1
|
Singer M, Kanatani S, Castillo SG, Frischknecht F, Sinnis P. The Plasmodium circumsporozoite protein. Trends Parasitol 2024; 40:1124-1134. [PMID: 39572325 DOI: 10.1016/j.pt.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
The circumsporozoite protein (CSP) is one of the most studied proteins of the malaria parasite. It is the target of the only licensed malaria vaccines and is essential for sporozoite formation and infectivity. Yet, the mechanisms by which CSP functions and its interactions with other proteins are only beginning to be understood. Here we review the current state of knowledge of CSP structure and function, as sporozoites develop in the mosquito and establish infection in the mammalian host, and outline outstanding questions that need to be addressed.
Collapse
Affiliation(s)
- Mirko Singer
- Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Heidelberg, Germany
| | - Sachie Kanatani
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA
| | - Stefano Garcia Castillo
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA
| | - Friedrich Frischknecht
- Parasitology, Center for Infectious Diseases, Heidelberg University Medical Faculty, Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Photini Sinnis
- Johns Hopkins School of Public Health and Johns Hopkins Malaria Research Institute, 615 North Wolfe Street, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Abstract
INTRODUCTION : Eradication of malaria remains one of the main aims of medicine. Despite progress in malaria treatment, mortality rate remains high, especially in the poorest parts of the world. Therefore, prevention through vaccines is fundamental and recent approval of the first effective vaccine reinforced this assumption. However, since the parasite cycle is complex, being composed of three stages, different types of vaccine targeting stage-specific antigens shall be developed. Moreover, the beneficial effect on vaccinated subjects can be tuned using compositions targeting different disease stages. AREA COVERED : We analysed the malaria vaccine patent landscape describing the most significant patents published after 2016, classified according to the different parasite stages targeted focusing on selected protein antigens or epitopes. We searched "malaria vaccine" on Patentscope and Espacenet. EXPERT OPINION : Pre-erythrocytic vaccines were boosted by RTS,S approval, but its partial efficacy, limited to sporozoites, calls for compositions active against other disease stages. In particular, multi-antigens vaccines could be more effective than single-stage ones, as they would activate an immune response more similar to that acquired in endemic regions. Furthermore, vaccine storage is another factor to be taken into account given the climate of the areas where malaria is widespread. More advanced technologies can lead to more effective and safer vaccines.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Inhibitor of Cysteine Protease of Plasmodium malariae Regulates Malapains, Endogenous Cysteine Proteases of the Parasite. Pathogens 2022; 11:pathogens11050605. [PMID: 35631126 PMCID: PMC9142985 DOI: 10.3390/pathogens11050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Cysteine proteases of malaria parasites have been recognized as potential targets in antimalarial drug development as they play pivotal roles in the biology of these parasites. However, strict regulation of their activities is also necessary to minimize or prevent deleterious damage to the parasite and the host. Previously, we have characterized falcipain family cysteine proteases of Plasmodium malariae, named as malapains (MPs). MPs are active hemoglobinases. They also may participate in the release of merozoites from mature schizonts by facilitating remodeling of erythrocyte skeleton proteins. In this study, we identified and characterized an endogenous inhibitor of cysteine protease of P. malariae (PmICP). PmICP shared similar structural and biochemical properties with ICPs from other Plasmodium species. Recombinant PmICP showed a broad range of inhibitory activities against diverse cysteine proteases such as falcipain family enzymes (MP-2, MP-4, VX-3, VX-4, and FP-3), papain, and human cathepsins B and L, with stronger inhibitory activities against falcipain family enzymes. The inhibitory activity of PmICP was not affected by pH. PmICP was thermo-labile, resulting in rapid loss of its inhibitory activity at a high temperature. PmICP effectively inhibited hemoglobin hydrolysis by MPs and regulated maturation of MPs, suggesting its role as a functional regulator of MPs.
