1
|
Suryavanshi A, Chandrashekarmath A, Pandey N, Balaram H. Metabolic Flexibility and Essentiality of the Tricarboxylic Acid Cycle in Plasmodium. ACS Infect Dis 2025; 11:335-349. [PMID: 39869313 DOI: 10.1021/acsinfecdis.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH2, water, and carbon dioxide. The parasites of the Plasmodium spp., belonging to the phylum Apicomplexa, have all the genes for a complete TCA cycle. The parasite completes its life cycle across two hosts, the insect vector mosquito and a range of vertebrate hosts including humans. As the niches that the parasite invades and occupies in the two hosts vary dramatically in their biochemical nature and availability of nutrients, the parasite's energy metabolism has been accordingly adapted to its host environment. One such pathway that shows extensive metabolic plasticity in parasites of the Plasmodium spp. is the TCA cycle. Recent studies using isotope-tracing targeted-metabolomics have highlighted conserved and parasite-specific features in the TCA cycle. This Review provides a comprehensive summary of what is known of this central pathway in the Plasmodium spp.
Collapse
Affiliation(s)
- Arpitha Suryavanshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Nivedita Pandey
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
2
|
Abe K, Hashimura H, Hiraoka H, Fujishiro S, Kameya N, Taoka K, Kuwana S, Fukuzawa M, Sawai S. Cell-cell heterogeneity in phosphoenolpyruvate carboxylase biases early cell fate priming in Dictyostelium discoideum. Front Cell Dev Biol 2025; 12:1526795. [PMID: 39968235 PMCID: PMC11832675 DOI: 10.3389/fcell.2024.1526795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
Glucose metabolism is a key factor characterizing the cellular state during multicellular development. In metazoans, the metabolic state of undifferentiated cells correlates with growth/differentiation transition and cell fate determination. Notably, the cell fate of the Amoebozoa species Dictyostelium discoideum is biased by the presence of glucose and is also correlated with early differences in intracellular ATP. However, the relationship between early cell-cell heterogeneity, cell differentiation, and the metabolic state is unclear. To address the link between glucose metabolism and cell differentiation in D. discoideum, we studied the role of phosphoenolpyruvate carboxylase (PEPC), a key enzyme in the PEP-oxaloacetate-pyruvate node, a core junction that dictates the metabolic flux of glycolysis, the TCA cycle, and gluconeogenesis. We demonstrate that there is cell-cell heterogeneity in PEPC promoter activity in vegetative cells, which depends on nutrient conditions, and that cells with high PEPC promoter activity differentiate into spores. The PEPC null mutant exhibited an aberrantly high prestalk/prespore ratio, and the spore mass of the fruiting body was glassy and consisted of immature spores. Furthermore, the PEPC null mutant had high ATP levels and low mitochondrial membrane potential. Our results suggest the importance of cell-cell heterogeneity in the levels of metabolic enzymes during early cell fate priming.
Collapse
Affiliation(s)
- Kenichi Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyō, Japan
| | - Hidenori Hashimura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Haruka Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shoko Fujishiro
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Narufumi Kameya
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kazuteru Taoka
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Satoshi Kuwana
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Satoshi Sawai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyō, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro, Japan
| |
Collapse
|
3
|
Rajaram K, Rangel GW, Munro JT, Nair SC, Llinás M, Prigge ST. MULTIPLE, REDUNDANT CARBOXYLIC ACID TRANSPORTERS SUPPORT MITOCHONDRIAL METABOLISM IN PLASMODIUM FALCIPARUM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624872. [PMID: 39651245 PMCID: PMC11623635 DOI: 10.1101/2024.11.26.624872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The mitochondrion of the deadliest human malaria parasite, Plasmodium falciparum, is an essential source of cellular acetyl-CoA during the asexual blood-stage of the parasite life cycle. Blocking mitochondrial acetyl-CoA synthesis leads to a hypoacetylated proteome and parasite death. We previously determined that mitochondrial acetyl-CoA is primarily synthesized from glucose-derived pyruvate by α-ketoacid dehydrogenases. Here, we asked if inhibiting the import of glycolytic pyruvate across the mitochondrial inner membrane would affect acetyl-CoA production and, thus, could be a potential target for antimalarial drug development. We selected the two predicted mitochondrial pyruvate carrier proteins ( Pf MPC1 and Pf MPC2) for genetic knockout and isotopic metabolite tracing via HPLC-MS metabolomic analysis. Surprisingly, we observed that asexual blood-stage parasites could survive the loss of either or both Pf MPCs with only minor growth defects, despite a substantial reduction in the amount of glucose-derived isotopic labelling into acetyl-CoA. Furthermore, genetic deletion of two additional mitochondrial carboxylic acid transporters - DTC (di/tricarboxylic acid carrier) and YHM2 (a putative citrate/α-ketoglutarate carrier protein) - only mildly affected asexual blood-stage replication, even in the context of Pf MPC deficiency. Although we observed no added impact on the incorporation of glucose carbon into acetyl-CoA in these quadruple knockout mutants, we noted a large decrease in glutamine-derived label in tricarboxylic acid cycle metabolites, suggesting that DTC and YHM2 both import glutamine derivatives into the mitochondrion. Altogether, our results expose redundant routes used to fuel the blood-stage malaria parasite mitochondrion with imported carbon from two major sources - glucose and glutamine. SIGNIFICANCE The mitochondrion of malaria parasites generates key molecules, such as acetyl-CoA, that are required for numerous cellular processes. To support mitochondrial biosynthetic pathways, the parasites must transport carbon sources into this organelle. By studying how the mitochondrion obtains pyruvate, a molecule derived from glucose, we have uncovered redundant carbon transport systems that ensure parasite survival in red blood cells. This metabolic redundancy poses a challenge for drug development, as it enables the parasite to adapt and survive by relying on alternative pathways when one is disrupted.
