1
|
Li Q, Chao W, Qiu L. Therapeutic peptides: chemical strategies fortify peptides for enhanced disease treatment efficacy. Amino Acids 2025; 57:25. [PMID: 40338379 PMCID: PMC12062087 DOI: 10.1007/s00726-025-03454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Therapeutic peptides, as a unique form of medication composed of orderly arranged sequences of amino acids, are valued for their high affinity, specificity, low immunogenicity, and economical production costs. Currently, more than 100 peptides have already secured market approval. Over 150 are actively undergoing clinical trials, while an additional 400-600 are in the preclinical research stage. Despite this, their clinical application is limited by factors such as salt sensitivity, brief residence in the bloodstream, inadequate cellular uptake, and high structural flexibility. By employing suitable chemical methods to modify peptides, it is possible to regulate important physicochemical factors such as charge, hydrophobicity, conformation, amphiphilicity, and sequence that affect the physicochemical properties and biological activity of peptides. This can overcome the inherent deficiencies of peptides, enhance their pharmacokinetic properties and biological activity, and promote continuous progress in the field of research. A diverse array of modified peptides is currently being developed and investigated across numerous therapeutic fields. Drawing on the latest research, this review encapsulates the essential physicochemical factors and significant chemical modification strategies that influence the properties and biological activity of peptides as pharmaceuticals. It also assesses how physicochemical factors affect the application of peptide drugs in disease treatment and the effectiveness of chemical strategies in disease therapy. Concurrently, this review discusses the prospective advancements in therapeutic peptide development, with the goal of offering guidance for designing and optimizing therapeutic peptides and to delve deeper into the therapeutic potential of peptides for disease intervention.
Collapse
Affiliation(s)
- Qingmei Li
- Hezhou University, Hezhou, 542800, Guangxi, China
- Naval Medical University, Shanghai, 200433, China
| | - Wen Chao
- Naval Medical University, Shanghai, 200433, China
| | - Lijuan Qiu
- Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Sadeeq M, Li Y, Wang C, Hou F, Zuo J, Xiong P. Unlocking the power of antimicrobial peptides: advances in production, optimization, and therapeutics. Front Cell Infect Microbiol 2025; 15:1528583. [PMID: 40365533 PMCID: PMC12070195 DOI: 10.3389/fcimb.2025.1528583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are critical effectors of innate immunity, presenting a compelling alternative to conventional antibiotics amidst escalating antimicrobial resistance. Their broad-spectrum efficacy and inherent low resistance development are countered by production challenges, including limited yields and proteolytic degradation, which restrict their clinical translation. While chemical synthesis offers precise structural control, it is often prohibitively expensive and complex for large-scale production. Heterologous expression systems provide a scalable, cost-effective platform, but necessitate optimization. This review comprehensively examines established and emerging AMP production strategies, encompassing fusion protein technologies, molecular engineering approaches, rational peptide design, and post-translational modifications, with an emphasis on maximizing yield, bioactivity, stability, and safety. Furthermore, we underscore the transformative role of artificial intelligence, particularly machine learning algorithms, in accelerating AMP discovery and optimization, thereby propelling their expanded therapeutic application and contributing to the global fight against drug-resistant infections.
Collapse
Affiliation(s)
| | | | | | | | - Jia Zuo
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| | - Peng Xiong
- Biosynthesis and Bio Transformation Center, School of Life Sciences and Medicine,
Shandong University of Technology (SDUT), Zibo, China
| |
Collapse
|
3
|
Zhang Z, Jiao J, Zhang J, Tan L, Dong X, Wu R, Wang Q, Wang H, Wang X. Protease Stabilizing Antimicrobial Peptide D1018M Showed Potent Antibiofilm and Anti-Intracellular Bacteria Activity Against MRSA. Foodborne Pathog Dis 2025. [PMID: 40229950 DOI: 10.1089/fpd.2024.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to human health and food safety, especially when bacteria form biofilms or invade host cells, which may cause recurring infections. A new solution is therefore urgently needed. The antimicrobial peptide innate defense regulator (IDR)-1018 and its derived peptide 1018M showed promising antimicrobial and antibiofilm activities. Nevertheless, their antibacterial efficacy against intracellular MRSA and protease tolerance remains to be promoted. Therefore, we synthesized D-amino acid substitution peptides D1018 and D1018M. The antimicrobial activity against MRSA of these novel peptides was increased by 1-fold (D1018) or remained constant (D1018M) compared with L-amino acids peptides. Their bactericidal mechanisms involve cell wall destruction, membrane penetration, and genomic DNA disruption. As expected, the stability of D1018 and D1018M was increased by 2-32 times against pepsin, trypsin, and cathepsin K. In addition, by D-amino acids substitution, the antibiofilm ability of D1018 was increased by 1.6 times, and the anti-intracellular bacterial activity of D1018M was improved 3.2-5.7 orders of magnitude. These data indicated that D1018M is a potential antimicrobial candidate for recurring MRSA infections.
Collapse
Affiliation(s)
- Zirui Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jian Jiao
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Jili Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Lian Tan
- Intensive Care Medicine Department, Ningbo Urology and Kidney Disease Hospital, Ningbo, China
| | - Xunxi Dong
- Health Science Center, Ningbo University, Ningbo, China
| | - Runzhe Wu
- Health Science Center, Ningbo University, Ningbo, China
| | - Qiang Wang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Hao Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Hanstein S, Grochow T, Mötzing M, Fietz SA, Hoffmann R, Baums CG, Kähl S. Comparative evaluation of antimicrobial peptides: effect on formation, metabolic activity and viability of Klebsiella pneumoniae biofilms. Front Microbiol 2025; 16:1548362. [PMID: 40291808 PMCID: PMC12021911 DOI: 10.3389/fmicb.2025.1548362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Klebsiella pneumoniae (K. pneumoniae) is a major human nosocomial infectious agent and an important veterinary pathogen, frequently resistant to various antibiotics. It causes diseases such as pneumonia, urinary tract infections, surgical wound infections and septicemia. Biofilm formation of K. pneumoniae promotes persistent infection and contributes to resistance against antimicrobial agents. The objective of this study was to comparatively evaluate the effect of selected AMPs on the formation, metabolic activity and viability of Klebsiella pneumoniae biofilms of veterinary and human origin. Methods Biofilm formation of three K. pneumoniae strains was quantified using the crystal violet assay and visualized by scanning electron microscopy (SEM). The inhibitory effects of eight different AMPs on the formation and metabolic activity of K. pneumoniae biofilms, as well as on planktonic growth, were examined using crystal violet, resazurin and broth microdilution assays, respectively. The effect on living and dead bacteria in mature biofilms was investigated using the fluorescent dyes SYTO™ 9 and propidium iodide. In addition, the distribution of rhodamine B-labeled peptide DJK-5 in mature biofilms of strain 17349 was visualized by confocal laser scanning microscopy (CLSM). Results Biofilm formation was confirmed for all three K. pneumoniae strains. Depending on the strain, we found that planktonic growth was affected by the AMPs DJK-5, DJK-6, Onc72, and Onc112. Biofilm formation of all three strains was inhibited by hbD3, LL-37, DJK-5, and DJK-6, with biofilm mass reduced to less than 40% of the untreated control. In addition to the inhibition of biofilm formation, a reduction in the metabolic activity of the biofilm-associated bacteria was also observed. These four AMPs also showed an effect on mature biofilms by reducing the number of both viable and dead bacteria in 22 h-old biofilms. Rhodamine B-labeled DJK-5 took 7 h to visibly accumulate in the planktonic bacteria. Multi-layered biofilm aggregations were mainly negative for rhodamine B-labeled DJK-5, even 44 h after AMP treatment, indicating that certain parts of mature K. pneumoniae biofilms are not accessible for this AMP. Conclusion In conclusion, we found differences in the effect of AMPs on biofilms including both increases and decreases in biofilm mass and viability.
