1
|
Li W, Liu Z. Advances in glycan-specific biomimetic molecular recognition and its biomedical applications. Chem Commun (Camb) 2025; 61:6739-6754. [PMID: 40243224 DOI: 10.1039/d5cc01003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Glycan-mediated recognition is critically involved in a variety of pathophysiological events, so strategies targeting unique glycosylation could offer opportunities for novel disease diagnostics and therapeutics. Herein, we survey the current progress in glycan-binding entities and their biomedical applications. Particularly focusing on biologically promising artificial receptors, including boronate affinity-based molecularly imprinted polymers (MIPs) and anti-glycan aptamers, we summarize significant efforts in the recognition of glycans by MIPs and aptamers with high affinity and exquisite specificity. Furthermore, we highlight successful examples in biomedical fields of antiviral treatment, cancer diagnostics and targeted therapeutics. Finally, we briefly sketch the remaining challenges and future perspectives. Collectively, this review provides significant insights for further exploration of glycan-specific biomimetic materials in the broad biomedical area.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Wang Q, Wang X, Ding J, Huang L, Wang Z. Structural insight of cell surface sugars in viral infection and human milk glycans as natural antiviral substance. Int J Biol Macromol 2024; 277:133867. [PMID: 39009265 DOI: 10.1016/j.ijbiomac.2024.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Viral infections are caused by the adhesion of viruses to host cell receptors, including sialylated glycans, glycosaminoglycans, and human blood group antigens (HBGAs). Atomic-level structural information on the interactions between viral particles or proteins with glycans can be determined to provide precise targets for designing antiviral drugs. Milk glycans, existing as free oligosaccharides or glycoconjugates, have attracted increasing attention; milk glycans protect infants against infectious diseases, particularly poorly manageable viral infections. Furthermore, several glycans containing structurally distinct sialic acid/fucose/sulfate modifications in human milk acting as a "receptor decoy" and serving as the natural antiviral library, could interrupt virus-receptor interaction in the first line of defense for viral infection. This review highlights the basis of virus-glycan interactions, presents specific glycan receptor binding by gastroenterovirus viruses, including norovirus, enteroviruses, and the breakthroughs in the studies on the antiviral properties of human milk glycans, and also elucidates the role of glycans in respiratory viruses infection. In addition, recent advances in methods for performing virus/viral protein-glycan interactions were reported. Finally, we discuss the prospects and challenges of the studies on the clinical application of human milk glycan for viral interventions.
Collapse
Affiliation(s)
- Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Robledo Gonzalez L, Tat RP, Greaves JC, Robinson CM. Viral-Bacterial Interactions That Impact Viral Thermostability and Transmission. Viruses 2023; 15:2415. [PMID: 38140656 PMCID: PMC10747402 DOI: 10.3390/v15122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Enteric viruses are significant human pathogens that commonly cause foodborne illnesses worldwide. These viruses initiate infection in the gastrointestinal tract, home to a diverse population of intestinal bacteria. In a novel paradigm, data indicate that enteric viruses utilize intestinal bacteria to promote viral replication and pathogenesis. While mechanisms underlying these observations are not fully understood, data suggest that some enteric viruses bind directly to bacteria, stabilizing the virion to retain infectivity. Here, we discuss the current knowledge of these viral-bacterial interactions and examine the impact of these interactions on viral transmission.
