1
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Radhakrishnan R, Sowd GA, Dos Santos NFB, Ganser-Pornillos BK, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. mBio 2025; 16:e0016925. [PMID: 40013779 PMCID: PMC11980554 DOI: 10.1128/mbio.00169-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here, we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, providing insights for the development of antiretroviral therapies, such as lenacapavir. IMPORTANCE Human immunodeficiency virus (HIV) encodes a protein that forms a conical shell, called a capsid, that surrounds its genome. The capsid has been shown to protect the viral genome from innate immune sensors in the cell, to help transport the genome toward and into the nucleus, to keep the components of reverse transcription together for conversion of the RNA genome into DNA, and to target viral DNA integration into specific regions of the host genome. In this study, we show that HIV hijacks two host proteins to bind to capsid sequentially in order to choreograph the precise order and timing of these virus replication steps. Disruption of binding of these proteins to capsid or their location in the cell leads to defective HIV nuclear import, integration, and infection. Mutations that exist in the capsid protein of HIV in infected individuals may reduce the efficacy of antiretroviral drugs that target capsid.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajalingham Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nayara F. B. Dos Santos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Barbie K. Ganser-Pornillos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Flick H, Venbakkam A, Singh PK, Layish B, Huang SW, Radhakrishnan R, Kvaratskhelia M, Engelman AN, Kane M. Interplay between the cyclophilin homology domain of RANBP2 and MX2 regulates HIV-1 capsid dependencies on nucleoporins. mBio 2025; 16:e0264624. [PMID: 39853118 PMCID: PMC11898759 DOI: 10.1128/mbio.02646-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2ΔCyp cells. Importantly, although MX2 still localized to the nuclear pore complex in RANBP2ΔCyp cells, antiviral activity against HIV-1 was decreased. By generating cells expressing specific point mutations in the RANBP2-Cyp domain, we determined that the effect of the RANBP2-Cyp domain on MX2 anti-HIV-1 activity is due to direct interactions between RANBP2 and CA. We further determined that CypA and RANBP2-Cyp have similar effects on HIV-1 integration targeting. Finally, we found that the Nup requirements for HIV infection and MX2 activity were altered in cells lacking the RANBP2-Cyp domain. These findings demonstrate that the RANBP2-Cyp domain affects viral infection and MX2 sensitivity by altering CA-specific interactions with cellular factors that affect nuclear import and integration targeting. IMPORTANCE Human immunodeficiency virus 1 (HIV-1) entry into the nucleus is an essential step in viral replication that involves complex interactions between the viral capsid (CA) and multiple cellular proteins, including nucleoporins (Nups) such as RANBP2. Nups also mediate the function of the antiviral protein myxovirus resistance 2 (MX2); however, determining the precise role of Nups in HIV infection has proved challenging due to the complex nature of the nuclear pore complex (NPC) and significant pleiotropic effects elicited by Nup depletion. We have used precise gene editing to assess the role of the cyclophilin domain of RANBP2 in HIV-1 infection and MX2 activity. We find that this domain affects viral infection, nucleoporin requirements, MX2 sensitivity, and integration targeting in a CA-specific manner, providing detailed insights into how RANBP2 contributes to HIV-1 infection.
Collapse
Affiliation(s)
- Haley Flick
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ananya Venbakkam
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Pittsburgh, Pennsylvania, USA
| | - Parmit K. Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Bailey Layish
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rajalingam Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Kane
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Xue G, Yu HJ, Buffone C, Huang SW, Lee K, Goh SL, Gres AT, Guney MH, Sarafianos SG, Luban J, Diaz-Griffero F, KewalRamani VN. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat Commun 2023; 14:3782. [PMID: 37355754 PMCID: PMC10290713 DOI: 10.1038/s41467-023-39146-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/01/2023] [Indexed: 06/26/2023] Open
Abstract
The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion.
Collapse
Affiliation(s)
- Guangai Xue
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, 21702, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Szu-Wei Huang
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - KyeongEun Lee
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shih Lin Goh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anna T Gres
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
| | - Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Stefan G Sarafianos
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
- Bond Life Sciences Center, MMI, Biochemistry, University of Missouri, Columbia, MO, 65201, USA
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
McFadden WM, Snyder AA, Kirby KA, Tedbury PR, Raj M, Wang Z, Sarafianos SG. Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology 2021; 18:41. [PMID: 34937567 PMCID: PMC8693499 DOI: 10.1186/s12977-021-00583-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology. ![]()
Collapse
Affiliation(s)
- William M McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexa A Snyder
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Nuclear Import of HIV-1. Viruses 2021; 13:2242. [PMID: 34835048 PMCID: PMC8619967 DOI: 10.3390/v13112242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial-temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.
Collapse
Affiliation(s)
| | | | | | | | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; (Q.S.); (C.W.); (C.F.); (T.N.T.)
| |
Collapse
|
7
|
Ingram Z, Fischer DK, Ambrose Z. Disassembling the Nature of Capsid: Biochemical, Genetic, and Imaging Approaches to Assess HIV-1 Capsid Functions. Viruses 2021; 13:v13112237. [PMID: 34835043 PMCID: PMC8618418 DOI: 10.3390/v13112237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Douglas K. Fischer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
8
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
9
|
Xu S, Sun L, Dick A, Zalloum WA, Huang T, Meuser ME, Zhang X, Tao Y, Cherukupalli S, Ding D, Ding X, Gao S, Jiang X, Kang D, De Clercq E, Pannecouque C, Cocklin S, Liu X, Zhan P. Design, synthesis, and mechanistic investigations of phenylalanine derivatives containing a benzothiazole moiety as HIV-1 capsid inhibitors with improved metabolic stability. Eur J Med Chem 2021; 227:113903. [PMID: 34653770 DOI: 10.1016/j.ejmech.2021.113903] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Further clinical development of PF74, a lead compound targeting HIV-1 capsid, is impeded by low antiviral activity and inferior metabolic stability. By modifying the benzene (region I) and indole of PF74, we identified two potent compounds (7m and 7u) with significantly improved metabolic stability. Compared to PF74, 7u displayed greater metabolic stability in human liver microsomes (HLMs) with half-life (t1/2) 109-fold that of PF74. Moreover, mechanism of action (MOA) studies demonstrated that 7m and 7u effectively mirrored the MOA of compounds that interact within the PF74 interprotomer pocket, showing direct and robust interactions with recombinant CA, and 7u displaying antiviral effects in both the early and late stages of HIV-1 replication. Furthermore, MD simulation corroborated that 7u was bound to the PF74 binding site, and the results of the online molinspiration software predicted that 7m and 7u had desirable physicochemical properties. Unexpectedly, this series of compounds exhibited better antiviral activity than PF74 against HIV-2, represented by compound 7m whose anti-HIV-2 activity was almost 5 times increased potency over PF74. Therefore, we have rationally redesigned the PF74 chemotype to inhibitors with novel structures and enhanced metabolic stability in this study. We hope that these new compounds can serve as a blueprint for developing a new generation of HIV treatment regimens.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, PA, 19102, USA
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882, Amman, 11821, Jordan
| | - Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Megan E Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, PA, 19102, USA
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium.
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, PA, 19102, USA.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
AlBurtamani N, Paul A, Fassati A. The Role of Capsid in the Early Steps of HIV-1 Infection: New Insights into the Core of the Matter. Viruses 2021; 13:v13061161. [PMID: 34204384 PMCID: PMC8234406 DOI: 10.3390/v13061161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
In recent years, major advances in research and experimental approaches have significantly increased our knowledge on the role of the HIV-1 capsid in the virus life cycle, from reverse transcription to integration and gene expression. This makes the capsid protein a good pharmacological target to inhibit HIV-1 replication. This review covers our current understanding of the role of the viral capsid in the HIV-1 life cycle and its interaction with different host factors that enable reverse transcription, trafficking towards the nucleus, nuclear import and integration into host chromosomes. It also describes different promising small molecules, some of them in clinical trials, as potential targets for HIV-1 therapy.