Collapse
|
5
|
Roy M, Rawat A, Kaushik S, Jyoti A, Srivastava VK. Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa. Microbiol Res 2022; 261:127061. [DOI: 10.1016/j.micres.2022.127061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
6
|
Uddin A, Gupta S, Mohammad T, Shahi D, Hussain A, Alajmi MF, El-Seedi HR, Hassan I, Singh S, Abid M. Target-Based Virtual Screening of Natural Compounds Identifies a Potent Antimalarial With Selective Falcipain-2 Inhibitory Activity. Front Pharmacol 2022; 13:850176. [PMID: 35462917 PMCID: PMC9020225 DOI: 10.3389/fphar.2022.850176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
We employed a comprehensive approach of target-based virtual high-throughput screening to find potential hits from the ZINC database of natural compounds against cysteine proteases falcipain-2 and falcipain-3 (FP2 and FP3). Molecular docking studies showed the initial hits showing high binding affinity and specificity toward FP2 were selected. Furthermore, the enzyme inhibition and surface plasmon resonance assays were performed which resulted in a compound ZINC12900664 (ST72) with potent inhibitory effects on purified FP2. ST72 exhibited strong growth inhibition of chloroquine-sensitive (3D7; EC50 = 2.8 µM) and chloroquine-resistant (RKL-9; EC50 = 6.7 µM) strains of Plasmodium falciparum. Stage-specific inhibition assays revealed a delayed and growth defect during parasite growth and development in parasites treated with ST72. Furthermore, ST72 significantly reduced parasite load and increased host survival in a murine model infected with Plasmodium berghei ANKA. No Evans blue staining in ST72 treatment indicated that ST72 mediated protection of blood–brain barrier integrity in mice infected with P. berghei. ST72 did not show any significant hemolysis or cytotoxicity against human HepG2 cells suggesting a good safety profile. Importantly, ST72 with CQ resulted in improved growth inhibitory activity than individual drugs in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Diksha Shahi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham R. El-Seedi
- Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Shailja Singh, ; Mohammad Abid,
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Shailja Singh, ; Mohammad Abid,
| |
Collapse
|
7
|
Bogale HN, Pascini TV, Kanatani S, Sá JM, Wellems TE, Sinnis P, Vega-Rodríguez J, Serre D. Transcriptional heterogeneity and tightly regulated changes in gene expression during Plasmodium berghei sporozoite development. Proc Natl Acad Sci U S A 2021; 118:e2023438118. [PMID: 33653959 PMCID: PMC7958459 DOI: 10.1073/pnas.2023438118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the critical role of Plasmodium sporozoites in malaria transmission, we still know little about the mechanisms underlying their development in mosquitoes. Here, we use single-cell RNA sequencing to characterize the gene expression profiles of 16,038 Plasmodium berghei sporozoites isolated throughout their development from midgut oocysts to salivary glands, and from forced salivation experiments. Our results reveal a succession of tightly regulated changes in gene expression occurring during the maturation of sporozoites and highlight candidate genes that could play important roles in oocyst egress, sporozoite motility, and the mechanisms underlying the invasion of mosquito salivary glands and mammalian hepatocytes. In addition, the single-cell data reveal extensive transcriptional heterogeneity among parasites isolated from the same anatomical site, suggesting that Plasmodium development in mosquitoes is asynchronous and regulated by intrinsic as well as environmental factors. Finally, our analyses show a decrease in transcriptional activity preceding the translational repression observed in mature sporozoites and associated with their quiescent state in salivary glands, followed by a rapid reactivation of the transcriptional machinery immediately upon salivation.
Collapse
Affiliation(s)
- Haikel N Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sachie Kanatani
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
8
|
Arredondo SA, Schepis A, Reynolds L, Kappe SHI. Secretory Organelle Function in the Plasmodium Sporozoite. Trends Parasitol 2021; 37:651-663. [PMID: 33589364 DOI: 10.1016/j.pt.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium sporozoites exhibit a complex infection biology in the mosquito and mammalian hosts. The sporozoite apical secretory organelles, the micronemes and rhoptries, store protein mediators of parasite/host/vector interactions and must secrete them in a temporally and spatially well orchestrated manner. Micronemal proteins are critical for sporozoite motility throughout its journey from the mosquito midgut oocyst to the mammalian liver, and also for cell traversal (CT) and hepatocyte invasion. Rhoptry proteins, until recently thought to be only important for hepatocyte invasion, appear to also play an unexpected role in motility and in the interaction with mosquito tissue. Therefore, navigating the different microenvironments with secretion likely requires the sporozoite to have a more complex system of secretory organelles than previously appreciated.