Collapse
Affiliation(s)
- Lorimar Robledo Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| | - Rachel P. Tat
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| | - Justin C. Greaves
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47408, USA;
| | - Christopher M. Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.R.G.); (R.P.T.)
| |
Collapse
|
4
|
Aloor A, Aradhya R, Venugopal P, Gopalakrishnan Nair B, Suravajhala R. Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochem Pharmacol 2022; 206:115335. [PMID: 36328134 PMCID: PMC9621623 DOI: 10.1016/j.bcp.2022.115335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Glycan is an essential molecule that controls and drives life in a precise direction. The paucity of research in glycobiology may impede the significance of its role in the pandemic guidelines. The SARS-CoV-2 spike protein is heavily glycosylated, with 22 putative N-glycosylation sites and 17 potential O-glycosylation sites discovered thus far. It is the anchor point to the host cell ACE2 receptor, TMPRSS2, and many other host proteins that can be recognized by their immune system; hence, glycosylation is considered the primary target of vaccine development. Therefore, it is essential to know how this surface glycan plays a role in viral entry, infection, transmission, antigen, antibody responses, and disease progression. Although the vaccines are developed and applied against COVID-19, the proficiency of the immunizations is not accomplished with the current mutant variations. The role of glycosylation in SARS-CoV-2 and its receptor ACE2 with respect to other putative cell glycan receptors and the significance of glycan in host cell immunity in COVID-19 are discussed in this paper. Hence, the molecular signature of the glycan in the coronavirus infection can be incorporated into the mainstream therapeutic process.
Collapse
Affiliation(s)
- Arya Aloor
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | - Parvathy Venugopal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| | | | - Renuka Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana 690525, Kerala, India.
| |
Collapse
|
5
|
Tantirimudalige SN, Raghuvamsi PV, Sharma KK, Wei Bao JC, Anand GS, Wohland T. The ganglioside GM1a functions as a coreceptor/attachment factor for dengue virus during infection. J Biol Chem 2022; 298:102570. [PMID: 36209827 PMCID: PMC9650044 DOI: 10.1016/j.jbc.2022.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) is a flavivirus causing an estimated 390 million infections per year around the world. Despite the immense global health and economic impact of this virus, its true receptor(s) for internalization into live cells has not yet been identified, and no successful antivirals or treatments have been isolated to this date. This study aims to improve our understanding of virus entry routes by exploring the sialic acid-based cell surface molecule GM1a and its role in DENV infection. We studied the interaction of the virus with GM1a using fluorescence correlation spectroscopy, fluorescence crosscorrelation spectroscopy, imaging fluorescence correlation spectroscopy, amide hydrogen/deuterium exchange mass spectrometry, and isothermal titration calorimetry. Additionally, we explored the effect of this interaction on infectivity and movement of the virus during infection was explored using plaque assay and fluorescence-based imaging and single particle tracking. GM1a was deemed to interact with DENV at domain I (DI) and domain II (DII) of the E protein of the protein coat at quaternary contacts of a fully assembled virus, leading to a 10-fold and 7-fold increase in infectivity for DENV1 and DENV2 in mammalian cell systems, respectively. We determined that the interaction of the virus with GM1a triggers a speeding up of virus movement on live cell surfaces, possibly resulting from a reduction in rigidity of cellular rafts during infection. Collectively, our results suggest that GM1a functions as a coreceptor/attachment factor for DENV during infection in mammalian systems.
Collapse
Affiliation(s)
- Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Palur Venkata Raghuvamsi
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Bioinformatics Institute (A∗STAR), Singapore, Singapore
| | - Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jonathan Chua Wei Bao
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Chen P, Lin XJ, Ji F, Li Y, Wang ST, Liu Y, Tao ZX, Xu AQ. Evolutionary phylogeography reveals novel genotypes of coxsackievirus A24 variant and updates the spatiotemporal dynamics in the population with acute hemorrhagic conjunctivitis. Int J Infect Dis 2022; 124:227-239. [DOI: 10.1016/j.ijid.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
|
7
|
Wang H, Munke A, Li S, Tomaru Y, Okamoto K. Structural Insights into Common and Host-Specific Receptor-Binding Mechanisms in Algal Picorna-like Viruses. Viruses 2022; 14:2369. [PMID: 36366467 PMCID: PMC9697754 DOI: 10.3390/v14112369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/31/2023] Open
Abstract
Marnaviridae viruses are abundant algal viruses that regulate the dynamics of algal blooms in aquatic environments. They employ a narrow host range because they merely lyse their algal host species. This host-specific lysis is thought to correspond to the unique receptor-binding mechanism of the Marnaviridae viruses. Here, we present the atomic structures of the full and empty capsids of Chaetoceros socialis forma radians RNA virus 1 built-in 3.0 Å and 3.1 Å cryo-electron microscopy maps. The empty capsid structure and the structural variability provide insights into its assembly and uncoating intermediates. In conjunction with the previously reported atomic model of the Chaetoceros tenuissimus RNA virus type II capsid, we have identified the common and diverse structural features of the VP1 surface between the Marnaviridae viruses. We have also tested the potential usage of AlphaFold2 for structural prediction of the VP1s and a subsequent structural phylogeny for classifying Marnaviridae viruses by their hosts. These findings will be crucial for inferring the host-specific receptor-binding mechanism in Marnaviridae viruses.
