1
|
Rampelotto PH, Taufer CR, da Silva J. The Role of Beneficial Microbiota in COVID-19: Insights from Key Bacterial Genera. Microorganisms 2025; 13:1029. [PMID: 40431202 PMCID: PMC12113938 DOI: 10.3390/microorganisms13051029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The COVID-19 pandemic has highlighted the need for a comprehensive understanding of the factors influencing disease severity and progression. Emerging research indicates that the human microbiota, particularly beneficial bacteria, significantly impacts immune responses and health outcomes in COVID-19 patients. While existing studies provide general insights into the relationship between the microbiota and probiotics with COVID-19, they often lack a detailed exploration of how specific bacterial taxa might be used as adjunctive treatments. This review aims to address this gap by focusing on ten key genera of beneficial bacteria, discussing their roles in COVID-19 and evaluating their potential as probiotics for prevention and treatment. The review covers the impact of these microbes on human health, their population alterations in COVID-19 patients, and their interactions with other viral infections. Among these microbes, several exhibit distinct patterns of abundance in COVID-19 patients, influencing disease outcomes and highlighting their potential roles in infection dynamics. In COVID-19 patients, populations of Akkermansia, Ruminococcus, and Roseburia are consistently reduced, while those of Faecalibacterium show a significant decline in more severe cases. Bacteroides presents varying effects depending on the species involved. Alterations in the abundance of Blautia and Lachnospiraceae are associated with increased inflammation and disease severity. Likewise, the depletion of Lachnospira and Coprococcus populations, both linked to anti-inflammatory effects, may exacerbate symptom severity. Oscillospira, though less studied, is connected to overall health and could have implications for viral infections. This review synthesizes the current understanding of these beneficial microbes to highlight the importance of maintaining a healthy microbiota to alleviate the impact of COVID-19 and contribute to the development of novel therapeutic strategies involving microbiota modulation.
Collapse
Affiliation(s)
- Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Juliana da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Health and Human Development, Universidade La Salle, Canoas 92010-000, Brazil
| |
Collapse
|
2
|
Guo Y, Tang G, Wang Z, Chu Q, Zhang X, Xu X, Fan Y. Characterization of the gut microbiota in different immunological responses among PLWH. Sci Rep 2025; 15:14311. [PMID: 40275044 PMCID: PMC12022085 DOI: 10.1038/s41598-025-98379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Despite gut microbial dysbiosis has been demonstrated in people living with HIV (PLWH), the association between gut microbial and inflammatory cytokines in PLWH with different immunoreaction to antiretroviral therapy (ART) is poorly understood. The purpose of this study is to explore between gut microbial and inflammatory cytokines in PLWH with different immunoreaction. 68 PLWH and 27 healthy controls(HCs) in Anhui Province were recruited from December 2021 to March 2022, including 35 immunological responders (IRs) (CD4+T-cell count ≥ 350 cells/µL) and 33 immunological non-responders (INRs) (CD4+T-cell count < 350 cells/µL) without comorbidities. Blood and stool samples were collected from all participants. Blood was used to detect microbial translocation biomarkers and inflammatory cytokines. Luminex Multifactor Detection Technology was performed to quantify plasma microbial translocation biomarkers and inflammation cytokines. Bacterial 16S rDNA sequencing was performed on stool samples. Microbiome sequencing revealed that the relative abundances of Fusobacteria, Actinobacteria, Verrucomicrobiaceae Acidaminococcaceae, Fusobacteriaceae and Megasphaera were greater, whereas Verrucomicrobia, Ruminococcaceae, Megamonas, Faecalibacterium, Roseburia and Dialister were more depleted in the HIV groups than those in the HCs (all P < 0.05). In the INRs group, the relative abundances of Actinomycetales, Micrococcaceae, Actinomyces, Intestinibacter, Rothia were greater (all P < 0.05), whereas Sutterellaceae, Parabacteroides, Veillonella, Butyricimonas resulted less abundant than in the IRs (all P < 0.05). TNF-ɑ are negatively correlated with the abundances of Dialiste (P = 0.022). CD54 are negatively correlated with Dialister and Subdoligranulum (P = 0.011). Recent and baseline CD4+T cells counts are directly proportional to Butyricimonas and Parabacteroides, while are inversely proportional with Veillonella and Rothia (all P < 0.05). Dysbiosis of the gut microbial might be one of the factors leading to the different immunoreaction and therapeutic effects of ART.
Collapse
Affiliation(s)
- Yanyan Guo
- Chuzhou Center for Disease Control and Prevention, Chuzhou, 239000, Anhui, China
| | - Gan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ziwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qinshu Chu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, Anhui, China
| | - Xinhong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xuewei Xu
- Chuzhou Center for Disease Control and Prevention, Chuzhou, 239000, Anhui, China.
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
3
|
Xing J, Niu T, Yu T, Zou B, Shi C, Wang Y, Fan S, Li M, Bao M, Sun Y, Gao K, Qiu J, Zhang D, Wang N, Jiang Y, Huang H, Cao X, Zeng Y, Wang J, Zhang S, Hu J, Zhang D, Sun W, Yang G, Yang W, Wang C. Faecalibacterium prausnitzii-derived outer membrane vesicles reprogram gut microbiota metabolism to alleviate Porcine Epidemic Diarrhea Virus infection. MICROBIOME 2025; 13:90. [PMID: 40176190 PMCID: PMC11963522 DOI: 10.1186/s40168-025-02078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND The Porcine Epidemic Diarrhea Virus (PEDV) is one of the major challenges facing the global pig farming industry, and vaccines and treatments have proven difficult in controlling its spread. Faecalibacterium prausnitzii (F.prausnitzii), a key commensal bacterium in the gut, has been recognized as a promising candidate for next-generation probiotics due to its potential wide-ranging health benefits. A decrease in F.prausnitzii abundance has been associated with certain viral infections, suggesting its potential application in preventing intestinal viral infections. In this study, we utilized a piglet model to examine the potential role of F.prausnitzii in PEDV infections. RESULTS A piglet model of PEDV infection was established and supplemented with F.prausnitzii, revealing that F.prausnitzii mitigated PEDV infection. Further studies found that outer membrane vesicles (OMVs) are the main functional components of F.prausnitzii, and proteomics, untargeted metabolomics, and small RNA-seq were used to analyze the composition of OMVs. Exhaustion of the gut microbiota demonstrated that the function of Fp. OMVs relies on the presence of the gut microbiota. Additionally, metagenomic analysis indicated that Fp. OMVs altered the gut microbiota composition, enhancing the abundance of Faecalibacterium prausnitzii, Prevotellamassilia timonensis, and Limosilactobacillus reuteri. Untargeted metabolomics analysis showed that Fp. OMVs increased phosphatidylcholine (PC) levels, with PC identified as a key metabolite in alleviating PEDV infection. Single-cell sequencing revealed that PC altered the relative abundance of intestinal cells, increased the number of intestinal epithelial cells, and reduced necroptosis in target cells. PC treatment in infected IPEC-J2 and Vero cells alleviated necroptosis and reduced the activation of the RIPK1-RIPK3-MLKL signaling axis, thereby improving PEDV infection. CONCLUSION F.prausnitzii and its OMVs play a critical role in mitigating PEDV infections. These findings provide a promising strategy to ameliorate PEDV infection in piglets. Video Abstract.
Collapse
Affiliation(s)
- JunHong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - TianMing Niu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - BoShi Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - ChunWei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - YingJie Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - ShuHui Fan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - MingHan Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - MeiYing Bao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - KuiPeng Gao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - JingJing Qiu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - DongXing Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - YanLong Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - HaiBin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - JianZhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - ShuMin Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - JingTao Hu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - WuSheng Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - GuiLian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - WenTao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - ChunFeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
4
|
Diesse JM, Jadhav S, Tamekou SL, Simo G, Dzoyem JP, Souopgui J, Kuiate JR, Nema V. Disturbances in the gut microbiota potentially associated with metabolic syndrome among patients living with HIV-1 and on antiretroviral therapy at Bafoussam Regional Hospital, Cameroon. Diabetol Metab Syndr 2025; 17:86. [PMID: 40089790 PMCID: PMC11909933 DOI: 10.1186/s13098-025-01653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND This study investigates the gut microbiota components associated with metabolic syndrome in patients living with HIV-1 at Bafoussam Regional Hospital, West Cameroon, it focuses on gastrointestinal mucosal barrier disruption and dysbiosis, and their effects on persistent inflammation and metabolic disorders. METHODS A pilot study was conducted involving fourteen patients living with HIV-1. The patients were divided into two groups of seven in each group. One group consisted of patients with metabolic syndrome, and the other group included patients without metabolic syndrome. Gut microbiota was characterized using 16 S rRNA gene-targeted sequencing to analyze microbial diversity and composition. Beta diversity and the relative abundance of bacterial taxa were compared between patients with and without metabolic syndrome. RESULTS Patients living with HIV-1 and metabolic syndrome showed significantly altered beta diversity compared to those without metabolic syndrome. A higher relative abundance of Firmicutes and increased proliferation of Proteobacteria were observed in patients with metabolic syndrome. Additionally, a decrease in metabolically beneficial bacteria, such as Bifidobacterium sp., Lactobacillus sp., Akkermansia sp., and Faecalibacterium sp., was noted. Several beneficial bacterial species were associated with participants' metadata, suggesting potential links between gut microbiota and metabolic syndrome. CONCLUSION This preliminary study highlights that gut microbial balance, rather than the presence of specific bacteria, plays a crucial role in managing metabolic health in patients living with HIV-1. The altered gut microbiota in participants with metabolic syndrome emphasizes the need for further research into the optimal gut microbial structure. Understanding the interaction between gut microbiota changes and the chemical environment in these patients could guide targeted interventions to improve metabolic outcomes.
