1
|
Vegas Rodriguez A, Velez de Mendizábal N, Girish S, Trocóniz IF, Feigelman JS. Modeling the Interplay Between Viral and Immune Dynamics in HIV: A Review and Mrgsolve Implementation and Exploration. Clin Transl Sci 2025; 18:e70160. [PMID: 39980203 PMCID: PMC11842467 DOI: 10.1111/cts.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Since its initial discovery, HIV has infected more than 70 million individuals globally, leading to the deaths of 35 million. At present, the annual number of deaths has significantly decreased due to 75% of HIV-positive individuals being on antiretroviral therapy. Although there is no cure yet, available treatments extend life expectancy, enhance quality of life, and reduce transmission by maintaining viral load below the detection limit of 50 copies/mL, making the individual's levels undetectable and untransmittable. HIV has attracted considerable attention in the computational modeling area, with various models having been developed with different degrees of complexity in an attempt to explain the viral dynamics of the disease. It is important to note that no single model can fully incorporate and predict all the critical factors influencing the dynamics of the disease and its response to treatments. Since the number of published models is large, the purpose of this article is to review several relevant models found in the literature that describe biologically plausible scenarios of HIV infection, including key features of disease progression with or without treatment. A total of 15 models are described, with some implemented in the mrgsolve package in R Studio and shared for the benefit of the scientific community. The modeling framework concerning HIV infection aids in identifying the most impactful parameters within the system and their implications in the model outcomes. Insights provided by these models may help in confirming targets for current and novel therapies, thereby contributing to the exploration of new strategies.
Collapse
Affiliation(s)
- Alberto Vegas Rodriguez
- Department of Pharmaceutical Sciences, School of Pharmacy and NutritionUniversity of NavarraPamplonaSpain
| | | | | | - Iñaki F. Trocóniz
- Department of Pharmaceutical Sciences, School of Pharmacy and NutritionUniversity of NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Institute of Data Science and Artificial Intelligence (DATAI)University of NavarraPamplonaSpain
| | | |
Collapse
|
2
|
Mothes W. The KT Jeang retrovirology prize 2024: Walther Mothes. Retrovirology 2024; 21:16. [PMID: 39449025 PMCID: PMC11515334 DOI: 10.1186/s12977-024-00649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
|
3
|
Hikichi Y, Grover JR, Schäfer A, Mothes W, Freed EO. Epistatic pathways can drive HIV-1 escape from integrase strand transfer inhibitors. SCIENCE ADVANCES 2024; 10:eadn0042. [PMID: 38427738 PMCID: PMC10906922 DOI: 10.1126/sciadv.adn0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
People living with human immunodeficiency virus (HIV) receiving integrase strand transfer inhibitors (INSTIs) have been reported to experience virological failure in the absence of resistance mutations in integrase. To elucidate INSTI resistance mechanisms, we propagated HIV-1 in the presence of escalating concentrations of the INSTI dolutegravir. HIV-1 became resistant to dolutegravir by sequentially acquiring mutations in the envelope glycoprotein (Env) and the nucleocapsid protein. The selected Env mutations enhance the ability of the virus to spread via cell-cell transfer, thereby increasing the multiplicity of infection (MOI). While the selected Env mutations confer broad resistance to multiple classes of antiretrovirals, the fold resistance is ~2 logs higher for INSTIs than for other classes of drugs. We demonstrate that INSTIs are more readily overwhelmed by high MOI than other classes of antiretrovirals. Our findings advance the understanding of how HIV-1 can evolve resistance to antiretrovirals, including the potent INSTIs, in the absence of drug-target gene mutations.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jonathan R. Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Alicia Schäfer
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
4
|
Woottum M, Yan S, Sayettat S, Grinberg S, Cathelin D, Bekaddour N, Herbeuval JP, Benichou S. Macrophages: Key Cellular Players in HIV Infection and Pathogenesis. Viruses 2024; 16:288. [PMID: 38400063 PMCID: PMC10893316 DOI: 10.3390/v16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Although cells of the myeloid lineages, including tissue macrophages and conventional dendritic cells, were rapidly recognized, in addition to CD4+ T lymphocytes, as target cells of HIV-1, their specific roles in the pathophysiology of infection were initially largely neglected. However, numerous studies performed over the past decade, both in vitro in cell culture systems and in vivo in monkey and humanized mouse animal models, led to growing evidence that macrophages play important direct and indirect roles as HIV-1 target cells and in pathogenesis. It has been recently proposed that macrophages are likely involved in all stages of HIV-1 pathogenesis, including virus transmission and dissemination, but above all, in viral persistence through the establishment, together with latently infected CD4+ T cells, of virus reservoirs in many host tissues, the major obstacle to virus eradication in people living with HIV. Infected macrophages are indeed found, very often as multinucleated giant cells expressing viral antigens, in almost all lymphoid and non-lymphoid tissues of HIV-1-infected patients, where they can probably persist for long period of time. In addition, macrophages also likely participate, directly as HIV-1 targets or indirectly as key regulators of innate immunity and inflammation, in the chronic inflammation and associated clinical disorders observed in people living with HIV, even in patients receiving effective antiretroviral therapy. The main objective of this review is therefore to summarize the recent findings, and also to revisit older data, regarding the critical functions of tissue macrophages in the pathophysiology of HIV-1 infection, both as major HIV-1-infected target cells likely found in almost all tissues, as well as regulators of innate immunity and inflammation during the different stages of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Marie Woottum
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sen Yan
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Sophie Sayettat
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| | - Séverine Grinberg
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Dominique Cathelin
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Nassima Bekaddour
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, Université Paris Cité, 75006 Paris, France; (S.G.); (D.C.); (N.B.); (J.-P.H.)
| | - Serge Benichou
- Institut Cochin, Inserm U1016, CNRS UMR-8104, Université Paris Cité, 75014 Paris, France; (M.W.); (S.Y.); (S.S.)
| |
Collapse
|
5
|
Bokharaei-Salim F, Khanaliha K, Monavari SH, Kiani SJ, Tavakoli A, Jafari E, Chavoshpour S, Razizadeh MH, Kalantari S. Human Immunodeficiency Virus-1 Drug Resistance Mutations in Iranian Treatment-experienced Individuals. Curr HIV Res 2024; 22:53-64. [PMID: 38310469 DOI: 10.2174/011570162x273321240105081444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Human immunodeficiency virus-1 infection still remains a global health threat. While antiretroviral therapy is the primary treatment option, concerns about the emergence of drug-resistance mutations and treatment failure in HIV-infected patients persist. OBJECTIVE In this study, we investigated the development of drug resistance in HIV-1-infected individuals receiving antiretroviral therapy for 6-10 years. METHODS In this cross-sectional study, we evaluated 144 people living with HIV-1 who had received antiretroviral therapy for at least 6 years. Plasma specimens were collected, and the HIV-1 viral load and drug-resistance mutations were assessed using molecular techniques. RESULTS The demographic and epidemiological characteristics of the participants were also analyzed: Twelve [8.3%) of the studied patients showed a viral load over 1000 copies per/mL, which indicates the suboptimal response to antiretroviral therapy. Significant correlations were found between viral load and CD4 count, as well as epidemiological factors, such as vertical transmission, history of imprisonment, and needle stick injuries. Drug resistance mutations were detected in 10 (83.3%) of patients who failed on antiretroviral therapy, with the most common mutations observed against nucleoside reverse transcriptase inhibitors (5 (41.7%)) and non-nucleoside reverse transcriptase inhibitors (9 (75%)). Phylogenetic analysis revealed that 12 patients who failed treatment were infected with CRF35_AD. CONCLUSION Our study provides important insights into the characteristics and development of drug resistance in HIV-1-infected individuals receiving long-term antiretroviral therapy in Iran. The findings underline the need for regular viral load monitoring, individualized treatment selection, and targeted interventions to optimize treatment outcomes and prevent the further spread of drug-resistant strains.
Collapse
Affiliation(s)
- Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Jafari
- Department of Biology, Faculty of Basic Sciences, Noor Danesh University, Isfahan, Iran
| | - Sara Chavoshpour
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kirby TW, Gabel SA, DeRose EF, Perera L, Krahn JM, Pedersen LC, London RE. Targeting the Structural Maturation Pathway of HIV-1 Reverse Transcriptase. Biomolecules 2023; 13:1603. [PMID: 38002285 PMCID: PMC10669680 DOI: 10.3390/biom13111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Formation of active HIV-1 reverse transcriptase (RT) proceeds via a structural maturation process that involves subdomain rearrangements and formation of an asymmetric p66/p66' homodimer. These studies were undertaken to evaluate whether the information about this maturation process can be used to identify small molecule ligands that retard or interfere with the steps involved. We utilized the isolated polymerase domain, p51, rather than p66, since the initial subdomain rearrangements are largely limited to this domain. Target sites at subdomain interfaces were identified and computational analysis used to obtain an initial set of ligands for screening. Chromatographic evaluations of the p51 homodimer/monomer ratio support the feasibility of this approach. Ligands that bind near the interfaces and a ligand that binds directly to a region of the fingers subdomain involved in subunit interface formation were identified, and the interactions were further characterized by NMR spectroscopy and X-ray crystallography. Although these ligands were found to reduce dimer formation, further efforts will be required to obtain ligands with higher binding affinity. In contrast with previous ligand identification studies performed on the RT heterodimer, subunit interface surfaces are solvent-accessible in the p51 and p66 monomers, making these constructs preferable for identification of ligands that directly interfere with dimerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert E. London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC 27709, USA (J.M.K.)
| |
Collapse
|
7
|
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg? Viruses 2023; 15:v15030712. [PMID: 36992421 PMCID: PMC10053624 DOI: 10.3390/v15030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.