Collapse
|
4
|
Guo Z, Yue N, Chen M, Li J, Lv R, Wang J, Liu T, Huang J, Gao S, Li Y, Yuan B, Wang J, Kang L, Ji B, Xin W. Purinergic Receptor Antagonists Inhibit Hemolysis Induced by Clostridium perfringens Alpha Toxin. Pathogens 2024; 13:454. [PMID: 38921752 PMCID: PMC11206506 DOI: 10.3390/pathogens13060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Clostridium perfringens alpha toxin (CPA), which causes yellow lamb disease in sheep and gas gangrene and food poisoning in humans, is produced by all types of C. perfringens and is the major virulence determinant of C. perfringens type A. CPA induces hemolysis in many species, including humans, murines, sheep and rabbits, through its enzymatic activity, which dissolves the cell membrane. Recent studies have shown that some pore-forming toxins cause hemolysis, which is achieved by the activation of purinergic receptors (P2). However, the relationship between P2 receptors and non-pore-forming toxin hemolysis has not been investigated. In the present study, we examined the function of P2 receptors in CPA toxin hemolysis and found that CPA-induced hemolysis was dependent on P2 receptor activation, and this was also true for Staphylococcus aureus β-Hemolysin, another non-pore-forming toxin. Furthermore, we use selective P2 receptor antagonists to demonstrate that P2X1 and P2X7 play important roles in the hemolysis of human and murine erythrocytes. In addition, we found that redox metabolism was mainly involved in CPA-induced hemolysis using metabolomic analysis. We further demonstrate that CPA activates P2 receptors and then activates NADPH oxidase through the PI3K/Akt and MEK1/ERK1 pathways, followed by the production of active oxygen to induce hemolysis. These findings contribute to our understanding of the pathological effects of CPA, clarify the relationship between P2 activation and non-pore-forming toxin-induced hemolysis, and provide new insights into CPA-induced hemolysis.
Collapse
Affiliation(s)
- Zishuo Guo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
- Emergency Department, 96605 Army Hospital of the People’s Liberation Army, Jilin 134000, China
| | - Nan Yue
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Ming Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Ruomei Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| | - Bin Ji
- Department of Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214101, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing 100071, China; (Z.G.); (N.Y.); (M.C.); (J.L.); (R.L.); (J.W.); (T.L.); (J.H.); (S.G.); (Y.L.); (B.Y.); (J.W.)
| |
Collapse
|
5
|
Rajaram K, Tewari SG, Wallqvist A, Prigge ST. Metabolic changes accompanying the loss of fumarate hydratase and malate-quinone oxidoreductase in the asexual blood stage of Plasmodium falciparum. J Biol Chem 2022; 298:101897. [PMID: 35398098 PMCID: PMC9118666 DOI: 10.1016/j.jbc.2022.101897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the glucose-rich milieu of red blood cells, asexually replicating malarial parasites mainly rely on glycolysis for ATP production, with limited carbon flux through the mitochondrial tricarboxylic acid (TCA) cycle. By contrast, gametocytes and mosquito-stage parasites exhibit an increased dependence on the TCA cycle and oxidative phosphorylation for more economical energy generation. Prior genetic studies supported these stage-specific metabolic preferences by revealing that six of eight TCA cycle enzymes are completely dispensable during the asexual blood stages of Plasmodium falciparum, with only fumarate hydratase (FH) and malate-quinone oxidoreductase (MQO) being refractory to deletion. Several hypotheses have been put forth to explain the possible essentiality of FH and MQO, including their participation in a malate shuttle between the mitochondrial matrix and the cytosol. However, using newer genetic techniques like CRISPR and dimerizable Cre, we were able to generate deletion strains of FH and MQO in P. falciparum. We employed metabolomic analyses to characterize a double knockout mutant of FH and MQO (ΔFM) and identified changes in purine salvage and urea cycle metabolism that may help to limit fumarate accumulation. Correspondingly, we found that the ΔFM mutant was more sensitive to exogenous fumarate, which is known to cause toxicity by modifying and inactivating proteins and metabolites. Overall, our data indicate that P. falciparum is able to adequately compensate for the loss of FH and MQO, rendering them unsuitable targets for drug development.