Collapse
|
11
|
Toccafondi E, Lener D, Negroni M. HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Front Microbiol 2021; 12:652486. [PMID: 33868211 PMCID: PMC8046902 DOI: 10.3389/fmicb.2021.652486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The first step of the intracellular phase of retroviral infection is the release of the viral capsid core in the cytoplasm. This structure contains the viral genetic material that will be reverse transcribed and integrated into the genome of infected cells. Up to recent times, the role of the capsid core was considered essentially to protect this genetic material during the earlier phases of this process. However, increasing evidence demonstrates that the permanence inside the cell of the capsid as an intact, or almost intact, structure is longer than thought. This suggests its involvement in more aspects of the infectious cycle than previously foreseen, particularly in the steps of viral genomic material translocation into the nucleus and in the phases preceding integration. During the trip across the infected cell, many host factors are brought to interact with the capsid, some possessing antiviral properties, others, serving as viral cofactors. All these interactions rely on the properties of the unique component of the capsid core, the capsid protein CA. Likely, the drawback of ensuring these multiple functions is the extreme genetic fragility that has been shown to characterize this protein. Here, we recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular in the light of the most recent findings.
Collapse
Affiliation(s)
| | - Daniela Lener
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Matteo Negroni
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Selyutina A, Persaud M, Simons LM, Bulnes-Ramos A, Buffone C, Martinez-Lopez A, Scoca V, Di Nunzio F, Hiatt J, Marson A, Krogan NJ, Hultquist JF, Diaz-Griffero F. Cyclophilin A Prevents HIV-1 Restriction in Lymphocytes by Blocking Human TRIM5α Binding to the Viral Core. Cell Rep 2021; 30:3766-3777.e6. [PMID: 32187548 DOI: 10.1016/j.celrep.2020.02.100] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Disruption of cyclophilin A (CypA)-capsid interactions affects HIV-1 replication in human lymphocytes. To understand this mechanism, we utilize human Jurkat cells, peripheral blood mononuclear cells (PBMCs), and CD4+ T cells. Our results show that inhibition of HIV-1 infection caused by disrupting CypA-capsid interactions is dependent on human tripartite motif 5α (TRIM5αhu), showing that TRIM5αhu restricts HIV-1 in CD4+ T cells. Accordingly, depletion of TRIM5αhu in CD4+ T cells rescues HIV-1 that fail to interact with CypA, such as HIV-1-P90A. We found that TRIM5αhu binds to the HIV-1 core. Disruption of CypA-capsid interactions fail to affect HIV-1-A92E/G94D infection, correlating with the loss of TRIM5αhu binding to HIV-1-A92E/G94D cores. Disruption of CypA-capsid interactions in primary cells has a greater inhibitory effect on HIV-1 when compared to Jurkat cells. Consistent with TRIM5α restriction, disruption of CypA-capsid interactions in CD4+ T cells inhibits reverse transcription. Overall, our results reveal that CypA binding to the core protects HIV-1 from TRIM5αhu restriction.
Collapse
Affiliation(s)
- Anastasia Selyutina
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Angel Bulnes-Ramos
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Viviana Scoca
- Molecular Virology and Vaccinology Unit, CNRS UMR 3569, Department of Virology, Institut Pasteur, Paris, France
| | - Francesca Di Nunzio
- Molecular Virology and Vaccinology Unit, CNRS UMR 3569, Department of Virology, Institut Pasteur, Paris, France
| | - Joseph Hiatt
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Alexander Marson
- Department of Medicine and Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, QBI, University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
13
|
Zhuang S, Torbett BE. Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Viruses 2021; 13:417. [PMID: 33807824 PMCID: PMC8001122 DOI: 10.3390/v13030417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.
Collapse
Affiliation(s)
- Shentian Zhuang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
14
|
Novel PF74-like small molecules targeting the HIV-1 capsid protein: Balance of potency and metabolic stability. Acta Pharm Sin B 2021; 11:810-822. [PMID: 33777683 PMCID: PMC7982424 DOI: 10.1016/j.apsb.2020.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Of all known small molecules targeting human immunodeficiency virus (HIV) capsid protein (CA), PF74 represents by far the best characterized chemotype, due to its ability to confer antiviral phenotypes in both early and late phases of viral replication. However, the prohibitively low metabolic stability renders PF74 a poor antiviral lead. We report herein our medicinal chemistry efforts toward identifying novel and metabolically stable small molecules targeting the PF74 binding site. Specifically, we replaced the inter-domain-interacting, electron-rich indole ring of PF74 with less electron-rich isosteres, including imidazolidine-2,4-dione, pyrimidine-2,4-dione, and benzamide, and identified four potent antiviral compounds (10, 19, 20 and 26) with markedly improved metabolic stability. Compared to PF74, analog 20 exhibited similar submicromolar potency, and much longer (51-fold) half-life in human liver microsomes (HLMs). Molecular docking corroborated that 20 binds to the PF74 binding site, and revealed distinct binding interactions conferred by the benzamide moiety. Collectively, our data support compound 20 as a promising antiviral lead.
Collapse
Key Words
- ART, antiretroviral therapy
- CA, capsid protein
- CACTD, CA C-terminal domain
- CANTD, CA N-terminal domain
- Capsid protein
- HBA, H-bond acceptor
- HBD, H-bond donor
- HIV, human immunodeficiency virus
- HIV-1
- HLM, human liver microsome
- MLM, mouse liver microsome
- Microsomal stability
- PF74
- PK, pharmacokinetic
- SAR, structure‒activity relationship
- TSA, thermal shift assay
Collapse
|
15
|
Liao Y, Luo D, Peng K, Zeng Y. Cyclophilin A: a key player for etiological agent infection. Appl Microbiol Biotechnol 2021; 105:1365-1377. [PMID: 33492451 PMCID: PMC7829623 DOI: 10.1007/s00253-021-11115-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Abstract Cyclophilin A (CypA), a key member of the immunophilin family, is the most abundantly expressed isozyme of the 18 known human cyclophilins. Besides acting as an intracellular receptor for cyclosporine A, CypA plays a vital role in microorganismal infections, cardiovascular diseases, liver diseases, kidney diseases, neurodegeneration, cancer, rheumatoid arthritis, periodontitis, sepsis, asthma, and aging. This review focuses on the pivotal roles of CypA in the infection of etiological agents, which manifests mainly in promoting or inhibiting viral replication based on the host cell type and viral species. CypA can interact with viral proteins and thus regulate the replication cycle of the virus. CypA is involved in pathogenic bacterial infections by regulating the formation of host actin skeleton or membrane translocation of bacterial toxins, or mediated the adhesion of Mycoplasma genitalium during the infection processes by acting as a cellular receptor of M. genitalium. CypA also plays a critical role in infection or the life cycle of certain parasites or host immune regulation. Moreover, we summarized the current understanding of CypA inhibitors acting as host-targeting antiviral agents, thus opening an avenue for the treatment of multiple viral infections due to their broad antiviral effects and ability to effectively prevent drug resistance. Therefore, the antiviral effect of CypA has the potential to promote CypA inhibitors as host-targeting drugs to CypA-involved etiological agent infections and human diseases. Key points • CypA is involved in the replication and infection of several viruses, pathogenic bacteria, mycoplasma, and parasites. • CypA inhibitors are in a strong position to inhibit the infection of viruses, bacterial, and mycoplasma.