Collapse
Affiliation(s)
- Joël Martial Diesse
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Sushama Jadhav
- Division of Molecular Biology, Indian Council of Medical Research - National Institute of Translational Virology and AIDS Research , 73 G MIDC Bhosari, Pune, 411026, India
| | | | - Gustave Simo
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jacob Souopgui
- Laboratory of Embryology & Biotechnology DBM-IBMM, "Université Libre de Bruxelles", Brussels, Belgium
| | - Jules-Roger Kuiate
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Vijay Nema
- Division of Molecular Biology, Indian Council of Medical Research - National Institute of Translational Virology and AIDS Research , 73 G MIDC Bhosari, Pune, 411026, India.
| |
Collapse
|
5
|
Zaongo SD, Song Y, Chen Y. P-selectin glycoprotein ligand-1 and cardiovascular diseases: from a general perspective to an HIV infection context. Front Cardiovasc Med 2025; 12:1521158. [PMID: 40041169 PMCID: PMC11876174 DOI: 10.3389/fcvm.2025.1521158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Globally, cardiovascular diseases (CVDs) are a leading cause of death as they are responsible for the loss of at least 17 million lives annually. It has been established that the pathogenesis of CVDs is strongly associated both with inflammation as well as with inflammatory markers (proteins, cytokines, amongst others). In this perspective, the role of one of these proinflammatory proteins, referred to as P-selectin glycoprotein ligand (PSGL)-1, is of particular interest. Indeed, contemporary evidence points to the fact that P-selectin glycoprotein ligand (PSGL)-1 plays a critical role in the development of CVDs via its interactions with P-selectin, L-selectin, and/or E-selectin. However, due to the dearth of published contemporary research concerning PSGL-1 expression in people living with HIV (PLWH), it remains challenging to comprehensively investigate this area of study, although potential clues exist in the literature which may serve as potential directions for future investigations. Hence, in the first part of this article, a scoping review of the literature regarding the role of PSGL-1 in the development of CVDs is provided. Then, in the second part, observations concerning PSGL-1 expression in PLWH receiving ART are presented and interpreted. Through this work, we hope that increased attention will be directed towards the screening of PSGL-1 expression, which we believe may serve as a reliable biomarker to predict the presence and evolution of CVDs in PLWH.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yuxia Song
- Department of Infectious Diseases, The Sixth People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
6
|
Martin-Castaño B, Diez-Echave P, García-García J, Hidalgo-García L, Ruiz-Malagon AJ, Molina-Tijeras JA, Rodríguez-Sojo MJ, Redruello-Romero A, Martínez-Zaldívar M, Mota E, Cobo F, Díaz-Villamarin X, Alvarez-Estevez M, García F, Morales-García C, Merlos S, Garcia-Flores P, Colmenero-Ruiz M, Hernández-Quero J, Nuñez M, Rodriguez-Cabezas ME, Carazo A, Martin J, Moron R, Rodríguez Nogales A, Galvez J. The relationship between gut and nasopharyngeal microbiome composition can predict the severity of COVID-19. eLife 2025; 13:RP95292. [PMID: 39963971 PMCID: PMC11835386 DOI: 10.7554/elife.95292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.
Collapse
Affiliation(s)
- Benita Martin-Castaño
- Centro de Salud Las Gabias, Distrito Granada-MetropolitanoGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Patricia Diez-Echave
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Jorge García-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Laura Hidalgo-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Antonio Jesús Ruiz-Malagon
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - José Alberto Molina-Tijeras
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - María Jesús Rodríguez-Sojo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | | | - Margarita Martínez-Zaldívar
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Centro de Salud “Salvador Caballero”, Distrito Granada-MetropolitanoGranadaSpain
| | - Emilio Mota
- Centro de Salud “Salvador Caballero”, Distrito Granada-MetropolitanoGranadaSpain
| | - Fernando Cobo
- Servicio Microbiología, Hospital Universitario Virgen de las NievesGranadaSpain
| | | | - Marta Alvarez-Estevez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Enfermedades Infecciosas (CIBER-Infecc), Instituto de Salud Carlos IIIMadridSpain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Enfermedades Infecciosas (CIBER-Infecc), Instituto de Salud Carlos IIIMadridSpain
| | | | - Silvia Merlos
- Respiratory Medicine Department, Hospital Universitario Virgen de las NievesGranadaSpain
| | - Paula Garcia-Flores
- Respiratory Medicine Department, Hospital Universitario Virgen de las NievesGranadaSpain
| | - Manuel Colmenero-Ruiz
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio de Medicina Intensiva, Hospital Universitario Clínico San CecilioGranadaSpain
| | - José Hernández-Quero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio de Enfermedades Infecciosas, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Maria Nuñez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos IIIMadridSpain
| | - Maria Elena Rodriguez-Cabezas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Angel Carazo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSICGranadaSpain
| | - Rocio Moron
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Alba Rodríguez Nogales
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Julio Galvez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
7
|
Wu Z, Xie ZP, Cui XX, Sun XB, Zhao FY, Wang N, Li Y, Wang H, Zhang L, Shen J, Chen F, Sun H, He J. HIV and the gut microbiome: future research hotspots and trends. Front Microbiol 2025; 16:1466419. [PMID: 39990153 PMCID: PMC11844347 DOI: 10.3389/fmicb.2025.1466419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Background The use of highly active antiretroviral therapy has transformed AIDS into a chronic infectious disease, but issues of chronic inflammation and immune system activation persist. Modulating the gut microbiome of patients may improve this situation, yet the specific association mechanisms between HIV and the gut microbiome remain unclear. This study aims to explore the research hotspots and trends of the HIV and the gut microbiome, providing direction for future research. Methods We conducted a search of the Web of Science Core Collection database up to April 30, 2024 to retrieve articles related to the relationship between the HIV and the gut microbiome. The scientific achievements and research frontiers in this field were analyzed using CiteSpace, VOSviewer, and Bibliometrix statistical software. Results As of April 30, 2024, a total of 379 articles met the inclusion criteria. The number of publications in this field peaked in 2023, and the number of articles published after 2020 declined. The country with the highest number of publications was the United States (184 articles), and the institution with the most publications was the University of Colorado (USA) (21 articles). The author with the most publications was Routy Jean-Pierre (Canada) (14 articles). High-frequency keywords, aside from the key terms, included "HIV," "inflammation," "immune activation," "gut microbiota," and "translocation." Keyword burst results indicated that short-chain fatty acids, T cells and obesity might become the focus of future research. Conclusion The research hotspots in this field should prioritize examining the role of the primary gut microbiome metabolite, short-chain fatty acids, in reducing immune system activation and inflammation. Another emerging area of interest could be the investigation into the annual increase in obesity rates within this field. Furthermore, understanding the metabolic mechanisms of short-chain fatty acids in T cells is essential. Additionally, multi-omics analysis holds potential.
Collapse
Affiliation(s)
- Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Zhan-Peng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Xin-Xin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Xiang-Bin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Fang-Yi Zhao
- Medical School of Shihezi University, Shihezi, China
| | - Nuo Wang
- Medical School of Shihezi University, Shihezi, China
| | - Yu Li
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Haixia Wang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Li Zhang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Jing Shen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Fulei Chen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Haogang Sun
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Jia He
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| |
Collapse
|
8
|
Thu MS, Campbell BJ, Hirankarn N, Nopsopon T, Ondee T, Hall SR, Jagota A, Fothergill JL, Pongpirul K. Cannabis and cannabinoid-microbiome interactions in varied clinical contexts: A comprehensive systematic review. Biomed Pharmacother 2025; 182:117764. [PMID: 39689514 DOI: 10.1016/j.biopha.2024.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
With legalisation of cannabis for both medicinal and recreational use expanding to more world nations, grasping its effects on the human body is vital. The microbiome is critical to human health and disease, and accumulating data suggests that it is influenced by a variety of external variables, including marijuana/cannabis and cannabinoids. We therefore conducted a comprehensive assessment of the literature to analyse cannabis and cannabinoid effects on the human microbiota. We searched PubMed, Embase and Cochrane Library CENTRAL databases for studies involving the use of marijuana, medical cannabis, cannabinoids and cannabinoid-like lipid mediators on microbiota, across all clinical conditions. Nine studies were identified: 2 clinical trials and 7 observational studies examining cannabis and cannabinoid impact on oral, gastrointestinal, faecal and vaginal microbial abundance and diversity. Outcomes illustrated positive and negative impacts of cannabis use/cannabinoid actions on microbiota in adults with cognitive deficiency, depression, HIV infection, inflammation/pain, oral disease or obesity. Changes in alpha diversity were identified with cannabis/cannabinoid use, although this varied depending on the clinical context. A positive association exists between serum endocannabinoids and gut microbiota, via elevation in SCFAs and anti-inflammatory actions, beneficial for musculoskeletal pain relief and to counter obesity. Marijuana use in HIV patients showed protective effects by decreasing abundance of pro-inflammatory Prevotella, though excessive consumption leads to reduced microbiome richness and diversity, and increased systemic inflammation. Overall, this review underscores the need for further exploration in understanding the complex effects of cannabis, cannabinoids and cannabinoid-like mediators on composition and metabolic activity of the human microbiota.
Collapse
Affiliation(s)
- May Soe Thu
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Joint Chulalongkorn University-University of Liverpool Ph.D. Programme in Biomedical Sciences and Biotechnology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Barry J Campbell
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK.
| | - Tanawin Nopsopon
- Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Division of Allergy and Clinical Immunology, Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Thunnicha Ondee
- Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Szaye Rawicha Hall
- School of Life Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ananya Jagota
- Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary & Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Krit Pongpirul
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 3GE, UK; Center of Excellence in Preventive and Integrative Medicine, Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Bumrungrad International Hospital, Bangkok 10110, Thailand
| |
Collapse
|
9
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 PMCID: PMC11874070 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
10
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
He M, Zhao N. A Mixed Effect Similarity Matrix Regression Model (SMRmix) for Integrating Multiple Microbiome Datasets at Community Level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584315. [PMID: 38559012 PMCID: PMC10979838 DOI: 10.1101/2024.03.10.584315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Recent studies have highlighted the importance of human microbiota in our health and diseases. However, in many areas of research, individual microbiome studies often offer inconsistent results due to the limited sample sizes and the heterogeneity in study populations and experimental procedures. This inconsistency underscores the necessity for integrative analysis of multiple microbiome datasets. Despite the critical need, statistical methods that incorporate multiple microbiome datasets and account for the study heterogeneity are not available in the literature. METHODS In this paper, we develop a mixed effect similarity matrix regression (SMRmix) approach for identifying community level microbiome shifts between outcomes. SMRmix has a close connection with the microbiome kernel association test, one of the most popular approaches for such a task but is only applicable when we have a single study. SMRmix enables researchers to consolidate findings from diverse microbiome studies. RESULTS Via extensive simulations, we show that SMRmix has well-controlled type I error and higher power than some potential competitors. We applied the SMRmix to two real-world datasets. The first, from the HIV-reanalysis consortium, integrated data from 17 studies on gut dysbiosis in HIV. Our analysis confirmed consistent associations between the gut microbiome and HIV infection as well as MSM (men who have sex with men) status, demonstrating greater power than competing methods. The second dataset involved 11 studies on the gut microbiome in colorectal cancer; analysis with SMRmix confirmed significant dysbiosis in affected individuals compared to healthy controls. CONCLUSION The development of SMRmix enables the integration of multiple studies and effectively managing study heterogeneity, and provides a powerful tool for uncovering consistent associations between diseases and community-level microbiome data.