Collapse
Affiliation(s)
- Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, Maryland, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Biddau M, Santha Kumar TR, Henrich P, Laine LM, Blackburn GJ, Chokkathukalam A, Li T, Lee Sim K, King L, Hoffman SL, Barrett MP, Coombs GH, McFadden GI, Fidock DA, Müller S, Sheiner L. Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes. Int J Parasitol 2021; 51:441-453. [PMID: 33713652 PMCID: PMC8126644 DOI: 10.1016/j.ijpara.2020.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/06/2022]
Abstract
Apicoplast LipB deletion leads to changed antioxidant expression that precedes and coincides with accelerated differentiation. 3D7 Plasmodium exhibits changes in glycolysis and tricarboxylic acid cycle activity after deletion of apicoplast LipB. When LipB is deleted from NF54 Plasmodium, the resulting parasites cannot complete their development in mosquitoes.
Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.
Collapse
Affiliation(s)
- Marco Biddau
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Philipp Henrich
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Larissa M Laine
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gavin J Blackburn
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Tao Li
- Sanaria Inc., Rockville, MD 20850, USA
| | | | - Lewis King
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | | | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Graham H Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sylke Müller
- Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom; Department of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
7
|
Abstract
Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression. One of the most powerful approaches to understanding gene function involves turning genes on and off at will and measuring the impact at the cellular or organismal level. This particularly applies to the cohort of essential genes where traditional gene knockouts are inviable. In Plasmodium falciparum, conditional control of gene expression has been achieved by using multicomponent systems in which individual modules interact with each other to regulate DNA recombination, transcription, or posttranscriptional processes. The recently devised TetR-DOZI aptamer system relies on the ligand-regulatable interaction of a protein module with synthetic RNA aptamers to control the translation of a target gene. This technique has been successfully employed to study essential genes in P. falciparum and involves the insertion of several aptamer copies into the 3′ untranslated regions (UTRs), which provide control over mRNA fate. However, aptamer repeats are prone to recombination and one or more copies can be lost from the system, resulting in a loss of control over target gene expression. We rectified this issue by redesigning the aptamer array to minimize recombination while preserving the control elements. As proof of concept, we compared the original and modified arrays for their ability to knock down the levels of a putative essential apicoplast protein (PF3D7_0815700) and demonstrated that the modified array is highly stable and efficient. This redesign will enhance the utility of a tool that is quickly becoming a favored strategy for genetic studies in P. falciparum. IMPORTANCE Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression.
Collapse
|
8
|
Gorki V, Walter NS, Singh R, Chauhan M, Dhingra N, Salunke DB, Kaur S. β-Carboline Derivatives Tackling Malaria: Biological Evaluation and Docking Analysis. ACS OMEGA 2020; 5:17993-18006. [PMID: 32743172 PMCID: PMC7391373 DOI: 10.1021/acsomega.0c01256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/15/2020] [Indexed: 05/12/2023]
Abstract
Increasing resistance to presently available antimalarial drugs urges the need to look for new promising compounds. The β-carboline moiety, present in several biologically active natural products and drugs, is an important scaffold for antimalarial drug discovery. The present study explores the antimalarial activity of a β-carboline derivative (1R,3S)-methyl 1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (9a) alone in vitro against Plasmodium falciparum and in vivo in combination therapy with the standard drug artesunate against Plasmodium berghei. Compound 9a inhibited both 3D7 and RKL-9 strains of P. falciparum with half-maximal inhibitory concentration (IC50) < 1 μg/mL, respectively. The compound was nontoxic (50% cytotoxic concentration (CC50) > 640 μg/mL) to normal dermal fibroblasts. Selectivity index was >10 against both the strains. The compound exhibited considerable in vivo antimalarial activity (median effective dose (ED50) = 27.74 mg/kg) in monotherapy. The combination of 9a (100 mg/kg) and artesunate (50 mg/kg) resulted in 99.69% chemosuppression on day 5 along with a mean survival time of 25.8 ± 4.91 days with complete parasite clearance. Biochemical studies indicated the safety of the HIT compound to hepatic and renal functions of mice. Molecular docking also highlighted the suitability of 9a as a potential antimalarial candidate.