Collapse
Affiliation(s)
- Yating Liao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, No. 28, West Changsheng Road, Hengyang City, 421001 Hunan Province People’s Republic of China
| | - Dan Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, No. 28, West Changsheng Road, Hengyang City, 421001 Hunan Province People’s Republic of China
| | - Kailan Peng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, No. 28, West Changsheng Road, Hengyang City, 421001 Hunan Province People’s Republic of China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, No. 28, West Changsheng Road, Hengyang City, 421001 Hunan Province People’s Republic of China
- Department of Dermatology and Venereology, The First Affiliated Hospital, University of South China, Hengyang City, 421001 Hunan Province People’s Republic of China
| |
Collapse
|
16
|
Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res 2021; 49:621-635. [PMID: 33337475 PMCID: PMC7826272 DOI: 10.1093/nar/gkaa1207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Engelman AN. HIV Capsid and Integration Targeting. Viruses 2021; 13:125. [PMID: 33477441 PMCID: PMC7830116 DOI: 10.3390/v13010125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Integration of retroviral reverse transcripts into the chromosomes of the cells that they infect is required for efficient viral gene expression and the inheritance of viral genomes to daughter cells. Before integration can occur, retroviral reverse transcription complexes (RTCs) must access the nuclear environment where the chromosomes reside. Retroviral integration is non-random, with different types of virus-host interactions impacting where in the host chromatin integration takes place. Lentiviruses such as HIV efficiently infect interphase cells because their RTCs have evolved to usurp cellular nuclear import transport mechanisms, and research over the past decade has revealed specific interactions between the HIV capsid protein and nucleoporin (Nup) proteins such as Nup358 and Nup153. The interaction of HIV capsid with cleavage and polyadenylation specificity factor 6 (CPSF6), which is a component of the cellular cleavage and polyadenylation complex, helps to dictate nuclear import as well as post-nuclear RTC invasion. In the absence of the capsid-CPSF6 interaction, RTCs are precluded from reaching nuclear speckles and gene-rich regions of chromatin known as speckle-associated domains, and instead mis-target lamina-associated domains out at the nuclear periphery. Highlighting this area of research, small molecules that inhibit capsid-host interactions important for integration site targeting are highly potent antiviral compounds.
Collapse
Affiliation(s)
- Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; ; Tel.: +1-617-632-4361
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Abstract
The COVID-19 pandemic suggests that bat innate immune systems are insufficiently characterized relative to the medical importance of these animals. Retroviruses, e.g., HIV-1, can be severe pathogens when they cross species barriers, and bat restrictions corresponding to retroviruses are comparatively unstudied. Here, we compared the abilities of retroviruses from three genera (Lentivirus, Gammaretrovirus, and Spumavirus) to infect cells of the large fruit-eating bat P. alecto and other mammals. We identified a major, specific postentry restriction to primate lentiviruses. HIV-1 and SIVmac are potently blocked at early life cycle steps, but nonprimate lentiviruses and foamy retroviruses are entirely unrestricted. Despite acting postentry and in a CypA-dependent manner with features reminiscent of antiretroviral factors from other mammals, this restriction was not saturable with virus-like particles and was independent of P. alecto TRIM5, TRIM21, TRIM22, TRIM34, and MX2. These results identify a novel restriction and highlight cyclophilin-capsid interactions as ancient species-specific determinants of retroviral infection. Bats are primary reservoirs for multiple lethal human viruses, such as Ebola, Nipah, Hendra, rabies, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and, most recently, SARS-CoV-2. The innate immune systems of these immensely abundant, anciently diverged mammals remain insufficiently characterized. While bat genomes contain many endogenous retroviral elements indicative of past exogenous infections, little is known about restrictions to extant retroviruses. Here, we describe a major postentry restriction in cells of the yinpterochiropteran bat Pteropus alecto. Primate lentiviruses (HIV-1, SIVmac) were potently blocked at early life cycle steps, with up to 1,000-fold decreases in infectivity. The block was specific, because nonprimate lentiviruses such as equine infectious anemia virus and feline immunodeficiency virus were unimpaired, as were foamy retroviruses. Interspecies heterokaryons demonstrated a dominant block consistent with restriction of incoming viruses. Several features suggested potential TRIM5 (tripartite motif 5) or myxovirus resistance protein 2 (MX2) protein restriction, including postentry action, cyclosporine sensitivity, and reversal by capsid cyclophilin A (CypA) binding loop mutations. Viral nuclear import was significantly reduced, and this deficit was substantially rescued by cyclosporine treatment. However, saturation with HIV-1 virus-like particles did not relieve the restriction at all. P. alecto TRIM5 was inactive against HIV-1 although it blocked the gammaretrovirus N-tropic murine leukemia virus. Despite major divergence in a critical N-terminal motif required for human MX2 activity, P. alecto MX2 had anti-HIV activity. However, this did not quantitatively account for the restriction and was independent of and synergistic with an additional CypA-dependent restriction. These results reveal a novel, specific restriction to primate lentiviruses in the Pteropodidae and advance understanding of bat innate immunity.
Collapse
|
19
|
Wang L, Casey MC, Vernekar SKV, Sahani RL, Kankanala J, Kirby KA, Du H, Hachiya A, Zhang H, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Novel HIV-1 capsid-targeting small molecules of the PF74 binding site. Eur J Med Chem 2020; 204:112626. [PMID: 32814250 DOI: 10.1016/j.ejmech.2020.112626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
The PF74 binding site in HIV-1 capsid protein (CA) is a compelling antiviral drug target. Although PF74 confers mechanistically distinct antiviral phenotypes by competing against host factors for CA binding, it suffers from prohibitively low metabolic stability. Therefore, there has been increasing interest in designing novel sub-chemotypes of PF74 with similar binding mode and improved metabolic stability. We report herein our efforts to explore the inter-domain interacting indole moiety for designing novel CA-targeting small molecules. Our design includes simple substitution on the indole ring, and more importantly, novel sub-chemotypes with the indole moiety replaced with a few less electron-rich rings. All 56 novel analogs were synthesized and evaluated for antiviral activity, cytotoxicity, and impact on CA hexamer stability. Selected analogs were tested for metabolic stability in liver microsomes. Molecular modeling was performed to verify compound binding to the PF74 site. In the end, 5-hydroxyindole analogs (8,9 and 12) showed improved potency (up to 20-fold) over PF74. Of the novel sub-chemotypes, α- and β-naphthyl analogs (33 and 27) exhibited sub micromolar antiviral potencies comparable to that of PF74. Interestingly, although only moderately inhibiting HIV-1 (single-digit micromolar EC50s), analogs of the 2-indolone sub-chemotype consistently lowered the melting point (Tm) of CA hexamers, some with improved metabolic stability over PF74.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Sanjeev Kumar V Vernekar
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rajkumar Lalji Sahani
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Atsuko Hachiya
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, 460-0001, Japan
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
Wang L, Casey MC, Vernekar SKV, Do HT, Sahani RL, Kirby KA, Du H, Hachiya A, Zhang H, Tedbury PR, Xie J, Sarafianos SG, Wang Z. Chemical profiling of HIV-1 capsid-targeting antiviral PF74. Eur J Med Chem 2020; 200:112427. [PMID: 32438252 DOI: 10.1016/j.ejmech.2020.112427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
Abstract
The capsid protein (CA) of HIV-1 plays essential roles in multiple steps of the viral replication cycle by assembling into functional capsid core, controlling the kinetics of uncoating and nuclear entry, and interacting with various host factors. Targeting CA represents an attractive yet underexplored antiviral approach. Of all known CA-targeting small molecule chemotypes, the peptidomimetic PF74 is particularly interesting because it binds to the same pocket used by a few important host factors, resulting in highly desirable antiviral phenotypes. However, further development of PF74 entails understanding its pharmacophore and mitigating its poor metabolic stability. We report herein the design, synthesis, and evaluation of a large number of PF74 analogs aiming to provide a comprehensive chemical profiling of PF74 and advance the understanding on its detailed binding mechanism and pharmacophore. The analogs, containing structural variations mainly in the aniline domain and/or the indole domain, were assayed for their effect on stability of CA hexamers, antiviral activity, and cytotoxicity. Selected analogs were also tested for metabolic stability in liver microsomes, alone or in the presence of a CYP3A inhibitor. Collectively, our studies identified important pharmacophore elements and revealed additional binding features of PF74, which could aid in future design of improved ligands to better probe the molecular basis of CA-host factor interactions, design strategies to disrupt them, and ultimately identify viable CA-targeting antiviral leads.