Collapse
|
12
|
Qiao NN, Fang Q, Zhang XH, Ke SS, Wang ZW, Tang G, Leng RX, Fan YG. Effects of alcohol on the composition and metabolism of the intestinal microbiota among people with HIV: A cross-sectional study. Alcohol 2024; 120:151-159. [PMID: 38387693 PMCID: PMC11383188 DOI: 10.1016/j.alcohol.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVES Alcohol consumption is not uncommon among people with HIV (PWH) and may exacerbate HIV-induced intestinal damage, and further lead to dysbiosis and increased intestinal permeability. This study aimed to determine the changes in the fecal microbiota and its association with alcohol consumption in HIV-infected patients. METHODS A cross-sectional survey was conducted between November 2021 and May 2022, and 93 participants were recruited. To investigate the alterations of alcohol misuse on fecal microbiology in HIV-infected individuals, we performed 16s rDNA gene sequencing on fecal samples from the low-to-moderate drinking (n = 21) and non-drinking (n = 72) groups. RESULTS Comparison between groups using alpha and beta diversity showed that the diversity of stool microbiota in the low-to-moderate drinking group did not differ from that of the non-drinking group (all p > 0.05). The Linear discriminant Analysis effect size (LEfSe) algorithm was used to determine the bacterial taxa associated with alcohol consumption, and the results showed altered fecal bacterial composition in HIV-infected patients who consumed alcohol; Coprobacillus, Pseudobutyrivibrio, and Peptostreptococcaceae were enriched, and Pasteurellaceae and Xanthomonadaceae were depleted. In addition, by using the Kyoto Encyclopedia of Genes and Genomes (KEGG), functional microbiome features were also found to be altered in the low-to-moderate drinking group compared to the control group, showing a reduction in metabolic pathways (p = 0.036) and cardiovascular disease pathways (p = 0.006). CONCLUSION Low-to-moderate drinking will change the composition, metabolism, and cardiovascular disease pathways of the gut microbiota of HIV-infected patients.
Collapse
Affiliation(s)
- Ni-Ni Qiao
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Quan Fang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Xin-Hong Zhang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Su-Su Ke
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Zi-Wei Wang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Gan Tang
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Rui-Xue Leng
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| | - Yin-Guang Fan
- Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
13
|
Dolo O, Coulibaly F, Somboro AM, Fofana DB, Togo J, Balde A, Diallo D, Maiga A, Diarra B, Murphy RL, Balam S, Holl J, Sylla M, Maiga M, Maiga AI. The impact of HIV antiretroviral therapy on gut microbiota: the need for well-designed longitudinal studies. J Infect Dev Ctries 2024; 18:1461-1473. [PMID: 39616473 PMCID: PMC12022512 DOI: 10.3855/jidc.18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/24/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) infection remains a major public health concern despite a significant decline in HIV-related mortality and morbidity. These significant advances are linked mostly to effective antiretroviral therapy (ART). However, these treatments are not without consequences on other microorganisms in our body, especially when they must be used for life. Balanced gut microbiota is essential for maintaining human health through symbiotic relationship with the host cells. AIMS AND METHODOLOGY This review focuses on ART and its potential impact on the intestinal microbial population of HIV-infected individuals. Therefore, we retrieved studies focusing on the impact of HIV ART on the gut microbiota, that were published from 2010 to 2021. RESULTS It was observed that most studies on HIV ART and associated gut microbiota have been cross-sectional, and the findings, in general, showed significant damages caused by the ART to the gut microbial community (dysbiosis), with the impact varying in different studies. These changes also revealed dysfunction in microbial translocation and some immune markers, including T lymphocyte rates and the overall inflammation balance. CONCLUSIONS There are significant gaps in our understanding of the impact of HIV ART on gut microbiota. Thus, a longitudinal study is likely needed with a considerable sample size from different settings and classes of ART to better understand the impact of HIV ART on the gut microbiota, and develop remedial (restorative) and adjunctive host-directed strategies during HIV ART.
Collapse
Affiliation(s)
- Oumar Dolo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fousseini Coulibaly
- Medical Biology Laboratory of the Point G University Hospital Center, Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Djeneba B Fofana
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Josue Togo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Aliou Balde
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Dramane Diallo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Aminata Maiga
- Medical Biology Laboratory of the Point G University Hospital Center, Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Saidou Balam
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Jane Holl
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | | | - Mamoudou Maiga
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Almoustapha I Maiga
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
14
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 PMCID: PMC11557871 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R. Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
16
|
Atugonza C, Muwonge A, Najjuka CF, Kateete DP, Katagirya E, Mwesigwa S, Asiimwe B. Early changes in the gut microbiome among HIV-infected Individuals in Uganda initiating daily TMP/SMX. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.07.24315002. [PMID: 39417122 PMCID: PMC11482993 DOI: 10.1101/2024.10.07.24315002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Daily cotrimoxazole (TMP/SXT) prophylaxis is part of the HIV treatment package for all new HIV-infected individuals in Uganda. Although this treatment has shown reduced morbidity and mortality in HIV, it remains controversial due to its contribution to developing antibiotic-resistant bacteria. Moreover, the effects of daily use of a broad-spectrum antibiotic on the gut microbiome remain unknown. To study the early effects, we analysed shotgun metagenome sequence data from stool samples of five newly HIV-infected individuals initiating TMP/SXT prophylaxis longitudinally for the first 30 days of treatment. Using shotgun metagenomics sequencing, we generated both taxonomic and functional profiles from each patient and compared gut microbial changes Pre- TMP/SXT and post-TMP/SXT on Day 5, Day 14, and Day 30. Daily TMP/SXT prophylaxis resulted in a shift characterised by an enrichment of Prevetollea and Ruminococcus genera members and the depletion of Lactococcus and Bacteroides genera members. Furthermore, these microbial shifts were associated with changes in the functional profile revealed by a differential abundance of pathways of amino acid metabolism, carbohydrate metabolism, and nucleotide biosynthesis linked to members of the Bacteroidaceae and Enterobacteriaceae families. TMP/SXT daily prophylaxis in HIV-infected individuals is associated with dramatic changes in microbial composition and functional profiles; however, other factors such as Age, Gender, HIV clinical stage, and ART regiment are at play. Further investigation is needed to examine the implication of these shifts on clinical management and outcomes among HIV patients.
Collapse
Affiliation(s)
| | - Adrian Muwonge
- Genetics and genomics, Roslin Institute, University of Edinburgh
| | | | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University
| | | | | | | |
Collapse
|
17
|
Hu J, Hu J, Han D. Causal relationships between gut microbiota, plasma metabolites, and HIV infection: insights from Mendelian randomization and mediation analysis. Virol J 2024; 21:204. [PMID: 39215321 PMCID: PMC11365174 DOI: 10.1186/s12985-024-02480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Gut dysbiosis and metabolic abnormalities have been implicated in HIV infection. However, the exact causal relationships among the gut microbiota, metabolites, and HIV infection remain poorly understood. Our study involving Mendelian randomization (MR) and mediation analysis aims to unveil these causalities. METHODS Genetic instrumental variables for the gut microbiota were retrieved from MiBioGen consortium (n = 18,340). Metabolism-related genetic variants were sourced from the CLSA cohort (n = 8299). GWAS summary statistics for symptomatic HIV infection were derived from the FinnGen study (n = 309,154), and the UK Biobank (n = 208,808). We performed the bidirectional two-sample MR to assess causalities with the inverse-variance weighted (IVW) method as the primary analysis. Moreover, we executed a mediation analysis using two-step MR methods. RESULTS Compared to the causal effects of HIV infection on gut microbiota (or metabolites), those of gut microbiota (or plasma metabolites) on the risk of HIV infection were more substantial. Phylum Proteobacteria (OR: 2.114, 95% CI 1.042-4.288, P = 0.038), and genus Ruminococcaceae UCG013 (OR: 2.127, 95% CI 1.080-4.191, P = 0.029) exhibited an adverse causal effect on HIV infection, whereas genus Clostridium sensu stricto 1(OR: 0.491, 95% CI 0.252-0.956, P = 0.036) and family Erysipelotrichaceae (OR: 0.399, 95% CI 0.193-0.827, P = 0.013) acted as significant protective factors for HIV. The salicyluric glucuronide level (OR = 2.233, 95% CI 1.120-4.453, P = 0.023) exhibited a considerably adverse causal effect on HIV infection. Conversely, the salicylate-to-citrate ratio (OR: 0.417, 95% CI 0.253-0.688, P = 0.001) was identified as a protective factor for HIV. We identified only one bidirectional causality between 1-palmitoyl-GPI and HIV infection. Mechanistically, genus Haemophilus mediated the causal effects of three phospholipids on HIV infection risk: 1-palmitoyl-GPI (mediation proportion = 33.7%, P = 0.018), 1-palmitoyl-2-arachidonoyl-GPI (mediation proportion = 18.3%, P = 0.019), and 1-linoleoyl-2-linolenoyl-GPC (mediation proportion = 20.3%, P = 0.0216). Additionally, 5-Dodecenoylcarnitine (C12:1) mediated the causal effect of genus Sellimonas on the risk of HIV infection (mediation proportion = 13.7%, P = 0.0348). CONCLUSION Our study revealed that gut microbiota and metabolites causally influence HIV infection risk more substantially than the reverse. We identified the bidirectional causality between 1-palmitoyl-GPI (16:0) and HIV infection, and elucidated four mediation relationships. These findings provide genetic insights into prediction, prevention, and personalized medicine of HIV infection.