Collapse
Affiliation(s)
- Varun Gorki
- Parasitology
Laboratory, Department of Zoology, Panjab
University, Chandigarh 160014, India
| | - Neha Sylvia Walter
- Parasitology
Laboratory, Department of Zoology, Panjab
University, Chandigarh 160014, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Monika Chauhan
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Neelima Dhingra
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology
Laboratory, Department of Zoology, Panjab
University, Chandigarh 160014, India
| |
Collapse
|
9
|
Tewari SG, Swift RP, Reifman J, Prigge ST, Wallqvist A. Metabolic alterations in the erythrocyte during blood-stage development of the malaria parasite. Malar J 2020; 19:94. [PMID: 32103749 PMCID: PMC7045481 DOI: 10.1186/s12936-020-03174-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background Human blood cells (erythrocytes) serve as hosts for the malaria parasite Plasmodium falciparum during its 48-h intraerythrocytic developmental cycle (IDC). Established in vitro protocols allow for the study of host–parasite interactions during this phase and, in particular, high-resolution metabolomics can provide a window into host–parasite interactions that support parasite development. Methods Uninfected and parasite-infected erythrocyte cultures were maintained at 2% haematocrit for the duration of the IDC, while parasitaemia was maintained at 7% in the infected cultures. The parasite-infected cultures were synchronized to obtain stage-dependent information of parasite development during the IDC. Samples were collected in quadruplicate at six time points from the uninfected and parasite-infected cultures and global metabolomics was used to analyse cell fractions of these cultures. Results In uninfected and parasite-infected cultures during the IDC, 501 intracellular metabolites, including 223 lipid metabolites, were successfully quantified. Of these, 19 distinct metabolites were present only in the parasite-infected culture, 10 of which increased to twofold in abundance during the IDC. This work quantified approximately five times the metabolites measured in previous studies of similar research scope, which allowed for more detailed analyses. Enrichment in lipid metabolism pathways exhibited a time-dependent association with different classes of lipids during the IDC. Specifically, enrichment occurred in sphingolipids at the earlier stages, and subsequently in lysophospholipid and phospholipid metabolites at the intermediate and end stages of the IDC, respectively. In addition, there was an accumulation of 18-, 20-, and 22-carbon polyunsaturated fatty acids, which produce eicosanoids and promote gametocytogenesis in infected erythrocyte cultures. Conclusions The current study revealed a number of heretofore unidentified metabolic components of the host–parasite system, which the parasite may exploit in a time-dependent manner to grow over the course of its development in the blood stage. Notably, the analyses identified components, such as precursors of immunomodulatory molecules, stage-dependent lipid dynamics, and metabolites, unique to parasite-infected cultures. These conclusions are reinforced by the metabolic alterations that were characterized during the IDC, which were in close agreement with those known from previous studies of blood-stage infection.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, MD, USA. .,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF), Bethesda, MD, USA.
| | - Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Ft. Detrick, MD, USA.
| |
Collapse
|
10
|
Wein S, Ghezal S, Buré C, Maynadier M, Périgaud C, Vial HJ, Lefebvre-Tournier I, Wengelnik K, Cerdan R. Contribution of the precursors and interplay of the pathways in the phospholipid metabolism of the malaria parasite. J Lipid Res 2018; 59:1461-1471. [PMID: 29853527 PMCID: PMC6071779 DOI: 10.1194/jlr.m085589] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/24/2018] [Indexed: 12/17/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, develops and multiplies in the human erythrocyte. It needs to synthesize considerable amounts of phospholipids (PLs), principally phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). Several metabolic pathways coexist for their de novo biosynthesis, involving a dozen enzymes. Given the importance of these PLs for the survival of the parasite, we sought to determine their sources and to understand the connections and dependencies between the multiple pathways. We used three deuterated precursors (choline-d9, ethanolamine-d4, and serine-d3) to follow and quantify simultaneously their incorporations in the intermediate metabolites and the final PLs by LC/MS/MS. We show that PC is mainly derived from choline, itself provided by lysophosphatidylcholine contained in the serum. In the absence of choline, the parasite is able to use both other precursors, ethanolamine and serine. PE is almost equally synthesized from ethanolamine and serine, with both precursors being able to compensate for each other. Serine incorporated in PS is mainly derived from the degradation of host cell hemoglobin by the parasite. P. falciparum thus shows an unexpected adaptability of its PL synthesis pathways in response to different disturbances. These data provide new information by mapping the importance of the PL metabolic pathways of the malaria parasite and could be used to design future therapeutic approaches.
Collapse
Affiliation(s)
- Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Salma Ghezal
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Corinne Buré
- Chimie et Biologie des Membranes et des Nanoobjets, UMR 5248, Centre de Génomique Fonctionnelle, Université Bordeaux 2, 33076 Bordeaux Cedex, France
| | - Marjorie Maynadier
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Henri J Vial
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Isabelle Lefebvre-Tournier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Kai Wengelnik
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| | - Rachel Cerdan
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS-Université de Montpellier, 34095 Montpellier Cedex 05, France
| |
Collapse
|
11
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
12
|
Westrop GD, Wang L, Blackburn GJ, Zhang T, Zheng L, Watson DG, Coombs GH. Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine. PLoS One 2017; 12:e0189072. [PMID: 29267346 PMCID: PMC5739422 DOI: 10.1371/journal.pone.0189072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022] Open
Abstract