Collapse
Affiliation(s)
- Lei Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Sanjeev Kumar V Vernekar
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ha T Do
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rajkumar Lalji Sahani
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haijuan Du
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Atsuko Hachiya
- Clinical Research Center, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, 460-0001, Japan
| | - Huanchun Zhang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Toward Structurally Novel and Metabolically Stable HIV-1 Capsid-Targeting Small Molecules. Viruses 2020; 12:v12040452. [PMID: 32316297 PMCID: PMC7232165 DOI: 10.3390/v12040452] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
HIV-1 capsid protein (CA) plays an important role in many steps of viral replication and represents an appealing antiviral target. Several CA-targeting small molecules of various chemotypes have been studied, but the peptidomimetic PF74 has drawn particular interest due to its potent antiviral activity, well-characterized binding mode, and unique mechanism of action. Importantly, PF74 competes against important host factors for binding, conferring highly desirable antiviral phenotypes. However, further development of PF74 is hindered by its prohibitively poor metabolic stability, which necessitates the search for structurally novel and metabolically stable chemotypes. We have conducted a pharmacophore-based shape similarity search for compounds mimicking PF74. We report herein the analog synthesis and structure-activity relationship (SAR) of two hits from the search, and a third hit designed via molecular hybridization. All analogs were characterized for their effect on CA hexamer stability, antiviral activity, and cytotoxicity. These assays identified three active compounds that moderately stabilize CA hexamer and inhibit HIV-1. The most potent analog (10) inhibited HIV-1 comparably to PF74 but demonstrated drastically improved metabolic stability in liver microsomes (31 min vs. 0.7 min t1/2). Collectively, the current studies identified a structurally novel and metabolically stable PF74-like chemotype for targeting HIV-1 CA.
Collapse
|
22
|
Kane M, Rebensburg SV, Takata MA, Zang TM, Yamashita M, Kvaratskhelia M, Bieniasz PD. Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. eLife 2018; 7:e35738. [PMID: 30084827 PMCID: PMC6101944 DOI: 10.7554/elife.35738] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
HIV-1 accesses the nuclear DNA of interphase cells via a poorly defined process involving functional interactions between the capsid protein (CA) and nucleoporins (Nups). Here, we show that HIV-1 CA can bind multiple Nups, and that both natural and manipulated variation in Nup levels impacts HIV-1 infection in a manner that is strikingly dependent on cell-type, cell-cycle, and cyclophilin A (CypA). We also show that Nups mediate the function of the antiviral protein MX2, and that MX2 can variably inhibit non-viral NLS function. Remarkably, both enhancing and inhibiting effects of cyclophilin A and MX2 on various HIV-1 CA mutants could be induced or abolished by manipulating levels of the Nup93 subcomplex, the Nup62 subcomplex, NUP88, NUP214, RANBP2, or NUP153. Our findings suggest that several Nup-dependent 'pathways' are variably exploited by HIV-1 to target host DNA in a cell-type, cell-cycle, CypA and CA-sequence dependent manner, and are differentially inhibited by MX2.
Collapse
Affiliation(s)
- Melissa Kane
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
| | - Stephanie V Rebensburg
- Division of Infectious DiseasesUniversity of Colorado School of MedicineAuroraUnited States
| | - Matthew A Takata
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
| | - Trinity M Zang
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Mamuka Kvaratskhelia
- Division of Infectious DiseasesUniversity of Colorado School of MedicineAuroraUnited States
| | - Paul D Bieniasz
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
23
|
Meyerson NR, Warren CJ, Vieira DASA, Diaz-Griferro F, Sawyer SL. Species-specific vulnerability of RanBP2 shaped the evolution of SIV as it transmitted in African apes. PLoS Pathog 2018. [PMID: 29518153 PMCID: PMC5843284 DOI: 10.1371/journal.ppat.1006906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 arose as the result of spillover of simian immunodeficiency viruses (SIVs) from great apes in Africa, namely from chimpanzees and gorillas. Chimpanzees and gorillas were, themselves, infected with SIV after virus spillover from African monkeys. During spillover events, SIV is thought to require adaptation to the new host species. The host barriers that drive viral adaptation have predominantly been attributed to restriction factors, rather than cofactors (host proteins exploited to promote viral replication). Here, we consider the role of one cofactor, RanBP2, in providing a barrier that drove viral genome evolution during SIV spillover events. RanBP2 (also known as Nup358) is a component of the nuclear pore complex known to facilitate nuclear entry of HIV-1. Our data suggest that transmission of SIV from monkeys to chimpanzees, and then from chimpanzees to gorillas, both coincided with changes in the viral capsid that allowed interaction with RanBP2 of the new host species. However, human RanBP2 subsequently provided no barrier to the zoonotic transmission of SIV from chimpanzees or gorillas, indicating that chimpanzee- and gorilla-adapted SIVs are pre-adapted to humans in this regard. Our observations are in agreement with RanBP2 driving virus evolution during cross-species transmissions of SIV, particularly in the transmissions to and between great ape species. Multiple times, HIV-1 has entered the human population after emerging from a viral reservoir that exists in African primates. First, simian immunodeficiency virus (SIV) made the jump from monkeys into African great apes, and then from apes (namely, chimpanzees and gorillas) into humans. It is well appreciated that restriction factors, which are specialized proteins of the innate immune system, acted as host-specific barriers that drove virus adaptation during these spillover events. Here, we present data showing that a major constituent of the nuclear pore complex, RanBP2, was also a barrier to the spillover of SIVs, particularly in great ape species. Spillover of SIV into chimpanzee and gorilla populations required that the SIV capsid mutate to establish interaction with RanBP2 in the new host species. Our study highlights how essential housekeeping proteins, despite being generally more evolutionarily conserved than restriction factors, can also drive virus evolution during spillover events.
Collapse
Affiliation(s)
- Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Daniel A. S. A. Vieira
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Felipe Diaz-Griferro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bhargava A, Lahaye X, Manel N. Let me in: Control of HIV nuclear entry at the nuclear envelope. Cytokine Growth Factor Rev 2018. [PMID: 29526438 DOI: 10.1016/j.cytogfr.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nuclear envelope is a physical barrier that isolates the cellular DNA from the rest of the cell, thereby limiting pathogen invasion. The Human Immunodeficiency Virus (HIV) has a remarkable ability to enter the nucleus of non-dividing target cells such as lymphocytes, macrophages and dendritic cells. While this step is critical for replication of the virus, it remains one of the less understood aspects of HIV infection. Here, we review the viral and host factors that favor or inhibit HIV entry into the nucleus, including the viral capsid, integrase, the central viral DNA flap, and the host proteins CPSF6, TNPO3, Nucleoporins, SUN1, SUN2, Cyclophilin A and MX2. We review recent perspectives on the mechanism of action of these factors, and formulate fundamental questions that remain. Overall, these findings deepen our understanding of HIV nuclear import and strengthen the favorable position of nuclear HIV entry for antiviral targeting.
