistic investigations that provide insights into how Neisseria acquire iron from the Fe(III)-transport protein transferrin (TF), the Fe(III)-chelating host-defense protein lactoferrin (LF), and the oxygen-transport protein hemoglobin (Hb), and obtain zinc from the metal-sequestering antimicrobial protein calprotectin (CP).
Collapse
|
43
|
Abstract
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
- Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee 37212
| |
Collapse
|
44
|
Otto A, Biran D, Sura T, Becher D, Ron EZ. Proteomics of septicemic Escherichia coli. Proteomics Clin Appl 2016; 10:1020-1024. [DOI: 10.1002/prca.201600049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Otto
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Dvora Biran
- Department of Molecular Microbiology and Biotechnology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Thomas Sura
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Dörte Becher
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Eliora Z. Ron
- Department of Molecular Microbiology and Biotechnology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
45
|
Nakashige TG, Stephan JR, Cunden LS, Brophy MB, Wommack AJ, Keegan BC, Shearer JM, Nolan EM. The Hexahistidine Motif of Host-Defense Protein Human Calprotectin Contributes to Zinc Withholding and Its Functional Versatility. J Am Chem Soc 2016; 138:12243-51. [PMID: 27541598 PMCID: PMC5038136 DOI: 10.1021/jacs.6b06845] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/MRP-14 oligomer) is an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP coordinates a variety of divalent first-row transition metal ions, which is implicated in its antimicrobial function, and its ability to sequester nutrient Zn(II) ions from microbial pathogens has been recognized for over two decades. CP has two distinct transition-metal-binding sites formed at the S100A8/S100A9 dimer interface, including a histidine-rich site composed of S100A8 residues His17 and His27 and S100A9 residues His91 and His95. In this study, we report that CP binds Zn(II) at this site using a hexahistidine motif, completed by His103 and His105 of the S100A9 C-terminal tail and previously identified as the high-affinity Mn(II) and Fe(II) coordination site. Zn(II) binding at this unique site shields the S100A9 C-terminal tail from proteolytic degradation by proteinase K. X-ray absorption spectroscopy and Zn(II) competition titrations support the formation of a Zn(II)-His6 motif. Microbial growth studies indicate that the hexahistidine motif is important for preventing microbial Zn(II) acquisition from CP by the probiotic Lactobacillus plantarum and the opportunistic human pathogen Candida albicans. The Zn(II)-His6 site of CP expands the known biological coordination chemistry of Zn(II) and provides new insight into how the human innate immune system starves microbes of essential metal nutrients.
Collapse
Affiliation(s)
- Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jules R. Stephan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lisa S. Cunden
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andrew J. Wommack
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
46
|
Neisseria gonorrhoeae Evades Calprotectin-Mediated Nutritional Immunity and Survives Neutrophil Extracellular Traps by Production of TdfH. Infect Immun 2016; 84:2982-94. [PMID: 27481245 DOI: 10.1128/iai.00319-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Neisseria gonorrhoeae successfully overcomes host strategies to limit essential nutrients, termed nutritional immunity, by production of TonB-dependent transporters (TdTs)-outer membrane proteins that facilitate nutrient transport in an energy-dependent manner. Four gonococcal TdTs facilitate utilization of iron or iron chelates from host-derived proteins, including transferrin (TbpA), lactoferrin (LbpA), and hemoglobin (HpuB), in addition to xenosiderophores from other bacteria (FetA). The roles of the remaining four uncharacterized TdTs (TdfF, TdfG, TdfH, and TdfJ) remain elusive. Regulatory data demonstrating that production of gonococcal TdfH and TdfJ are unresponsive to or upregulated under iron-replete conditions led us to evaluate the role of these TdTs in the acquisition of nutrients other than iron. In this study, we found that production of gonococcal TdfH is both Zn and Zur repressed. We also found that TdfH confers resistance to calprotectin, an immune effector protein highly produced in neutrophils that has antimicrobial activity due to its ability to sequester Zn and Mn. We found that TdfH directly binds calprotectin, which enables gonococcal Zn accumulation in a TdfH-dependent manner and enhances bacterial survival after exposure to neutrophil extracellular traps (NETs). These studies highlight Zn sequestration by calprotectin as a key functional arm of NET-mediated killing of gonococci. We demonstrate for the first time that N. gonorrhoeae exploits this host strategy in a novel defense mechanism, in which TdfH production hijacks and directly utilizes the host protein calprotectin as a zinc source and thereby evades nutritional immunity.