Collapse
Affiliation(s)
- Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinxin Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Han
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
19
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Narayanan A, Kieri O, Vesterbacka J, Manoharan L, Chen P, Ghorbani M, Ljunggren HG, Sällberg Chen M, Aleman S, Sönnerborg A, Ray S, Nowak P. Exploring the interplay between antiretroviral therapy and the gut-oral microbiome axis in people living with HIV. Sci Rep 2024; 14:17820. [PMID: 39090139 PMCID: PMC11294597 DOI: 10.1038/s41598-024-68479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
The gut and oral microbiome is altered in people living with HIV (PLWH). While antiretroviral treatment (ART) is pivotal in restoring immune function in PLWH, several studies have identified an association between specific antiretrovirals, particularly integrase inhibitors (INSTI), and weight gain. In our study, we explored the differences in the oral and gut microbiota of PLWH under different ART regimens, and its correlation to Body Mass Index (BMI). Fecal and salivary samples were collected from PLWH (n = 69) and healthy controls (HC, n = 80). We performed taxonomy analysis to determine the microbial composition and relationship between microbial abundance and ART regimens, BMI, CD4+T-cell count, CD4/CD8 ratio, and ART duration. PLWH showed significantly lower richness compared to HC in both the oral and gut environment. The gut microbiome composition of INSTI-treated individuals was enriched with Faecalibacterium and Bifidobacterium, whereas non-nucleotide reverse transcriptase inhibitor (NNRTI)-treated individuals were enriched with Gordonibacter, Megasphaera, and Staphylococcus. In the oral microenvironment, Veillonella was significantly more abundant in INSTI-treated individuals and Fusobacterium and Alloprevotella in the NNRTI-treated individuals. Furthermore, Bifidobacterium and Dorea were enriched in gut milieu of PLWH with high BMI. Collectively, our findings identify distinct microbial profiles, which are associated with different ART regimens and BMI in PLWH on successful ART, thereby highlighting significant effects of specific antiretrovirals on the microbiome.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Oscar Kieri
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Vesterbacka
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lokeshwaran Manoharan
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden (NBIS), SciLife, Lund University, Lund, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mahin Ghorbani
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, ANA Futura, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Sällberg Chen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, ANA Futura, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Soo Aleman
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Sönnerborg
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Shilpa Ray
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Piotr Nowak
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Chen X, Wei J, Li Z, Zhang Y, Zhang X, Zhang L, Wang X, Zhang Y, Zhang T. Dysregulation of Gut Microbiota-Derived Neuromodulatory Amino Acid Metabolism in Human Immunodeficiency Virus-Associated Neurocognitive Disorder: An Integrative Metagenomic and Metabolomic Analysis. Ann Neurol 2024; 96:306-320. [PMID: 38752697 DOI: 10.1002/ana.26963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Although accumulating evidence implicating altered gut microbiota in human immunodeficiency virus (HIV) infection and neurodegenerative disorders; however, the association between dysbiosis of the gut microbiota and metabolites in the pathogenesis of HIV-associated neurocognitive disorder (HAND) remains unclear. METHODS Fecal and plasma samples were obtained from 3 cohorts (HAND, HIV-non-HAND, and healthy controls), metagenomic analysis and metabolomic profiling were performed to investigate alterations in the gut microbial composition and circulating metabolites in HAND. RESULTS The gut microbiota of people living with HIV (PLWH) had an increased relative abundance of Prevotella and a decreased relative abundance of Bacteroides. In contrast, Prevotella and Megamonas were substantially decreased, and Bacteroides and Phocaeicola were increased in HAND patients. Moreover, untargeted metabolomics identified several neurotransmitters and certain amino acids associated with neuromodulation, and the differential metabolic pathways of amino acids associated with neurocognition were depleted in HAND patients. Notably, most neuromodulatory metabolites are associated with an altered abundance of specific gut bacteria. INTERPRETATION Our findings provide new insights into the intricate interplay between the gut and microbiome-brain axis in the pathogenesis of HAND, highlighting the potential for developing novel therapeutic strategies that specifically target the gut microbiota. ANN NEUROL 2024;96:306-320.
Collapse
Affiliation(s)
- Xue Chen
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Wei
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xia Wang
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Wahl A, Yao W, Liao B, Chateau M, Richardson C, Ling L, Franks A, Senthil K, Doyon G, Li F, Frost J, Whitehurst CB, Pagano JS, Fletcher CA, Azcarate-Peril MA, Hudgens MG, Rogala AR, Tucker JD, McGowan I, Sartor RB, Garcia JV. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat Biotechnol 2024; 42:905-915. [PMID: 37563299 PMCID: PMC11073568 DOI: 10.1038/s41587-023-01906-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.
Collapse
Affiliation(s)
- Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wenbo Yao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baolin Liao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Morgan Chateau
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cara Richardson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne Franks
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krithika Senthil
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Genevieve Doyon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengling Li
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh Frost
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Fletcher
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison R Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Tucker
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ian McGowan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Orion Biotechnology, Ottawa, Ontario, Canada
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Nganou-Makamdop K, Douek DC. The Gut and the Translocated Microbiomes in HIV Infection: Current Concepts and Future Avenues. Pathog Immun 2024; 9:168-194. [PMID: 38807656 PMCID: PMC11132393 DOI: 10.20411/pai.v9i1.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
It is widely acknowledged that HIV infection results in disruption of the gut's mucosal integrity partly due a profound loss of gastrointestinal CD4+ T cells that are targets of the virus. In addition, systemic inflammation and immune activation that drive disease pathogenesis are reduced but not normalized by antiretroviral therapy (ART). It has long been postulated that through the process of microbial translocation, the gut microbiome acts as a key driver of systemic inflammation and immune recovery in HIV infection. As such, many studies have aimed at characterizing the gut microbiota in order to unravel its influence in people with HIV and have reported an association between various bacterial taxa and inflammation. This review assesses both contra-dictory and consistent findings among several studies in order to clarify the overall mechanisms by which the gut microbiota in adults may influence immune recovery in HIV infection. Independently of the gut microbiome, observations made from analysis of microbial products in the blood provide direct insight into how the translocated microbiome may drive immune recovery. To help better understand strengths and limitations of the findings reported, this review also highlights the numerous factors that can influence microbiome studies, be they experimental methodologies, and host-intrinsic or host-extrinsic factors. Altogether, a fuller understanding of the interplay between the gut microbiome and immunity in HIV infection may contribute to preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Jiang D, Soo N, Tan CY, Dankwa S, Wang HY, Theriot BS, Ardeshir A, Siddiqui NY, Van Rompay KKA, De Paris K, Permar SR, Goswami R, Surana NK. Commensal bacteria inhibit viral infections via a tryptophan metabolite. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.589969. [PMID: 38659737 PMCID: PMC11042330 DOI: 10.1101/2024.04.21.589969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
There is growing appreciation that commensal bacteria impact the outcome of viral infections, though the specific bacteria and their underlying mechanisms remain poorly understood. Studying a simian-human immunodeficiency virus (SHIV)-challenged cohort of pediatric nonhuman primates, we bioinformatically associated Lactobacillus gasseri and the bacterial family Lachnospiraceae with enhanced resistance to infection. We experimentally validated these findings by demonstrating two different Lachnospiraceae isolates, Clostridium immunis and Ruminococcus gnavus, inhibited HIV replication in vitro and ex vivo. Given the link between tryptophan catabolism and HIV disease severity, we found that an isogenic mutant of C. immunis that lacks the aromatic amino acid aminotransferase (ArAT) gene, which is key to metabolizing tryptophan into 3-indolelactic acid (ILA), no longer inhibits HIV infection. Intriguingly, we confirmed that a second commensal bacterium also inhibited HIV in an ArAT-dependent manner, thus establishing the generalizability of this finding. In addition, we found that purified ILA inhibited HIV infection by agonizing the aryl hydrocarbon receptor (AhR). Given that the AhR has been implicated in the control of multiple viral infections, we demonstrated that C. immunis also inhibited human cytomegalovirus (HCMV) infection in an ArAT-dependent manner. Importantly, metagenomic analysis of individuals at-risk for HIV revealed that those who ultimately acquired HIV had a lower fecal abundance of the bacterial ArAT gene compared to individuals who did not, which indicates our findings translate to humans. Taken together, our results provide mechanistic insights into how commensal bacteria decrease susceptibility to viral infections. Moreover, we have defined a microbiota-driven antiviral pathway that offers the potential for novel therapeutic strategies targeting a broad spectrum of viral pathogens.
Collapse
|
25
|
Lin C, Zeng T, Deng Y. Improvement of epilepsy secondary to acquired immunodeficiency syndrome with intestinal microbiota preparations: a case report. ACTA EPILEPTOLOGICA 2024; 6:12. [PMID: 40217405 PMCID: PMC11960214 DOI: 10.1186/s42494-024-00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Epilepsy secondary to acquired immunodeficiency syndrome (AIDS) can be challenging to manage. The potential interactions between antiretroviral drugs and antiepileptic drugs may result in the failure of both treatments. Therefore, it is crucial to develop more effective strategies to enhance the clinical outcomes of patients. CASE PRESENTATION We report a case of epilepsy secondary to AIDS. After administration of Bacteroides Fragilis 839 (BF839), the secondary generalized tonic-clonic seizures disappeared, the frequency of complex partial seizures decreased by 70%, and the duration of each episode was shortened. Additionally, long-term diarrhea associated with antiretroviral therapy for AIDS resolved, and the syphilis serofast reaction turned negative. No serious adverse reactions were observed during the three-year follow up. CONCLUSIONS This case report suggests that the specific gut microbiota preparation could possibly improve refractory epilepsy in HIV patients while also potentially alleviating adverse reactions to antiretroviral drugs and concurrent syphilis infection. Our case may provide a new perspective for the treatment of HIV infection/AIDS.
Collapse
Affiliation(s)
- Chuhui Lin
- Department of Clinical Nutrition, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ting Zeng
- Department of Clinical Nutrition, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuhong Deng
- Department of Clinical Nutrition, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- Institute of Neuroscience and Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
26
|
Santos‐Beneit F. What is the role of microbial biotechnology and genetic engineering in medicine? Microbiologyopen 2024; 13:e1406. [PMID: 38556942 PMCID: PMC10982607 DOI: 10.1002/mbo3.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.
Collapse
Affiliation(s)
- Fernando Santos‐Beneit
- Institute of Sustainable ProcessesValladolidSpain
- Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringUniversity of ValladolidValladolidSpain
| |
Collapse
|
27
|
Trøseid M, Molinaro A, Gelpi M, Vestad B, Kofoed KF, Fuchs A, Køber L, Holm K, Benfield T, Ueland PM, Hov JR, Nielsen SD, Knudsen AD. Gut Microbiota Alterations and Circulating Imidazole Propionate Levels Are Associated With Obstructive Coronary Artery Disease in People With HIV. J Infect Dis 2024; 229:898-907. [PMID: 38195204 PMCID: PMC10938217 DOI: 10.1093/infdis/jiad604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The impact of gut microbiota and its metabolites on coronary artery disease (CAD) in people with human immunodeficiency virus (PWH) is unknown. Emerging evidence suggests that imidazole propionate (ImP), a microbial metabolite, is linked with cardiometabolic diseases. METHODS Fecal samples from participants of the Copenhagen Comorbidity in HIV infection (COCOMO) study were processed for 16S rRNA sequencing and ImP measured with liquid chromatography-tandem mass spectrometry. CAD severity was investigated by coronary computed tomography-angiography, and participants grouped according to obstructive CAD (n = 60), nonobstructive CAD (n = 80), or no CAD (n = 114). RESULTS Participants with obstructive CAD had a gut microbiota with lower diversity and distinct compositional shift, with increased abundance of Rumiococcus gnavus and Veillonella, known producers of ImP. ImP plasma levels were associated with this dysbiosis, and significantly elevated in participants with obstructive CAD. However, gut dysbiosis but not plasma ImP was independently associated with obstructive CAD after adjustment for traditional and HIV-related risk factors (adjusted odds ratio, 2.7; 95% confidence interval, 1.1-7.2; P = .048). CONCLUSIONS PWH with obstructive CAD displays a distinct gut microbiota profile and increased circulating ImP plasma levels. Future studies should determine whether gut dysbiosis and related metabolites such as ImP are predictive of incident cardiovascular events.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Antonio Molinaro
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Marco Gelpi
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Beate Vestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Klaus Fuglsang Kofoed
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Fuchs
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital—Amager and Hvidovre, Hvidovre, Denmark
| | | | - Johannes R Hov
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen Copenhagen, Denmark
| | - Andreas Dehlbæk Knudsen
- Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea I, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct intestinal microbial signatures linked to accelerated systemic and intestinal biological aging. MICROBIOME 2024; 12:31. [PMID: 38383483 PMCID: PMC10882811 DOI: 10.1186/s40168-024-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.