Collapse
|
8
|
Heparan Sulfate and Enoxaparin Interact at the Interface of the Spike Protein of HCoV-229E but Not with HCoV-OC43. Viruses 2023; 15:v15030663. [PMID: 36992372 PMCID: PMC10056857 DOI: 10.3390/v15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
It is known that the spike protein of human coronaviruses can bind to a secondary receptor, or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN) as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive. Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments, the binding was studied by molecular docking and molecular dynamic simulations confirming the interactions at the interface of the spike proteins.
Collapse
|
9
|
Wang Y, Liu J, Zhang X, Heffernan JM. An HIV stochastic model with cell-to-cell infection, B-cell immune response and distributed delay. J Math Biol 2023; 86:35. [PMID: 36695912 DOI: 10.1007/s00285-022-01863-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023]
Abstract
In this study, a delayed HIV stochastic model with virus-to-cell infection, cell-to-cell transmission and B-cell immune response is proposed. We first transform the stochastic differential equation with distributed delay into a high-dimensional degenerate stochastic differential equation, and then theoretically analyze the dynamic behaviour of the degenerate model. The unique global solution of the model is given by rigorous analysis. By formulating suitable Lyapunov functions, the existence of the stationary Markov process is obtained if the stochastic B-cell-activated reproduction number is greater than one. We also use the law of large numbers theorem and the spectral radius analysis method to deduce that the virus can be cleared if the stochastic B-cell-inactivated reproduction number is less than one. Through uncertainty and sensitivity analysis, we obtain key parameters that determine the value of the stochastic B-cell-activated reproduction number. Numerically, we examine that low level noise can maintain the number of the virus and B-cell populations at a certain range, while high level noise is helpful for the elimination of the virus. Furthermore, the effect of the cell-to-cell infection on model behaviour, and the influence of the key parameters on the size of the stochastic B-cell-activated reproduction number are also investigated.
Collapse
Affiliation(s)
- Yan Wang
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Jun Liu
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Xinhong Zhang
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Centre for Disease Modelling, Department of Mathematics and Statistics, York University, Toronto, M3J 1P3, Canada.
| |
Collapse
|
10
|
Kalidasan V, Ravichantar N, Muhd Besari A, Yunus MA, Mohd Yusoff N, Mohamed Z, Theva Das K. Latent HIV-1 provirus in vitro suppression using combinatorial CRISPR/Cas9 strategy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Han M, Woottum M, Mascarau R, Vahlas Z, Verollet C, Benichou S. Mechanisms of HIV-1 cell-to-cell transfer to myeloid cells. J Leukoc Biol 2022; 112:1261-1271. [PMID: 35355323 DOI: 10.1002/jlb.4mr0322-737r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to CD4+ T lymphocytes, cells of the myeloid lineage such as macrophages, dendritic cells (DCs), and osteoclasts (OCs) are emerging as important target cells for HIV-1, as they likely participate in all steps of pathogenesis, including sexual transmission and early virus dissemination in both lymphoid and nonlymphoid tissues where they can constitute persistent virus reservoirs. At least in vitro, these myeloid cells are poorly infected by cell-free viral particles. In contrast, intercellular virus transmission through direct cell-to-cell contacts may be a predominant mode of virus propagation in vivo leading to productive infection of these myeloid target cells. HIV-1 cell-to-cell transfer between CD4+ T cells mainly through the formation of the virologic synapse, or from infected macrophages or dendritic cells to CD4+ T cell targets, have been extensively described in vitro. Recent reports demonstrate that myeloid cells can be also productively infected through virus homotypic or heterotypic cell-to-cell transfer between macrophages or from virus-donor-infected CD4+ T cells, respectively. These modes of infection of myeloid target cells lead to very efficient spreading in these poorly susceptible cell types. Thus, the goal of this review is to give an overview of the different mechanisms reported in the literature for cell-to-cell transfer and spreading of HIV-1 in myeloid cells.
Collapse
Affiliation(s)
- Mingyu Han
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| | - Rémi Mascarau
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, Toulouse, France.,International Research Project (IRP) CNRS, Toulouse, France.,International Research Project (IRP), CNRS, Buenos Aires, Argentina
| | - Serge Benichou
- Institut Cochin, Inserm U1016, Paris, France.,Centre National de la Recherche Scientifique CNRS UMR8104, Paris, France.,Faculty of Health, University of Paris Cité, Paris, France
| |
Collapse
|
12
|
Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022; 10:1339. [PMID: 35740361 PMCID: PMC9220273 DOI: 10.3390/biomedicines10061339] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Inflammatory Markers after Switching to a Dual Drug Regimen in HIV-Infected Subjects: A Two-Year Follow-Up. Viruses 2022; 14:v14050927. [PMID: 35632669 PMCID: PMC9145251 DOI: 10.3390/v14050927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Objective: Immunadapt is a study evaluating the impact of combination antiretroviral treatment (cART) simplification on immune activation. We previously showed that switching to dual therapies could be associated six months later with macrophage activation. Followup continued up to 24 months after treatment simplification. Materials and Methods: Immunadapt is a prospective single arm study of successfully treated subjects simplifying cART from triple to dual regimens. Before cART change, at 6 months, and between 18 and 24 months following the switch, we measured IP-10, MCP-1, soluble CD14 (sCD14), soluble CD163 (sCD163), and lipopolysaccharide binding protein. Patients were stratified according to lower or greater likelihood of immune activation (CD4 nadir < 200, previous AIDS-defining event or very-low-level viremia during follow-up). Variables were compared using matched Wilcoxon tests. Results: From April 2019 to September 2021, 14 subjects were included (mean age 60 years, 12 men, 26 years since HIV infection, CD4 nadir 302 cells/mm3, 18 years on cART, 53 months on last cART). Twenty-one months following the switch, all but one subject maintained their viral load < 50 cp/mL. One subject had two viral blips. For the entire population, the sCD163 values increased significantly from baseline (+36%, p = 0.003) and from 6 months after the switch. The other markers did not change. After 6 months, the sCD163 increase was more pronounced in subjects with greater likelihood of immune activation (+53% vs. +19%, p = 0.026) Conclusions: cART simplification to dual therapy was associated with macrophage activation despite successful virological control after almost two years’ follow-up. This was more pronounced in those at risk of immune activation.
Collapse
|
14
|
Kumata R, Iwanami S, Mar KB, Kakizoe Y, Misawa N, Nakaoka S, Koyanagi Y, Perelson AS, Schoggins JW, Iwami S, Sato K. Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection. PLoS Comput Biol 2022; 18:e1010053. [PMID: 35468127 PMCID: PMC9037950 DOI: 10.1371/journal.pcbi.1010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.