Collapse
Affiliation(s)
- Anvita Bhargava
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| |
Collapse
|
25
|
Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection. J Virol 2017; 91:JVI.00463-17. [PMID: 28747499 PMCID: PMC5599759 DOI: 10.1128/jvi.00463-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1−/− and SUN2−/− cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis.
Collapse
|
26
|
Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes. PLoS Pathog 2017; 13:e1006570. [PMID: 28827840 PMCID: PMC5578721 DOI: 10.1371/journal.ppat.1006570] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/31/2017] [Accepted: 08/05/2017] [Indexed: 11/19/2022] Open
Abstract
The dynamics and regulation of HIV-1 nuclear import and its intranuclear movements after import have not been studied. To elucidate these essential HIV-1 post-entry events, we labeled viral complexes with two fluorescently tagged virion-incorporated proteins (APOBEC3F or integrase), and analyzed the HIV-1 dynamics of nuclear envelope (NE) docking, nuclear import, and intranuclear movements in living cells. We observed that HIV-1 complexes exhibit unusually long NE residence times (1.5±1.6 hrs) compared to most cellular cargos, which are imported into the nuclei within milliseconds. Furthermore, nuclear import requires HIV-1 capsid (CA) and nuclear pore protein Nup358, and results in significant loss of CA, indicating that one of the viral core uncoating steps occurs during nuclear import. Our results showed that the CA-Cyclophilin A interaction regulates the dynamics of nuclear import by delaying the time of NE docking as well as transport through the nuclear pore, but blocking reverse transcription has no effect on the kinetics of nuclear import. We also visualized the translocation of viral complexes docked at the NE into the nucleus and analyzed their nuclear movements and determined that viral complexes exhibited a brief fast phase (<9 min), followed by a long slow phase lasting several hours. A comparison of the movement of viral complexes to those of proviral transcription sites supports the hypothesis that HIV-1 complexes quickly tether to chromatin at or near their sites of integration in both wild-type cells and cells in which LEDGF/p75 was deleted using CRISPR/cas9, indicating that the tethering interactions do not require LEDGF/p75. These studies provide novel insights into the dynamics of viral complex-NE association, regulation of nuclear import, viral core uncoating, and intranuclear movements that precede integration site selection. Although nuclear import of HIV-1 is essential for viral replication, many aspects of this process are currently unknown. Here, we defined the dynamics of HIV-1 nuclear envelope (NE) docking, nuclear import and its relationship to viral core uncoating, and intranuclear movements. We observed that HIV-1 complexes exhibit an unusually long residence time at the NE (∼1.5 hrs) compared to other cellular and viral cargos, and that HIV-1 capsid (CA) and host nuclear pore protein Nup358 are required for NE docking and nuclear import. Soon after import, the viral complexes exhibit a brief fast phase of movement, followed by a long slow phase, during which their movement is similar to that of integrated proviruses, suggesting that they rapidly become tethered to chromatin through interactions that do not require LEDGF/p75. Importantly, we found that NE association and nuclear import is regulated by the CA-cyclophilin A interaction, but not reverse transcription, and that one of the viral core uncoating steps, characterized by substantial loss of CA, occurs concurrently with nuclear import.
Collapse
|
27
|
Zhyvoloup A, Melamed A, Anderson I, Planas D, Lee CH, Kriston-Vizi J, Ketteler R, Merritt A, Routy JP, Ancuta P, Bangham CRM, Fassati A. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation. PLoS Pathog 2017; 13:e1006460. [PMID: 28727807 PMCID: PMC5519191 DOI: 10.1371/journal.ppat.1006460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022] Open
Abstract
HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation. HIV-1 integrates more frequently within transcribed host genes, however we do not understand the biological significance of this. We found that a drug called digoxin inhibits wild type HIV-1 more potently than an HIV-1 bearing a single point mutation in the capsid protein. Here we show that digoxin represses HIV-1 gene expression and in parallel inhibits CD4+ T-cell activation and metabolism. When we analysed the integration sites of wild type and mutant HIV-1, we discovered that wild type virus integrates within or near genes involved in CD4+ T-cell activation and metabolism more often than the mutant virus. Because these are the very same genes repressed by digoxin, the integration bias of wild type virus makes it more susceptible than mutant virus to silencing by the drug. Digoxin unmasked a functional link between HIV-1 integration and T-cell activation, which may affect HIV-1 latency and reactivation.
Collapse
Affiliation(s)
- Alexander Zhyvoloup
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Anat Melamed
- Department of Medicine, Imperial College, St. Mary's Campus, London, United Kingdom
| | - Ian Anderson
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Delphine Planas
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal and the Research Centre of the CHUM, Montreal, Québec, Canada
| | - Chen-Hsuin Lee
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andy Merritt
- Centre for Therapeutics Discovery, MRC Technology, Mill Hill, London, United Kingdom
| | - Jean-Pierre Routy
- McGill University Health Centre, Glen site, Montreal, Québec, Canada
| | - Petronela Ancuta
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal and the Research Centre of the CHUM, Montreal, Québec, Canada
| | | | - Ariberto Fassati
- Division of Infection & Immunity, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Capsid-Dependent Host Factors in HIV-1 Infection. Trends Microbiol 2017; 25:741-755. [PMID: 28528781 DOI: 10.1016/j.tim.2017.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 11/20/2022]
Abstract
After invasion of a susceptible target cell, HIV-1 completes the early phase of its life cycle upon integration of reverse-transcribed viral DNA into host chromatin. The viral capsid, a conical shell encasing the viral ribonucleoprotein complex, along with its constitutive capsid protein, plays essential roles at virtually every step in the early phase of the viral life cycle. Recent work has begun to reveal how the viral capsid interacts with specific cellular proteins to promote these processes. At the same time, cellular restriction factors target the viral capsid to thwart infection. Comprehensive understanding of capsid-host interactions that promote or impede HIV-1 infection may provide unique insight to exploit for novel therapeutic interventions.
Collapse
|
29
|
Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage In Vivo. J Virol 2016; 90:6918-6935. [PMID: 27307565 DOI: 10.1128/jvi.00019-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/08/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a host factor that interacts with the HIV-1 capsid (CA) protein, is implicated in diverse functions during the early part of the HIV-1 life cycle, including uncoating, nuclear entry, and integration targeting. Preservation of CA binding to CPSF6 in vivo suggests that this interaction is fine-tuned for efficient HIV-1 replication in physiologically relevant settings. Nevertheless, this possibility has not been formally examined. To assess the requirement for optimal CPSF6-CA binding during infection of primary cells and in vivo, we utilized a novel CA mutation, A77V, that significantly reduced CA binding to CPSF6. The A77V mutation rendered HIV-1 largely independent from TNPO3, NUP358, and NUP153 for infection and altered the integration site preference of HIV-1 without any discernible effects during the late steps of the virus life cycle. Surprisingly, the A77V mutant virus maintained the ability to replicate in monocyte-derived macrophages, primary CD4(+) T cells, and humanized mice at a level comparable to that for the wild-type (WT) virus. Nonetheless, revertant viruses that restored the WT CA sequence and hence CA binding to CPSF6 emerged in three out of four A77V-infected animals. These results suggest that the optimal interaction of CA with CPSF6, though not absolutely essential for HIV-1 replication in physiologically relevant settings, confers a significant fitness advantage to the virus and thus is strictly conserved among naturally circulating HIV-1 strains. IMPORTANCE CPSF6 interacts with the HIV-1 capsid (CA) protein and has been implicated in nuclear entry and integration targeting. Preservation of CPSF6-CA binding across various HIV-1 strains suggested that the optimal interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Here, we identified a novel HIV-1 capsid mutant that reduces binding to CPSF6, is largely independent from the known cofactors for nuclear entry, and alters integration site preference. Despite these changes, virus carrying this mutation replicated in humanized mice at levels indistinguishable from those of the wild-type virus. However, in the majority of the animals, the mutant virus reverted back to the wild-type sequence, hence restoring the wild-type level of CA-CPSF6 interactions. These results suggest that optimal binding of CA to CPSF6 is not absolutely essential for HIV-1 replication in vivo but provides a fitness advantage that leads to the widespread usage of CPSF6 by HIV-1 in vivo.