Collapse
Affiliation(s)
- Shalini Singh
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Maliha W Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Shivanjali Shankaran
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Phillip A Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Zlata R Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Simona A Bambi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
| | - Aaron R Goldman
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Joao L L C Azevedo
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Ceylan E Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alan L Landay
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | | | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University, Chicago, IL, USA
- Department of Medicine, Rush University, Chicago, IL, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Runtuwene LR, Parbie PK, Mizutani T, Ishizaka A, Matsuoka S, Abana CZY, Kushitor D, Bonney EY, Ofori SB, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Longitudinal analysis of microbiome composition in Ghanaians living with HIV-1. Front Microbiol 2024; 15:1359402. [PMID: 38426062 PMCID: PMC10902004 DOI: 10.3389/fmicb.2024.1359402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) 1 infection is known to cause gut microbiota dysbiosis. Among the causes is the direct infection of HIV-1 in gut-resident CD4+ T cells, causing a cascade of phenomena resulting in the instability of the gut mucosa. The effect of HIV infection on gut microbiome dysbiosis remains unresolved despite antiretroviral therapy. Here, we show the results of a longitudinal study of microbiome analysis of people living with HIV (PLWH). We contrasted the diversity and composition of the microbiome of patients with HIV at the first and second time points (baseline_case and six months later follow-up_case, respectively) with those of healthy individuals (baseline_control). We found that despite low diversity indices in the follow-up_case, the abundance of some genera was recovered but not completely, similar to baseline_control. Some genera were consistently in high abundance in PLWH. Furthermore, we found that the CD4+ T-cell count and soluble CD14 level were significantly related to high and low diversity indices, respectively. We also found that the abundance of some genera was highly correlated with clinical features, especially with antiretroviral duration. This includes genera known to be correlated with worse HIV-1 progression (Achromobacter and Stenotrophomonas) and a genus associated with gut protection (Akkermansia). The fact that a protector of the gut and genera linked to a worse progression of HIV-1 are both enriched may signify that despite the improvement of clinical features, the gut mucosa remains compromised.
Collapse
Affiliation(s)
- Lucky Ronald Runtuwene
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Prince Kofi Parbie
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Taketoshi Mizutani
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Aya Ishizaka
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Christopher Zaab-Yen Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dennis Kushitor
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Badu Ofori
- Department of Internal Medicine, Eastern Regional Hospital Koforidua, Ghana Health Service, Koforidua, Ghana
| | - Hiroshi Kiyono
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California San Diego, San Diego, CA, United States
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William Kwabena Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Burkhart Colorado AS, Lazzaro A, Neff CP, Nusbacher N, Boyd K, Fiorillo S, Martin C, Siebert JC, Campbell TB, Borok M, Palmer BE, Lozupone C. Differential effects of antiretroviral treatment on immunity and gut microbiome composition in people living with HIV in rural versus urban Zimbabwe. MICROBIOME 2024; 12:18. [PMID: 38310301 PMCID: PMC10837999 DOI: 10.1186/s40168-023-01718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbiome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan Africa experience differences in environmental factors that may impact the gut microbiome and immune system, in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints. RESULTS Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed with ART-induced viral suppression, these changes were much more pronounced in the urban versus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experienced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences or their co-variates in the muted improvements in immune exhaustion in the rural area. CONCLUSION Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activation in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection. Video Abstract.
Collapse
Affiliation(s)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Charles Preston Neff
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nichole Nusbacher
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathryn Boyd
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, England
| | - Suzanne Fiorillo
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Martin
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Janet C Siebert
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Thomas B Campbell
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Margaret Borok
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brent E Palmer
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
31
|
Antoine D, Chupikova I, Jalodia R, Singh PK, Roy S. Chronic Morphine Treatment and Antiretroviral Therapy Exacerbate HIV-Distal Sensory Peripheral Neuropathy and Induce Distinct Microbial Alterations in the HIV Tg26 Mouse Model. Int J Mol Sci 2024; 25:1569. [PMID: 38338849 PMCID: PMC10855564 DOI: 10.3390/ijms25031569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
Distal Sensory Peripheral Neuropathy (DSP) is a common complication in HIV-infected individuals, leading to chronic pain and reduced quality of life. Even with antiretroviral therapy (ART), DSP persists, often prompting the use of opioid analgesics, which can paradoxically worsen symptoms through opioid-induced microbial dysbiosis. This study employs the HIV Tg26 mouse model to investigate HIV-DSP development and assess gut microbiome changes in response to chronic morphine treatment and ART using 16S rRNA sequencing. Our results reveal that chronic morphine and ART exacerbate HIV-DSP in Tg26 mice, primarily through mechanical pain pathways. As the gut microbiome may be involved in chronic pain persistence, microbiome analysis indicated distinct bacterial community changes between WT and Tg26 mice as well as morphine- and ART-induced microbial changes in the Tg26 mice. This study reveals the Tg26 mouse model to be a relevant system that can help elucidate the pathogenic mechanisms of the opioid- and ART-induced exacerbation of HIV-associated pain. Our results shed light on the intricate interplay between HIV infection, ART, opioid use, and the gut microbiome in chronic pain development. They hold implications for understanding the mechanisms underlying HIV-associated pain and microbial dysbiosis, with potential for future research focused on prevention and treatment strategies.
Collapse
Affiliation(s)
- Danielle Antoine
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Irina Chupikova
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Richa Jalodia
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Praveen Kumar Singh
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sabita Roy
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
32
|
Peters BA, Hanna DB, Wang Y, Weber KM, Topper E, Appleton AA, Sharma A, Hodis HN, Santoro N, Guillemette C, Caron P, Knight R, Burk RD, Kaplan RC, Qi Q. Sex Hormones, the Stool Microbiome, and Subclinical Atherosclerosis in Women With and Without HIV. J Clin Endocrinol Metab 2024; 109:483-497. [PMID: 37643897 PMCID: PMC11032255 DOI: 10.1210/clinem/dgad510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
CONTEXT Cardioprotective roles of endogenous estrogens may be particularly important in women with HIV, who have reduced estrogen exposure and elevated cardiovascular disease risk. The gut microbiome metabolically interacts with sex hormones, but little is known regarding possible impact on cardiovascular risk. OBJECTIVE To analyze potential interplay of sex hormones and gut microbiome in cardiovascular risk. METHODS Among 197 postmenopausal women in the Women's Interagency HIV Study, we measured 15 sex hormones in serum and assessed the gut microbiome in stool. Presence of carotid artery plaque was determined (B-mode ultrasound) in a subset (n = 134). We examined associations of (i) sex hormones and stool microbiome, (ii) sex hormones and plaque, and (iii) sex hormone-related stool microbiota and plaque, adjusting for potential confounders. RESULTS Participant median age was 58 years and the majority were living with HIV (81%). Sex hormones (estrogens, androgens, and adrenal precursors) were associated with stool microbiome diversity and specific species, similarly in women with and without HIV. Estrogens were associated with higher diversity, higher abundance of species from Alistipes, Collinsella, Erysipelotrichia, and Clostridia, and higher abundance of microbial β-glucuronidase and aryl-sulfatase orthologs, which are involved in hormone metabolism. Several hormones were associated with lower odds of carotid artery plaque, including dihydrotestosterone, 3α-diol-17G, estradiol, and estrone. Exploratory mediation analysis suggested that estrone-related species, particularly from Collinsella, may mediate the protective association of estrone with plaque. CONCLUSION Serum sex hormones are significant predictors of stool microbiome diversity and composition. The gut microbiome may play a role in estrogen-related cardiovascular protection.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathleen M Weber
- Cook County Health/Hektoen Institute of Medicine, Chicago, IL 60608, USA
| | - Elizabeth Topper
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Allison A Appleton
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, NY 12144, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Howard N Hodis
- Departments of Medicine and Population and Public Health Sciences, Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chantal Guillemette
- Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Center, Cancer research center (CRC) and Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Patrick Caron
- Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Center, Cancer research center (CRC) and Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Departments of Microbiology and Immunology and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
33
|
Dutta RK, Abu YF, Tao J, Chupikova I, Oleas J, Singh PK, Vitari NA, Qureshi R, Ramakrishnan S, Roy S. Altered gut microbiome drives heightened pain sensitivity in a murine model of metastatic triple-negative breast cancer. Am J Cancer Res 2024; 14:274-299. [PMID: 38323292 PMCID: PMC10839306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The microbiota residing in the gut environment is essential for host homeostasis. Increasing evidence suggests that microbial perturbation (dysbiosis) regulates cancer initiation and progression at local and distant sites. Here, we have identified microbial dysbiosis with the depletion of commensal bacteria as a host-intrinsic factor associated with metastatic dissemination to the bone. Using a mouse model of triple-negative mammary cancer, we demonstrate that a pre-established disruption of microbial homeostasis using an antibiotic cocktail increases tumor growth, enhanced circulating tumor cells, and subsequent dissemination to the bone. We found that the presence of pathogenic bacteria and loss of commensal bacteria in an antibiotic-induced gut environment is associated with sustained inflammation. Increased secretion of G-CSF and MMP-9 in intestinal tissues, followed by increased neutrophil infiltration and severe systemic inflammation in tumor-bearing mice, indicates the direct consequence of a dysbiotic microbiome. Increased neutrophil infiltration to the bone metastatic niche facilitates extravasation and transendothelial migration of tumor cells. It provides a novel, pre-established, and favorable environment to form an immunosuppressive pre-metastatic niche. The presence of tumor cells in immunosuppressive metastatic tumor niche disrupts the balance between osteoblasts and osteoclasts, promotes osteoclast differentiation, and remodels the bone structure. Excessive bone resorption by osteoclasts causes bone degradation and ultimately causes extreme pain in a bone metastatic mouse model. In clinical settings, bone metastasis is associated with intractable severe pain that severely compromises the quality of life in these patients.