Collapse
Affiliation(s)
- Ryuichi Kumata
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Science, Kyoto University, Kyoto, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yusuke Kakizoe
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Naoko Misawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
15
|
Abstract
It is currently unknown if SARS-CoV-2 can spread through cell–cell contacts, and if so, the underlying mechanisms and implications. In this work, we show, by using lentiviral pseudotyped virus, that the spike protein of SARS-CoV-2 mediates the viral cell-to-cell transmission, with an efficiency higher than that of SARS-CoV. We also find that cell–cell fusion contributes to cell-to-cell transmission, yet ACE2 is not absolutely required. While the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) differ in cell-free infectivity from wild type and from each other, these VOCs have similar cell-to-cell transmission capability and exhibit differential sensitivity to neutralization by vaccinee sera. Results from our study will contribute to a better understanding of SARS-CoV-2 spread and pathogenesis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell–cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell–cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
16
|
Zeng C, Evans JP, King T, Zheng YM, Oltz EM, Whelan SPJ, Saif L, Peeples ME, Liu SL. SARS-CoV-2 Spreads through Cell-to-Cell Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34100011 PMCID: PMC8183005 DOI: 10.1101/2021.06.01.446579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While ACE2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the variants of concern (VOC) B.1.1.7 and B.1.351 have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccine sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
17
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Spiridonov EA, Belov DS, Altieri A, Kurkin AV, Debnath AK. Design, synthesis, and antiviral activity of a series of CD4-mimetic small-molecule HIV-1 entry inhibitors. Bioorg Med Chem 2021; 32:116000. [PMID: 33461144 DOI: 10.1016/j.bmc.2021.116000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022]
Abstract
We presented our continuing stride to optimize the second-generation NBD entry antagonist targeted to the Phe43 cavity of HIV-1 gp120. We have synthesized thirty-eight new and novel analogs of NBD-14136, earlier designed based on a CH2OH "positional switch" hypothesis, and derived a comprehensive SAR. The antiviral data confirmed that the linear alcohol towards the "N" (C4) of the thiazole ring yielded more active inhibitors than those towards the "S" (C5) of the thiazole ring. The best inhibitor, NBD-14273 (compound 13), showed both improved antiviral activity and selectivity index (SI) against HIV-1HXB2 compared to NBD-14136. We also tested NBD-14273 against a large panel of 50 HIV-1 Env-pseudotyped viruses representing clinical isolates of diverse subtypes. The overall mean data indicate that antiviral potency against these isolates improved by ~3-fold, and SI also improved ~3-fold compared to NBD-14136. This new and novel inhibitor is expected to pave the way for further optimization to a more potent and clinically relevant inhibitor against HIV-1.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Evgeny A Spiridonov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
18
|
Hikichi Y, Van Duyne R, Pham P, Groebner JL, Wiegand A, Mellors JW, Kearney MF, Freed EO. Mechanistic Analysis of the Broad Antiretroviral Resistance Conferred by HIV-1 Envelope Glycoprotein Mutations. mBio 2021; 12:e03134-20. [PMID: 33436439 PMCID: PMC7844542 DOI: 10.1128/mbio.03134-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the effectiveness of antiretroviral (ARV) therapy, virological failure can occur in some HIV-1-infected patients in the absence of mutations in drug target genes. We previously reported that, in vitro, the lab-adapted HIV-1 NL4-3 strain can acquire resistance to the integrase inhibitor dolutegravir (DTG) by acquiring mutations in the envelope glycoprotein (Env) that enhance viral cell-cell transmission. In this study, we investigated whether Env-mediated drug resistance extends to ARVs other than DTG and whether it occurs in other HIV-1 isolates. We demonstrate that Env mutations can reduce susceptibility to multiple classes of ARVs and also increase resistance to ARVs when coupled with target-gene mutations. We observe that the NL4-3 Env mutants display a more stable and closed Env conformation and lower rates of gp120 shedding than the WT virus. We also selected for Env mutations in clinically relevant HIV-1 isolates in the presence of ARVs. These Env mutants exhibit reduced susceptibility to DTG, with effects on replication and Env structure that are HIV-1 strain dependent. Finally, to examine a possible in vivo relevance of Env-mediated drug resistance, we performed single-genome sequencing of plasma-derived virus from five patients failing an integrase inhibitor-containing regimen. This analysis revealed the presence of several mutations in the highly conserved gp120-gp41 interface despite low frequency of resistance mutations in integrase. These results suggest that mutations in Env that enhance the ability of HIV-1 to spread via a cell-cell route may increase the opportunity for the virus to acquire high-level drug resistance mutations in ARV target genes.IMPORTANCE Although combination antiretroviral (ARV) therapy is highly effective in controlling the progression of HIV disease, drug resistance can be a major obstacle. Recent findings suggest that resistance can develop without ARV target gene mutations. We previously reported that mutations in the HIV-1 envelope glycoprotein (Env) confer resistance to an integrase inhibitor. Here, we investigated the mechanism of Env-mediated drug resistance and the possible contribution of Env to virological failure in vivo We demonstrate that Env mutations can reduce sensitivity to major classes of ARVs in multiple viral isolates and define the effect of the Env mutations on Env subunit interactions. We observed that many Env mutations accumulated in individuals failing integrase inhibitor therapy despite a low frequency of resistance mutations in integrase. Our findings suggest that broad-based Env-mediated drug resistance may impact therapeutic strategies and provide clues toward understanding how ARV-treated individuals fail therapy without acquiring mutations in drug target genes.
Collapse
Affiliation(s)
- Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rachel Van Duyne
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer L Groebner
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ann Wiegand
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - John W Mellors
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary F Kearney
- Translational Research Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
19
|
Dupont M, Sattentau QJ. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 2020; 12:E492. [PMID: 32354203 PMCID: PMC7290394 DOI: 10.3390/v12050492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens infect macrophages as part of their intracellular life cycle. This is particularly true for viruses, of which HIV-1 is one of the best studied. HIV-1 infection of macrophages has important consequences for viral persistence and pathogenesis, but the mechanisms of macrophage infection remain to be fully elucidated. Despite expressing viral entry receptors, macrophages are inefficiently infected by cell-free HIV-1 virions, whereas direct cell-cell spread is more efficient. Different modes of cell-cell spread have been described, including the uptake by macrophages of infected T cells and the fusion of infected T cells with macrophages, both leading to macrophage infection. Cell-cell spread can also transmit HIV-1 between macrophages and from macrophages to T cells. Here, we describe the current state of the field concerning the cell-cell spread of HIV-1 to and from macrophages, discuss mechanisms, and highlight potential in vivo relevance.
Collapse
Affiliation(s)
- Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
20
|
Curreli F, Ahmed S, Benedict Victor SM, Iusupov IR, Belov DS, Markov PO, Kurkin AV, Altieri A, Debnath AK. Preclinical Optimization of gp120 Entry Antagonists as anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J Med Chem 2020; 63:1724-1749. [PMID: 32031803 DOI: 10.1021/acs.jmedchem.9b02149] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously reported a milestone in the optimization of NBD-11021, an HIV-1 gp120 antagonist, by developing a new and novel analogue, NBD-14189 (Ref1), which showed antiviral activity against HIV-1HXB2, with a half maximal inhibitory concentration of 89 nM. However, cytotoxicity remained high, and the absorption, distribution, metabolism, and excretion (ADME) data showed relatively poor aqueous solubility. To optimize these properties, we replaced the phenyl ring in the compound with a pyridine ring and synthesized a set of 48 novel compounds. One of the new analogues, NBD-14270 (8), showed a marked improvement in cytotoxicity, with 3-fold and 58-fold improvements in selectivity index value compared with that of Ref1 and NBD-11021, respectively. Furthermore, the in vitro ADME data clearly showed improvements in aqueous solubility and other properties compared with those for Ref1. The data for 8 indicated that the pyridine scaffold is a good bioisostere for phenyl, allowing the further optimization of this molecule.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Shahad Ahmed
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Sofia M Benedict Victor
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| | - Ildar R Iusupov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Pavel O Markov
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park , Moscow State University , Leninskie Gory Bld. 75, 77-101b , Moscow 119992 , Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute , New York Blood Center , 310 E 67th Street , New York 10065 , New York , United States
| |
Collapse
|
21
|
HIV-1-Infected CD4+ T Cells Facilitate Latent Infection of Resting CD4+ T Cells through Cell-Cell Contact. Cell Rep 2020; 24:2088-2100. [PMID: 30134170 DOI: 10.1016/j.celrep.2018.07.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/01/2018] [Accepted: 07/22/2018] [Indexed: 02/07/2023] Open
Abstract
HIV-1 is transmitted between T cells through the release of cell-free particles and through cell-cell contact. Cell-to-cell transmission is more efficient than cell-free virus transmission, mediates resistance to immune responses, and facilitates the spread of virus among T cells. However, whether HIV cell-to-cell transmission influences the establishment of HIV-1 latency has not been carefully explored. We developed an HIV-1 latency model based on the transmission of HIV-1 directly to resting CD4+ T cells by cell-cell contact. This model recapitulates the spread of HIV-1 in T-cell-dense anatomical compartments. We demonstrate that productively infected activated CD4+ T cells transmit HIV-1 to resting CD4+ T cells in a cell-contact-dependent manner. However, proviruses generated in this fashion are more difficult to induce compared to proviruses generated by cell-free infection, suggesting that cell-to-cell transmission influences the establishment and maintenance of latent infection in resting CD4+ T cells.