Collapse
Affiliation(s)
- Han Wang
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Anna Munke
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Siqi Li
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| | - Kenta Okamoto
- The Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
8
|
Johansson E, Caraballo R, Zocher G, Mistry N, Arnberg N, Stehle T, Elofsson M. Exploring divalent conjugates of 5- N-acetyl-neuraminic acid as inhibitors of coxsackievirus A24 variant (CVA24v) transduction. RSC Adv 2022; 12:2319-2331. [PMID: 35425270 PMCID: PMC8979015 DOI: 10.1039/d1ra08968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Coxsackievirus A24 variant (CVA24v) is responsible for several outbreaks and two pandemics of the highly contagious eye infection acute hemorrhagic conjunctivitis (AHC). Currently, neither prevention (vaccines) nor treatments (antivirals) are available for combating this disease. CVA24v attaches to cells by binding Neu5Ac-containing glycans on the surface of cells which facilitates entry. Previously, we have demonstrated that pentavalent Neu5Ac conjugates attenuate CVA24v infection of human corneal epithelial (HCE) cells. In this study, we report on the structure-based design of three classes of divalent Neu5Ac conjugates, with varying spacer lengths, and their effect on CVA24v transduction in HCE cells. In relative terms, the most efficient class of divalent Neu5Ac conjugates are more efficient than the pentavalent Neu5Ac conjugates previously reported.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Chemistry, Umeå University SE90187 Umeå Sweden
| | - Rémi Caraballo
- Department of Chemistry, Umeå University SE90187 Umeå Sweden
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen 72076 Tübingen Germany
| | - Nitesh Mistry
- Department of Clinical Microbiology, Umeå University SE90185 Umeå Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University SE90185 Umeå Sweden
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen 72076 Tübingen Germany
- Vanderbilt University School of Medicine Nashville Tennessee 37232 USA
| | - Mikael Elofsson
- Department of Chemistry, Umeå University SE90187 Umeå Sweden
| |
Collapse
|
9
|
Exploring the Effect of Structure-Based Scaffold Hopping on the Inhibition of Coxsackievirus A24v Transduction by Pentavalent N-Acetylneuraminic Acid Conjugates. Int J Mol Sci 2021; 22:ijms22168418. [PMID: 34445134 PMCID: PMC8395083 DOI: 10.3390/ijms22168418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.