Collapse
Affiliation(s)
- Rajib K Dutta
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Yaa F Abu
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Junyi Tao
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Irina Chupikova
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Janneth Oleas
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Praveen K Singh
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Nicolas A Vitari
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Rehana Qureshi
- Department of Pathology, University of MiamiMiami, FL 33136, USA
| | | | - Sabita Roy
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| |
Collapse
|
34
|
Li S, Su B, Wu H, He Q, Zhang T. Integrated analysis of gut and oral microbiome in men who have sex with men with HIV Infection. Microbiol Spectr 2023; 11:e0106423. [PMID: 37850756 PMCID: PMC10714972 DOI: 10.1128/spectrum.01064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Our longitudinal integrated study has shown the marked alterations in the gut and oral microbiome resulting from acute and chronic HIV infection and from antiretroviral therapy. Importantly, the relationship between oral and gut microbiomes in people living with acute and chronic HIV infection and "healthy" controls has also been explored. These findings might contribute to a better understanding of the interactions between the oral and gut microbiomes and its potential role in HIV disease progression.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Hajra D, Nair AV, Chakravortty D. Decoding the invasive nature of a tropical pathogen of concern: The invasive non-Typhoidal Salmonella strains causing host-restricted extraintestinal infections worldwide. Microbiol Res 2023; 277:127488. [PMID: 37716125 DOI: 10.1016/j.micres.2023.127488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Invasive-Non-Typhoidal Salmonella (iNTS) are the major cause of health concern in the low-income, under-developed nations in Africa and Asia that lack proper sanitation facilities. Around 5% of the NTS cases give rise to invasive, extraintestinal diseases leading to focal infections like osteomyelitis, meningitis, osteoarthritis, endocarditis and neonatal sepsis. iNTS serovars like S. Typhimurium, S. Enteritidis, S. Dublin, S. Choleraesuis show a greater propensity to become invasive than others which hints at the genetic basis of their emergence. The major risk factors attributing to the invasive diseases include immune-compromised individuals having co-infection with malaria or HIV, or suffering from malnutrition. The rampant use of antibiotics leading to the emergence of multi-drug resistant strains poses a great challenge in disease management. An extensive understanding of the iNTS pathogenesis and its epidemiology will open up avenues for the development of new vaccination and therapeutic strategies to restrict the spread of this neglected disease.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
36
|
Munjoma PT, Chandiwana P, Wyss J, Mazhandu AJ, Jordi SBU, Gutsire R, Katsidzira L, Yilmaz B, Misselwitz B, Duri K. Immune activation and inflammation in lactating women on combination antiretroviral therapy: role of gut dysfunction and gut microbiota imbalance. Front Immunol 2023; 14:1280262. [PMID: 38045684 PMCID: PMC10693333 DOI: 10.3389/fimmu.2023.1280262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Combination antiretroviral therapy (cART) effectively controls HIV; however, chronic low-level viremia and gut microbiota dysbiosis remain significant drivers of gut and systemic inflammation. In this study, we explored the relationship between gut microbiota composition, intestinal inflammation, microbial translocation, and systemic inflammation in women on cART in Sub-Saharan Africa. Methods We conducted a study in HIV-infected and HIV-uninfected lactating women followed up at 6 weeks and 6 months postpartum in Harare, Zimbabwe. We used 16S ribosomal Ribonucleic Acid (rRNA) sequencing and MesoScale Discovery V-Plex assays to examine the gut microbiome and to quantify plasma inflammatory biomarkers, respectively. In addition, we measured fecal calprotectin, plasma lipopolysaccharide-binding protein (LBP), and soluble cluster of differentiation 14 (sCD14) by enzyme-linked immunosorbent assay to assess gut inflammation, microbial translocation, and monocyte/macrophage activation. Results A group of 77 lactating women were studied, of which 35% were HIV-infected. Fecal calprotectin levels were similar by HIV status at both follow-up time points. In the HIV-infected group at 6 weeks postpartum, fecal calprotectin was elevated: median (interquartile range) [158.1 µg/g (75.3-230.2)] in women who had CD4+ T-lymphocyte counts <350 cells/µL compared with those with ≥350 cells/µL [21.1 µg/g (0-58.4)], p = 0.032. Plasma sCD14 levels were significantly higher in the HIV-infected group at both 6 weeks and 6 months postpartum, p < 0.001. Plasma LBP levels were similar, but higher levels were observed in HIV-infected women with elevated fecal calprotectin. We found significant correlations between fecal calprotectin, LBP, and sCD14 with proinflammatory cytokines. Gut microbial alpha diversity was not affected by HIV status and was not affected by use of antibiotic prophylaxis. HIV significantly affected microbial beta diversity, and significant differences in microbial composition were noted. The genera Slackia and Collinsella were relatively more abundant in the HIV-infected group, whereas a lower relative abundance of Clostriduim sensu_stricto_1 was observed. Our study also found correlations between gut microbial taxa abundance and systemic inflammatory biomarkers. Discussion and conclusion HIV-infected lactating women had increased immune activation and increased microbial translocation associated with increased gut inflammation. We identified correlations between the gut inflammation and microbial composition, microbial translocation, and systemic inflammation. The interplay of these parameters might affect the health of this vulnerable population.
Collapse
Affiliation(s)
- Privilege Tendai Munjoma
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Panashe Chandiwana
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Sebastian Bruno Ulrich Jordi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Rutendo Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Leolin Katsidzira
- Department of Internal Medicine, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, Maurice Müller Laboratories, University of Bern, Bern, Switzerland
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
37
|
Li K, Deng J, Zhang C, Lai G, Xie B, Zhong X. Gut microbiome dysbiosis in men who have sex with men increases HIV infection risk through immunity homeostasis alteration. Front Cell Infect Microbiol 2023; 13:1260068. [PMID: 38035339 PMCID: PMC10687210 DOI: 10.3389/fcimb.2023.1260068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Objectives Recent studies pointed out that gut microbiome dysbiosis in HIV infection was possibly confounded in men who have sex with men (MSM), but there is a lack of evidence. It also remained unclear how MSM-associated gut microbiome dysbiosis affected human health. This study aimed to compare the differences in gut microbiome changes between HIV and MSM and reveal the potential impacts of MSM-associated gut microbiome dysbiosis on the immune system. Methods We searched available studies based on the PubMed database, and all gut microbiome changes associated with HIV infection and MSM were extracted from the enrolled studies. The gutMgene database was used to identify the target genes and metabolites of the gut microbiome. Bioinformatic technology and single-cell RNA sequencing data analysis were utilized to explore the impacts of these gut microbiome changes on human immunity. Results The results showed significant overlaps between the gut microbiome associated with HIV and that of MSM. Moreover, bioinformatic analysis revealed that gut microbiome dysbiosis in MSM had an impact on several pathways related to immunity, including the IL-17 signaling pathway and Th17 cell differentiation. Additionally, target genes of MSM-associated gut microbiome were found to be highly expressed in monocytes and lymphocytes, suggesting their potential regulatory role in immune cells. Furthermore, we found that MSM-associated gut microbiome could produce acetate and butyrate which were reported to increase the level of inflammatory factors. Conclusion In conclusion, this study highlighted that MSM-associated gut microbiome dysbiosis might increase the risk of HIV acquisition by activating the immune system. Further studies are expected to elucidate the mechanism by which gut microbiome dysbiosis in MSM modulates HIV susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Biao Xie
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaoni Zhong
- College of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Singh S, Giron LB, Shaikh MW, Shankaran S, Engen PA, Bogin ZR, Bambi SA, Goldman AR, Azevedo JLLC, Orgaz L, de Pedro N, González P, Giera M, Verhoeven A, Sánchez-López E, Pandrea IV, Kannan T, Tanes CE, Bittinger K, Landay AL, Corley MJ, Keshavarzian A, Abdel-Mohsen M. Distinct Intestinal Microbial Signatures Linked to Accelerated Biological Aging in People with HIV. RESEARCH SQUARE 2023:rs.3.rs-3492242. [PMID: 37961645 PMCID: PMC10635386 DOI: 10.21203/rs.3.rs-3492242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.
Collapse
|
39
|
Guo X, Wang Z, Qu M, Guo Y, Yu M, Hong W, Zhang C, Fan X, Song J, Xu R, Zhang J, Huang H, Linghu E, Wang FS, Sun L, Jiao YM. Abnormal blood microbiota profiles are associated with inflammation and immune restoration in HIV/AIDS individuals. mSystems 2023; 8:e0046723. [PMID: 37698407 PMCID: PMC10654078 DOI: 10.1128/msystems.00467-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 09/13/2023] Open
Abstract
The characteristics of blood microbiota in HIV-infected individuals and their relevance to disease progression are still unknown, despite alterations in gut microbiota diversity and composition in HIV-infected individuals. Here, we present evidence of increased blood microbiota diversity in HIV-infected individuals, which may result from gut microbiota translocation. Also, we identify a group of microbes, Porphyromonas gingivalis, Prevotella sp. CAG:5226, Eubacterium sp. CAG:251, Phascolarctobacterium succinatutens, Anaerobutyricum hallii, Prevotella sp. AM34-19LB, and Phocaeicola plebeius, which are linked to poor immunological recovery. This work provides a scientific foundation toward therapeutic strategies targeting blood microbiota for immune recovery of HIV infection.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zerui Wang
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mengmeng Qu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yuntian Guo
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Minrui Yu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Weiguo Hong
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jiyuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Huihuang Huang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Enqiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lijun Sun
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
40
|
Planchais C, Molinos-Albert LM, Rosenbaum P, Hieu T, Kanyavuz A, Clermont D, Prazuck T, Lefrou L, Dimitrov JD, Hüe S, Hocqueloux L, Mouquet H. HIV-1 treatment timing shapes the human intestinal memory B-cell repertoire to commensal bacteria. Nat Commun 2023; 14:6326. [PMID: 37816704 PMCID: PMC10564866 DOI: 10.1038/s41467-023-42027-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
HIV-1 infection causes severe alterations of gut mucosa, microbiota and immune system, which can be curbed by early antiretroviral therapy. Here, we investigate how treatment timing affects intestinal memory B-cell and plasmablast repertoires of HIV-1-infected humans. We show that only class-switched memory B cells markedly differ between subjects treated during the acute and chronic phases of infection. Intestinal memory B-cell monoclonal antibodies show more prevalent polyreactive and commensal bacteria-reactive clones in late- compared to early-treated individuals. Mirroring this, serum IgA polyreactivity and commensal-reactivity are strongly increased in late-treated individuals and correlate with intestinal permeability and systemic inflammatory markers. Polyreactive blood IgA memory B cells, many of which egressed from the gut, are also substantially enriched in late-treated individuals. Our data establish gut and systemic B-cell polyreactivity to commensal bacteria as hallmarks of chronic HIV-1 infection and suggest that initiating treatment early may limit intestinal B-cell abnormalities compromising HIV-1 humoral response.