Collapse
|
22
|
Bhole RP, Bonde CG, Bonde SC, Chikhale RV, Wavhale RD. Pharmacophore model and atom-based 3D quantitative structure activity relationship (QSAR) of human immunodeficiency virus-1 (HIV-1) capsid assembly inhibitors. J Biomol Struct Dyn 2020; 39:718-727. [PMID: 31928140 DOI: 10.1080/07391102.2020.1715258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A potential anti-Human Immunodeficiency Virus (HIV) agent with novel mode of action is urgently needed to fight against drug resistance HIV. The HIV capsid protein is important for both late and early stages of the viral replication cycle and emerged as a promising target for the developing of small molecule inhibitors of HIV. We design a Pharmacophore and 3D Quantitative structure activity relationship (QSAR) model for HIV Capsid Protein inhibitors, which helps to identify overall aspects of molecular structure that govern activity and for the prediction of novel HIV Capsid inhibitors. The hypothesis was developed with a survival score of 3.6.The features, that is, two aromatic rings, one hydrophobic site and two acceptor regions were present in all the active compounds with good fitness score. Pharmacophore model was then validated by a partial least square and regression-based PHASE 3D QSAR cross-validation. The leave-n-out cross validation for test set (Q2) of the hypothesis is 0.636, the standard deviation (SD) value is 0.338, and the variance ratio (F-test) value is 74.5. Hypothesis also showed a leave-n-out cross validation for training set (R2, 0.928). Interestingly, the predicted activity of true test set compounds was found in the close vicinity of their experimental activity suggesting the methodology used and models generated can be applied to identify potential new chemical entities with better HIV-1 capsid assembly inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R P Bhole
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - C G Bonde
- SVKMs NMiMS, School of Pharmacy & Technology Management, School of Pharmacy, Dhule, Maharashtra, India
| | - S C Bonde
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - R V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - R D Wavhale
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
23
|
Engelman AN. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 2019; 294:15137-15157. [PMID: 31467082 DOI: 10.1074/jbc.rev119.006901] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral inhibitors that are used to manage HIV infection/AIDS predominantly target three enzymes required for virus replication: reverse transcriptase, protease, and integrase. Although integrase inhibitors were the last among this group to be approved for treating people living with HIV, they have since risen to the forefront of treatment options. Integrase strand transfer inhibitors (INSTIs) are now recommended components of frontline and drug-switch antiretroviral therapy formulations. Integrase catalyzes two successive magnesium-dependent polynucleotidyl transferase reactions, 3' processing and strand transfer, and INSTIs tightly bind the divalent metal ions and viral DNA end after 3' processing, displacing from the integrase active site the DNA 3'-hydroxyl group that is required for strand transfer activity. Although second-generation INSTIs present higher barriers to the development of viral drug resistance than first-generation compounds, the mechanisms underlying these superior barrier profiles are incompletely understood. A separate class of HIV-1 integrase inhibitors, the allosteric integrase inhibitors (ALLINIs), engage integrase distal from the enzyme active site, namely at the binding site for the cellular cofactor lens epithelium-derived growth factor (LEDGF)/p75 that helps to guide integration into host genes. ALLINIs inhibit HIV-1 replication by inducing integrase hypermultimerization, which precludes integrase binding to genomic RNA and perturbs the morphogenesis of new viral particles. Although not yet approved for human use, ALLINIs provide important probes that can be used to investigate the link between HIV-1 integrase and viral particle morphogenesis. Herein, I review the mechanisms of retroviral integration as well as the promises and challenges of using integrase inhibitors for HIV/AIDS management.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
24
|
HIV Infection Stabilizes Macrophage-T Cell Interactions To Promote Cell-Cell HIV Spread. J Virol 2019; 93:JVI.00805-19. [PMID: 31270227 DOI: 10.1128/jvi.00805-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophages are susceptible to HIV infection and play an important role in viral dissemination through cell-cell contacts with T cells. However, our current understanding of macrophage-to-T cell HIV transmission is derived from studies that do not consider the robust migration and cell-cell interaction dynamics between these cells. Here, we performed live-cell imaging studies in 3-dimensional (3D) collagen that allowed CD4+ T cells to migrate and to locate and engage HIV-infected macrophages, modeling the dynamic aspects of the in situ environment in which these contacts frequently occur. We show that HIV+ macrophages form stable contacts with CD4+ T cells that are facilitated by both gp120-CD4 and LFA-1-ICAM-1 interactions and that prolonged contacts are a prerequisite for efficient viral spread. LFA-1-ICAM-1 adhesive contacts function to restrain highly motile T cells, since their blockade substantially destabilized macrophage-T cell contacts, resulting in abnormal tethering events that reduced cell-cell viral spread. HIV-infected macrophages displayed strikingly elongated podosomal extensions that were dependent on Nef expression but were dispensable for stable cell-cell contact formation. Finally, we observed persistent T cell infection in dynamic monocyte-derived macrophage (MDM)-T cell cocultures in the presence of single high antiretroviral drug concentrations but achieved complete inhibition with combination therapy. Together, our data implicate macrophages as drivers of T cell infection by altering physiological MDM-T cell contact dynamics to access and restrain large numbers of susceptible, motile T cells within lymphoid tissues.IMPORTANCE Once HIV enters the lymphoid organs, exponential viral replication in T cells ensues. Given the densely packed nature of these tissues, where infected and uninfected cells are in nearly constant contact with one another, efficient HIV spread is thought to occur through cell-cell contacts in vivo However, this has not been formally demonstrated. In this study, we performed live-cell imaging studies within a 3-dimensional space to recapitulate the dynamic aspects of the lymphoid microenvironment and asked whether HIV can alter the morphology, migration capacity, and cell-cell contact behaviors between macrophages and T cells. We show that HIV-infected macrophages can engage T cells in stable contacts through binding of virus- and host-derived adhesive molecules and that stable macrophage-T cell contacts were required for high viral spread. Thus, HIV alters physiological macrophage-T cell interactions in order to access and restrain large numbers of susceptible, motile T cells, thereby playing an important role in HIV progression.
Collapse
|
25
|
Merwaiss F, Alvarez* DE. Image-based Quantification of Direct Cell-to-cell Transmission of Bovine Viral Diarrhea Virus. Bio Protoc 2019; 9:e3319. [PMID: 33654826 PMCID: PMC7854233 DOI: 10.21769/bioprotoc.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 11/02/2022] Open
Abstract
Different viruses rely on direct cell-to-cell transmission to propagate infection within the infected host. Measuring this mode of transmission in cultured cells is often complicated by the contribution of cell free viruses to spread, and the difficulty to distinguish between primary infected cells that produce the virus and neighboring cells that are the target of spreading. Here, we present a protocol to quantify cell-to-cell transmission of the model pestivirus bovine viral diarrhea virus that is based on the co-culture of producer cells that are infected with a reporter virus expressing mCherry and target cells that stably express GFP. Spread of cell-free viruses is blocked by the presence of a neutralizing antibody in the cell culture medium, and cell-associated transmission is unequivocally quantified by numbering cells that are positive for both GFP and mCherry using automated analysis of fluorescence microscopy images.
Collapse
Affiliation(s)
- Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CONICET, San Martín, Argentina
| | - Diego E. Alvarez*
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CONICET, San Martín, Argentina
| |
Collapse
|
26
|
Rappocciolo G, Sluis-Cremer N, Rinaldo CR. Efficient HIV-1 Trans Infection of CD4 + T Cells Occurs in the Presence of Antiretroviral Therapy. Open Forum Infect Dis 2019; 6:ofz253. [PMID: 31304185 PMCID: PMC6613953 DOI: 10.1093/ofid/ofz253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/23/2019] [Indexed: 11/21/2022] Open
Abstract
Background Antiretroviral therapy (ART) has dramatically improved the quality of life of people with HIV-1 infection (PWH). However, it is not curative, and interruption of ART results in rapid viral rebound. Cell-to-cell transfer of HIV-1, or trans infection, is a highly efficient mechanism of virus infection of CD4+ T cells by professional antigen-presenting cells (APCs), that is, dendritic cells (DCs), macrophages, and B lymphocytes. Methods APC from HIV seronegative donors treated with ART in vitro (CCR5 agonist, NRTI, PI and NNRTI, alone or in combination), were loaded with HIV R5-tropic HIVBal and mixed with autologous or heterologous CD4+ T lymphocytes to assess trans infection. Ex vivo APC from chronic HIV-infected MACS participants before and after initiation of ART, were also loaded with HIV R5-tropic HIVBal and tested for trans infection against autologous or heterologous CD4+ T lymphocytes. Virus replication was measured by p24 ELISA. Results Here we show in vitro that antiretroviral drugs did not block the ability of DCs and B cells to trans-infect CD4+ T cells, although they were effective in blocking direct cis infection of CD4+ T cells. Moreover, ex vivo DCs and B cells from ART-suppressed PWH mediated efficient HIV-1 trans infection of CD4+ T cells, which were resistant to direct cis infection. Conclusions Our study supports a role for HIV-1 trans infection in maintenance of the HIV-1 reservoir during ART.