Collapse
Affiliation(s)
- Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Antonino Schepis
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
9
|
Singh V, Hada RS, Uddin A, Aneja B, Abid M, Pandey KC, Singh S. Inhibition of Hemoglobin Degrading Protease Falcipain-2 as a Mechanism for Anti-Malarial Activity of Triazole-Amino Acid Hybrids. Curr Top Med Chem 2020; 20:377-389. [PMID: 32000644 DOI: 10.2174/1568026620666200130162347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Novel drug development against malaria parasite over old conventional antimalarial drugs is essential due to rapid and indiscriminate use of drugs, which led to the emergence of resistant strains. METHODS In this study, previously reported triazole-amino acid hybrids (13-18) are explored against Plasmodium falciparum as antimalarial agents. Among six compounds, 15 and 18 exhibited antimalarial activity against P. falciparum with insignificant hemolytic activity and cytotoxicity towards HepG2 mammalian cells. In molecular docking studies, both compounds bind into the active site of PfFP-2 and block its accessibility to the substrate that leads to the inhibition of target protein further supported by in vitro analysis. RESULTS Antimalarial half-maximal inhibitory concentration (IC50) of 15 and 18 compounds were found to be 9.26 μM and 20.62 μM, respectively. Blood stage specific studies showed that compounds, 15 and 18 are effective at late trophozoite stage and block egress pathway of parasites. Decreased level of free monomeric heme was found in a dose dependent manner after the treatment with compounds 15 and 18, which was further evidenced by the reduction in percent of hemoglobin hydrolysis. Compounds 15 and 18 hindered hemoglobin degradation via intra- and extracellular cysteine protease falcipain-2 (PfFP-2) inhibitory activity both in in vitro and in vivo in P. falciparum. CONCLUSION We report antimalarial potential of triazole-amino acid hybrids and their role in the inhibition of cysteine protease PfFP-2 as its mechanistic aspect.
Collapse
Affiliation(s)
- Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rahul Singh Hada
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar UP, 201314, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.,Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi 110077, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
10
|
Discovery of four new B-cell protective epitopes for malaria using Q beta virus-like particle as platform. NPJ Vaccines 2020; 5:92. [PMID: 33083027 PMCID: PMC7546618 DOI: 10.1038/s41541-020-00242-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria remains one of the world’s most urgent global health problems, with almost half a million deaths and hundreds of millions of clinical cases each year. Existing interventions by themselves will not be enough to tackle infection in high-transmission areas. The best new intervention would be an effective vaccine; but the leading P. falciparum and P. vivax vaccine candidates, RTS,S and VMP001, show only modest to low field efficacy. New antigens and improved ways for screening antigens for protective efficacy will be required. This study exploits the potential of Virus-Like Particles (VLP) to enhance immune responses to antigens, the ease of coupling peptides to the Q beta (Qβ) VLP and the existing murine malaria challenge to screen B-cell epitopes for protective efficacy. We screened P. vivax TRAP (PvTRAP) immune sera against individual 20-mer PvTRAP peptides. The most immunogenic peptides associated with protection were loaded onto Qβ VLPs to assess protective efficacy in a malaria sporozoite challenge. A second approach focused on identifying conserved regions within known sporozoite invasion proteins and assessing them as part of the Qβ. Using this VLP as a peptide scaffold, four new protective B-cell epitopes were discovered: three from the disordered region of PvTRAP and one from Thrombospondin-related sporozoite protein (TRSP). Antigenic interference between these and other B-cell epitopes was also explored using the virus-like particle/peptide platform. This approach demonstrates the utility of VLPs to help identifying new B-cell epitopes for inclusion in next-generation malaria vaccines.