Collapse
|
10
|
Johansson E, Caraballo R, Elofsson M. Synthesis of 4- O-Alkylated N-Acetylneuraminic Acid Derivatives. J Org Chem 2021; 86:9145-9154. [PMID: 34138565 PMCID: PMC8279483 DOI: 10.1021/acs.joc.1c00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
The synthesis of
4-O-alkyl analogues of N-acetylneuraminic
acid (Neu5Ac) and the scope of the reaction
are described. Activated alkyl halides and sulfonates and primary
alkyl iodides give products in useful yields. The utility of the methodology
is exemplified using a thiophenyl Neu5Ac building block to synthesize
a 4-O-alkyl DANA analogue. These results expand the
toolbox of Neu5Ac chemistry with value in drug discovery and for the
design of novel tools to study the biology of Neu5Ac lectins.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Chemistry, Umeå University, Umeå SE90187, Sweden
| | - Rémi Caraballo
- Department of Chemistry, Umeå University, Umeå SE90187, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, Umeå SE90187, Sweden
| |
Collapse
|
11
|
Jayawardena N, Miles LA, Burga LN, Rudin C, Wolf M, Poirier JT, Bostina M. N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. Viruses 2021; 13:v13050769. [PMID: 33924774 PMCID: PMC8145208 DOI: 10.3390/v13050769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/12/2023] Open
Abstract
Seneca Valley virus (SVV) is a picornavirus with potency in selectively infecting and lysing cancerous cells. The cellular receptor for SVV mediating the selective tropism for tumors is anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein expressed in tumors. Similar to other mammalian receptors, ANTXR1 has been shown to harbor N-linked glycosylation sites in its extracellular vWA domain. However, the exact role of ANTXR1 glycosylation on SVV attachment and cellular entry was unknown. Here we show that N-linked glycosylation in the ANTXR1 vWA domain is necessary for SVV attachment and entry. In our study, tandem mass spectrometry analysis of recombinant ANTXR1-Fc revealed the presence of complex glycans at N166, N184 in the vWA domain, and N81 in the Fc domain. Symmetry-expanded cryo-EM reconstruction of SVV-ANTXR1-Fc further validated the presence of N166 and N184 in the vWA domain. Cell blocking, co-immunoprecipitation, and plaque formation assays confirmed that deglycosylation of ANTXR1 prevents SVV attachment and subsequent entry. Overall, our results identified N-glycosylation in ANTXR1 as a necessary post-translational modification for establishing stable interactions with SVV. We anticipate our findings will aid in selecting patients for future cancer therapeutics, where screening for both ANTXR1 and its glycosylation could lead to an improved outcome from SVV therapy.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Linde A. Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Laura N. Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
| | - Charles Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - John T. Poirier
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (N.J.); (L.N.B.)
- Otago Micro and Nano Imaging Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (M.W.); (J.T.P.); (M.B.)
| |
Collapse
|
12
|
Fonseca MC, Pupo-Meriño M, García-González LA, Muné M, Resik S, Norder H, Sarmiento L. Molecular Characterization of Coxsackievirus A24v from Feces and Conjunctiva Reveals Epidemiological Links. Microorganisms 2021; 9:531. [PMID: 33807540 PMCID: PMC7998715 DOI: 10.3390/microorganisms9030531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Coxsackievirus A24 variant (CVA24v), the main causative agent of acute hemorrhagic conjunctivitis (AHC), can be isolated from both the eyes and lower alimentary tract. However, the molecular features of CVA24v in feces is not well-documented. In this study, we compared the VP1 and 3C sequences of CVA24v strains isolated from feces during AHC epidemics in Cuba in 1997, 2003, and 2008-2009 with those obtained from conjunctival swabs during the same epidemic period. The sequence analyses of the 3C and VP1 region of stool isolates from the three epidemics showed a high degree of nucleotide identity (ranging from 97.3-100%) to the corresponding conjunctival isolates. The phylogenetic analysis showed that fecal CVA24v isolates from the 1997 and 2003 Cuban outbreaks formed a clade with CVA24v strains isolated from conjunctival swabs in Cuba and other countries during the same period. There were three amino acid changes (3C region) and one amino acid change (VP1 region) in seven CVA24v strains isolated sequentially over 20 days from fecal samples of one patient, suggesting viral replication in the intestine. Despite these substitutions, the virus from the conjunctival swab and fecal samples were genetically very similar. Therefore, fecal samples should be considered as a reliable alternative sample type for the routine molecular diagnosis and molecular epidemiology of CVA24v, also during outbreaks of AHC.