Collapse
Affiliation(s)
- Giovanna Rappocciolo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicolas Sluis-Cremer
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Mutations in the HIV-1 envelope glycoprotein can broadly rescue blocks at multiple steps in the virus replication cycle. Proc Natl Acad Sci U S A 2019; 116:9040-9049. [PMID: 30975760 DOI: 10.1073/pnas.1820333116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The p6 domain of HIV-1 Gag contains highly conserved peptide motifs that recruit host machinery to sites of virus assembly, thereby promoting particle release from the infected cell. We previously reported that mutations in the YPXnL motif of p6, which binds the host protein Alix, severely impair HIV-1 replication. Propagation of the p6-Alix binding site mutants in the Jurkat T cell line led to the emergence of viral revertants containing compensatory mutations not in Gag but in Vpu and the envelope (Env) glycoprotein subunits gp120 and gp41. The Env compensatory mutants replicate in Jurkat T cells and primary human peripheral blood mononuclear cells, despite exhibiting severe defects in cell-free particle infectivity and Env-mediated fusogenicity. Remarkably, the Env compensatory mutants can also rescue a replication-delayed integrase (IN) mutant, and exhibit reduced sensitivity to the IN inhibitor Dolutegravir (DTG), demonstrating that they confer a global replication advantage. In addition, confirming the ability of Env mutants to confer escape from DTG, we performed de novo selection for DTG resistance and observed resistance mutations in Env. These results identify amino acid substitutions in Env that confer broad escape from defects in virus replication imposed by either mutations in the HIV-1 genome or by an antiretroviral inhibitor. We attribute this phenotype to the ability of the Env mutants to mediate highly efficient cell-to-cell transmission, resulting in an increase in the multiplicity of infection. These findings have broad implications for our understanding of Env function and the evolution of HIV-1 drug resistance.
Collapse
|
28
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
29
|
Kakooza-Mwesige A, Tshala-Katumbay D, Juliano SL. Viral infections of the central nervous system in Africa. Brain Res Bull 2019; 145:2-17. [PMID: 30658129 DOI: 10.1016/j.brainresbull.2018.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Viral infections are a major cause of human central nervous system infection, and may be associated with significant mortality, and long-term sequelae. In Africa, the lack of effective therapies, limited diagnostic and human resource facilities are especially in dire need. Most viruses that affect the central nervous system are opportunistic or accidental pathogens. Some of these viruses were initially considered harmless, however they have now evolved to penetrate the nervous system efficiently and exploit neuronal cell biology thus resulting in severe illness. A number of potentially lethal neurotropic viruses have been discovered in Africa and over the course of time shown their ability to spread wider afield involving other continents leaving a devastating impact in their trail. In this review we discuss key viruses involved in central nervous system disease and of major public health concern with respect to Africa. These arise from the families of Flaviviridae, Filoviridae, Retroviridae, Bunyaviridae, Rhabdoviridae and Herpesviridae. In terms of the number of cases affected by these viruses, HIV (Retroviridae) tops the list for morbidity, mortality and long term disability, while the Rift Valley Fever virus (Bunyaviridae) is at the bottom of the list. The most deadly are the Ebola and Marburg viruses (Filoviridae). This review describes their epidemiology and key neurological manifestations as regards the central nervous system such as meningoencephalitis and Guillain-Barré syndrome. The potential pathogenic mechanisms adopted by these viruses are debated and research perspectives suggested.
Collapse
Affiliation(s)
- Angelina Kakooza-Mwesige
- Department of Paediatrics & Child Health, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda; Astrid Lindgren Children's Hospital, Neuropediatric Research Unit, Karolinska Institutet, Sweden.
| | - Desire Tshala-Katumbay
- Department of Neurology and School of Public Health, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, University of Kinshasa, and Institut National de Recherches Biomedicales, University of Kinshasa, Democratic Republic of the Congo.
| | | |
Collapse
|
30
|
Allen AG, Chung CH, Atkins A, Dampier W, Khalili K, Nonnemacher MR, Wigdahl B. Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Front Microbiol 2018; 9:2940. [PMID: 30619107 PMCID: PMC6304358 DOI: 10.3389/fmicb.2018.02940] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Antiretroviral therapy has prolonged the lives of people living with human immunodeficiency virus type 1 (HIV-1), transforming the disease into one that can be controlled with lifelong therapy. The search for an HIV-1 vaccine has plagued researchers for more than three decades with little to no success from clinical trials. Due to these failures, scientists have turned to alternative methods to develop next generation therapeutics that could allow patients to live with HIV-1 without the need for daily medication. One method that has been proposed has involved the use of a number of powerful gene editing tools; Zinc Finger Nucleases (ZFN), Transcription Activator–like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to edit the co-receptors (CCR5 or CXCR4) required for HIV-1 to infect susceptible target cells efficiently. Initial safety studies in patients have shown that editing the CCR5 locus is safe. More in depth in vitro studies have shown that editing the CCR5 locus was able to inhibit infection from CCR5-utilizing virus, but CXCR4-utilizing virus was still able to infect cells. Additional research efforts were then aimed at editing the CXCR4 locus, but this came with other safety concerns. However, in vitro studies have since confirmed that CXCR4 can be edited without killing cells and can confer resistance to CXCR4-utilizing HIV-1. Utilizing these powerful new gene editing technologies in concert could confer cellular resistance to HIV-1. While the CD4, CCR5, CXCR4 axis for cell-free infection has been the most studied, there are a plethora of reports suggesting that the cell-to-cell transmission of HIV-1 is significantly more efficient. These reports also indicated that while broadly neutralizing antibodies are well suited with respect to blocking cell-free infection, cell-to-cell transmission remains refractile to this approach. In addition to stopping cell-free infection, gene editing of the HIV-1 co-receptors could block cell-to-cell transmission. This review aims to summarize what has been shown with regard to editing the co-receptors needed for HIV-1 entry and how they could impact the future of HIV-1 therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Vincent KL, Moss JA, Marzinke MA, Hendrix CW, Anton PA, Gunawardana M, Dawson LN, Olive TJ, Pyles RB, Baum MM. Phase I trial of pod-intravaginal rings delivering antiretroviral agents for HIV-1 prevention: Rectal drug exposure from vaginal dosing with tenofovir disoproxil fumarate, emtricitabine, and maraviroc. PLoS One 2018; 13:e0201952. [PMID: 30133534 PMCID: PMC6104940 DOI: 10.1371/journal.pone.0201952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Intravaginal rings (IVRs) can deliver antiretroviral (ARV) agents for HIV pre-exposure prophylaxis (PrEP), theoretically overcoming adherence concerns associated with frequent dosing. However, topical vaginal ARV drug delivery has not simultaneously led to sufficient rectal drug exposure to likely protect from HIV infection as a result of receptive anal intercourse (RAI). Unprotected RAI has a higher risk of infection per sex act and, for women, also can be associated with vaginal exposure during a single sexual encounter, especially in higher-risk subsets of women. The physiologically inflamed, activated, immune-cell dense colorectal mucosa is increasingly appreciated as the sexual compartment with highly significant risk; this risk is increased in the setting of co-infections. Ex vivo studies have shown that colorectal tissue and rectal fluid concentrations correlated with HIV protection. Given these important results, efforts to document colorectal compartment ARV drug concentration from pod-IVR delivery was assessed to determine if vaginal application could provide protective ARV levels in both compartments. METHODOLOGY/PRINCIPAL FINDINGS A crossover clinical trial (N = 6) evaluated 7 d of continuous TDF pod-IVR use, a wash-out phase, followed by 7 d with a TDF-FTC pod-IVR. A subsequent clinical trial (N = 6) consisted of 7 d of continuous TDF-FTC-MVC pod-IVR use. Rectal fluids were collected on Day 7 at IVR removal in all three ARV-exposures (two Phase 1 trials) and drug concentrations quantified by LC-MS/MS. Median rectal fluid concentrations of TFV, the hydrolysis product of the prodrug TDF, were between 0.66 ng mg-1 (TDF pod-IVR group) and 1.11 ng mg-1 (TDF-FTC pod-IVR group), but below the analytical lower limit of quantitation in 5/6 samples in the TDF-FTC-MVC pod-IVR group. Unexpectedly, median FTC (TDF-FTC pod-IVR, 20.3 ng mg-1; TDF-FTC-MVC pod-IVR, 0.18 ng mg-1), and MVC rectal fluid concentrations (0.84 ng mg-1) were quantifiable and higher than their respective in vitro EC50 values in most samples. Due to participant burden in these exploratory trials, rectal fluid was used as a surrogate for rectal tissue, where drug concentrations are expected to be higher. CONCLUSIONS/SIGNIFICANCE The concentrations of FTC and MVC in rectal fluids obtained in two exploratory clinical trials of IVRs delivering ARV combinations exceeded levels associated with in vitro efficacy in HIV inhibition. Unexpectedly, MVC appeared to depress the distribution of TFV and FTC into the rectal lumen. Here we show that vaginal delivery of ARV combinations may provide adherence and coitally independent dual-compartment protection from HIV infection during both vaginal and receptive anal intercourse.