Collapse
Affiliation(s)
- Sophia Hanstein
- Institute of Bacteriology and Mycology, Center for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Marina Mötzing
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Simone A. Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Leipzig University, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Christoph G. Baums
- Institute of Bacteriology and Mycology, Center for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Sophie Kähl
- Institute of Bacteriology and Mycology, Center for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Varin-Simon J, Haney EF, Colin M, Velard F, Gangloff SC, Hancock REW, Reffuveille F. D-enantiomeric antibiofilm peptides effective against anaerobic Cutibacterium acnes biofilm. Microbiol Spectr 2025; 13:e0252324. [PMID: 40130849 PMCID: PMC12053997 DOI: 10.1128/spectrum.02523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/27/2025] [Indexed: 03/26/2025] Open
Abstract
The emergence of antibiotic resistance, biofilm formation, and internalization by host cells contribute to a high risk of chronic infections, highlighting the necessity to develop novel therapeutic strategies. Identification of natural host defense peptides (HDPs) with promising antimicrobial and antibiofilm activities led to the development of synthetic peptides with broad-spectrum efficacy. However, few studies have examined their effect on anaerobic bacterial species. This study aimed to test the effect of synthetic HDPs on Cutibacterium acnes, an anaerobe species involved in 10% of prosthesis joint infections (PJI). A preliminary screen identified three peptides (DJK5, AB009-D, and AB101-D) with promising activity against four C. acnes strains (two of which were isolated from PJI). A bactericidal effect was observed for the three peptides with 50% of planktonic bacteria killing for AB009-D and AB101-D after only 3 hours of contact. DJK5 and AB009-D inhibited the C. acnes adhesion on plastic and titanium supports with a 2-log decrease in bacterial cells. In the presence of peptides, the morphology of C. acnes cells was altered with an increase in cell length observed, especially for one of the non-PJI-related strains. Against mature biofilms, AB101-D was the most effective with an approximate 2-log decrease in adhered CFUs, indicating the induction of bacterial dispersion or death. DJK5 also inhibited C. acnes internalization by osteoblasts, with a reduction of the internalized bacteria quantity for three strains. Overall, this study demonstrates that synthetic HDPs are effective against anaerobic bacteria and hold promise as novel therapeutic candidates to prevent or treat C. acnes PJIs.IMPORTANCEThe emergence of antibiotic tolerance highlights the necessity to develop novel therapeutic strategies with promising antimicrobial but also antibiofilm activities. In this study, we tested the effect of synthetic host defense peptides (HDPs) on Cutibacterium acnes, an anaerobic species, rarely studied, whereas involved in 10% of prosthesis joint infections (PJI). In our study, we demonstrate that the selected synthetic HDPs are effective against this anaerobic bacteria, both as a preventive treatment (effect on planktonic growth, bacterial adhesion, and biofilm formation) and against internalization of C. acnes by osteoblasts, revealing that these peptides are promising as novel therapeutic candidates to prevent or treat C. acnes PJIs.
Collapse
Affiliation(s)
- Jennifer Varin-Simon
- Université de Reims Champagne-Ardenne, BIOS, Reims, Grand Est, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Reims, Grand Est, France
| | - Evan F. Haney
- Asep Medical Inc./ABT Innovations Inc., Victoria, British Columbia, Canada
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marius Colin
- Université de Reims Champagne-Ardenne, BIOS, Reims, Grand Est, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Reims, Grand Est, France
| | - Frédéric Velard
- Université de Reims Champagne-Ardenne, BIOS, Reims, Grand Est, France
| | - Sophie C. Gangloff
- Université de Reims Champagne-Ardenne, BIOS, Reims, Grand Est, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Reims, Grand Est, France
| | - Robert E. W. Hancock
- Asep Medical Inc./ABT Innovations Inc., Victoria, British Columbia, Canada
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, BIOS, Reims, Grand Est, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Reims, Grand Est, France
| |
Collapse
|
6
|
Ramamourthy G, Ishida H, Vogel HJ. Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains. Molecules 2025; 30:826. [PMID: 40005137 PMCID: PMC11858513 DOI: 10.3390/molecules30040826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
In our previous work, we showed that short antimicrobial hexapeptides (AMPs) containing three Trp and three Arg residues had a potent antibiofilm activity against a pathogenic Gram-positive Staphylococcus aureus MRSA strain. However, the activity of these hexapeptides against a Gram-negative Pseudomonas aeruginosa PA01 strain was relatively poor. Herein, we tested the longer 13-residue synthetic AMP tritrpticin-NH2 (Tritrp) and several of its analogs as potential antibiofilm agents that can prevent biofilm formation (MBIC) and/or cause biofilm dissolution (MBEC) for two P. aeruginosa PA01 strains, one of which expressed the GFP protein. Tritrp, a porcine cathelicidin, is currently the only known naturally occurring cationic AMP that has three Trp in sequence (WWW), a feature that was found to be important in our previous study. Our results show that several Tritrp analogs were effective. In particular, analogs with Pro substitutions that had altered peptide backbone structures compared to the naturally occurring amphipathic two-turn structure showed more potent MBIC and MBEC antibiofilm activities. Selectivity of the peptides towards P. aeruginosa could be improved by introducing the non-proteinogenic amino acid 2,3-diaminopropionic acid, rather than Arg or Lys, as the positively charged residues. Using 1H NMR spectroscopy, we also reinvestigated the role of the two Pro residues in cis-trans isomerism of the peptide in aqueous solution. Overall, our results show that the WWW motif embedded in longer cationic AMPs has considerable potential to combat biofilm formation in pathogenic Gram-negative strains.
Collapse
Affiliation(s)
| | | | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.I.)
| |
Collapse
|
7
|
Hanot M, Lohou E, Sonnet P. Anti-Biofilm Agents to Overcome Pseudomonas aeruginosa Antibiotic Resistance. Pharmaceuticals (Basel) 2025; 18:92. [PMID: 39861155 PMCID: PMC11768670 DOI: 10.3390/ph18010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Pseudomonas aeruginosa is one of world's most threatening bacteria. In addition to the emerging prevalence of multi-drug resistant (MDR) strains, the bacterium also possesses a wide variety of virulence traits that worsen the course of the infections. Particularly, its ability to form biofilms that protect colonies from antimicrobial agents is a major cause of chronic and hard-to-treat infections in immune-compromised patients. This protective barrier also ensures cell growth on abiotic surfaces and thus enables bacterial survival on medical devices. Hence, as the WHO alerted to the need to develop new treatments, the use of anti-biofilm agents (ABAs) appeared as a promising approach. Given the selection pressure imposed by conventional antibiotics, a new therapeutic strategy has emerged that aims at reducing bacterial virulence without inhibiting cell growth. So-called anti-virulence agents (AVAs) would then restore the efficacy of conventional antibiotics (ATBs) or potentiate the effectiveness of the immune system. The last decade has seen the development of ABAs as AVAs against P. aeruginosa. This review aims to highlight the design strategy and critical features of these molecules to pave the way for further discoveries of highly potent compounds.
Collapse
Affiliation(s)
| | | | - Pascal Sonnet
- AGIR, UR 4294, Faculté de Pharmacie, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France; (M.H.); (E.L.)
| |
Collapse
|
8
|
Zhang Q, Jiang Y, He X, Liu L, Zhang X. Study of an arginine- and tryptophan-rich antimicrobial peptide in peri-implantitis. Front Bioeng Biotechnol 2025; 12:1486213. [PMID: 39840136 PMCID: PMC11747041 DOI: 10.3389/fbioe.2024.1486213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
The combination of hydrophilic arginine residues and hydrophobic tryptophan residues is considered to be the first choice for designing short-chain antimicrobial peptides (AMPs) due to their potent antibacterial activity. Based on this, we designed an arginine- and tryptophan-rich short peptide, VR-12. Peri-implantitis is a significant microbial inflammatory disorder characterized by the inflammation of the soft tissues surrounding an implant, which ultimately leads to the progressive resorption of the alveolar bone. This study found through antibacterial experiments, wound healing promotion experiments, and anti-inflammatory experiments that VR-12 inhibited and killed planktonic peri-implantitis-associated bacteria, inhibited biofilm formation, and disrupted mature biofilms. Additionally, VR-12 exhibited good biocompatibility with RAW264.7 cells and human gingival fibroblasts (HGFs) cells, promoting proliferation of both cell types. Moreover, VR-12 induced HGFs migration by promoting expression of migration-related factors, thereby promoting soft tissue healing. VR-12 also acted on lipopolysaccharide (LPS)-induced RAW264.7 cells, exerting excellent anti-inflammatory properties by affecting the secretion/expression of inflammation-related factors/genes. Therefore, VR-12 may be a good option for both warding off and treatmenting peri-implantitis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Yalei Jiang
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Xiaotong He
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Liwei Liu
- Department of Periodontology, Tianjin Binhai New Area Tanggu Stomatology Hospital, Tianjin, China
| | - Xi Zhang
- Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Mann K, Aveyard J, Dallos Ortega M, Chen T, Koduri MP, Fothergill JL, Schache AG, Curran JM, Poole RJ, D'Sa RA. Gelatin emulsion gels loaded with host defence peptides for the treatment of antibiotic-resistant infections. BIOMATERIALS ADVANCES 2025; 166:214071. [PMID: 39426177 DOI: 10.1016/j.bioadv.2024.214071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The surge in multidrug-resistant bacteria against conventional antibiotics is a rapidly developing global health crisis necessitating novel infection management strategies. Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs), offer a promising alternative to traditional antibiotics, but their practical translation is limited by their susceptibility to proteases and potential off-site cytotoxicity. In this paper, we investigate the feasibility of using gelatin emulsion gels (GELs), prepared using a water-in-oil (W/O) method, for the delivery of HDPs DJK-5 and IDR-1018 to improve their clinical utility. DJK-5-loaded GELs exhibited complete eradication of planktonic Methicillin-resistant Staphylococcus aureus (MRSA) at 4 - and 24-h intervals. Similarly, IDR-1018-loaded GELs demonstrated almost complete killing of MRSA and Escherichia coli (E. coli) after 4 h. Importantly, none of the GEL formulations investigated exhibited in vitro cytotoxicity. Overall, these HDP loaded GELs are a promising solution for the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Kiran Mann
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Jenny Aveyard
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Mateo Dallos Ortega
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Ting Chen
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Manohar Prasad Koduri
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Joanne L Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, United Kingdom
| | - Andrew G Schache
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7BE, United Kingdom
| | - Judith M Curran
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Robert J Poole
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Raechelle A D'Sa
- Department of Materials, Design and Manufacturing Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom.