Collapse
Affiliation(s)
- Magilé C. Fonseca
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Mario Pupo-Meriño
- Departamento de Bioinformática, Universidad de las Ciencias Informáticas (UCI), Habana 19370, Cuba;
| | - Luis A. García-González
- Centro de Estudios de Matemática Computacional, Universidad de las Ciencias Informáticas (UCI), Habana 19370, Cuba;
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Ensenada, Mexico
| | - Mayra Muné
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Sonia Resik
- Virology Department, Center for Research Diagnosis, and Reference, Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba; (M.M.); (S.R.)
| | - Heléne Norder
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Luis Sarmiento
- Immunovirology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, 22185 Malmo, Sweden
| |
Collapse
|
13
|
Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:219-237. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Collapse
Affiliation(s)
- Xiao-Lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Haoran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
14
|
A comprehensive approach to X-ray crystallography for drug discovery at a synchrotron facility - The example of Diamond Light Source. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:83-92. [PMID: 34895658 DOI: 10.1016/j.ddtec.2020.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022]
Abstract
A detailed understanding of the interactions between drugs and their targets is crucial to develop the best possible therapeutic agents. Structure-based drug design relies on the availability of high-resolution structures obtained primarily through X-ray crystallography. Collecting and analysing quickly a large quantity of structural data is crucial to accelerate drug discovery pipelines. Researchers from academia and industry can access the highly automated macromolecular crystallography (MX) beamlines of Diamond Light Source, the UK national synchrotron, to rapidly collect diffraction data from large numbers of crystals. With seven beamlines dedicated to MX, Diamond offers bespoke solutions for a wide variety of user requirements. Working in synergy with state-of-the-art laboratories and other life science instruments to provide an integrated offering, the MX beamlines provide innovative and multidisciplinary approaches to the determination of structures of new pharmacological targets as well as the efficient study of protein-ligand complexes.
Collapse
|
15
|
Xie Q, Yoshioka CK, Chapman MS. Adeno-Associated Virus (AAV-DJ)-Cryo-EM Structure at 1.56 Å Resolution. Viruses 2020; 12:E1194. [PMID: 33092282 PMCID: PMC7589773 DOI: 10.3390/v12101194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/12/2023] Open
Abstract
Adeno-associated virus is the leading viral vector for gene therapy. AAV-DJ is a recombinant variant developed for tropism to the liver. The AAV-DJ structure has been determined to 1.56 Å resolution through cryo-electron microscopy (cryo-EM). Only apoferritin is reported in preprints at 1.6 Å or higher resolution, and AAV-DJ nearly matches the highest resolutions ever attained through X-ray diffraction of virus crystals. However, cryo-EM has the advantage that most of the hydrogens are clear, improving the accuracy of atomic refinement, and removing ambiguity in hydrogen bond identification. Outside of secondary structures where hydrogen bonding was predictable a priori, the networks of hydrogen bonds coming from direct observation of hydrogens and acceptor atoms are quite different from those inferred even at 2.8 Å resolution. The implications for understanding viral assembly mean that cryo-EM will likely become the favored approach for high resolution structural virology.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Craig K. Yoshioka
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Johansson E, Caraballo R, Mistry N, Zocher G, Qian W, Andersson CD, Hurdiss DL, Chandra N, Thompson R, Frängsmyr L, Stehle T, Arnberg N, Elofsson M. Pentavalent Sialic Acid Conjugates Block Coxsackievirus A24 Variant and Human Adenovirus Type 37-Viruses That Cause Highly Contagious Eye Infections. ACS Chem Biol 2020; 15:2683-2691. [PMID: 32845119 PMCID: PMC7586296 DOI: 10.1021/acschembio.0c00446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Coxsackievirus A24
variant (CVA24v) and human adenovirus 37 (HAdV-37)
are leading causative agents of the severe and highly contagious ocular
infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis,
respectively. Currently, neither vaccines nor antiviral agents are
available for treating these diseases, which affect millions of individuals
worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors
facilitating entry into host cells. Previously, we and others have
shown that derivatives based on sialic acid are effective in preventing
HAdV-37 binding and infection of cells. Here, we designed and synthesized
novel pentavalent sialic acid conjugates and studied their inhibitory
effect against CVA24v and HAdV-37 binding and infection of human corneal
epithelial cells. The pentavalent conjugates are the first reported
inhibitors of CVA24v infection and proved efficient in blocking HAdV-37
binding. Taken together, the pentavalent conjugates presented here
form a basis for the development of general inhibitors of these highly
contagious ocular pathogens.