Collapse
Affiliation(s)
- Kathleen Listiak Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - Mark A. Marzinke
- Department of Medicine (Division of Clinical Pharmacology), Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University, Sheikh Zayed Tower, Baltimore, Maryland, United States of America
| | - Craig W. Hendrix
- Department of Medicine (Division of Clinical Pharmacology), Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peter A. Anton
- Center for HIV Prevention Research, Division of Digestive Diseases and UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| | - Lauren N. Dawson
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Trevelyn J. Olive
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Richard B. Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, United States of America
| |
Collapse
|
32
|
Ilinykh PA, Santos RI, Gunn BM, Kuzmina NA, Shen X, Huang K, Gilchuk P, Flyak AI, Younan P, Alter G, Crowe JE, Bukreyev A. Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathog 2018; 14:e1007204. [PMID: 30138408 PMCID: PMC6107261 DOI: 10.1371/journal.ppat.1007204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/08/2018] [Indexed: 01/24/2023] Open
Abstract
Recent studies suggest that some monoclonal antibodies (mAbs) specific for ebolavirus glycoprotein (GP) can protect experimental animals against infections. Most mAbs isolated from ebolavirus survivors appeared to target the glycan cap or the stalk region of the viral GP, which is the envelope protein and the only antigen inducing virus-neutralizing antibody response. Some of the mAbs were demonstrated to be protective in vivo. Here, a panel of mAbs from four individual survivors of ebolavirus infection that target the glycan cap or stem region were selected for investigation of the mechanisms of their antiviral effect. Comparative characterization of the inhibiting effects on multiple steps of viral replication was performed, including attachment, post-attachment, entry, binding at low pH, post-cleavage neutralization of virions, viral trafficking to endosomes, cell-to-cell transmission, viral egress, and inhibition when added early at various time points post-infection. In addition, Fc-domain related properties were characterized, including activation and degranulation of NK cells, antibody-dependent cellular phagocytosis and glycan content. The two groups of mAbs (glycan cap versus stem) demonstrated very different profiles of activities suggesting usage of mAbs with different epitope specificity could coordinate inhibition of multiple steps of filovirus infection through Fab- and Fc-mediated mechanisms, and provide a reliable therapeutic approach.
Collapse
Affiliation(s)
- Philipp A. Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bronwyn M. Gunn
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Xiaoli Shen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Andrew I. Flyak
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pediatrics (Infectious Diseases), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
- Galveston National Laboratory, Galveston, TX, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| |
Collapse
|
33
|
Curreli F, Belov DS, Kwon YD, Ramesh R, Furimsky AM, O'Loughlin K, Byrge PC, Iyer LV, Mirsalis JC, Kurkin AV, Altieri A, Debnath AK. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120. Eur J Med Chem 2018; 154:367-391. [PMID: 29860061 PMCID: PMC5993640 DOI: 10.1016/j.ejmech.2018.04.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022]
Abstract
We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR). We have selected three inhibitors with the high selectivity index for testing against a large panel of 55 Env-pseudotyped viruses representing a diverse set of clinical isolates of different subtypes. The antiviral activity of one of these potent inhibitors, 55 (NBD-14189), against some clinical isolates was as low as 63 nM. We determined the sensitivity of CD4-binding site mutated-pseudoviruses to these inhibitors to confirm that they target HIV-1 gp120. Furthermore, we assessed their ADMET properties and compared them to the clinical candidate attachment inhibitor, BMS-626529. The ADMET data indicate that some of these new inhibitors have comparable ADMET properties to BMS-626529 and can be optimized further to potential clinical candidates.
Collapse
Affiliation(s)
- Francesca Curreli
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Dmitry S Belov
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Young Do Kwon
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ranjith Ramesh
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA
| | - Anna M Furimsky
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Kathleen O'Loughlin
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Patricia C Byrge
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Lalitha V Iyer
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Jon C Mirsalis
- SRI International, Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Alexander V Kurkin
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Andrea Altieri
- EDASA Scientific, Scientific Park, Moscow State University, Leninskie Gory Bld. 75, 77-101b, 119992 Moscow, Russia
| | - Asim K Debnath
- Laboratory of Molecular Modeling & Drug Design, Lindsley F. Kimball Research Institute, New York Blood Center, 310 E 67th Street, New York, NY 10065, USA.
| |
Collapse
|
34
|
Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy. Viruses 2018; 10:v10060337. [PMID: 29925766 PMCID: PMC6024644 DOI: 10.3390/v10060337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.
Collapse
|
35
|
Khalilieh SG, Yee KL, Sanchez RI, Liu R, Fan L, Martell M, Jordan H, Iwamoto M. Multiple Doses of Rifabutin Reduce Exposure of Doravirine in Healthy Subjects. J Clin Pharmacol 2018; 58:1044-1052. [DOI: 10.1002/jcph.1103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Li Fan
- Merck & Co., Inc., Kenilworth; NJ USA
| | | | | | | |
Collapse
|
36
|
Pasquier A, Alais S, Roux L, Thoulouze MI, Alvarez K, Journo C, Dutartre H, Mahieux R. How to Control HTLV-1-Associated Diseases: Preventing de Novo Cellular Infection Using Antiviral Therapy. Front Microbiol 2018; 9:278. [PMID: 29593659 PMCID: PMC5859376 DOI: 10.3389/fmicb.2018.00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Five to ten million individuals are infected by Human T-cell Leukemia Virus type 1 (HTLV-1). HTLV-1 is transmitted through prolonged breast-feeding, by sexual contacts and by transmission of infected T lymphocytes through blood transfusion. One to ten percent of infected carriers will develop a severe HTLV-1-associated disease: Adult-T-cell leukemia/lymphoma (ATLL), or a neurological disorder named Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In vivo, HTLV-1 is mostly detected in CD4+ T-cells, and to a lesser extent in CD8+ T cells and dendritic cells. There is a strong correlation between HTLV-1 proviral load (PVL) and clinical status of infected individuals. Thus, reducing PVL could be part of a strategy to prevent or treat HTLV-1-associated diseases among carriers. Treatment of ATLL patients using conventional chemotherapy has very limited benefit. Some chronic and acute ATLL patients are, however, efficiently treated with a combination of interferon α and zidovudine (IFN-α/AZT), to which arsenic trioxide is added in some cases. On the other hand, no efficient treatment for TSP/HAM patients has been described yet. It is therefore crucial to develop therapies that could either prevent the occurrence of HTLV-1-associated diseases or at least block the evolution of the disease in the early stages. In vivo, reverse transcriptase (RT) activity is low in infected cells, which is correlated with a clonal mode of viral replication. This renders infected cells resistant to nucleoside RT inhibitors such as AZT. However, histone deacetylase inhibitors (HDACi) associated to AZT efficiently induces viral expression and prevent de novo cellular infection. In asymptomatic STLV-1 infected non-human primates, HDACi/AZT combination allows a strong decrease in the PVL. Unfortunately, rebound in the PVL occurs when the treatment is stopped, highlighting the need for better antiviral compounds. Here, we review previously used strategies targeting HTLV-1 replication. We also tested a series of HIV-1 RT inhibitors in an in vitro anti-HTLV-1 screen, and report that bis-POM-PMEA (adefovir dipivoxil) and bis-POC-PMPA (tenofovir disoproxil) are much more efficient compared to AZT to decrease HTLV-1 cell-to-cell transmission in vitro. Our results suggest that revisiting already established antiviral drugs is an interesting approach to discover new anti-HTLV-1 drugs.
Collapse
Affiliation(s)
- Amandine Pasquier
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.,Ecole Pratique des Hautes Etudes, Paris, France
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Loic Roux
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Maria-Isabel Thoulouze
- "Biofilm and Viral Transmission" Team, Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Karine Alvarez
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
37
|
Narasimhulu VGS, Bellamy-McIntyre AK, Laumaea AE, Lay CS, Harrison DN, King HAD, Drummer HE, Poumbourios P. Distinct functions for the membrane-proximal ectodomain region (MPER) of HIV-1 gp41 in cell-free and cell-cell viral transmission and cell-cell fusion. J Biol Chem 2018; 293:6099-6120. [PMID: 29496992 DOI: 10.1074/jbc.ra117.000537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/21/2018] [Indexed: 11/06/2022] Open
Abstract
HIV-1 is spread by cell-free virions and by cell-cell viral transfer. We asked whether the structure and function of a broad neutralizing antibody (bNAb) epitope, the membrane-proximal ectodomain region (MPER) of the viral gp41 transmembrane glycoprotein, differ in cell-free and cell-cell-transmitted viruses and whether this difference could be related to Ab neutralization sensitivity. Whereas cell-free viruses bearing W666A and I675A substitutions in the MPER lacked infectivity, cell-associated mutant viruses were able to initiate robust spreading infection. Infectivity was restored to cell-free viruses by additional substitutions in the cytoplasmic tail (CT) of gp41 known to disrupt interactions with the viral matrix protein. We observed contrasting effects on cell-free virus infectivity when W666A was introduced to two transmitted/founder isolates, but both mutants could still mediate cell-cell spread. Domain swapping indicated that the disparate W666A phenotypes of the cell-free transmitted/founder viruses are controlled by sequences in variable regions 1, 2, and 4 of gp120. The sequential passaging of an MPER mutant (W672A) in peripheral blood mononuclear cells enabled selection of viral revertants with loss-of-glycan suppressor mutations in variable region 1, suggesting a functional interaction between variable region 1 and the MPER. An MPER-directed bNAb neutralized cell-free virus but not cell-cell viral spread. Our results suggest that the MPER of cell-cell-transmitted virions has a malleable structure that tolerates mutagenic disruption but is not accessible to bNAbs. In cell-free virions, interactions mediated by the CT impose an alternative MPER structure that is less tolerant of mutagenic alteration and is efficiently targeted by bNAbs.