Collapse
Affiliation(s)
- Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
| | - Luis M Molinos-Albert
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036, Barcelona, Spain
| | - Pierre Rosenbaum
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
| | - Thierry Hieu
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France
| | - Alexia Kanyavuz
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Dominique Clermont
- Collection of the Institut Pasteur, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Thierry Prazuck
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, 45067, Orléans, France
| | - Laurent Lefrou
- Service d'Hépato-Gastro-Entérologie, CHR d'Orléans-La Source, 45067, Orléans, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Sophie Hüe
- INSERM U955-Équipe 16, Université Paris-Est Créteil, Faculté de Médecine, 94000, Créteil, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, 45067, Orléans, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, F-75015, Paris, France.
| |
Collapse
|
41
|
Enriquez AB, Ten Caten F, Ghneim K, Sekaly RP, Sharma AA. Regulation of Immune Homeostasis, Inflammation, and HIV Persistence by the Microbiome, Short-Chain Fatty Acids, and Bile Acids. Annu Rev Virol 2023; 10:397-422. [PMID: 37774124 DOI: 10.1146/annurev-virology-040323-082822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Despite antiretroviral therapy (ART), people living with human immunodeficiency virus (HIV) (PLWH) continue to experience chronic inflammation and immune dysfunction, which drives the persistence of latent HIV and prevalence of clinical comorbidities. Elucidating the mechanisms that lead to suboptimal immunity is necessary for developing therapeutics that improve the quality of life of PLWH. Although previous studies have found associations between gut dysbiosis and immune dysfunction, the cellular/molecular cascades implicated in the manifestation of aberrant immune responses downstream of microbial perturbations in PLWH are incompletely understood. Recent literature has highlighted that two abundant metabolite families, short-chain fatty acids (SCFAs) and bile acids (BAs), play a crucial role in shaping immunity. These metabolites can be produced and/or modified by bacterial species that make up the gut microbiota and may serve as the causal link between changes to the gut microbiome, chronic inflammation, and immune dysfunction in PLWH. In this review, we discuss our current understanding of the role of the microbiome on HIV acquisition and latent HIV persistence despite ART. Further, we describe cellular/molecular cascades downstream of SCFAs and BAs that drive innate or adaptive immune responses responsible for promoting latent HIV persistence in PLWH. This knowledge can be used to advance HIV cure efforts.
Collapse
Affiliation(s)
- Ana Beatriz Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Khader Ghneim
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Ashish Arunkumar Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
42
|
Zhang Y, Xing H, Bolotnikov G, Krämer M, Gotzmann N, Knippschild U, Kissmann AK, Rosenau F. Enriched Aptamer Libraries in Fluorescence-Based Assays for Rikenella microfusus-Specific Gut Microbiome Analyses. Microorganisms 2023; 11:2266. [PMID: 37764110 PMCID: PMC10535755 DOI: 10.3390/microorganisms11092266] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Rikenella microfusus is an essential intestinal probiotic with great potential. The latest research shows that imbalance in the intestinal flora are related to the occurrence of various diseases, such as intestinal diseases, immune diseases, and metabolic diseases. Rikenella may be a target or biomarker for some diseases, providing a new possibility for preventing and treating these diseases by monitoring and optimizing the abundance of Rikenella in the intestine. However, the current monitoring methods have disadvantages, such as long detection times, complicated operations, and high costs, which seriously limit the possibility of clinical application of microbiome-based treatment options. Therefore, the intention of this study was to evolve an enriched aptamer library to be used for specific labeling of R. microfusus, allowing rapid and low-cost detection methods and, ultimately the construction of aptamer-based biosensors. In this study, we used Rikenella as the target bacterium for an in vitro whole Cell-SELEX (Systematic Evolution of Ligands by EXponential Enrichment) to evolve and enrich specific DNA oligonucleotide aptamers. Five other prominent anaerobic gut bacteria were included in this process for counterselection and served as control cells. The aptamer library R.m-R13 was evolved with high specificity and strong affinity (Kd = 9.597 nM after 13 rounds of selection). With this enriched aptamer library, R. microfusus could efficiently be discriminated from the control bacteria in complex mixtures using different analysis techniques, including fluorescence microscopy or fluorometric suspension assays, and even in human stool samples. These preliminary results open new avenues toward the development of aptamer-based microbiome bio-sensing applications for fast and reliable monitoring of R. microfusus.
Collapse
Affiliation(s)
- Yiting Zhang
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Grigory Bolotnikov
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Nina Gotzmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (Y.Z.); (H.X.); (G.B.); (M.K.); (N.G.); (A.-K.K.)
| |
Collapse
|
43
|
Sánchez-Conde M, Alba C, Castro I, Dronda F, Ramírez M, Arroyo R, Moreno S, Rodríguez JM, Brañas F. Comparison of the Fecal Bacteriome of HIV-Positive and HIV-Negative Older Adults. Biomedicines 2023; 11:2305. [PMID: 37626801 PMCID: PMC10452058 DOI: 10.3390/biomedicines11082305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
HIV infection is considered a scenario of accelerated aging. Previous studies have suggested a link between aging, frailty, and gut dysbiosis, but there is a knowledge gap regarding the HIV population. Our objective was to compare the fecal bacteriome of older people with HIV (PWH) and non-HIV controls, and to assess potential links between gut dysbiosis and frailty. A total of 36 fecal samples (24 from PWH and 12 from non-HIV controls) were submitted to a metataxonomic analysis targeting the V3-V4 hypervariable region of the 16S rRNA gene. High-quality reads were assembled and classified into operational taxonomic units. Alpha diversity, assessed using the Shannon index, was higher in the control group than in the HIV group (p < 0.05). The relative abundance of the genus Blautia was higher in the HIV group (p < 0.001). The presence of Blautia was also higher in PWH with depression (p = 0.004), whereas the opposite was observed for the genus Bifidobacterium (p = 0.004). Our study shows shifts in the composition of the PWH bacteriome when compared to that of healthy controls. To our knowledge, this is the first study suggesting a potential link between depression and gut dysbiosis in the HIV population.
Collapse
Affiliation(s)
- Matilde Sánchez-Conde
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
- CIBER de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Fernando Dronda
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
| | - Margarita Ramírez
- Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Santiago Moreno
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (F.D.); (S.M.)
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (I.C.); (J.M.R.)
| | - Fátima Brañas
- Geriatric Department, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| |
Collapse
|
44
|
Rodriguez MT, McLaurin KA, Shtutman M, Kubinak JL, Mactutus CF, Booze RM. Therapeutically targeting the consequences of HIV-1-associated gastrointestinal dysbiosis: Implications for neurocognitive and affective alterations. Pharmacol Biochem Behav 2023; 229:173592. [PMID: 37390973 PMCID: PMC10494709 DOI: 10.1016/j.pbb.2023.173592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.
Collapse
Affiliation(s)
- Mason T Rodriguez
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Michael Shtutman
- Drug Discovery and Biomedical Sciences, College of Pharmacy, 715 Sumter Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Jason L Kubinak
- Pathology, Microbiology & Immunology, School of Medicine Columbia, 6311 Garners Ferry Road, Building 2, Columbia, SC 29209, United States of America
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, United States of America.
| |
Collapse
|
45
|
Lacunza E, Fink V, Salas ME, Canzoneri R, Naipauer J, Williams S, Coso O, Sued O, Cahn P, Mesri EA, Abba MC. Oral and anal microbiome from HIV-exposed individuals: role of host-associated factors in taxa composition and metabolic pathways. NPJ Biofilms Microbiomes 2023; 9:48. [PMID: 37438354 DOI: 10.1038/s41522-023-00413-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/20/2023] [Indexed: 07/14/2023] Open
Abstract
Evidence indicates that the microbiome plays a significant role in HIV immunopathogenesis and associated complications. This study aimed to characterize the oral and anal microbiome of Men who have Sex with Men (MSM) and Transgender Women (TGW), with and without HIV. One hundred and thirty oral and anal DNA-derived samples were obtained from 78 participants and subjected to shotgun metagenomics sequencing for further microbiome analysis. Significant differences in the microbiome composition were found among subjects associated with HIV infection, gender, sex behavior, CD4+ T-cell counts, antiretroviral therapy (ART), and the presence of HPV-associated precancerous anal lesions. Results confirm the occurrence of oncogenic viromes in this high HIV-risk population. The oral microbiome in HIV-associated cases exhibited an enrichment of bacteria associated with periodontal disease pathogenesis. Conversely, anal bacteria showed a significant decrease in HIV-infected subjects (Coprococcus comes, Finegoldia magna, Blautia obeum, Catenibacterium mitsuokai). TGW showed enrichment in species related to sexual transmission, which concurs that most recruited TGW are or have been sex workers. Prevotella bivia and Fusobacterium gonidiaformans were positively associated with anal precancerous lesions among HIV-infected subjects. The enrichment of Holdemanella biformis and C. comes was associated with detectable viral load and ART-untreated patients. Metabolic pathways were distinctly affected by predominant factors linked to sexual behavior or HIV pathogenesis. Gene family analysis identified bacterial gene signatures as potential prognostic and predictive biomarkers for HIV/AIDS-associated malignancies. Conclusions: Identified microbial features at accessible sites are potential biomarkers for predicting precancerous anal lesions and therapeutic targets for HIV immunopathogenesis.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Valeria Fink
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - María E Salas
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Romina Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julián Naipauer
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sion Williams
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Coso
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Sued
- Pan American Health Organization, Washington, USA
| | - Pedro Cahn
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Enrique A Mesri
- University of Miami - Center for AIDS Research (UM-CFAR) / Sylvester Comprehensive Cancer Center (CCC), University of Miami Miller School of Medicine, Miami, FL, USA
| | - Martín C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
46
|
Goosen C, Proost S, Baumgartner J, Mallick K, Tito RY, Barnabas SL, Cotton MF, Zimmermann MB, Raes J, Blaauw R. Associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children: a two-way factorial case-control study. J Hum Nutr Diet 2023; 36:819-832. [PMID: 36992541 PMCID: PMC10946596 DOI: 10.1111/jhn.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and iron deficiency (ID) affect many African children. Both HIV and iron status interact with gut microbiota composition and related biomarkers. The study's aim was to determine the associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children. METHODS In this two-way factorial case-control study, 8- to 13-year-old children were enrolled into four groups based on their HIV and iron status: (1) With HIV (HIV+) and ID (n = 43), (2) HIV+ and iron-sufficient nonanaemic (n = 41), (3) without HIV (HIV-) and ID (n = 44) and (4) HIV- and iron-sufficient nonanaemic (n = 38). HIV+ children were virally suppressed (<50 HIV RNA copies/ml) on antiretroviral therapy (ART). Microbial composition of faecal samples (16S rRNA sequencing) and markers of gut inflammation (faecal calprotectin) and gut integrity (plasma intestinal fatty acid-binding protein [I-FABP]) were assessed. RESULTS Faecal calprotectin was higher in ID versus iron-sufficient nonanaemic children (p = 0.007). I-FABP did not significantly differ by HIV or iron status. ART-treated HIV (redundancy analysis [RDA] R2 = 0.009, p = 0.029) and age (RDA R2 = 0.013 p = 0.004) explained the variance in the gut microbiota across the four groups. Probabilistic models showed that the relative abundance of the butyrate-producing genera Anaerostipes and Anaerotruncus was lower in ID versus iron-sufficient children. Fusicatenibacter was lower in HIV+ and in ID children versus their respective counterparts. The prevalence of the inflammation-associated genus Megamonas was 42% higher in children with both HIV and ID versus HIV- and iron-sufficient nonanaemic counterparts. CONCLUSIONS In our sample of 8- to 13-year-old virally suppressed HIV+ and HIV- children with or without ID, ID was associated with increased gut inflammation and changes in the relative abundance of specific microbiota. Moreover, in HIV+ children, ID had a cumulative effect that further shifted the gut microbiota to an unfavourable composition.