| |
Collapse
|
10
|
Ramamourthy G, Vogel HJ. Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains. Biochem Cell Biol 2025; 103:1-18. [PMID: 39418670 DOI: 10.1139/bcb-2024-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Recently, several antimicrobial peptides (AMPs), varying in length from 12 to 37 residues, have been shown to act as antibiofilm agents. Here, we report a study of 23 hexapeptides modeled after four different Trp- and Arg-rich AMPs, including the RRWQWR-NH2 peptide, derived from bovine lactoferrin. They were tested against the pathogenic Gram-negative Pseudomonas aeruginosa PAO1 strain and a Gram-positive Staphylococcus aureus MRSA strain. Both strains were engineered to express the green fluorescent protein (GFP) protein, and fluorescence detection was used to measure the ability of the peptides to prevent biofilm formation (minimum biofilm inhibitory concentration (MBIC)) or to cause the breakdown of established biofilms (minimum biofilm eradication concentration (MBEC)). Similar antibiofilm activities were obtained with the standard crystal violet dye assay. Most Trp- and Arg-rich hexapeptides displayed a potent antibiofilm activity against the Gram-positive S. aureus MRSA strain. In particular, hexapeptides with 3 Arg and 3 Trp were very effective, especially when they contained the three Trp in sequence. Somewhat unexpectedly, the antimicrobial (MIC) values correlated with the MBIC and MBEC values, which has not been seen for several other AMP/antibiofilm peptides. Our results demonstrate that short Trp- and Arg-rich peptides merit further studies as antibiofilm agents that could be deployed to address part of the antimicrobial resistance problem.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
12
|
Henson BAB, Li F, Álvarez-Huerta JA, Wedamulla PG, Palacios AV, Scott MRM, Lim DTE, Scott WMH, Villanueva MTL, Ye E, Straus SK. Novel active Trp- and Arg-rich antimicrobial peptides with high solubility and low red blood cell toxicity designed using machine learning tools. Int J Antimicrob Agents 2025; 65:107399. [PMID: 39645171 DOI: 10.1016/j.ijantimicag.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Given the rising number of multidrug-resistant (MDR) bacteria, there is a need to design synthetic antimicrobial peptides (AMPs) that are highly active, non-hemolytic, and highly soluble. Machine learning tools allow the straightforward in silico identification of non-hemolytic antimicrobial peptides. METHODS Here, we utilized a number of these tools to rank the best peptides from two libraries comprised of: 1) a total of 8192 peptides with sequence bhxxbhbGAL, where b is the basic amino acid R or K, h is a hydrophobic amino acid, i.e. G, A, L, F, I, V, Y, or W and x is Q, S, A, or V; and 2) a total of 512 peptides with sequence RWhxbhRGWL, where b and h are as for the first library and x is Q, S, A, or G. The top 100 sequences from each library, as well as 10 peptides predicted to be active but hemolytic (for a total of 220 peptides), were SPOT synthesized and their IC50 values were determined against S. aureus USA 300 (MRSA). RESULTS Of these, 6 AMPs with low IC50's were characterized further in terms of: MICs against MRSA, E. faecalis, K. pneumoniae, E.coli and P. aeruginosa; RBC lysis; secondary structure in mammalian and bacterial model membranes; and activity against cancer cell lines HepG2, CHO, and PC-3. CONCLUSION Overall, the approach yielded a large family of active antimicrobial peptides with high solubility and low red blood cell toxicity. It also provides a framework for future designs and improved machine learning tools.
Collapse
Affiliation(s)
- Bridget A B Henson
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fucong Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Poornima G Wedamulla
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arianna Valdes Palacios
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Max R M Scott
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Thiam En Lim
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - W M Hayden Scott
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Monica T L Villanueva
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Ye
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Hu P, Chen P, Zhou G, Hu J, Chen S, Li Y, Yang Y, Ma J. Constructing two bifunctional tooth-targeting antimicrobial peptides for caries management: an in vitro study. Clin Oral Investig 2024; 29:36. [PMID: 39739049 DOI: 10.1007/s00784-024-06139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVES Caries is a significant public health challenge. Herein, novel tooth-targeting antimicrobial peptides (HABPs@AMPs) were developed by combining the antimicrobial peptide DJK-5 with hydroxyapatite (HA) binding peptides, providing a potential new strategy for caries management. MATERIALS AND METHODS The minimal inhibitory concentration (MIC100) and minimal biofilm inhibitory concentration (MBIC100) values of HABPs@AMPs were determined via micro-broth dilution and crystal violet staining. The affinities of the peptides for HA were measured by mass depletion, and the abilities of peptides to inhibit Streptococcus mutans (S. mutans) biofilm formation and kill 3-day-old S. mutans biofilms were evaluated in HA disk and tooth slice biofilm models through confocal laser scanning microscopy. Biocompatibility with human gingival fibroblasts was evaluated via CCK8 assays. RESULTS The best performing peptides, DJK-5@SVA and SVA@DJK-5 exhibited MIC100 and MBIC100 values of 31.25 µg/mL, similar to DJK-5. DJK-5@linker2@YSL had the highest affinity for HA, followed by YSL@DJK-5, DJK-5@linker1@YSL, and DJK-5@SVA. Moreover, the biofilms on HABPs@DJK-5 coated surfaces had more dead bacteria by volume than those in the DJK-5 and SVA groups (p < 0.05). DJK-5@SVA outperformed SVA@DJK-5 and DJK-5 in killing 3-day-old S. mutans biofilms (p < 0.05). With the exception of established biofilms on tooth slices, DJK-5@SVA exhibited greater killing efficiency in the bottom half of the biofilms than in the top half. The CCK-8 assay results confirmed peptides' biocompatibility. CONCLUSIONS DJK-5@SVA with good affinity for HA, has excellent biocompatibility and efficacy against S. mutans biofilms. CLINICAL RELEVANCE HABPs@AMPs with effective inhibitory effects on the growth of S. mutans and biofilm formation, contributing to intraoral targeted application AMPs and providing a new strategy for caries management.
Collapse
Affiliation(s)
- Pei Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Pan Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Gengyu Zhou
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jingyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Surong Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yingjie Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China
| | - Yan Yang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei Province, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hang Kong Road, Wuhan, Hubei Province, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
14
|
Chatterjee D, Sivashanmugam K. Immunomodulatory peptides: new therapeutic horizons for emerging and re-emerging infectious diseases. Front Microbiol 2024; 15:1505571. [PMID: 39760081 PMCID: PMC11695410 DOI: 10.3389/fmicb.2024.1505571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
The emergence and re-emergence of multi-drug-resistant (MDR) infectious diseases have once again posed a significant global health challenge, largely attributed to the development of bacterial resistance to conventional anti-microbial treatments. To mitigate the risk of drug resistance globally, both antibiotics and immunotherapy are essential. Antimicrobial peptides (AMPs), also referred to as host defense peptides (HDPs), present a promising therapeutic alternative for treating drug-resistant infections due to their various mechanisms of action, which encompass antimicrobial and immunomodulatory effects. Many eukaryotic organisms produce HDPs as a defense mechanism, for example Purothionin from Triticum aestivum plant, Defensins, Cathelicidins, and Histatins from humans and many such peptides are currently the focus of research because of their antibacterial, antiviral and anti-fungicidal properties. This article offers a comprehensive review of the immunomodulatory activities of HDPs derived from eukaryotic organisms including humans, plants, birds, amphibians, reptiles, and marine species along with their mechanisms of action and therapeutic benefits.