Collapse
Affiliation(s)
- Vani G S Narasimhulu
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Anna K Bellamy-McIntyre
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Departments of Microbiology and
| | - Annamarie E Laumaea
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Chan-Sien Lay
- Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David N Harrison
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004
| | - Hannah A D King
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and
| | - Heidi E Drummer
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004.,the Department of Microbiology and Immunology at the Peter Doherty Institute, University of Melbourne, Parkville, Victoria 3010, and.,the Departments of Microbiology and
| | - Pantelis Poumbourios
- From the Virus Entry and Vaccines Laboratory, Burnet Institute, Melbourne, Victoria 3004, .,the Departments of Microbiology and.,Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
38
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
39
|
Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner. PLoS One 2018; 13:e0189945. [PMID: 29293546 PMCID: PMC5749731 DOI: 10.1371/journal.pone.0189945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-to-T cell transmission is an example of infection in trans, in which the cell transmitting the virus is itself uninfected. During this mode of DC-to-T cell transmission, uninfected DCs concentrate infectious virions, contact T cells and transmit these virions to target cells. Here, we investigated the efficiency of DC-to-T cell transmission on the number of cells infected and the sensitivity of this type of transmission to the antiretroviral drugs tenofovir (TFV) and raltegravir (RAL). We observed activated monocyte-derived and myeloid DCs amplified T cell infection, which resulted in drug insensitivity. This drug insensitivity was dependent on cell-to-cell contact and ratio of DCs to T cells in coculture. DC-mediated amplification of HIV-1 infection was efficient regardless of virus tropism or origin. The DC-to-T cell transmission of the T/F strain CH077.t/2627 was relatively insensitive to TFV compared to DC-free T cell infection. The input of virus modulated the drug sensitivity of DC-to-T cell infection, but not T cell infection by cell-free virus. At high viral inputs, DC-to-T cell transmission reduced the sensitivity of infection to TFV. Transmission of HIV by DCs in trans may have important implications for viral persistence in vivo in environments, where residual replication may persist in the face of antiretroviral therapy.
Collapse
|
40
|
Rose R, Nolan DJ, Maidji E, Stoddart CA, Singer EJ, Lamers SL, McGrath MS. Eradication of HIV from Tissue Reservoirs: Challenges for the Cure. AIDS Res Hum Retroviruses 2018; 34:3-8. [PMID: 28691499 DOI: 10.1089/aid.2017.0072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The persistence of HIV infection, even after lengthy and successful combined antiretroviral therapy (cART), has precluded an effective cure. The anatomical locations and biological mechanisms through which the viral population is maintained remain unknown. Much research has focused nearly exclusively on circulating resting T cells as the predominant source of persistent HIV, a strategy with limited success in developing an effective cure strategy. In this study, we review research supporting the importance of anatomical tissues and other immune cells for HIV maintenance and expansion, including the central nervous system, lymph nodes, and macrophages. We present accumulated research that clearly demonstrates the limitations of using blood-derived cells as a proxy for tissue reservoirs and sanctuaries throughout the body. We cite recent studies that have successfully used deep-sequencing strategies to uncover the complexity of HIV infection and the ability of the virus to evolve despite undetectable plasma viral loads. Finally, we suggest new strategies and highlight the importance of tissue banks for future research.
Collapse
Affiliation(s)
| | | | - Ekaterina Maidji
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Cheryl A. Stoddart
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, California
| | - Elyse J. Singer
- The National Neurological AIDS Bank at David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Olive View-UCLA Medical Center, Los Angeles, California
| | | | - Michael S. McGrath
- The AIDS and Cancer Specimen Resource, San Francisco, California
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
41
|
Len ACL, Starling S, Shivkumar M, Jolly C. HIV-1 Activates T Cell Signaling Independently of Antigen to Drive Viral Spread. Cell Rep 2017; 18:1062-1074. [PMID: 28122231 PMCID: PMC5289937 DOI: 10.1016/j.celrep.2016.12.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022] Open
Abstract
HIV-1 spreads between CD4 T cells most efficiently through virus-induced cell-cell contacts. To test whether this process potentiates viral spread by activating signaling pathways, we developed an approach to analyze the phosphoproteome in infected and uninfected mixed-population T cells using differential metabolic labeling and mass spectrometry. We discovered HIV-1-induced activation of signaling networks during viral spread encompassing over 200 cellular proteins. Strikingly, pathways downstream of the T cell receptor were the most significantly activated, despite the absence of canonical antigen-dependent stimulation. The importance of this pathway was demonstrated by the depletion of proteins, and we show that HIV-1 Env-mediated cell-cell contact, the T cell receptor, and the Src kinase Lck were essential for signaling-dependent enhancement of viral dissemination. This study demonstrates that manipulation of signaling at immune cell contacts by HIV-1 is essential for promoting virus replication and defines a paradigm for antigen-independent T cell signaling. Unbiased global analysis of T cell signaling changes during HIV-1 cell-cell spread Experimental system to map dynamic signaling changes in mixed cell populations over time More than 200 host cell proteins are modified as HIV-1 disseminates between T cells HIV-1 activates antigen-independent TCR signaling to drive viral spread
Collapse
Affiliation(s)
- Alice C L Len
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Shimona Starling
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Maitreyi Shivkumar
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
42
|
T Cell-Macrophage Fusion Triggers Multinucleated Giant Cell Formation for HIV-1 Spreading. J Virol 2017; 91:JVI.01237-17. [PMID: 28978713 DOI: 10.1128/jvi.01237-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023] Open
Abstract
HIV-1-infected macrophages participate in virus dissemination and establishment of virus reservoirs in host tissues, but the mechanisms for virus cell-to-cell transfer to macrophages remain unknown. Here, we reveal the mechanisms for cell-to-cell transfer from infected T cells to macrophages and virus spreading between macrophages. We show that contacts between infected T lymphocytes and macrophages lead to cell fusion for the fast and massive transfer of CCR5-tropic viruses to macrophages. Through the merge of viral material between T cells and macrophages, these newly formed lymphocyte-macrophage fused cells acquire the ability to fuse with neighboring noninfected macrophages. Together, these two-step envelope-dependent cell fusion processes lead to the formation of highly virus-productive multinucleated giant cells reminiscent of the infected multinucleated giant macrophages detected in HIV-1-infected patients and simian immunodeficiency virus-infected macaques. These mechanisms represent an original mode of virus transmission for viral spreading and a new model for the formation of macrophage virus reservoirs during infection.IMPORTANCE We reveal a very efficient mechanism involved in cell-to-cell transfer from infected T cells to macrophages and subsequent virus spreading between macrophages by a two-step cell fusion process. Infected T cells first establish contacts and fuse with macrophage targets. The newly formed lymphocyte-macrophage fused cells then acquire the ability to fuse with surrounding uninfected macrophages, leading to the formation of infected multinucleated giant cells that can survive for a long time, as evidenced in vivo in lymphoid organs and the central nervous system. This route of infection may be a major determinant for virus dissemination and the formation of macrophage virus reservoirs in host tissues during HIV-1 infection.
Collapse
|
43
|
Xu S, Ducroux A, Ponnurangam A, Vieyres G, Franz S, Müsken M, Zillinger T, Malassa A, Ewald E, Hornung V, Barchet W, Häussler S, Pietschmann T, Goffinet C. cGAS-Mediated Innate Immunity Spreads Intercellularly through HIV-1 Env-Induced Membrane Fusion Sites. Cell Host Microbe 2017; 20:443-457. [PMID: 27736643 DOI: 10.1016/j.chom.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/22/2016] [Accepted: 09/15/2016] [Indexed: 02/01/2023]
Abstract
Upon sensing cytoplasmic retroviral DNA in infected cells, cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleotide cGAMP, which activates STING to trigger a type I interferon (IFN) response. We find that membrane fusion-inducing contact between donor cells expressing the HIV envelope (Env) and primary macrophages endogenously expressing the HIV receptor CD4 and coreceptor enable intercellular transfer of cGAMP. This cGAMP exchange results in STING-dependent antiviral IFN responses in target macrophages and protection from HIV infection. Furthermore, under conditions allowing cell-to-cell transmission of HIV-1, infected primary T cells, but not cell-free virions, deliver cGAMP to autologous macrophages through HIV-1 Env and CD4/coreceptor-mediated membrane fusion sites and induce a STING-dependent, but cGAS-independent, IFN response in target cells. Collectively, these findings identify an infection-specific mode of horizontal transfer of cGAMP between primary immune cells that may boost antiviral responses, particularly in infected tissues in which cell-to-cell transmission of virions exceeds cell-free infection.