Collapse
|
47
|
Interaction of an esophageal MEG protein from schistosomes with a human S100 protein involved in inflammatory response. Biochim Biophys Acta Gen Subj 2016; 1861:3490-3497. [PMID: 27639541 DOI: 10.1016/j.bbagen.2016.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND The Micro-Exon Gene-14 (MEG-14) displays a remarkable structure that allows the generation of antigenic variation in Schistosomes. Previous studies showed that the soluble portion of the MEG-14 protein displays features of an intrinsically disordered protein and is expressed exclusively in the parasite esophageal gland. These features indicated a potential for interaction with host proteins present in the plasma and cells from ingested blood. METHODS A yeast two-hybrid experiment using as bait the soluble domain of Schistosoma mansoni MEG-14 (sMEG-14) against a human leukocyte cDNA library was performed. Pull-down and surface plasmon resonance (SPR) experiments were used to validate the interaction between sMEG-14 and human S100A9. Synchrotron radiation circular dichroism (SRCD) were used to detect structural changes upon interaction between sMEG-14 and human S100A9. Feeding of live parasites with S100A9 attached to a fluorophore allowed the tracking of the fate of this protein in the parasite digestive system. RESULTS S100A9 interacted with sMEG-14 consistently in yeast two-hybrid assay, pull-down and SPR experiments. SRCD suggested that MEG-14 acquired a more regular structure as a result of the interaction with S100A9. Accumulation of recombinant S100A9 in the parasite's esophageal gland, when ingested by live worms suggests that such interaction may occur in vivo. CONCLUSION S100A9, a protein previously described to be involved in modulation of inflammatory response, was found to interact with sMEG-14. GENERAL SIGNIFICANCE Our results allow proposing a mechanism involving MEG-14 for the parasite to block inflammatory signaling, which would occur upon release of S100A9 when ingested blood cells are lysed.
Collapse
|
48
|
Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry 2016; 22:15992-16010. [DOI: 10.1002/chem.201602376] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Sławomir Potocki
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | | |
Collapse
|
49
|
Capdevila DA, Wang J, Giedroc DP. Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface. J Biol Chem 2016; 291:20858-20868. [PMID: 27462080 DOI: 10.1074/jbc.r116.742023] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Among the biologically required first row, late d-block metals from MnII to ZnII, the catalytic and structural reach of ZnII ensures that this essential micronutrient touches nearly every major metabolic process or pathway in the cell. Zn is also toxic in excess, primarily because it is a highly competitive divalent metal and will displace more weakly bound transition metals in the active sites of metalloenzymes if left unregulated. The vertebrate innate immune system uses several strategies to exploit this "Achilles heel" of microbial physiology, but bacterial evolution has responded in kind. This review highlights recent insights into transcriptional, transport, and trafficking mechanisms that pathogens use to "win the fight" over zinc and thrive in an otherwise hostile environment.
Collapse
Affiliation(s)
- Daiana A Capdevila
- From the Departments of Chemistry and the Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Jiefei Wang
- From the Departments of Chemistry and Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405-7102 and
| | - David P Giedroc
- From the Departments of Chemistry and Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405-7102 and
| |
Collapse
|
50
|
Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO, Holmes KK, Jerse AE, Unemo M, Sikora AE. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea. Mol Cell Proteomics 2016; 15:2338-55. [PMID: 27141096 PMCID: PMC4937508 DOI: 10.1074/mcp.m116.058800] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the dire possibility of untreatable gonococcal infections. Reverse vaccinology, which includes genome and proteome mining, has proven very successful in the discovery of vaccine candidates against many pathogenic bacteria. However, progress with this approach for a gonorrhea vaccine remains in its infancy. Accordingly, we applied a comprehensive proteomic platform-isobaric tagging for absolute quantification coupled with two-dimensional liquid chromatography and mass spectrometry-to identify potential gonococcal vaccine antigens. Our previous analyses focused on cell envelopes and naturally released membrane vesicles derived from four different Neisseria gonorrhoeae strains. Here, we extended these studies to identify cell envelope proteins of N. gonorrhoeae that are ubiquitously expressed and specifically induced by physiologically relevant environmental stimuli: oxygen availability, iron deprivation, and the presence of human serum. Together, these studies enabled the identification of numerous potential gonorrhea vaccine targets. Initial characterization of five novel vaccine candidate antigens that were ubiquitously expressed under these different growth conditions demonstrated that homologs of BamA (NGO1801), LptD (NGO1715), and TamA (NGO1956), and two uncharacterized proteins, NGO2054 and NGO2139, were surface exposed, secreted via naturally released membrane vesicles, and elicited bactericidal antibodies that cross-reacted with a panel of temporally and geographically diverse isolates. In addition, analysis of polymorphisms at the nucleotide and amino acid levels showed that these vaccine candidates are highly conserved among N. gonorrhoeae strains. Finally, depletion of BamA caused a loss of N. gonorrhoeae viability, suggesting it may be an essential target. Together, our data strongly support the use of proteomics-driven discovery of potential vaccine targets as a sound approach for identifying promising gonococcal antigens.
Collapse
Affiliation(s)
- Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Igor H Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Benjamin I Baarda
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Philip R Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Olusegun O Soge
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington
| | - King K Holmes
- ¶Neisseria Reference Laboratory, Department of Global Health, University of Washington, Seattle, Washington; ‖Departments of Medicine and Global Health, University of Washington, Seattle, Washington
| | - Ann E Jerse
- **Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Magnus Unemo
- ‡‡WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;
| |
Collapse
|