Collapse
|
11
|
Uddin A, Singh V, Irfan I, Mohammad T, Singh Hada R, Imtaiyaz Hassan M, Abid M, Singh S. Identification and structure-activity relationship (SAR) studies of carvacrol derivatives as potential anti-malarial against Plasmodium falciparum falcipain-2 protease. Bioorg Chem 2020; 103:104142. [PMID: 32763521 DOI: 10.1016/j.bioorg.2020.104142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023]
Abstract
In an effort to develop a potent anti-malarial agent against Plasmodium falciparum, a structure-guided virtual screening using an in-house library comprising 652 compounds was performed. By docking studies, we identified two compounds (JMI-105 and JMI-346) which formed significant non-covalent interactions and fit well in the binding pocket of PfFP-2. We affirmed this observation by MD simulation studies. As evident by the biochemical analysis, such as enzyme inhibition assay, Surface Plasmon Resonance (SPR), live-cell imaging and hemozoin inhibition, JMI-105 and JMI-346 at 25 µM concentration showed an inhibitory effect on purified PfFP-2. JMI-105 and JMI-346 inhibited the growth of CQS (3D7; IC50 = 8.8 and 13 µM) and CQR (RKL-9; IC50 = 14.3 and 33 µM) strains of P. falciparum. Treatment with compounds resulted in defect in parasite growth and development. No significant hemolysis or cytotoxicity towards human cells was observed suggesting that these molecules are non-toxic. We pursued, structural optimization on JMI-105 and in the process, SAR oriented derivatives (5a-5l) were synthesized and evaluated for growth inhibition potential. JMI-105 significantly decreased parasitemia and prolonged host survival in a murine model with P. berghei ANKA infection. The compounds (JMI-105 and JMI-346) against PfFP-2 have the potential to be used as an anti-malarial agent.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rahul Singh Hada
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
12
|
A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochem J 2020; 477:525-540. [PMID: 31942933 PMCID: PMC6993865 DOI: 10.1042/bcj20190918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.
Collapse
|
13
|
Moreau CA, Quadt KA, Piirainen H, Kumar H, Bhargav SP, Strauss L, Tolia NH, Wade RC, Spatz JP, Kursula I, Frischknecht F. A function of profilin in force generation during malaria parasite motility that is independent of actin binding. J Cell Sci 2020; 134:jcs233775. [PMID: 32034083 DOI: 10.1242/jcs.233775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/06/2020] [Indexed: 01/20/2023] Open
Abstract
During transmission of malaria-causing parasites from mosquito to mammal, Plasmodium sporozoites migrate at high speed within the skin to access the bloodstream and infect the liver. This unusual gliding motility is based on retrograde flow of membrane proteins and highly dynamic actin filaments that provide short tracks for a myosin motor. Using laser tweezers and parasite mutants, we previously suggested that actin filaments form macromolecular complexes with plasma membrane-spanning adhesins to generate force during migration. Mutations in the actin-binding region of profilin, a near ubiquitous actin-binding protein, revealed that loss of actin binding also correlates with loss of force production and motility. Here, we show that different mutations in profilin, that do not affect actin binding in vitro, still generate lower force during Plasmodium sporozoite migration. Lower force generation inversely correlates with increased retrograde flow suggesting that, like in mammalian cells, the slow down of flow to generate force is the key underlying principle governing Plasmodium gliding motility.
Collapse
Affiliation(s)
- Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Katharina A Quadt
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Laboratory of Biophysical Chemistry, Heidelberg University, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Henni Piirainen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Saligram P Bhargav
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Léanne Strauss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rebecca C Wade
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research and Laboratory of Biophysical Chemistry, Heidelberg University, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Reeder SM, Reuschel EL, Bah MA, Yun K, Tursi NJ, Kim KY, Chu J, Zaidi FI, Yilmaz I, Hart RJ, Perrin B, Xu Z, Humeau L, Weiner DB, Aly ASI. Synthetic DNA Vaccines Adjuvanted with pIL-33 Drive Liver-Localized T Cells and Provide Protection from Plasmodium Challenge in a Mouse Model. Vaccines (Basel) 2020; 8:vaccines8010021. [PMID: 31936739 PMCID: PMC7157753 DOI: 10.3390/vaccines8010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
The need for a malaria vaccine is indisputable. A single vaccine for Plasmodium pre-erythrocytic stages targeting the major sporozoite antigen circumsporozoite protein (CSP) has had partial success. Additionally, CD8+ T cells targeting liver-stage (LS) antigens induced by live attenuated sporozoite vaccines were associated with protection in human challenge experiments. To further evaluate protection mediated by LS antigens, we focused on exported pre-erythrocytic proteins (exported protein 1 (EXP1), profilin (PFN), exported protein 2 (EXP2), inhibitor of cysteine proteases (ICP), transmembrane protein 21 (TMP21), and upregulated in infective sporozoites-3 (UIS3)) expressed in all Plasmodium species and designed optimized, synthetic DNA (synDNA) immunogens. SynDNA antigen cocktails were tested with and without the molecular adjuvant plasmid IL-33. Immunized animals developed robust T cell responses including induction of antigen-specific liver-localized CD8+ T cells, which were enhanced by the co-delivery of plasmid IL-33. In total, 100% of mice in adjuvanted groups and 71%–88% in non-adjuvanted groups were protected from blood-stage disease following Plasmodium yoelii sporozoite challenge. This study supports the potential of synDNA LS antigens as vaccine components for malaria parasite infection.