Collapse
Affiliation(s)
- Shuting Xu
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Aurélie Ducroux
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Aparna Ponnurangam
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Sergej Franz
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Mathias Müsken
- Institute of Molecular Bacteriology, TWINCORE, 30625 Hanover, Germany; Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Thomas Zillinger
- German Center for Infection Research Cologne-Bonn, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127 Bonn, Germany
| | - Angelina Malassa
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Ellen Ewald
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich Germany; Center for Integrated Protein Science Munich, 81377 Munich, Germany
| | - Winfried Barchet
- German Center for Infection Research Cologne-Bonn, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127 Bonn, Germany
| | - Susanne Häussler
- Institute of Molecular Bacteriology, TWINCORE, 30625 Hanover, Germany; Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany
| | - Christine Goffinet
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
| |
Collapse
|
44
|
Wang X, Tang S, Song X, Rong L. Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:455-483. [PMID: 27730851 DOI: 10.1080/17513758.2016.1242784] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
HIV can infect cells via virus-to-cell infection or cell-to-cell viral transmission. These two infection modes may occur in a synergistic way and facilitate viral spread within an infected individual. In this paper, we developed an HIV latent infection model including both modes of transmission and time delays between viral entry and integration or viral production. We analysed the model by defining the basic reproductive number, showing the existence, positivity and boundedness of the solution, and proving the local and global stability of the infection-free and infected steady states. Numerical simulations have been performed to illustrate the theoretical results and evaluate the effects of time delays and fractions of infection leading to latency on the virus dynamics. The estimates of the relative contributions to the HIV latent reservoir and the virus population from the two modes of transmission have also been provided.
Collapse
Affiliation(s)
- Xia Wang
- a College of Mathematics and Information Science , Xinyang Normal University , Xinyang , People's Republic of China
| | - Sanyi Tang
- b College of Mathematics and Information Science , Shaanxi Normal University , Xi'an , People's Republic of China
| | - Xinyu Song
- a College of Mathematics and Information Science , Xinyang Normal University , Xinyang , People's Republic of China
| | - Libin Rong
- c Department of Mathematics and Statistics , Oakland University , Rochester , MI , USA
| |
Collapse
|
45
|
New Connections: Cell-to-Cell HIV-1 Transmission, Resistance to Broadly Neutralizing Antibodies, and an Envelope Sorting Motif. J Virol 2017; 91:JVI.00149-17. [PMID: 28250119 DOI: 10.1128/jvi.00149-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 infection from cell-to-cell may provide an efficient mode of viral spread in vivo and could therefore present a significant challenge for preventative or therapeutic strategies based on broadly neutralizing antibodies. Indeed, Li et al. (H. Li, C. Zony, P. Chen, and B. K. Chen, J. Virol. 91:e02425-16, 2017, https://doi.org/10.1128/JVI.02425-16) showed that the potency and magnitude of multiple HIV-1 broadly neutralizing antibody classes are decreased during cell-to-cell infection in a context-dependent manner. A functional motif in gp41 appears to contribute to this differential susceptibility by modulating exposure of neutralization epitopes.
Collapse
|
46
|
Titanji BK, Pillay D, Jolly C. Combination antiretroviral therapy and cell-cell spread of wild-type and drug-resistant human immunodeficiency virus-1. J Gen Virol 2017; 98:821-834. [PMID: 28141491 PMCID: PMC5657029 DOI: 10.1099/jgv.0.000728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/27/2017] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) disseminates between T cells either by cell-free infection or by highly efficient direct cell-cell spread. The high local multiplicity that characterizes cell-cell infection causes variability in the effectiveness of antiretroviral drugs applied as single agents. Whereas protease inhibitors (PIs) are effective inhibitors of HIV-1 cell-cell and cell-free infection, some reverse transcriptase inhibitors (RTIs) show reduced potency; however, antiretrovirals are not administered as single agents and are used clinically as combination antiretroviral therapy (cART). Here we explored the efficacy of PI- and RTI-based cART against cell-cell spread of wild-type and drug-resistant HIV-1 strains. Using a quantitative assay to measure cell-cell spread of HIV-1 between T cells, we evaluated the efficacy of different clinically relevant drug combinations. We show that combining PIs and RTIs improves the potency of inhibition of HIV-1 and effectively blocks both cell-free and cell-cell spread. Combining drugs that alone are poor inhibitors of cell-cell spread markedly improves HIV-1 inhibition, demonstrating that clinically relevant combinations of ART can inhibit this mode of HIV-1 spread. Furthermore, comparison of wild-type and drug-resistant viruses reveals that PI- and RTI-resistant viruses have a replicative advantage over wild-type virus when spreading by cell-cell means in the presence of cART, suggesting that in the context of inadequate drug combinations or drug resistance, cell-cell spread could potentially allow for ongoing viral replication.
Collapse
Affiliation(s)
- Boghuma Kabisen Titanji
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Africa Centre for Health and Population Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
47
|
Mzingwane ML, Tiemessen CT. Mechanisms of HIV persistence in HIV reservoirs. Rev Med Virol 2017; 27. [PMID: 28128885 DOI: 10.1002/rmv.1924] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/18/2023]
Abstract
The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Mayibongwe L Mzingwane
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Pathology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Caroline T Tiemessen
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
48
|
HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell. PLoS Pathog 2016; 12:e1005964. [PMID: 27812216 PMCID: PMC5094736 DOI: 10.1371/journal.ppat.1005964] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. How quickly infection occurs should be an important determinant of viral fitness, but mechanisms which could accelerate the onset of viral gene expression were previously undefined. In this work we use time-lapse microscopy to quantify the timing of the HIV viral cycle and show that onset of viral gene expression can be substantially accelerated. This occurs during cell-to-cell spread of HIV, a mode of directed viral infection where multiple virions are transmitted between cells. Surprisingly, we found that neither cooperativity between infecting viruses, nor trans-acting factors from already infected cells, influence the timing of infection. Rather, we show experimentally that a more rapid onset of infection is explained by a first-past-the-post mechanism, where the fastest expressing virus out of the infecting virus pool sets the time for the onset of viral gene expression of an individual cell independently of other infections of the same cell. Fast onset of viral gene expression in cell-to-cell spread may play an important role in seeding the HIV reservoir, which rapidly makes infection irreversible.
Collapse
|
49
|
Starling S, Jolly C. LFA-1 Engagement Triggers T Cell Polarization at the HIV-1 Virological Synapse. J Virol 2016; 90:9841-9854. [PMID: 27558417 PMCID: PMC5068534 DOI: 10.1128/jvi.01152-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/15/2016] [Indexed: 12/01/2022] Open
Abstract
HIV-1 efficiently disseminates by cell-cell spread at intercellular contacts called virological synapses (VS), where the virus preferentially assembles and buds. Cell-cell contact triggers active polarization of organelles and viral proteins within infected cells to the contact site to support efficient VS formation and HIV-1 spread; critically, however, which cell surface protein triggers contact-induced polarization at the VS remains unclear. Additionally, the mechanism by which the HIV-1 envelope glycoprotein (Env) is recruited to the VS remains ill defined. Here, we use a reductionist bead-coupled antibody assay as a model of the VS and show that cross-linking the integrin LFA-1 alone is sufficient to induce active T cell polarization and recruitment of the microtubule organizing center (MTOC) in HIV-1-infected cells. Mutant cell lines coupled with inhibitors demonstrated that LFA-1-induced polarization was dependent on the T cell kinase ZAP70. Notably, immunofluorescent staining of viral proteins revealed an accumulation of surface Env at sites of LFA-1 engagement, with intracellular Env localized to a Golgi compartment proximal to the polarized MTOC. Furthermore, blocking LFA-1-induced MTOC polarization through ZAP70 inhibition prevented intracellular Env polarization. Taken together, these data reveal that LFA-1 is a key determinant in inducing dynamic T cell remodeling to the VS and suggest a model in which LFA-1 engagement triggers active polarization of the MTOC and the associated Env-containing secretory apparatus to sites of cell-cell contact to support polarized viral assembly and egress for efficient cell-cell spread. IMPORTANCE HIV-1 causes AIDS by spreading within immune cells and depletion of CD4 T lymphocytes. Rapid spread between these cells occurs by highly efficient cell-cell transmission that takes place at virological synapses (VS). VS are characterized by striking T cell remodeling that is spatially associated with polarized virus assembly and budding at sites of cell contact. Here, we show that the integrin LFA-1 triggers organelle polarization and viral protein recruitment, facilitating formation of the VS, and that this requires the T cell kinase ZAP70. Taken together, these data suggest a mechanism by which HIV-1-infected T cells sense and respond to cell contact to polarize viral egress and promote cell-cell spread. Understanding how cell-cell spread is regulated may help reveal therapeutic targets to specifically block this mode of HIV-1 dissemination.
Collapse
Affiliation(s)
- Shimona Starling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
50
|
Structural Maturation of HIV-1 Reverse Transcriptase-A Metamorphic Solution to Genomic Instability. Viruses 2016; 8:v8100260. [PMID: 27690082 PMCID: PMC5086598 DOI: 10.3390/v8100260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development.
Collapse
|