Collapse
|
30
|
Dharan A, Talley S, Tripathi A, Mamede JI, Majetschak M, Hope TJ, Campbell EM. KIF5B and Nup358 Cooperatively Mediate the Nuclear Import of HIV-1 during Infection. PLoS Pathog 2016; 12:e1005700. [PMID: 27327622 PMCID: PMC4915687 DOI: 10.1371/journal.ppat.1005700] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/21/2016] [Indexed: 12/23/2022] Open
Abstract
Following envelope mediated fusion, the HIV-1 core is released into the cytoplasm of the target cell and undergoes a series of trafficking and replicative steps that result in the nuclear import of the viral genome, which ultimately leads to the integration of the proviral DNA into the host cell genome. Previous studies have found that disruption of microtubules, or depletion of dynein or kinesin motors, perturb the normal uncoating and trafficking of the viral genome. Here, we show that the Kinesin-1 motor, KIF5B, induces a relocalization of the nuclear pore component Nup358 into the cytoplasm during HIV-1 infection. This relocalization of NUP358 is dependent on HIV-1 capsid, and NUP358 directly associates with viral cores following cytoplasmic translocation. This interaction between NUP358 and the HIV-1 core is dependent on multiple capsid binding surfaces, as this association is not observed following infection with capsid mutants in which a conserved hydrophobic binding pocket (N74D) or the cyclophilin A binding loop (P90A) is disrupted. KIF5B knockdown also prevents the nuclear entry and infection by HIV-1, but does not exert a similar effect on the N74D or P90A capsid mutants which do not rely on Nup358 for nuclear import. Finally, we observe that the relocalization of Nup358 in response to CA is dependent on cleavage protein and polyadenylation factor 6 (CPSF6), but independent of cyclophilin A. Collectively, these observations identify a previously unappreciated role for KIF5B in mediating the Nup358 dependent nuclear import of the viral genome during infection. Fusion of viral and target cell membranes releases the HIV-1 viral capsid, which houses the viral RNA and proteins necessary for viral reverse transcription and integration, into the cytoplasm of target cells. To complete infection, the viral capsid must ultimately traffic to the nucleus and undergo a process known as uncoating to allow the nuclear import of the viral genome into the nucleus, where it subsequently integrates into the genome of the target cell. Here, we show that the concerted actions of microtubule motor KIF5B and the nuclear pore component Nup358 cooperatively facilitate the uncoating and nuclear import of the viral genome. Moreover, we also identify the determinants in the viral capsid protein, which forms the viral capsid core, that are required for KIF5B dependent nuclear entry. These studies reveal a novel role for the microtubule motor KIF5B in the nuclear import of the viral genome and reveal potential intervention targets for therapeutic intervention.
Collapse
Affiliation(s)
- Adarsh Dharan
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Illinois, United States of America
| | - Sarah Talley
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University, Chicago, Illinois, United States of America
| | - Abhishek Tripathi
- Burn and Shock Trauma Research Institute, Department of Surgery, Stritch School of Medicine, Loyola University, Chicago, Illinois, United States of America
| | - João I. Mamede
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Matthias Majetschak
- Burn and Shock Trauma Research Institute, Department of Surgery, Stritch School of Medicine, Loyola University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Edward M. Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Illinois, United States of America
- Integrative Cell Biology Program, Stritch School of Medicine, Loyola University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Li YL, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE, Dryden KA, Pornillos O, Yeager M, Ganser-Pornillos BK, Jensen GJ, Sundquist WI. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife 2016; 5. [PMID: 27253068 PMCID: PMC4936896 DOI: 10.7554/elife.16269] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/19/2016] [Indexed: 12/04/2022] Open
Abstract
TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI:http://dx.doi.org/10.7554/eLife.16269.001 After infecting a cell, a virus reproduces by forcing the cell to produce new copies of the virus, which then spread to other cells. However, cells have evolved ways to fight back against these infections. For example, many mammalian cells contain proteins called restriction factors that prevent the virus from multiplying. The TRIM5 proteins form one common set of restriction factors that act against a class of viruses called retroviruses. HIV-1 and related retroviruses have a protein shell known as a capsid that surrounds the genetic material of the virus. The capsid contains several hundred repeating units, each of which consists of a hexagonal ring of six CA proteins. Although this basic pattern is maintained across different retroviruses, the overall shape of the capsids can vary considerably. For instance, HIV-1 capsids are shaped like a cone, but other retroviruses can form cylinders or spheres. Soon after the retrovirus enters a mammalian cell, TRIM5 proteins bind to the capsid. This causes the capsid to be destroyed, which prevents viral replication. Previous research has shown that several TRIM5 proteins must link up with each other via a region of their structure called the B-box 2 domain in order to efficiently recognize capsids. How this assembly process occurs, and why it enables the TRIM5 proteins to recognize different capsids was not fully understood. Now, Li, Chandrasekaran et al. (and independently Wagner et al.) have investigated these questions. Using biochemical analyses and electron microscopy, Li, Chandrasekaran et al. found that TRIM5 proteins can bind directly to the surface of HIV-1 capsids. Several TRIM5 proteins link together to form large hexagonal nets, in which the B-box domains of the proteins are found at the points where three TRIM5 proteins meet. This arrangement mimics the pattern present in the HIV-1 capsid, and just a few TRIM5 rings can cover most of the capsid. Li, Chandrasekaran et al. then analysed TRIM5 proteins from several primates, including rhesus macaques, African green monkeys and chimpanzees. In all cases analyzed, the TRIM5 proteins assembled into hexagonal nets, although the individual units within the net did not have strictly regular shapes. These results suggest that TRIM5 proteins assemble a scaffold that can deform to match the pattern of the proteins in the capsid. Further work is now needed to understand how capsid recognition is linked to the processes that disable the virus. DOI:http://dx.doi.org/10.7554/eLife.16269.002
Collapse
Affiliation(s)
- Yen-Li Li
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | | | - Stephen D Carter
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Cora L Woodward
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Devin E Christensen
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Kelly A Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States.,Department of Medicine, Division of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, United States
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, United States
| | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
32
|