Trichomonas vaginalis and Tritrichomonas foetus are pathogens that parasitise, respectively, human and bovine urogenital tracts causing disease. Using LC-MS, reference metabolomic profiles were obtained for both species and stable isotope labelling with D-[U-13C6] glucose was used to analyse central carbon metabolism. This facilitated a comparison of the metabolic pathways of T. vaginalis and T. foetus, extending earlier targeted biochemical studies. 43 metabolites, whose identities were confirmed by comparison of their retention times with authentic standards, occurred at more than 3-fold difference in peak intensity between T. vaginalis and T. foetus. 18 metabolites that were removed from or released into the medium during growth also showed more than 3-fold difference between the species. Major differences were observed in cysteine and methionine metabolism in which homocysteine, produced as a bi-product of trans-methylation, is catabolised by methionine γ-lyase in T. vaginalis but converted to cystathionine in T. foetus. Both species synthesise methylthioadenosine by an unusual mechanism, but it is not used as a substrate for methionine recycling. T. vaginalis also produces and exports high levels of S-methylcysteine, whereas only negligible levels were found in T. foetus which maintains significantly higher intracellular levels of cysteine. 13C-labeling confirmed that both cysteine and S-methylcysteine are synthesised by T. vaginalis; S-methylcysteine can be generated by recombinant T. vaginalis cysteine synthase using phosphoserine and methanethiol. T. foetus contained higher levels of ornithine and citrulline than T. vaginalis and exported increased levels of putrescine, suggesting greater flux through the arginine dihydrolase pathway. T. vaginalis produced and exported hydroxy acid derivatives of certain amino acids, particularly 2-hydroxyisocaproic acid derived from leucine, whereas negligible levels of these metabolites occurred in T. foetus.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
- * E-mail:
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | | | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liang Zheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai, China
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Science, Strathclyde University, Glasgow, United Kingdom
| |
Collapse
|
13
|
Tharmalingam S, Alhasawi A, Appanna VP, Lemire J, Appanna VD. Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications. Biol Chem 2017. [PMID: 28622140 DOI: 10.1515/hsz-2017-0152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrosative stress results from an increase in reactive nitrogen species (RNS) within the cell. Though the RNS - nitric oxide (·NO) and peroxynitrite (ONOO-) - play pivotal physiological roles, at elevated concentrations, these moieties can be poisonous to both prokaryotic and eukaryotic cells alike due to their capacity to disrupt a variety of essential biological processes. Numerous microbes are known to adapt to nitrosative stress by elaborating intricate strategies aimed at neutralizing RNS. In this review, we will discuss both the enzymatic systems dedicated to the elimination of RNS as well as the metabolic networks that are tailored to generate RNS-detoxifying metabolites - α-keto-acids. The latter has been demonstrated to nullify RNS via non-enzymatic decarboxylation resulting in the production of a carboxylic acid, many of which are potent signaling molecules. Furthermore, as aerobic energy production is severely impeded during nitrosative stress, alternative ATP-generating modules will be explored. To that end, a holistic understanding of the molecular adaptation to nitrosative stress, reinforces the notion that neutralization of toxicants necessitates significant metabolic reconfiguration to facilitate cell survival. As the alarming rise in antimicrobial resistant pathogens continues unabated, this review will also discuss the potential for developing therapies that target the alternative ATP-generating machinery of bacteria.
Collapse
|
14
|
+Targeting Mitochondrial Functions as Antimalarial Regime, What Is Next? CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Niikura M, Komatsuya K, Inoue SI, Matsuda R, Asahi H, Inaoka DK, Kita K, Kobayashi F. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase. Malar J 2017; 16:247. [PMID: 28606087 PMCID: PMC5469008 DOI: 10.1186/s12936-017-1898-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
Background Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. Results First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO-deficient parasites was impaired, the development of ECM was suppressed only in mice infected with MQO-deficient parasites. Conclusions These findings suggest that MQO-mediated mitochondrial functions are required for development of ECM of asexual-blood-stage Plasmodium parasites. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1898-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Keisuke Komatsuya
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Biomedical Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shin-Ichi Inoue
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Risa Matsuda
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Hiroko Asahi
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Biomedical Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.,Department of Biomedical Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Fumie Kobayashi
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
16
|
Using a genome-scale metabolic network model to elucidate the mechanism of chloroquine action in Plasmodium falciparum. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:138-146. [PMID: 28355531 PMCID: PMC5376308 DOI: 10.1016/j.ijpddr.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022]
Abstract
Chloroquine, long the default first-line treatment against malaria, is now abandoned in large parts of the world because of widespread drug-resistance in Plasmodium falciparum. In spite of its importance as a cost-effective and efficient drug, a coherent understanding of the cellular mechanisms affected by chloroquine and how they influence the fitness and survival of the parasite remains elusive. Here, we used a systems biology approach to integrate genome-scale transcriptomics to map out the effects of chloroquine, identify targeted metabolic pathways, and translate these findings into mechanistic insights. Specifically, we first developed a method that integrates transcriptomic and metabolomic data, which we independently validated against a recently published set of such data for Krebs-cycle mutants of P. falciparum. We then used the method to calculate the effect of chloroquine treatment on the metabolic flux profiles of P. falciparum during the intraerythrocytic developmental cycle. The model predicted dose-dependent inhibition of DNA replication, in agreement with earlier experimental results for both drug-sensitive and drug-resistant P. falciparum strains. Our simulations also corroborated experimental findings that suggest differences in chloroquine sensitivity between ring- and schizont-stage P. falciparum. Our analysis also suggests that metabolic fluxes that govern reduced thioredoxin and phosphoenolpyruvate synthesis are significantly decreased and are pivotal to chloroquine-based inhibition of P. falciparum DNA replication. The consequences of impaired phosphoenolpyruvate synthesis and redox metabolism are reduced carbon fixation and increased oxidative stress, respectively, both of which eventually facilitate killing of the parasite. Our analysis suggests that a combination of chloroquine (or an analogue) and another drug, which inhibits carbon fixation and/or increases oxidative stress, should increase the clearance of P. falciparum from the host system.