Collapse
|
15
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
16
|
Grygiel I, Bajrak O, Wójcicki M, Krusiec K, Jończyk-Matysiak E, Górski A, Majewska J, Letkiewicz S. Comprehensive Approaches to Combatting Acinetobacter baumannii Biofilms: From Biofilm Structure to Phage-Based Therapies. Antibiotics (Basel) 2024; 13:1064. [PMID: 39596757 PMCID: PMC11591314 DOI: 10.3390/antibiotics13111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Acinetobacter baumannii-a multidrug-resistant (MDR) pathogen that causes, for example, skin and soft tissue wounds; urinary tract infections; pneumonia; bacteremia; and endocarditis, particularly due to its ability to form robust biofilms-poses a significant challenge in clinical settings. This structure protects the bacteria from immune responses and antibiotic treatments, making infections difficult to eradicate. Given the rise in antibiotic resistance, alternative therapeutic approaches are urgently needed. Bacteriophage-based strategies have emerged as a promising solution for combating A. baumannii biofilms. Phages, which are viruses that specifically infect bacteria, offer a targeted and effective means of disrupting biofilm and lysing bacterial cells. This review explores the current advancements in bacteriophage therapy, focusing on its potential for treating A. baumannii biofilm-related infections. We described the mechanisms by which phages interact with biofilms, the challenges in phage therapy implementation, and the strategies being developed to enhance its efficacy (phage cocktails, engineered phages, combination therapies with antibiotics). Understanding the role of bacteriophages in both biofilm disruption and in inhibition of its forming could pave the way for innovative treatments in combating MDR A. baumannii infections as well as the prevention of their development.
Collapse
Affiliation(s)
- Ilona Grygiel
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Olaf Bajrak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Michał Wójcicki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Klaudia Krusiec
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (I.G.); (O.B.); (M.W.); (K.K.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Professor Emeritus, Department of Immunology, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Joanna Majewska
- Department of Pathogen Biology and Immunology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Collegium Medicum, Jan Długosz University, 42-200 Częstochowa, Poland
| |
Collapse
|
17
|
Datta M, Rajeev A, Chattopadhyay I. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnol Genet Eng Rev 2024; 40:2458-2496. [PMID: 37036043 DOI: 10.1080/02648725.2023.2199572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Antimicrobial peptide (AMP), also called host defense peptide, is a part of the innate immune system in eukaryotic organisms. AMPs are also produced by prokaryotes in response to stressful conditions and environmental changes. They have a broad spectrum of activity against both Gram positive and Gram negative bacteria. They are also effective against viruses, fungi, parasites, and cancer cells. AMPs are cationic or amphipathic in nature, but in recent years cationic AMPs have attracted a lot of attention because cationic AMPs can easily interact with negatively charged bacterial and cancer cell membranes through electrostatic interaction. AMPs can also eradicate bacterial biofilms and have broad-spectrum activity against multidrug resistant (MDR) bacteria. Although the main target site for AMPs is the cell membrane, they can also disrupt bacterial cell walls, interfere with protein folding and inhibit enzymatic activity. In recent centuries antibiotics are gradually losing their potential because of the continuous rise of antibiotic resistant bacteria. Therefore, there is an urgent need to develop novel therapeutic approaches to treat MDR bacteria, and AMP is such an alternative treatment option over conventional antibiotics. Several communicable diseases like tuberculosis and non-communicable diseases such as cancer can be treated by using AMPs. One of the major advantages of using AMP is that it works with high specificity and does not cause any harm to normal tissue. AMPs can be modified to improve their efficacy. In this narrative review, we are focusing on the potential application of AMPs in medical science.
Collapse
Affiliation(s)
- Manjari Datta
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashwin Rajeev
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
18
|
Liu X, Zou L, Li B, Di Martino P, Rittschof D, Yang JL, Maki J, Liu W, Gu JD. Chemical signaling in biofilm-mediated biofouling. Nat Chem Biol 2024; 20:1406-1419. [PMID: 39349970 DOI: 10.1038/s41589-024-01740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/14/2024] [Indexed: 10/27/2024]
Abstract
Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores. As such, harnessing the biochemical mechanisms involved is a promising avenue for controlling biofouling. Here, we discuss how chemical signaling affects biofilm formation and dispersion in model species. We also examine how this translates to marine biofouling. Both inductive and inhibitory effects of chemical cues from biofilms on macrofouling are also discussed. Finally, we outline promising mitigation strategies by targeting chemical signaling to foster biofilm dispersion or inhibit biofouling.
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Ling Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Boqiao Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe, Cergy Paris Université, Cergy-Pontoise, France
| | - Daniel Rittschof
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - James Maki
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China.
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, China.
| |
Collapse
|
19
|
Zhao X, Zhang M, Zhang Z, Wang L, Wang Y, Liu L, Wang D, Zhang X, Zhao L, Zhao Y, Jin X, Liu X, Ma H. Guanethidine Restores Tetracycline Sensitivity in Multidrug-Resistant Escherichia coli Carrying tetA Gene. Antibiotics (Basel) 2024; 13:973. [PMID: 39452239 PMCID: PMC11504368 DOI: 10.3390/antibiotics13100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
The worrying issue of antibiotic resistance in pathogenic bacteria is aggravated by the scarcity of novel therapeutic agents. Antibiotic adjuvants offer a promising solution due to their cost-effectiveness and high efficacy in addressing this issue, such as the β-lactamase inhibitor sulbactam (a β-lactam adjuvant) and the dihydrofolate reductase inhibitor trimethoprim (a sulfonamide adjuvant). This study aimed to discover potential adjuvants for tetracyclines from a list of previously approved drugs to restore susceptibility to Escherichia coli carrying the tetA gene. We have screened guanethidine, a compound from the Chinese pharmacopoeia, which effectively potentiates the activity of tetracyclines by reversing resistance in tetA-positive Escherichia coli, enhancing its antibacterial potency, and retarding the development of resistance. Guanethidine functions via the inhibition of the TetA efflux pump, thereby increasing the intracellular concentration of tetracyclines. Our findings suggest that guanethidine holds promise as an antibiotic adjuvant.
Collapse
Affiliation(s)
- Xiaoou Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Mengna Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- College of Veterinary Medicine, Northwest A&F University, Xinong Street No. 22, Yangling 712100, China
| | - Zhendu Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Lei Wang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Yu Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- College of Life Sciences, Jilin Normal University, Haifeng Street No. 1301, Siping 136000, China
| | - Lizai Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Duojia Wang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xin Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Luobing Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Yunhui Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xiangshu Jin
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Xiaoxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Science, Kemao Street No. 186, Gongzhuling 136100, China; (Z.Z.); (L.W.); (L.L.); (D.W.); (X.Z.); (L.Z.); (Y.Z.); (X.J.)
| | - Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.Z.); (M.Z.); (Y.W.)
- The Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| |
Collapse
|
20
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Suriyanarayanan T, Lee LS, Han SHY, Ching J, Seneviratne CJ. Targeted metabolomics analysis approach to unravel the biofilm formation pathways of Enterococcus faecalis clinical isolates. Int Endod J 2024; 57:1505-1520. [PMID: 38888425 DOI: 10.1111/iej.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
AIM (i) To characterize Enterococcus faecalis biofilm formation pathways by semi-targeted metabolomics and targeted nitrogen panel analysis of strong (Ef63) and weak (Ef 64) biofilm forming E. faecalis clinical isolates and (ii) to validate the identified metabolic markers using targeted inhibitors. METHODOLOGY Previous proteomics profiling of E. faecalis clinical isolates with strong and weak biofilm formation revealed that differences in metabolic activity levels of small molecule, nucleotide and nitrogen compound metabolic processes and biosynthetic pathways, cofactor metabolic process, cellular amino acid and derivative metabolic process and lyase activity were associated with differences in biofilm formation. Hence, semi-targeted analysis of Ef 63, Ef 64 and ATC control strain Ef 29212 was performed by selecting metabolites that were part of both the previously identified pathways and a curated library with confirmed physical and chemical identity, followed by confirmatory targeted nitrogen panel analysis. Significantly regulated metabolites (p < .05) were selected based on fold change cut-offs of 1.2 and 0.8 for upregulation and downregulation, respectively, and subjected to pathway enrichment analysis. The identified metabolites and pathways were validated by minimum biofilm inhibitory concentration (MBIC) and colony forming unit (CFU) assays with targeted inhibitors. RESULTS Metabolomics analysis showed upregulation of betaine, hypoxanthine, glycerophosphorylcholine, tyrosine, inosine, allantoin and citrulline in Ef 63 w.r.t Ef 64 and Ef 29212, and thesemetabolites mapped to purinemetabolism, urea cycle and aspartate metabolism pathways. MBIC and CFU assays using compounds against selected metabolites and metabolic pathways, namely glutathione against hypoxanthine and hydroxylamine against aspartate metabolism showed inhibitory effects against E. faecalis biofilm formation. CONCLUSIONS The study demonstrated the importance of oxidative stress inducers such as hypoxanthine and aspartate metabolism pathway in E. faecalis biofilm formation. Targeted therapeutics against these metabolic markers can reduce the healthcare burden associated with E. faecalis infections.
Collapse
Affiliation(s)
- Tanujaa Suriyanarayanan
- Singapore Oral Multiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | - Lye Siang Lee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Sharon Hong Yu Han
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chaminda J Seneviratne
- Singapore Oral Multiomics Initiative (SOMI), National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore, Singapore
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance. Arch Microbiol 2024; 206:411. [PMID: 39311963 DOI: 10.1007/s00203-024-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.