Collapse
Affiliation(s)
- Sophia M. Reeder
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma L. Reuschel
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Mamadou A. Bah
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Kun Yun
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kevin Y. Kim
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacqueline Chu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Faraz I. Zaidi
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ilknur Yilmaz
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
| | - Robert J. Hart
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Benjamin Perrin
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Ziyang Xu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - David B. Weiner
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| | - Ahmed S. I. Aly
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| |
Collapse
|
15
|
Kumar H, Kehrer J, Singer M, Reinig M, Santos JM, Mair GR, Frischknecht F. Functional genetic evaluation of DNA house-cleaning enzymes in the malaria parasite: dUTPase and Ap4AH are essential in Plasmodium berghei but ITPase and NDH are dispensable. Expert Opin Ther Targets 2019; 23:251-261. [PMID: 30700216 DOI: 10.1080/14728222.2019.1575810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cellular metabolism generates reactive oxygen species. The oxidation and deamination of the deoxynucleoside triphosphate (dNTP) pool results in the formation of non-canonical, toxic dNTPs that can cause mutations, genome instability, and cell death. House-cleaning or sanitation enzymes that break down and detoxify non-canonical nucleotides play major protective roles in nucleotide metabolism and constitute key drug targets for cancer and various pathogens. We hypothesized that owing to their protective roles in nucleotide metabolism, these house-cleaning enzymes are key drug targets in the malaria parasite. METHODS Using the rodent malaria parasite Plasmodium berghei we evaluate here, by gene targeting, a group of conserved proteins with a putative function in the detoxification of non-canonical nucleotides as potential antimalarial drug targets: they are inosine triphosphate pyrophosphatase (ITPase), deoxyuridine triphosphate pyrophosphatase (dUTPase) and two NuDiX hydroxylases, the diadenosine tetraphosphate (Ap4A) hydrolase and the nucleoside triphosphate hydrolase (NDH). RESULTS While all four proteins are expressed constitutively across the intraerythrocytic developmental cycle, neither ITPase nor NDH are required for parasite viability. dutpase and ap4ah null mutants, on the other hand, are not viable suggesting an essential function for these proteins for the malaria parasite. CONCLUSIONS Plasmodium dUTPase and Ap4A could be drug targets in the malaria parasite.
Collapse
Affiliation(s)
- Hirdesh Kumar
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Jessica Kehrer
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Mirko Singer
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Miriam Reinig
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| | - Jorge M Santos
- b Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Lisbon , Portugal
| | - Gunnar R Mair
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
- b Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Lisbon , Portugal
- c Department of Biomedical Sciences , 2008 College of Veterinary Medicine, Iowa State University , Ames , IA USA
| | - Friedrich Frischknecht
- a Integrative Parasitology, Department of Infectious Diseases , University of Heidelberg Medical School , Heidelberg , Germany
| |
Collapse
|
16
|
Abstract
Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria.
Collapse
|
17
|
Frischknecht F, Matuschewski K. Plasmodium Sporozoite Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025478. [PMID: 28108531 DOI: 10.1101/cshperspect.a025478] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium sporozoite transmission is a critical population bottleneck in parasite life-cycle progression and, hence, a target for prophylactic drugs and vaccines. The recent progress of a candidate antisporozoite subunit vaccine formulation to licensure highlights the importance of sporozoite transmission intervention in the malaria control portfolio. Sporozoites colonize mosquito salivary glands, migrate through the skin, penetrate blood vessels, breach the liver sinusoid, and invade hepatocytes. Understanding the molecular and cellular mechanisms that mediate the remarkable sporozoite journey in the invertebrate vector and the vertebrate host can inform evidence-based next-generation drug development programs and immune intervention strategies.
Collapse
Affiliation(s)
- Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, 69120 Heidelberg, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
18
|
Costa TF, Lima APC. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie 2016; 122:197-207. [DOI: 10.1016/j.biochi.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
|