Collapse
|
17
|
Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments. PLoS Pathog 2016; 12:e1006094. [PMID: 28027318 PMCID: PMC5189940 DOI: 10.1371/journal.ppat.1006094] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023] Open
Abstract
Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. Malaria kills almost half a million people worldwide every year and more than two hundred million people are diagnosed with this deadly disease annually. It is caused by the protozoan parasite Plasmodium spp., mostly in sub-Saharan Africa and Asia and is transmitted by bites of infected female Anopheles mosquitoes. Due to an increase in resistance to existing drugs and lack of an effective vaccine, new intervention strategies which target development of parasite in human host and transmission through the mosquito vector are urgently needed. In this study, we explored the metabolic capacity of different developmental stages of the malaria parasite to determine carbon source utilization in different host niches and whether any stage-specific switches in metabolism could be exploited in new therapies aimed at eradicating malaria. Using stable isotope labelling and metabolomics, we have identified considerable nutritional adaptability of malaria parasites between the mammalian host and the mosquito vector. Gene disruption in the rodent malaria parasite P. berghei was used to identify the metabolic pathways which are crucial to the survival and development of the parasite. Our data also point at key metabolic differences in different Plasmodium species highlighting the importance of integrating metabolomics analyses with molecular tools and identifies possible transmission blocking candidates for malaria intervention.
Collapse
|
18
|
Sakata-Kato T, Wirth DF. A Novel Methodology for Bioenergetic Analysis of Plasmodium falciparum Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors. ACS Infect Dis 2016; 2:903-916. [PMID: 27718558 DOI: 10.1021/acsinfecdis.6b00101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Given that resistance to all drugs in clinical use has arisen, discovery of new antimalarial drug targets is eagerly anticipated. The Plasmodium mitochondrion has been considered a promising drug target largely based on its significant divergence from the host organelle as well as its involvement in ATP production and pyrimidine biosynthesis. However, the functions of Plasmodium mitochondrial protein complexes and associated metabolic pathways are not fully characterized. Here, we report the development of novel and robust bioenergetic assay protocols for Plasmodium falciparum asexual parasites utilizing a Seahorse Bioscience XFe24 Extracellular Flux Analyzer. These protocols allowed us to simultaneously assess the direct effects of metabolites and inhibitors on mitochondrial respiration and glycolytic activity in real-time with the readout of oxygen consumption rate and extracellular acidification rate. Using saponin-freed parasites at the schizont stage, we found that succinate, malate, glycerol-3-phosphate, and glutamate, but not pyruvate, were able to increase the oxygen consumption rate and that glycerol-3-phosphate dehydrogenase had the largest potential as an electron donor among tested mitochondrial dehydrogenases. Furthermore, we revealed the presence of a glucose-regulated metabolic shift between oxidative phosphorylation and glycolysis. We measured proton leak and reserve capacity and found bioenergetic evidence for oxidative phosphorylation in erythrocytic stage parasites but at a level much lower than that observed in mammalian cells. Lastly, we developed an assay platform for target identification and mode of action studies of mitochondria-targeting antimalarials. This study provides new insights into the bioenergetics and metabolomics of the Plasmodium mitochondria.
Collapse
Affiliation(s)
- Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Kersting D, Krüger M, Sattler JM, Mueller AK, Kaiser A. A suggested vital function for eIF-5A and dhs genes during murine malaria blood-stage infection. FEBS Open Bio 2016; 6:860-72. [PMID: 27516964 PMCID: PMC4971841 DOI: 10.1002/2211-5463.12093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/07/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022] Open
Abstract
The biological function of the post-translational modification hypusine in the eukaryotic initiation factor 5A (EIF-5A) in eukaryotes is still not understood. Hypusine is formed by two sequential enzymatic steps at a specific lysine residue in the precursor protein EIF-5A. One important biological function of EIF-5A which was recently identified is the translation of polyproline-rich mRNA, suggesting its biological relevance in a variety of biological processes. Hypusinated eIF-5A controls the proliferation of cancer cells and inflammatory processes in malaria. It was shown that pharmacological inhibition of the enzymes involved in this pathway, deoxyhypusine synthase (DHS) and the deoxyhypusine hydroxylase (DOHH), arrested the growth of malaria parasites. Down-regulation of both the malarial eIF-5A and dhs genes by in vitro and in vivo silencing led to decreased transcript levels and protein expression and, in turn, to low parasitemia, confirming a critical role of hypusination in eIF-5A for proliferation in Plasmodium. To further investigate whether eIF-5A and the activating enzyme DHS are essential for Plasmodium erythrocytic stages, targeted gene disruption was performed in the rodent malaria parasite Plasmodium berghei. Full disruption of both genes was not successful; instead parasites harboring the episome for eIF-5A and dhs genes were obtained, suggesting that these genes may perform vital functions during the pathogenic blood cell stage. Next, a knock-in strategy was pursued for both endogenous genes eIF-5A and dhs from P. berghei. The latter resulted in viable recombinant parasites, strengthening the observation that they might be essential for proliferation during asexual development of the malaria parasite.