Collapse
Affiliation(s)
- Charlene Goosen
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jeannine Baumgartner
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of Nutritional SciencesKing's College LondonLondonUK
| | - Kashish Mallick
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Raul Y. Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Shaun L. Barnabas
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Mark F. Cotton
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Michael B. Zimmermann
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Renée Blaauw
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
47
|
Marquez-Ortiz RA, Leon M, Abril D, Escobar-Perez J, Florez-Sarmiento C, Parra-Izquierdo V, Chalem P, Romero-Sanchez C. Colonoscopy aspiration lavages for mucosal metataxonomic profiling of spondylarthritis-associated gastrointestinal tract alterations. Sci Rep 2023; 13:7015. [PMID: 37117227 PMCID: PMC10147911 DOI: 10.1038/s41598-023-33597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
The study of the GI-tract microbiota of spondylarthritis (SpA) patients has focused on the analysis of feces samples, that picture mostly the luminal microbiota. The aim of this study was to determine the contribution of mucosal and luminal microbiome to the gut dysbiosis in SpA, using colonoscopy aspiration lavages (CAL), a recent alternative for regional studies of the GI-tract. We analyzed 59 CAL (from sigmoid colon and distal ileum), and 41 feces samples, from 32 SpA patients and 7 healthy individuals, using 16S rRNA gene-targeted metataxonomic profiling. It was found high prevalence of GI-tract manifestations among SpA patients (65.3%). Metataxonomic profiling, confirmed CAL samples from the lower GI tract (colon or ileum) presented a distinctive and undifferentiated bacteriome and separate from that found in feces' samples or in the beginning of the GI tract (oral cavity (OC)). Lower GI-tract samples and feces of SpA patients exhibited similar behavior to the microbiota of IBD group with reduced microbial richness and diversity, comparing to the healthy controls. Interestingly, it was found increase in proinflammatory taxa in SpA patients, such as Enterobacteriaceae family (mostly in the ileum), Succinivibrio spp. and Prevotella stercorea. Conversely, SpA patients presented significant decrease in the SCFA producers Coprococcus catus and Eubacterium biforme. Our data support the value of CAL samples for the regional study of GI-tract and contribute with information of potential "disruptor taxa" involved in the GI-tract associated disorders observed in SpA patients.
Collapse
Affiliation(s)
- Ricaurte A Marquez-Ortiz
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia.
| | - Moises Leon
- Master's Program in Basic Biomedical Sciences, Faculty of Science, Universidad El Bosque, Bogotá, Colombia
| | - Deisy Abril
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Javier Escobar-Perez
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Cristian Florez-Sarmiento
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
- Gastroadvanced, Bogotá, Colombia
| | - Viviana Parra-Izquierdo
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
- Gastroadvanced, Bogotá, Colombia
| | - Philippe Chalem
- Fundación Instituto de Reumatología Fernando Chalem, Bogotá, Colombia
| | - Consuelo Romero-Sanchez
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia.
- Hospital Militar Central, Rheumatology and Immunology Department, Bogotá, Colombia.
- Clinical Immunology Group, School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia.
| |
Collapse
|
48
|
Satish S, Abu Y, Gomez D, Kumar Dutta R, Roy S. HIV, opioid use, and alterations to the gut microbiome: elucidating independent and synergistic effects. Front Immunol 2023; 14:1156862. [PMID: 37168868 PMCID: PMC10164749 DOI: 10.3389/fimmu.2023.1156862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
Background The microbiome is essential to immune development, defense against pathogens, and modulation of inflammation. Microbial dysbiosis has been reported in various diseases including human immunodeficiency virus (HIV) and opioid use disorder (OUD). Notably, people living with HIV (PLWH) have been reported to both have higher rates of OUD and use opioids at higher rates than the general public. Thus, studying gut microbial alterations in people living with HIV and with OUD could elucidate mechanisms pertaining to how these conditions both shape and are shaped by the microbiome. However, to date few studies have investigated how HIV and OUD in combination impact the microbiome. Aim of review Here, we review previous studies outlining interactions between HIV, opioid use, and microbial dysbiosis and describe attempts to treat this dysbiosis with fecal microbial transplantation, probiotics, and dietary changes. Key scientific concepts of review While the limited number of studies prevent overgeneralizations; accumulating data suggest that HIV and opioid use together induce distinct alterations in the gut microbiome. Among the three existing preclinical studies of HIV and opioid use, two studies reported a decrease in Lachnospiraceae and Ruminococcaceae, and one study reported a decrease in Muribaculaceae in the combined HIV and opioid group relative to HIV-alone, opioid-alone, or control groups. These bacteria are known to modulate immune function, decrease colonic inflammation, and maintain gut epithelial barrier integrity in healthy individuals. Accordingly, modulation of the gut microbiome to restore gut homeostasis may be attempted to improve both conditions. While mixed results exist regarding treating dysbiosis with microbial restoration in PLWH or in those with opioid dependency, larger well-defined studies that can improve microbial engraftment in hosts hold much promise and should still be explored.
Collapse
Affiliation(s)
- Sanjana Satish
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yaa Abu
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Gomez
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajib Kumar Dutta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
49
|
Wang S, Singh M, Yang H, Morrell CN, Mohamad LA, Xu JJ, Nguyen T, Ture S, Tyrell A, Maggirwar SB, Schifitto G, Pang J. Monocyte-derived Dll4 is a novel contributor to persistent systemic inflammation in HIV patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537330. [PMID: 37131726 PMCID: PMC10153122 DOI: 10.1101/2023.04.18.537330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background In people living with HIV (PLWH) on combination antiretroviral therapy (cART), persistent systemic inflammation is a driving force for the progression of comorbidities, such as cardiovascular and cerebrovascular diseases. In this context, monocyte- and macrophage-related inflammation rather than T cell activation is a major cause of chronic inflammation. However, the underlying mechanism of how monocytes cause persistent systemic inflammation in PLWH is elusive. Methods and Results In vitro, we demonstrated that lipopolysaccharides (LPS) or tumor necrosis factor alpha (TNFα), induced a robust increase of Delta-like ligand 4 (Dll4) mRNA and protein expression in human monocytes and Dll4 secretion (extracellular Dll4, exDll4) from monocytes. Enhanced membrane-bound Dll4 (mDll4) expression in monocytes triggered Notch1 activation to promote pro-inflammatory factors expression. Dll4 silencing and inhibition of Nocth1 activation diminished the LPS or TNFα -induced inflammation. exDll4 releases in response to cytokines occurred in monocytes but not endothelial cells or T cells. In clinical specimens, we found that PLWH, both male and female, on cART, showed a significant increase in mDll4 expression, activation of Dll4-Notch1 signaling, and inflammatory markers in monocytes. Although there was no sex effect on mDII4 in PLWH, plasma exDll4 was significantly elevated in males but not females compared to HIV uninfected individuals. Furthermore, exDll4 plasma levels paralleled with monocytes mDll4 in male PLWH. Circulating exDll4 was also positively associated with pro-inflammatory monocytes phenotype and negatively associated with classic monocytes phenotype in male PLWH. Conclusion Pro-inflammatory stimuli increase Dll4 expression and Dll4-Notch1 signaling activation in monocytes and enhance monocyte proinflammatory phenotype, contributing to persistent systemic inflammation in male and female PLWH. Therefore, monocyte mDll4 could be a potential biomarker and therapeutic target of systemic inflammation. Plasma exDll4 may also play an additional role in systemic inflammation but primarily in men.
Collapse
|
50
|
Znaidia M, de Souza-Angelo Y, Létoffé S, Staropoli I, Grzelak L, Ghigo JM, Schwartz O, Casartelli N. Exposure to Secreted Bacterial Factors Promotes HIV-1 Replication in CD4 + T Cells. Microbiol Spectr 2023; 11:e0431322. [PMID: 36853052 PMCID: PMC10100953 DOI: 10.1128/spectrum.04313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Microbial translocation is associated with systemic immune activation in HIV-1 disease. Circulating T cells can encounter microbial products in the bloodstream and lymph nodes, where viral replication takes place. The mechanisms by which bacteria contribute to HIV-associated pathogenesis are not completely deciphered. Here, we examined how bacteria may impact T cell function and viral replication. We established cocultures between a panel of live bacteria and uninfected or HIV-1-infected activated peripheral blood CD4-positive (CD4+) T cells. We show that some bacteria, such as Escherichia coli and Acinetobacter baumannii, sustain lymphocyte activation and enhance HIV-1 replication. Bacteria secrete soluble factors that upregulate CD25 and ICAM-1 cell surface levels and activate NF-κB nuclear translocation. Our data also demonstrate that CD25 polarizes at the virological synapse, suggesting a previously unappreciated role of CD25 during viral replication. These findings highlight how interactions between bacterial factors and T cells may promote T cell activation and HIV-1 replication. IMPORTANCE People living with HIV suffer from chronic immune activation despite effective antiretroviral therapy. Early after infection, HIV-1 actively replicates in the gut, causing the breakage of the intestinal epithelial barrier and microbial translocation. Microbial translocation and chronic immune activation have been proven linked; however, gaps in our knowledge on how bacteria contribute to the development of HIV-related diseases remain. Whether T cells in the peripheral blood react to bacterial products and how this affects viral replication are unknown. We show that some bacteria enriched in people living with HIV activate T cells and favor HIV-1's spread. Bacteria release soluble factors that cause the overexpression of cellular molecules related to their activation state. T cells overexpressing these molecules also replicate HIV-1 more efficiently. These results help us learn more about how HIV-1, T cells, and bacteria interact with each other, as well as the mechanisms behind chronic immune activation.
Collapse
Affiliation(s)
- M. Znaidia
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - Y. de Souza-Angelo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - S. Létoffé
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - I. Staropoli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - L. Grzelak
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - J. M. Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - O. Schwartz
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - N. Casartelli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| |
Collapse
|