Collapse
Affiliation(s)
| | - Aparajita Sen
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021, India
| | - Arti Nigam
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, 110016, India
| | - Jyoti Oswalia
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sachin Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Rashi Gupta
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
23
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Treviño S, Ramírez-Flores E, Cortezano-Esteban S, Hernández-Fragoso H, Brambila E. BD Vacutainer™ Urine Culture & Sensitivity Preservative PLUS Plastic Tubes Minimize the Harmful Impact of Stressors Dependent on Temperature and Time Storage in Uropathogenic Bacteria. J Clin Med 2024; 13:5334. [PMID: 39274547 PMCID: PMC11396760 DOI: 10.3390/jcm13175334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Urinary tract infection is a worldwide health problem. According to the Clinical Laboratory Improvement Amendments and the European Urinalysis Guideline, urine samples should be tested within 2 h of collection. Thus, using chemical preservatives that guarantee the pre-analytical conditions is a practical tool. However, the effects of temperature and storage time as uropathogenic bacteria stressors are unclear. Methods: Gram-negative and -positive ATTC strains, E. coli, P. mirabilis, E. faecalis, and S. aureus, were used in this study. Strains in liquid media were stored at 4, 25, and 37 °C for 0, 2, 12, 24, and 48 h in tubes with and without preservatives. Then, reactive oxygen species (ROS) levels, viable but non-culturable bacteria (VBNC), and bacteria growth were analyzed. Results: A high ROS level was associated with the presence of VBNC and dead bacteria with low CFU counts, but a low ROS level increased the CFU number, depending on temperature and storage time in tubes without preservatives (boric acid, sodium borate, and formate). The BD Vacutainer™ Urine Culture & Sensitivity Preservative PLUS Plastic Tubes (C&S-PP) prevent this ROS increase, maintaining the CFU number for longer. Conclusions: C&S-PP tubes minimize the stressor effects (temperature and time storage) on uropathogenic bacteria when stored, improving the pre-analytical conditions of cultures realized by the clinical laboratory.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla, Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico;
| | - Eduardo Ramírez-Flores
- Center for Care and Research in Health Services, Urinalysis and Microbiology Area, Rio Nexapa 6153, Col. San Manuel, Puebla C.P. 72560, Mexico; (E.R.-F.); (S.C.-E.)
| | - Steffany Cortezano-Esteban
- Center for Care and Research in Health Services, Urinalysis and Microbiology Area, Rio Nexapa 6153, Col. San Manuel, Puebla C.P. 72560, Mexico; (E.R.-F.); (S.C.-E.)
| | - Hugo Hernández-Fragoso
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla, Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico;
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla C.P. 72560, Mexico;
| |
Collapse
|
25
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
26
|
Hu Z, Ren H, Min Y, Li Y, Zhang Y, Mao M, Leng W, Xia L. The effects of antimicrobial peptides buCaTHL4B and Im-4 on infectious root canal biofilms. Front Bioeng Biotechnol 2024; 12:1409487. [PMID: 39219619 PMCID: PMC11361941 DOI: 10.3389/fbioe.2024.1409487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The primary cause of pulp and periapical diseases is the invasion of bacteria into the root canal, which results from the continuous destruction of dental hard tissues. Effective management of infections during root canal therapy necessitates effectively irrigation. This study aims to investigate the effects of two antimicrobial peptides (AMPs), buCaTHL4B and Im-4, on root canal biofilms in vitro. Methods Two-species biofilms (Enterococcus faecalis and Fusobacterium nucleatum) were selected and anaerobically cultivated. The following treatments were applied: 10 μg/mL buCaTHL4B, 10 μg/mL Im-4, 5 μg/mL buCaTHL4B, 5 μg/mL Im-4, 1 μg/mL buCaTHL4B, 1 μg/mL Im-4, 1% NaOCl, and sterile water. Each group was treated for 3 min. Subsequently, the two strains were co-cultured with 10 μg/mL buCaTHL4B, 10 μg/mL Im-4, 1% NaOCl, and sterile water for 24, 48, and 72 h. The biofilms were examined using confocal laser scanning microscopy (CLSM) with fluorescent staining, and the percentages of dead bacteria were calculated. Quantitative real-time PCR (qRT-PCR) was employed to assess the variations in bacterial proportions during biofilm formation. Results Compared to 1% NaOCl, 10 μg/mL buCaTHL4B or Im-4 exhibited significantly greater bactericidal effects on the two-species biofilms (p < 0.05), leading to their selection for subsequent experiments. Over a 48-hour period, 10 μg/mL Im-4 demonstrated a stronger antibiofilm effect than buCaTHL4B (p < 0.05). Following a 24-hour biofilm formation period, the proportion of F. nucleatum decreased while the proportion of E. faecalis increased in the sterile water group. In the buCaTHL4B and 1% NaOCl groups, the proportion of F. nucleatum was lower than that of E. faecalis (p < 0.05), whereas in the Im-4 group, the proportion of F. nucleatum was higher than that of E. faecalis (p < 0.05). The proportions of bacteria in the two AMPs groups gradually stabilized after 24 h of treatment. Conclusion buCaTHL4B and Im-4 exhibited remarkable antibacterial and anti-biofilm capabilities against pathogenic root canal biofilms in vitro, indicating their potential as promising additives to optimize the effectiveness of root canal treatment as alternative irrigants.
Collapse
Affiliation(s)
- Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Haixia Ren
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Yifan Min
- Department of Stomatology, Zhushan County People’s Hospital, Shiyan, China
| | - Yixin Li
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Yuyuan Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Min Mao
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
27
|
Manobala T. Peptide-based strategies for overcoming biofilm-associated infections: a comprehensive review. Crit Rev Microbiol 2024:1-18. [PMID: 39140129 DOI: 10.1080/1040841x.2024.2390597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Biofilms represent resilient microbial communities responsible for inducing chronic infections in human subjects. Given the escalating challenges associated with antibiotic therapy failures in clinical infections linked to biofilm formation, a peptide-based approach emerges as a promising alternative to effectively combat these notoriously resistant biofilms. Contrary to conventional antimicrobial peptides, which predominantly target cellular membranes, antibiofilm peptides necessitate a multifaceted approach, addressing various "biofilm-specific factors." These factors encompass Extracellular Polymeric Substance (EPS) degradation, membrane targeting, cell signaling, and regulatory mechanisms. Recent research endeavors have been directed toward assessing the potential of peptides as potent antibiofilm agents. However, to translate these peptides into viable clinical applications, several critical considerations must be meticulously evaluated during the peptide design process. This review serves to furnish an all-encompassing summary of the pivotal factors and parameters that necessitate contemplation for the successful development of an efficacious antibiofilm peptide.
Collapse
Affiliation(s)
- T Manobala
- School of Arts and Sciences, Sai University, Chennai, India
| |
Collapse
|
28
|
Schicketanz M, Petrová M, Rejman D, Sosio M, Donadio S, Zhang YE. Direct detection of stringent alarmones (pp)pGpp using malachite green. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:312-320. [PMID: 39119257 PMCID: PMC11307201 DOI: 10.15698/mic2024.08.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
The alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed. In this study, we demonstrated that malachite green, a well-established compound used for phosphate detection, can directly detect (p)ppGpp and its analogues esp., pGpp. By utilizing malachite green, we identified three new inhibitors of the hydrolase activity of SpoT, one of the two RelA-SpoT homolog (RSH) proteins responsible for making and hydrolyzing (p)ppGpp in Escherichia coli. These findings highlight the convenience and practicality of malachite green, which can be widely employed in high-throughput studies to investigate (pp)pGpp in vitro and discover novel regulators of RSH proteins.
Collapse
Affiliation(s)
- Muriel Schicketanz
- Department of Biology, University of CopenhagenCopenhagen, DK-2200Denmark
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.iPragueCzech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.iPragueCzech Republic
| | | | | | - Yong Everett Zhang
- Department of Biology, University of CopenhagenCopenhagen, DK-2200Denmark
| |
Collapse
|
29
|
Huang G, Wang Q, Wen H, Li J, He S, Wang X, Ding L. Antibiofilm Efficacy and Mechanism of the Marine Chlorinated Indole Sesquiterpene Against Methicillin-Resistant Staphylococcus aureus. Foodborne Pathog Dis 2024; 21:491-498. [PMID: 38900687 DOI: 10.1089/fpd.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can easily form biofilms on food surfaces, thus leading to cross-contamination, which is difficult to remove. Therefore, there is an urgent need to find alternatives with good antibacterial and antibiofilm effects. In this study, two indole sesquiterpene compounds, xiamycin (1) and chlorinated metabolite chloroxiamycin (2), were isolated from the fermentation liquid of marine Streptomyces sp. NBU3429 for the first time. The chemical structures of the two compounds were characterized by spectroscopic data interpretation, including 1D NMR and HRESIMS analysis. Antimicrobial test showed that chloroxiamycin (2) (minimum inhibitory concentration, MIC = 16 μg/mL) exhibited superior antibacterial activity than xiamycin (1) (MIC = 32 μg/mL) against MRSA ATCC43300. Moreover, compound (2) decreased the biofilm formation rate of MRSA ATCC43300 by 12.7%-84.6% in the concentration range of 32-512 μg/mL, which is relatively stronger than xiamycin (1) (4.1%-49.9%) as well. Antibacterial/antibiofilm mechanism investigation indicated that chloroxiamycin (2) could disrupt the cell wall and membrane of MRSA, inhibiting the production of biofilm extracellular polysaccharides. All these results illustrated that chloroxiamycin (2) is an effective antibacterial/antibiofilm agent, which makes it an attractive candidate for food preservatives.