Collapse
Affiliation(s)
- David Kersting
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| | - Mirko Krüger
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| | - Julia M Sattler
- Parasitology Unit Centre for Infectious Diseases University Hospital Heidelberg Germany; Centre for Infectious Diseases, Integrative Parasitology University Hospital Heidelberg Germany
| | - Ann-Kristin Mueller
- Parasitology Unit Centre for Infectious Diseases University Hospital Heidelberg Germany; German Center for Infectious Diseases Heidelberg Germany
| | - Annette Kaiser
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| |
Collapse
|
20
|
Abstract
Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts.
Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion.
Toxoplasma gondii and
Theileria sp., besides
Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol (
T. gondii and
Plasmodium) and how a secreted protein can immortalize the host cell (
Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against
T. gondii and the liver stages of
Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected
Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen.
Collapse
Affiliation(s)
- Frank Seeber
- FG16: Mycotic and parasitic agents and mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Svenja Steinfelder
- Institute of Immunology, Center of Infection Medicine, Free University Berlin, Berlin, Germany
| |
Collapse
|
21
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
22
|
Canuto GAB, da Cruz PLR, Faccio AT, Klassen A, Tavares MFM. Neglected diseases prioritized in Brazil under the perspective of metabolomics: A review. Electrophoresis 2015; 36:2336-2347. [PMID: 26095472 DOI: 10.1002/elps.201500102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022]
Abstract
This review article compiles in a critical manner literature publications regarding seven neglected diseases (ND) prioritized in Brazil (Chagas disease, dengue, leishmaniasis, leprosy, malaria, schistosomiasis, and tuberculosis) under the perspective of metabolomics. Both strategies, targeted and untargeted metabolomics, were considered in the compilation. The majority of studies focused on biomarker discovery for diagnostic purposes, and on the search of novel or alternative therapies against the ND under consideration, although temporal progression of the infection at metabolic level was also addressed. Tuberculosis, followed by schistosomiasis, malaria and leishmaniasis are the diseases that received larger attention in terms of number of publications. Dengue and leprosy were the least studied and Chagas disease received intermediate attention. NMR and HPLC-MS technologies continue to predominate among the analytical platforms of choice in the metabolomic studies of ND. A plethora of metabolites were identified in the compiled studies, with expressive predominancy of amino acids, organic acids, carbohydrates, nucleosides, lipids, fatty acids, and derivatives.
Collapse
Affiliation(s)
- Gisele A B Canuto
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Pedro L R da Cruz
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea T Faccio
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Klassen
- Federal University of Sao Paulo, Diadema, SP, Brazil
| | | |
Collapse
|
23
|
Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015; 20:10511-34. [PMID: 26060916 PMCID: PMC6272303 DOI: 10.3390/molecules200610511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.
Collapse
|
24
|
Srivastava A, Creek DJ, Evans KJ, De Souza D, Schofield L, Müller S, Barrett MP, McConville MJ, Waters AP. Host reticulocytes provide metabolic reservoirs that can be exploited by malaria parasites. PLoS Pathog 2015; 11:e1004882. [PMID: 26042734 PMCID: PMC4456406 DOI: 10.1371/journal.ppat.1004882] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/14/2015] [Indexed: 11/18/2022] Open
Abstract
Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5'-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites.
Collapse
Affiliation(s)
- Anubhav Srivastava
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Darren J. Creek
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Krystal J. Evans
- Walter and Eliza Hall Institute of Medical Research, Division of Infection and Immunity, Parkville, Victoria, Australia
| | - David De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Louis Schofield
- Walter and Eliza Hall Institute of Medical Research, Division of Infection and Immunity, Parkville, Victoria, Australia
- Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Australia
| | - Sylke Müller
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Malcolm J. McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Ke H, Lewis IA, Morrisey JM, McLean KJ, Ganesan SM, Painter HJ, Mather MW, Jacobs-Lorena M, Llinás M, Vaidya AB. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle. Cell Rep 2015; 11:164-74. [PMID: 25843709 DOI: 10.1016/j.celrep.2015.03.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/11/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022] Open
Abstract
New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO) lines that delete six of the eight mitochondrial tricarboxylic acid (TCA) cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of (13)C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.