Chen NY, Zhou L, Gane PJ, Opp S, Ball NJ, Nicastro G, Zufferey M, Buffone C, Luban J, Selwood D, Diaz-Griffero F, Taylor I, Fassati A. HIV-1 capsid is involved in post-nuclear entry steps. Retrovirology 2016; 13:28. [PMID: 27107820 PMCID: PMC4842275 DOI: 10.1186/s12977-016-0262-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background HIV-1 capsid influences viral uncoating and nuclear import. Some capsid is detected in the nucleus but it is unclear if it has any function. We reported that the antibiotic Coumermycin-A1 (C-A1) inhibits HIV-1 integration and that a capsid mutation confers resistance to C-A1, suggesting that capsid might affect post-nuclear entry steps. Results Here we report that C-A1 inhibits HIV-1 integration in a capsid-dependent way. Using molecular docking, we identify an extended binding pocket delimited by two adjacent capsid monomers where C-A1 is predicted to bind. Isothermal titration calorimetry confirmed that C-A1 binds to hexameric capsid. Cyclosporine washout assays in Jurkat CD4+ T cells expressing engineered human TRIMCyp showed that C-A1 causes faster and greater escape from TRIMCyp restriction. Sub-cellular fractionation showed that small amounts of capsid accumulated in the nuclei of infected cells and C-A1 reduced the nuclear capsid. A105S and N74D capsid mutant viruses did not accumulate capsid in the nucleus, irrespective of C-A1 treatment. Depletion of Nup153, a nucleoporin located at the nuclear side of the nuclear pore that binds to HIV-1 capsid, made the virus less susceptible to TRIMCyp restriction, suggesting that Nup153 may help maintain some integrity of the viral core in the nucleus. Furthermore C-A1 increased binding of CPSF6, a nuclear protein, to capsid. Conclusions Our results indicate that capsid is involved in post-nuclear entry steps preceding integration. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nan-Yu Chen
- Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London, WC1E 6BT, UK.,Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fuhsing Street, Kueishan, Taoyuan, 333, Taiwan
| | - Lihong Zhou
- Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London, WC1E 6BT, UK.,Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton, BN1 9RQ, UK
| | - Paul J Gane
- Medicinal Chemistry Group, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.,Chemical Computing Group, St. John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Silvana Opp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Neil J Ball
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Giuseppe Nicastro
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Madeleine Zufferey
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel Servet, CH-1211, Geneva, Switzerland.,Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 319, Worcester, MA, 01605, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel Servet, CH-1211, Geneva, Switzerland.,Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 319, Worcester, MA, 01605, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 319, Worcester, MA, 01605, USA
| | - David Selwood
- Medicinal Chemistry Group, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ian Taylor
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
33
|
Lahaye X, Satoh T, Gentili M, Cerboni S, Silvin A, Conrad C, Ahmed-Belkacem A, Rodriguez EC, Guichou JF, Bosquet N, Piel M, Le Grand R, King MC, Pawlotsky JM, Manel N. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication. Cell Rep 2016; 15:879-892. [PMID: 27149839 PMCID: PMC4850421 DOI: 10.1016/j.celrep.2016.03.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 02/12/2016] [Accepted: 03/20/2016] [Indexed: 12/01/2022] Open
Abstract
During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. HIV capsid mutants reveal that Cyclophilin A can restrict viral nuclear import Nuclear envelope protein SUN2 is implicated in the restriction of HIV mutants SUN2 is essential for wild-type HIV infection in CD4+ T cells and dendritic cells In CD4+ T cells, the activities of CypA on HIV-1 infection require SUN2
Collapse
Affiliation(s)
- Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Takeshi Satoh
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Matteo Gentili
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Silvia Cerboni
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Aymeric Silvin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Cécile Conrad
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | | | - Elisa C Rodriguez
- Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA
| | - Jean-François Guichou
- CNRS UMR5048, INSERM U1054 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Nathalie Bosquet
- Université Paris Sud, INSERM, CEA, DRF-Immunology of Viral Infections and Autoimmune Diseases department (IMVA), UMR1184, IDMIT Infrastructure, iMETI, 92260 Fontenay-aux-Roses, France
| | - Matthieu Piel
- Subcellular Structure and Cellular Dynamics Department, Institut Curie, PSL Research University, CNRS UMR144, 75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, 75005 Paris, France
| | - Roger Le Grand
- Université Paris Sud, INSERM, CEA, DRF-Immunology of Viral Infections and Autoimmune Diseases department (IMVA), UMR1184, IDMIT Infrastructure, iMETI, 92260 Fontenay-aux-Roses, France
| | - Megan C King
- Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8002, USA
| | - Jean-Michel Pawlotsky
- INSERM U955, 94010 Créteil, France; Department of Virology, National Reference Center for Viral Hepatitis B, C and D, Hôpital Henri Mondor, Université Paris-Est, 94010 Créteil, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| |
Collapse
|
34
|
Abstract
In a mature, infectious HIV-1 virion, the viral genome is housed within a conical capsid core made from the viral capsid (CA) protein. The CA protein and the structure into which it assembles facilitate virtually every step of infection through a series of interactions with multiple host cell factors. This Review describes our understanding of the interactions between the viral capsid core and several cellular factors that enable efficient HIV-1 genome replication, timely core disassembly, nuclear import and the integration of the viral genome into the genome of the target cell. We then discuss how elucidating these interactions can reveal new targets for therapeutic interactions against HIV-1.
Collapse
|
35
|
McCarthy KR, Kirmaier A, Autissier P, Johnson WE. Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface. PLoS Pathog 2015; 11:e1005085. [PMID: 26291613 PMCID: PMC4546234 DOI: 10.1371/journal.ppat.1005085] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/15/2015] [Indexed: 12/29/2022] Open
Abstract
The widespread distribution of lentiviruses among African primates, and the lack of severe pathogenesis in many of these natural reservoirs, are taken as evidence for long-term co-evolution between the simian immunodeficiency viruses (SIVs) and their primate hosts. Evidence for positive selection acting on antiviral restriction factors is consistent with virus-host interactions spanning millions of years of primate evolution. However, many restriction mechanisms are not virus-specific, and selection cannot be unambiguously attributed to any one type of virus. We hypothesized that the restriction factor TRIM5, because of its unique specificity for retrovirus capsids, should accumulate adaptive changes in a virus-specific fashion, and therefore, that phylogenetic reconstruction of TRIM5 evolution in African primates should reveal selection by lentiviruses closely related to modern SIVs. We analyzed complete TRIM5 coding sequences of 22 Old World primates and identified a tightly-spaced cluster of branch-specific adaptions appearing in the Cercopithecinae lineage after divergence from the Colobinae around 16 million years ago. Functional assays of both extant TRIM5 orthologs and reconstructed ancestral TRIM5 proteins revealed that this cluster of adaptations in TRIM5 specifically resulted in the ability to restrict Cercopithecine lentiviruses, but had no effect (positive or negative) on restriction of other retroviruses, including lentiviruses of non-Cercopithecine primates. The correlation between lineage-specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of Cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity. Old World primates in Africa are reservoir hosts for more than 40 species of simian immunodeficiency viruses (SIVs), including the sources of the human immunodeficiency viruses, HIV-1 and HIV-2. To investigate the prehistoric origins of these lentiviruses, we looked for patterns of evolution in the antiviral host gene TRIM5 that would reflect selection by lentiviruses during evolution of African primates. We identified a pattern of adaptive changes unique to the TRIM5 proteins of a subset of African monkeys that suggests that the ancestors of these viruses emerged between 11–16 million years ago, and by reconstructing and comparing the function of ancestral TRIM5 proteins with extant TRIM5 proteins, we confirmed that these adaptations confer specificity for their modern descendants, the SIVs.