Collapse
Affiliation(s)
- Guobao Huang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Qiang Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Huimin Wen
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Jinling Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiao Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
31
|
Kong X, Vishwanath V, Neelakantan P, Ye Z. Harnessing antimicrobial peptides in endodontics. Int Endod J 2024; 57:815-840. [PMID: 38441321 DOI: 10.1111/iej.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 06/13/2024]
Abstract
Endodontic therapy includes various procedures such as vital pulp therapy, root canal treatment and retreatment, surgical endodontic treatment and regenerative endodontic procedures. Disinfection and tissue repair are crucial for the success of these therapies, necessitating the development of therapeutics that can effectively target microbiota, eliminate biofilms, modulate inflammation and promote tissue repair. However, no current endodontic agents can achieve these goals. Antimicrobial peptides (AMPs), which are sequences of amino acids, have gained attention due to their unique advantages, including reduced susceptibility to drug resistance, broad-spectrum antibacterial properties and the ability to modulate the immune response of the organism effectively. This review systematically discusses the structure, mechanisms of action, novel designs and limitations of AMPs. Additionally, it highlights the efforts made by researchers to overcome peptide shortcomings and emphasizes the potential applications of AMPs in endodontic treatments.
Collapse
Affiliation(s)
- Xinzi Kong
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Vijetha Vishwanath
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Prasanna Neelakantan
- Department of Endodontics, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, California, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
32
|
Malik A, Oludiran A, Poudel A, Alvarez OB, Woodward C, Purcell EB. RelQ-mediated alarmone signalling regulates growth, stress-induced biofilm formation and spore accumulation in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001479. [PMID: 39028551 PMCID: PMC11317968 DOI: 10.1099/mic.0.001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signalling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in Clostridioides difficile, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent C. difficile infections. The role of the SR in other processes and the effectors by which it regulates C. difficile physiology are unknown. C. difficile RelQ is a clostridial alarmone synthetase. Deletion of relQ dysregulates C. difficile growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors and drastically reduces biofilm formation. While wild-type C. difficile displays increased biofilm formation in the presence of sublethal stress, the ΔrelQ strain cannot upregulate biofilm production in response to stress. Deletion of relQ slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and spore accumulation as alarmone-mediated processes in C. difficile and reveals the importance of RelQ in stress-induced biofilm regulation.
Collapse
Affiliation(s)
- Areej Malik
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, 23529, USA
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Adenrele Oludiran
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Asia Poudel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Orlando Berumen Alvarez
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Charles Woodward
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| |
Collapse
|
33
|
Marissen J, Reichert L, Härtel C, Fortmann MI, Faust K, Msanga D, Harder J, Zemlin M, Gomez de Agüero M, Masjosthusmann K, Humberg A. Antimicrobial Peptides (AMPs) and the Microbiome in Preterm Infants: Consequences and Opportunities for Future Therapeutics. Int J Mol Sci 2024; 25:6684. [PMID: 38928389 PMCID: PMC11203687 DOI: 10.3390/ijms25126684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in various organisms, including humans. Beyond their direct antimicrobial effects, AMPs play essential roles in various physiological processes. They induce angiogenesis, promote wound healing, modulate immune responses, and serve as chemoattractants for immune cells. AMPs regulate the microbiome and combat microbial infections on the skin, lungs, and gastrointestinal tract. Produced in response to microbial signals, AMPs help maintain a balanced microbial community and provide a first line of defense against infection. In preterm infants, alterations in microbiome composition have been linked to various health outcomes, including sepsis, necrotizing enterocolitis, atopic dermatitis, and respiratory infections. Dysbiosis, or an imbalance in the microbiome, can alter AMP profiles and potentially lead to inflammation-mediated diseases such as chronic lung disease and obesity. In the following review, we summarize what is known about the vital role of AMPs as multifunctional peptides in protecting newborn infants against infections and modulating the microbiome and immune response. Understanding their roles in preterm infants and high-risk populations offers the potential for innovative approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Janina Marissen
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Lilith Reichert
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- German Center for Infection Research, Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Mats Ingmar Fortmann
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Kirstin Faust
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Delfina Msanga
- Department of Pediatrics, Bugando Hospital, Catholic University of Health and Allied Sciences, Mwanza 33109, Tanzania;
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Quincke Research Center, Kiel University, 24105 Kiel, Germany;
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Katja Masjosthusmann
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| | - Alexander Humberg
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| |
Collapse
|
34
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
35
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
36
|
Naseef Pathoor N, Viswanathan A, Wadhwa G, Ganesh PS. Understanding the biofilm development of Acinetobacter baumannii and novel strategies to combat infection. APMIS 2024; 132:317-335. [PMID: 38444124 DOI: 10.1111/apm.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative, nonmotile, and aerobic bacillus emerged as a superbug, due to increasing the possibility of infection and accelerating rates of antimicrobial agents. It is recognized as a nosocomial pathogen due to its ability to form biofilms. These biofilms serve as a defensive barrier, increase antibiotic resistance, and make treatment more difficult. As a result, the current situation necessitates the rapid emergence of novel therapeutic approaches to ensure successful treatment outcomes. This review explores the intricate relationship between biofilm formation and antibiotic resistance in A. baumannii, emphasizing the role of key virulence factors and quorum sensing (QS) mechanisms that will lead to infections and facilitate insight into developing innovative method to control A. baumannii infections. Furthermore, the review article looks into promising approaches for preventing biofilm formation on medically important surfaces and potential therapeutic methods for eliminating preformed biofilms, which can address biofilm-associated A. baumannii infections. Modern advances in emerging therapeutic options such as antimicrobial peptide (AMPs), nanoparticles (NPs), bacteriophage therapy, photodynamic therapy (PDT), and other biofilm inhibitors can assist readers understand the current landscape and future prospects for effectively treating A. baumannii biofilm infections.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Akshaya Viswanathan
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Gulshan Wadhwa
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| |
Collapse
|
37
|
Breunig J, Valdes-Pena MA, Ratchford AW, Pierce JG. Total Synthesis and Microbiological Evaluation of Leopolic Acid A and Analogues. ACS BIO & MED CHEM AU 2024; 4:95-99. [PMID: 38645927 PMCID: PMC11027124 DOI: 10.1021/acsbiomedchemau.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
New antimicrobial scaffolds are scarce, and there is a great need for the development of novel therapeutics. In this study, we report a convergent 9-step synthesis of leopolic acid A and a series of targeted analogues. The designed compounds allowed for incorporation of non-natural ureido dipeptide moieties and 4- and 5-position substituents around the 2,3-pyrrolidinedione of leopolic acid A. Leopolic acid A displayed modest antimicrobial activity (32 μg/mL) against MRSA, while the most active analogues displayed slightly improved activity (8-16 μg/mL). Additionally, several of the leopolic acid A analogues displayed promising antibiofilm activity, most notably having an MBEC:MIC ratio of ∼1. Overall, this work represents an initial SAR of the natural product and a framework for further optimization of these bioactive scaffolds within the context of bioactive pyrrolidinediones.
Collapse
Affiliation(s)
- Jamie
L. Breunig
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - M. Alejandro Valdes-Pena
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - Andrew W. Ratchford
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G. Pierce
- Department of Chemistry, Comparative
Medicine Institute, and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
38
|
Wang Q, Yang Y, Dong X, Wang H, Ding L, Wang X. Design of a Novel Lysine Isopeptide 1018KI11 with Potent Antimicrobial Activity as a Safe and Stable Food Preservative Candidate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7894-7905. [PMID: 38551085 DOI: 10.1021/acs.jafc.3c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Antimicrobial peptides are potent food additive candidates, but most of them are sensitive to proteases, which limits their application. Therefore, we substituted arginine for lysine and introduced a lysine isopeptide bond to peptide IDR-1018 in order to improve its enzymatic stability. Subsequently, the protease stability and antimicrobial/antibiofilm activity of the novel peptides (1018K2-1018KI11) were investigated. The data revealed that the antienzymatic potential of 1018KI11 to bromelain and papain increased by 2-8 folds and 16 folds, respectively. The minimum inhibitory concentration (MIC) of 1018KI11 against methicillin-resistant Staphylococcus aureus (MRSA) ATCC43300 and Escherichia coli (E. coli) ATCC25922 was reduced 2-fold compared to 1018K11. Mechanism exploration suggested that 1018KI11 was more effective than 1018K11 in disrupting the cell barrier and damaging genomic DNA. Additionally, 1018KI11 at certain concentration conditions (2-64 μg/mL) reduced biofilm development of MRSA ATCC43300 by 4.9-85.9%. These data indicated that novel peptide 1018KI11 is a potential food preservative candidate.