Collapse
Affiliation(s)
- Hangjun Ke
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ian A Lewis
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Joanne M Morrisey
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Kyle J McLean
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Suresh M Ganesan
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Heather J Painter
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael W Mather
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Manuel Llinás
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
26
|
Creek DJ, Mazet M, Achcar F, Anderson J, Kim DH, Kamour R, Morand P, Millerioux Y, Biran M, Kerkhoven EJ, Chokkathukalam A, Weidt SK, Burgess KEV, Breitling R, Watson DG, Bringaud F, Barrett MP. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog 2015; 11:e1004689. [PMID: 25775470 PMCID: PMC4361558 DOI: 10.1371/journal.ppat.1004689] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/19/2015] [Indexed: 01/21/2023] Open
Abstract
Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate. In this work we have followed the distribution of carbon derived from glucose in bloodstream form trypanosomes, the causative agent of African trypanosomiasis, revealing it to enter a diverse range of metabolites. The work involved using 13C-labelled glucose and following the fate of the labelled carbon with an LC-MS based metabolomics platform. Beyond glycolysis and the oxidative branch of the pentose phosphate pathway the label entered lipid biosynthesis both through glycerol 3-phosphate and also acetate. Glucose derived carbon also entered nucleotide synthesis through ribose and pyrimidine synthesis through oxaloacetate-derived aspartate. Appreciable quantities of the carboxylic acids succinate and malate were identified, although labelling patterns indicate they are not TCA cycle derived. Amino sugars and sugar nucleotides were also labelled as was inositol used in protein modification but not in inositol phospholipid headgroup production. We confirm active and essential oxaloacetate production in bloodstream form trypanosomes and show that phosphoenolpyruvate carboxykinase is essential to these parasites using RNA interference. The amount of glucose entering these metabolites is minor compared to the quantity that enters pyruvate excreted from the cell, but the observation that enzymes contributing to the metabolism of glucose beyond glycolysis can be essential offers potential new targets for chemotherapy against trypanosomiasis.
Collapse
Affiliation(s)
- Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Fiona Achcar
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jana Anderson
- Department of Public Health, Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ruwida Kamour
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Achuthanunni Chokkathukalam
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karl E. V. Burgess
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Michael P. Barrett
- Wellcome Trust Centre of Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Targeting bacterial central metabolism for drug development. ACTA ACUST UNITED AC 2014; 21:1423-32. [PMID: 25442374 DOI: 10.1016/j.chembiol.2014.08.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/25/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
Abstract
Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs.
Collapse
|
28
|
Vincent IM, Barrett MP. Metabolomic-based strategies for anti-parasite drug discovery. ACTA ACUST UNITED AC 2014; 20:44-55. [PMID: 25281738 DOI: 10.1177/1087057114551519] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metabolomics-based studies are proving of great utility in the analysis of modes of action (MOAs) and resistance mechanisms of drugs in parasitic protozoa. They have helped to determine the MOA of eflornithine, half of the gold standard combination therapy in use against human African trypanosomiasis (HAT), as well as the mechanism of resistance to this drug. In Leishmania, metabolomics has also given insight into the MOA of miltefosine, an alkylphospholipid. Several studies on antimony resistance in Leishmania have been conducted, analyzing the metabolic content of resistant lines, offering clues as to the MOA of this class of drugs. A study of chloroquine resistance in Plasmodium falciparum combined metabolomics techniques with other genetic and proteomic techniques to offer new insight into the role of the PfCRT protein. The MOA and mechanism of resistance to a group of halogenated pyrimidines in Trypanosoma brucei have also recently been elucidated. Effective as metabolomics techniques are, care must be taken in the design and implementation of these experiments, to ensure the resulting data are meaningful. This review outlines the steps required to conduct a metabolomics experiment as well as provide an overview of metabolomics-based drug research in protozoa to date.
Collapse
Affiliation(s)
- Isabel M Vincent
- The Glasgow Polyomics Facility and Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| | - Michael P Barrett
- The Glasgow Polyomics Facility and Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Oppenheim RD, Creek DJ, Macrae JI, Modrzynska KK, Pino P, Limenitakis J, Polonais V, Seeber F, Barrett MP, Billker O, McConville MJ, Soldati-Favre D. BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathog 2014; 10:e1004263. [PMID: 25032958 PMCID: PMC4102578 DOI: 10.1371/journal.ppat.1004263] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/06/2014] [Indexed: 12/27/2022] Open
Abstract
While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens. The mitochondrial tricarboxylic acid (TCA) cycle is one of the core metabolic pathways of eukaryotic cells, which contributes to cellular energy generation and provision of essential intermediates for macromolecule synthesis. Apicomplexan parasites possess the complete sets of genes coding for the TCA cycle. However, they lack a key mitochondrial enzyme complex that is normally required for production of acetyl-CoA from pyruvate, allowing further oxidation of glycolytic intermediates in the TCA cycle. This study unequivocally resolves how acetyl-CoA is generated in the mitochondrion using a combination of genetic, biochemical and metabolomic approaches. Specifically, we show that T. gondii and P. bergei utilize a second mitochondrial dehydrogenase complex, BCKDH, that is normally involved in branched amino acid catabolism, to convert pyruvate to acetyl-CoA and further catabolize glucose in the TCA cycle. In T. gondii, loss of BCKDH leads to global defects in glucose metabolism, increased gluconeogenesis and a marked attenuation of growth in host cells and virulence in animals. In P. bergei, loss of BCKDH leads to a defect in parasite proliferation in mature red blood cells, although the mutant retains the capacity to proliferate within 'immature' reticulocytes, highlighting the role of host metabolism/physiology on the development of Plasmodium asexual stages.
Collapse
Affiliation(s)
- Rebecca D. Oppenheim
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Darren J. Creek
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Wellcome Trust Centre for Molecular Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - James I. Macrae
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- The National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | - Paco Pino
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Limenitakis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valerie Polonais
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frank Seeber
- FG16 - Mycotic and parasitic agents and mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|