Collapse
Affiliation(s)
- Kevin R. McCarthy
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
HIV-1 Resistance to the Capsid-Targeting Inhibitor PF74 Results in Altered Dependence on Host Factors Required for Virus Nuclear Entry. J Virol 2015; 89:9068-79. [PMID: 26109731 DOI: 10.1128/jvi.00340-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/16/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED During HIV-1 infection of cells, the viral capsid plays critical roles in reverse transcription and nuclear entry of the virus. The capsid-targeting small molecule PF74 inhibits HIV-1 at early stages of infection. HIV-1 resistance to PF74 is complex, requiring multiple amino acid substitutions in the viral CA protein. Here we report the identification and analysis of a novel PF74-resistant mutant encoding amino acid changes in both domains of CA, three of which are near the pocket where PF74 binds. Interestingly, the mutant virus retained partial PF74 binding, and its replication was stimulated by the compound. The mutant capsid structure was not significantly perturbed by binding of PF74; rather, the mutations inhibited capsid interactions with CPSF6 and Nup153 and altered HIV-1 dependence on these host factors and on TNPO3. Moreover, the replication of the mutant virus was markedly impaired in activated primary CD4(+) T cells and macrophages. Our results suggest that HIV-1 escapes a capsid-targeting small molecule inhibitor by altering the virus's dependence on host factors normally required for entry into the nucleus. They further imply that clinical resistance to inhibitors targeting the PF74 binding pocket is likely to be strongly limited by functional constraints on HIV-1 evolution. IMPORTANCE The HIV-1 capsid plays critical roles in early steps of infection and is an attractive target for therapy. Here we show that selection for resistance to a capsid-targeting small molecule inhibitor can result in viral dependence on the compound. The mutant virus was debilitated in primary T cells and macrophages--cellular targets of infection in vivo. The mutations also altered the virus's dependence on cellular factors that are normally required for HIV-1 entry into the nucleus. This work provides new information regarding mechanisms of HIV-1 resistance that should be useful in efforts to develop clinically useful drugs targeting the HIV-1 capsid.
Collapse
|
37
|
The susceptibility of primate lentiviruses to nucleosides and Vpx during infection of dendritic cells is regulated by CA. J Virol 2015; 89:4030-4. [PMID: 25609804 DOI: 10.1128/jvi.03315-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The block toward human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) can be relieved by Vpx (viral protein X), which degrades sterile alpha motif-hydroxylase domain 1 (SAMHD1) or by exogenously added deoxynucleosides (dNs), lending support to the hypothesis that SAMHD1 acts by limiting deoxynucleoside triphosphates (dNTPs). This notion has, however, been questioned. We show that while dNs and Vpx increase the infectivity of HIV-1, only the latter restores the infectivity of a simian immunodeficiency virus of macaques variant, SIVMACΔVpx virus. This distinct behavior seems to map to CA, suggesting that species-specific CA interactors modulate infection of DCs.
Collapse
|
38
|
Cytoplasmic dynein promotes HIV-1 uncoating. Viruses 2014; 6:4195-211. [PMID: 25375884 PMCID: PMC4246216 DOI: 10.3390/v6114195] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral capsid (CA) cores undergo uncoating during their retrograde transport (toward the nucleus), and/or after reaching the nuclear membrane. However, whether HIV-1 CA core uncoating is dependent upon its transport is not understood. There is some evidence that HIV-1 cores retrograde transport involves cytoplasmic dynein complexes translocating on microtubules. Here we investigate the role of dynein-dependent transport in HIV-1 uncoating. To interfere with dynein function, we depleted dynein heavy chain (DHC) using RNA interference, and we over-expressed p50/dynamitin. In immunofluorescence microscopy experiments, DHC depletion caused an accumulation of CA foci in HIV-1 infected cells. Using a biochemical assay to monitor HIV-1 CA core disassembly in infected cells, we observed an increase in amounts of intact (pelletable) CA cores upon DHC depletion or p50 over-expression. Results from these two complementary assays suggest that inhibiting dynein-mediated transport interferes with HIV-1 uncoating in infected cells, indicating the existence of a functional link between HIV-1 transport and uncoating.
Collapse
|
39
|
Compensatory substitutions in the HIV-1 capsid reduce the fitness cost associated with resistance to a capsid-targeting small-molecule inhibitor. J Virol 2014; 89:208-19. [PMID: 25320302 DOI: 10.1128/jvi.01411-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The HIV-1 capsid plays multiple roles in infection and is an emerging therapeutic target. The small-molecule HIV-1 inhibitor PF-3450074 (PF74) blocks HIV-1 at an early postentry stage by binding the viral capsid and interfering with its function. Selection for resistance resulted in accumulation of five amino acid changes in the viral CA protein, which collectively reduced binding of the compound to HIV-1 particles. In the present study, we dissected the individual and combinatorial contributions of each of the five substitutions Q67H, K70R, H87P, T107N, and L111I to PF74 resistance, PF74 binding, and HIV-1 infectivity. Q67H, K70R, and T107N each conferred low-level resistance to PF74 and collectively conferred strong resistance. The substitutions K70R and L111I impaired HIV-1 infectivity, which was partially restored by the other substitutions at positions 67 and 107. PF74 binding to HIV-1 particles was reduced by the Q67H, K70R, and T107N substitutions, consistent with the location of these positions in the inhibitor-binding pocket. Replication of the 5Mut virus was markedly impaired in cultured macrophages, reminiscent of the previously reported N74D CA mutant. 5Mut substitutions also reduced the binding of the host protein CPSF6 to assembled CA complexes in vitro and permitted infection of cells expressing the inhibitory protein CPSF6-358. Our results demonstrate that strong resistance to PF74 requires accumulation of multiple substitutions in CA to inhibit PF74 binding and compensate for fitness impairments associated with some of the sequence changes. IMPORTANCE The HIV-1 capsid is an emerging drug target, and several small-molecule compounds have been reported to inhibit HIV-1 infection by targeting the capsid. Here we show that resistance to the capsid-targeting inhibitor PF74 requires multiple amino acid substitutions in the binding pocket of the CA protein. Three changes in CA were necessary to inhibit binding of PF74 while maintaining viral infectivity. Replication of the PF74-resistant HIV-1 mutant was impaired in macrophages, likely owing to altered interactions with host cell factors. Our results suggest that HIV-1 resistance to capsid-targeting inhibitors will be limited by functional constraints on the viral capsid protein. Therefore, this work enhances the attractiveness of the HIV-1 capsid as a therapeutic target.
Collapse
|
40
|
Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 2014; 42:10209-25. [PMID: 25147212 PMCID: PMC4176367 DOI: 10.1093/nar/gku769] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic.
Collapse
Affiliation(s)
- Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Amit Sharma
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C Larue
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Erik Serrao
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
41
|
Le Sage V, Mouland AJ, Valiente-Echeverría F. Roles of HIV-1 capsid in viral replication and immune evasion. Virus Res 2014; 193:116-29. [PMID: 25036886 DOI: 10.1016/j.virusres.2014.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The primary roles of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein are to encapsidate and protect the viral RNA genome. It is becoming increasing apparent that HIV-1 CA is a multifunctional protein that acts early during infection to coordinate uncoating, reverse transcription, nuclear import of the pre-integration complex and integration of double stranded viral DNA into the host genome. Additionally, numerous recent studies indicate that CA is playing a crucial function in HIV-1 immune evasion. Here we summarize the current knowledge on HIV-1 CA and its interactions with the host cell to promote infection. The fact that CA engages in a number of different protein-protein interactions with the host makes it an interesting target for the development of new potent antiviral agents.
Collapse
Affiliation(s)
- Valerie Le Sage
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Québec, H3A2B4, Canada
| | - Fernando Valiente-Echeverría
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T1E2, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada.
| |
Collapse
|