Collapse
Affiliation(s)
- Qiang Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- School of Food and Pharmacy, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yuxin Yang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xunxi Dong
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hao Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lijian Ding
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
39
|
Reffuveille F, Dghoughi Y, Colin M, Torres MDT, de la Fuente-Nunez C. Antibiofilm approaches as a new paradigm for treating infections. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:023001. [PMID: 39506977 PMCID: PMC11540418 DOI: 10.1088/2516-1091/ad1cd6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The lack of effective antibiotics for drug-resistant infections has led the World Health Organization to declare antibiotic resistance a global priority. Most bacterial infections are caused by microbes growing in structured communities called biofilms. Bacteria growing in biofilms are less susceptible to antibiotics than their planktonic counterparts. Despite their significant clinical implications, bacterial biofilms have not received the attention they warrant, with no approved antibiotics specifically designed for their eradication. In this paper, we aim to shed light on recent advancements in antibiofilm strategies that offer compelling alternatives to traditional antibiotics. Additionally, we will briefly explore the potential synergy between computational approaches, including the emerging field of artificial intelligence, and the accelerated design and discovery of novel antibiofilm molecules in the years ahead.
Collapse
Affiliation(s)
- Fany Reffuveille
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Service de Microbiologie, 51097 Reims, France
| | - Yasser Dghoughi
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
| | - Marius Colin
- Université de Reims Champagne-Ardenne, Biomatériaux et Inflammation en Site Osseux, BIOS EA 4691, SFR Cap Santé, 51097 Reims, France
- Université de Reims Champagne-Ardenne, UFR Pharmacie, Service de Microbiologie, 51097 Reims, France
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
40
|
Phan MD, Schirra HJ, Nhu NTK, Peters KM, Sarkar S, Allsopp LP, Achard MES, Kappler U, Schembri MA. Combined functional genomic and metabolomic approaches identify new genes required for growth in human urine by multidrug-resistant Escherichia coli ST131. mBio 2024; 15:e0338823. [PMID: 38353545 PMCID: PMC10936160 DOI: 10.1128/mbio.03388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 03/14/2024] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.
Collapse
Affiliation(s)
- Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Horst Joachim Schirra
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M. Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke P. Allsopp
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Maud E. S. Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
42
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
43
|
Santos LM, Rodrigues DM, Alves BVB, Kalil MA, Azevedo V, Barh D, Meyer R, Duran N, Tasic L, Portela RW. Activity of biogenic silver nanoparticles in planktonic and biofilm-associated Corynebacterium pseudotuberculosis. PeerJ 2024; 12:e16751. [PMID: 38406288 PMCID: PMC10885795 DOI: 10.7717/peerj.16751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024] Open
Abstract
Corynebacterium pseudotuberculosis is a gram-positive bacterium and is the etiologic agent of caseous lymphadenitis (CL) in small ruminants. This disease is characterized by the development of encapsulated granulomas in visceral and superficial lymph nodes, and its clinical treatment is refractory to antibiotic therapy. An important virulence factor of the Corynebacterium genus is the ability to produce biofilm; however, little is known about the characteristics of the biofilm produced by C. pseudotuberculosis and its resistance to antimicrobials. Silver nanoparticles (AgNPs) are considered as promising antimicrobial agents, and are known to have several advantages, such as a broad-spectrum activity, low resistance induction potential, and antibiofilm activity. Therefore, we evaluate herein the activity of AgNPs in C. pseudotuberculosis, through the determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity, and visualization of AgNP-treated and AgNP-untreated biofilm through scanning electron microscopy. The AgNPs were able to completely inhibit bacterial growth and inactivate C. pseudotuberculosis at concentrations ranging from 0.08 to 0.312 mg/mL. The AgNPs reduced the formation of biofilm in reference strains and clinical isolates of C. pseudotuberculosis, with interference values greater than 80% at a concentration of 4 mg/mL, controlling the change between the planktonic and biofilm-associated forms, and preventing fixation and colonization. Scanning electron microscopy images showed a significant disruptive activity of AgNP on the consolidated biofilms. The results of this study demonstrate the potential of AgNPs as an effective therapeutic agent against CL.
Collapse
Affiliation(s)
- Laerte Marlon Santos
- Instituto de Ciencias da Saude, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | | | | | - Vasco Azevedo
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debmalya Barh
- Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, West Bengal, India
| | - Roberto Meyer
- Instituto de Ciencias da Saude, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Nelson Duran
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
| | - Ljubica Tasic
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
| | | |
Collapse
|
44
|
Malik A, Oludiran A, Poudel A, Alvarez OB, Woodward C, Purcell EB. RelQ-mediated alarmone signaling regulates growth, sporulation, and stress-induced biofilm formation in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580318. [PMID: 38405794 PMCID: PMC10888890 DOI: 10.1101/2024.02.14.580318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The bacterial stringent response (SR) is a conserved transcriptional reprogramming pathway mediated by the nucleotide signaling alarmones, (pp)pGpp. The SR has been implicated in antibiotic survival in Clostridioides difficile, a biofilm- and spore-forming pathogen that causes resilient, highly recurrent C. difficile infections. The role of the SR in other processes and the effectors by which it regulates C. difficile physiology are unknown. C. difficile RelQ is a clostridial alarmone synthetase. Deletion of relQ dysregulates C. difficile growth in unstressed conditions, affects susceptibility to antibiotic and oxidative stressors, and drastically reduces biofilm formation. While wild-type C. difficile displays increased biofilm formation in the presence of sub-lethal stress, the ΔrelQ strain cannot upregulate biofilm production in response to stress. Deletion of relQ slows spore accumulation in planktonic cultures but accelerates it in biofilms. This work establishes biofilm formation and sporulation as alarmone-mediated processes in C. difficile and reveals the importance of RelQ in stress-induced biofilm regulation.
Collapse
Affiliation(s)
- Areej Malik
- Biomedical Sciences Program, Old Dominion University, Norfolk, Virginia, 23529, USA
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Adenrele Oludiran
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Asia Poudel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Orlando Berumen Alvarez
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Charles Woodward
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, 23529, USA
| |
Collapse
|
45
|
Ji S, An F, Zhang T, Lou M, Guo J, Liu K, Zhu Y, Wu J, Wu R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur J Med Chem 2024; 265:116072. [PMID: 38147812 DOI: 10.1016/j.ejmech.2023.116072] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
As antibiotic-resistant bacteria and genes continue to emerge, the identification of effective alternatives to traditional antibiotics has become a pressing issue. Antimicrobial peptides are favored for their safety, low residue, and low resistance properties, and their unique antimicrobial mechanisms show significant potential in combating antibiotic resistance. However, the high production cost and weak activity of antimicrobial peptides limit their application. Moreover, traditional laboratory methods for identifying and designing new antimicrobial peptides are time-consuming and labor-intensive, hindering their development. Currently, novel technologies, such as artificial intelligence (AI) are being employed to develop and design new antimicrobial peptide resources, offering new opportunities for the advancement of antimicrobial peptides. This article summarizes the basic characteristics and antimicrobial mechanisms of antimicrobial peptides, as well as their advantages and limitations, and explores the application of AI in antimicrobial peptides prediction amd design. This highlights the crucial role of AI in enhancing the efficiency of antimicrobial peptide research and provides a reference for antimicrobial drug development.
Collapse
Affiliation(s)
- Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Taowei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Jiawei Guo
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Kexin Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, PR China; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, PR China.
| |
Collapse
|
46
|
Wang D, Yue Y, Liu H, Zhang T, Haney EF, Hancock REW, Yu J, Shen Y. Antibiofilm peptides enhance the corrosion resistance of titanium in the presence of Streptococcus mutans. Front Bioeng Biotechnol 2024; 11:1339912. [PMID: 38274010 PMCID: PMC10809395 DOI: 10.3389/fbioe.2023.1339912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Titanium alloys have gained popularity in implant dentistry for the restoration of missing teeth and related hard tissues because of their biocompatibility and enhanced strength. However, titanium corrosion and infection caused by microbial biofilms remains a significant clinical challenge leading to implant failure. This study aimed to evaluate the effectiveness of antibiofilm peptides 1018 and DJK-5 on the corrosion resistance of titanium in the presence of Streptococcus mutans. Commercially pure titanium disks were prepared and used to form biofilms. The disks were randomly assigned to different treatment groups (exposed to S. mutans supplied with sucrose) including a positive control with untreated biofilms, peptides 1018 or DJK-5 at concentrations of 5 μg/mL or 10 μg/mL, and a negative control with no S. mutans. Dynamic biofilm growth and pH variation of all disks were measured after one or two treatment periods of 48 h. After incubation, the dead bacterial proportion, surface morphology, and electrochemical behaviors of the disks were determined. The results showed that peptides 1018 and DJK-5 exhibited significantly higher dead bacterial proportions than the positive control group in a concentration dependent manner (p < 0.01), as well as far less defects in microstructure. DJK-5 at 10 μg/mL killed 84.82% of biofilms and inhibited biofilm growth, preventing acidification due to S. mutans and maintaining a neutral pH. Potential polarization and electrochemical impedance spectroscopy data revealed that both peptides significantly reduced the corrosion and passive currents on titanium compared to titanium surfaces with untreated biofilms, and increased the resistance of the passive film (p < 0.05), with 10 μg/mL of DJK-5 achieving the greatest effect. These findings demonstrated that antibiofilm peptides are effective in promoting corrosion resistance of titanium against S. mutans, suggesting a promising strategy to enhance the stability of dental implants by endowing them with antibiofilm and anticorrosion properties.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Yingying Yue
- Liaoning Institute of Science and Technology, Benxi, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Tian Zhang
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
van Hoek ML, Alsaab FM, Carpenter AM. GATR-3, a Peptide That Eradicates Preformed Biofilms of Multidrug-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2023; 13:39. [PMID: 38247598 PMCID: PMC10812447 DOI: 10.3390/antibiotics13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Acinetobacter baumannii is a gram-negative bacterium that causes hospital-acquired and opportunistic infections, resulting in pneumonia, sepsis, and severe wound infections that can be difficult to treat due to antimicrobial resistance and the formation of biofilms. There is an urgent need to develop novel antimicrobials to tackle the rapid increase in antimicrobial resistance, and antimicrobial peptides (AMPs) represent an additional class of potential agents with direct antimicrobial and/or host-defense activating activities. In this study, we present GATR-3, a synthetic, designed AMP that was modified from a cryptic peptide discovered in American alligator, as our lead peptide to target multidrug-resistant (MDR) A. baumannii. Antimicrobial susceptibility testing and antibiofilm assays were performed to assess GATR-3 against a panel of 8 MDR A. baumannii strains, including AB5075 and some clinical strains. The GATR-3 mechanism of action was determined to be via loss of membrane integrity as measured by DiSC3(5) and ethidium bromide assays. GATR-3 exhibited potent antimicrobial activity against all tested multidrug-resistant A. baumannii strains with rapid killing. Biofilms are difficult to treat and eradicate. Excitingly, GATR-3 inhibited biofilm formation and, more importantly, eradicated preformed biofilms of MDR A. baumannii AB5075, as evidenced by MBEC assays and scanning electron micrographs. GATR3 did not induce resistance in MDR A. baumannii, unlike colistin. Additionally, the toxicity of GATR-3 was evaluated using human red blood cells, HepG2 cells, and waxworms using hemolysis and MTT assays. GATR-3 demonstrated little to no cytotoxicity against HepG2 and red blood cells, even at 100 μg/mL. GATR-3 injection showed little toxicity in the waxworm model, resulting in a 90% survival rate. The therapeutic index of GATR-3 was estimated (based on the HC50/MIC against human RBCs) to be 1250. Overall, GATR-3 is a promising candidate to advance to preclinical testing to potentially treat MDR A. baumannii infections.
Collapse
Affiliation(s)
- Monique L. van Hoek
- Center for Infectious Disease Research, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Fahad M. Alsaab
- Center for Infectious Disease Research, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa 36428, Saudi Arabia
| | - Ashley M. Carpenter
- Center for Infectious Disease Research, George Mason University, Manassas, VA 20110, USA
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
48
|
Li L, Li J, Yu X, Cao R, Hong M, Xu Z, Ren Lu J, Wang Y, Zhu H. Antimicrobial peptides fight against Pseudomonas aeruginosa at a sub-inhibitory concentration via anti-QS pathway. Bioorg Chem 2023; 141:106922. [PMID: 37865056 DOI: 10.1016/j.bioorg.2023.106922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
The broad-spectrum antimicrobial ability of de novo designed amphiphilic antimicrobial peptides (AMPs) G(IIKK)3I-NH2 (G3) and C8-G(IIKK)2I-NH2 (C8G2) have been demonstrated. Nonetheless, their potential as anti-quorum-sensing (anti-QS) agents, particularly against the opportunistic pathogen Pseudomonas aeruginosa at subinhibitory concentrations, has received limited attention. In this study, we proved that treating P. aeruginosa PAO1 with both AMPs at subinhibitory concentrations led to significant inhibition of QS-regulated virulence factors, including pyocyanin, elastase, proteases, and bacterial motility. Additionally, the AMPs exhibited remarkable capabilities in suppressing biofilm formation and their elimination rate of mature biofilm exceeded 95%. Moreover, both AMPs substantially downregulated the expression of QS-related genes. CD analysis revealed that both AMPs induced structural alterations in the important QS-related protein LasR in vitro. Molecular docking results indicated that both peptides bind to the hydrophobic groove of the LasR dimer. Notably, upon mutating key binding sites (D5, E11, and F87) to Ala, the binding efficiency of LasR to both peptides significantly decreased. We revealed the potential of antibacterial peptides G3 and C8G2 at their sub-MIC concentrations as QS inhibitors against P. aeruginosa and elucidated their action mechanism. These findings contribute to our understanding of the therapeutic potential of these peptides in combating P. aeruginosa infections by targeting the QS system.
Collapse
Affiliation(s)
- Li Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Jiaxin Li
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaodan Yu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Ruipin Cao
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Hong
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Zuxian Xu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| | - Yinglu Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
49
|
Zhang T, Luo X, Xu K, Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv Drug Deliv Rev 2023; 203:115139. [PMID: 37951358 DOI: 10.1016/j.addr.2023.115139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Transdermal drug delivery presents a less invasive pathway, circumventing the need to pass through the gastrointestinal tract and liver, thereby reducing drug breakdown, initial metabolism, and gastrointestinal discomfort. Nevertheless, the unique composition and dense structure of the stratum corneum present a significant barrier to transdermal delivery. This article presents an overview of the current developments in peptides and nanotechnology to address this challenge. Initially, we sum up peptide-containing nanoformulations for transdermal drug delivery, examining them through the lenses of both inorganic and organic materials. Particular emphasis is placed on the diverse roles that peptides play within these nanoformulations, including conferring functionality upon nanocarriers and enhancing the biological efficacy of drugs. Subsequently, we summarize innovative strategies for enhancing skin penetration, categorizing them into passive and active approaches. Lastly, we discuss the therapeutic potential of peptide-containing nanoformulations in addressing a range of diseases, drawing insights from the biological activities and functions of peptides. Furthermore, the challenges hindering clinical translation are also discussed, providing valuable insights for future advancements in transdermal drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
50
|
Wang D, Yu J, Liu H, Zhang T, Haney EF, Hancock REW, Peng L, Shen Y. Influence of a D-enantiomeric peptide on the anticorrosion ability of titanium with different surface roughness against Streptococcus mutans biofilms. J Dent 2023; 139:104777. [PMID: 37944630 DOI: 10.1016/j.jdent.2023.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE To investigate the effectiveness of a d-enantiomeric antibiofilm peptide (DJK-5) on the anticorrosion ability of titanium (Ti) with different surface roughness against Streptococcus mutans biofilms. METHODS Commercially pure Ti disks with machined (MA, smooth) or sandblasted + acid-etched (SLA, rough) surfaces were prepared and characterized. All disks were divided into three groups: a positive control (PC) group with S. mutans, a DJK-5-treated group, and a negative control (NC) group without S. mutans. Biofilm formation and corrosion on Ti surfaces were determined by confocal laser scanning microscopy and scanning electron microscopy after 2 and 6 days, and the electrochemical properties were evaluated. RESULTS Ten μg/mL of DJK-5 killed 83.3 % and 87.4 % of biofilms on SLA and MA Ti surfaces, respectively after 2 days, and 72.9 % and 77.7 % after 6 days, with more bacteria surviving on SLA surfaces with higher roughness (p < 0.05). DJK-5 treatment induced less surface defects with tiny pit corrosion than PC. DJK-5 treatment when compared to PC, led to electrochemical properties more reflecting NC surfaces, including significantly less negative corrosion potential, lower corrosion current, and higher passive film resistance (p < 0.05). SLA surfaces exhibited higher current density and lower resistance than MA surfaces (p < 0.05). CONCLUSION DJK-5 effectively enhanced the corrosion resistance of Ti with different surface roughness while killing S. mutans biofilms, and smooth surfaces were more susceptible to peptide treatment. CLINICAL SIGNIFICANCE The antibiofilm peptide is promising for promoting the anticorrosion ability of Ti against biofilms, thereby preventing biofilm-related infections.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Tian Zhang
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|