Collapse
Affiliation(s)
- Emil Johansson
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
| | - Rémi Caraballo
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
| | - Nitesh Mistry
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Weixing Qian
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
| | | | - Daniel L. Hurdiss
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, The Netherlands
| | - Naresh Chandra
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Rebecca Thompson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lars Frängsmyr
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
- Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Niklas Arnberg
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE90185 Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, SE90187 Umeå, Sweden
| |
Collapse
|
17
|
Das A, Barrientos R, Shiota T, Madigan V, Misumi I, McKnight KL, Sun L, Li Z, Meganck RM, Li Y, Kaluzna E, Asokan A, Whitmire JK, Kapustina M, Zhang Q, Lemon SM. Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nat Microbiol 2020; 5:1069-1078. [PMID: 32451473 PMCID: PMC7483933 DOI: 10.1038/s41564-020-0727-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
The Picornaviridae are a diverse family of positive-strand RNA viruses that includes numerous human and veterinary pathogens1. Among these, hepatitis A virus (HAV), a common cause of acute hepatitis in humans, is unique in that it is hepatotropic and is released from hepatocytes without lysis in small vesicles that resemble exosomes2,3. These quasi-enveloped virions are infectious and are the only form of virus that can be detected in the blood during acute infection2. By contrast, non-enveloped naked virions are shed in faeces and stripped of membranes by bile salts during passage through the bile ducts to the gut4. How these two distinct types of infectious hepatoviruses enter cells to initiate infection is unclear. Here, we describe a genome-wide forward screen that shows that glucosylceramide synthase and other components of the ganglioside synthetic pathway are crucial host factors that are required for cellular entry by hepatoviruses. We show that gangliosides-preferentially disialogangliosides-function as essential endolysosome receptors that are required for infection by both naked and quasi-enveloped virions. In the absence of gangliosides, both virion types are efficiently internalized through endocytosis, but capsids fail to uncoat and accumulate within LAMP1+ endolysosomes. Gangliosides relieve this block, binding to the capsid at low pH and facilitating a late step in entry involving uncoating and delivery of the RNA genome to the cytoplasm. These results reveal an atypical cellular entry pathway for hepatoviruses that is unique among picornaviruses.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Rodell Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, USA
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tomoyuki Shiota
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Madigan
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ichiro Misumi
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin L McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lu Sun
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhucui Li
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, USA
| | - Rita M Meganck
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ewelina Kaluzna
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Aravind Asokan
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jason K Whitmire
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
- UNCG Center for Translational Biomedical Research, North Carolina Research Campus, Kannapolis, NC, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Wielgat P, Rogowski K, Godlewska K, Car H. Coronaviruses: Is Sialic Acid a Gate to the Eye of Cytokine Storm? From the Entry to the Effects. Cells 2020; 9:E1963. [PMID: 32854433 PMCID: PMC7564400 DOI: 10.3390/cells9091963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses (CoVs) are a diverse family of the enveloped human and animal viruses reported as causative agents for respiratory and intestinal infections. The high pathogenic potential of human CoVs, including SARS-CoV, MERS-CoV and SARS-CoV-2, is closely related to the invasion mechanisms underlying the attachment and entry of viral particles to the host cells. There is increasing evidence that sialylated compounds of cellular glycocalyx can serve as an important factor in the mechanism of CoVs infection. Additionally, the sialic acid-mediated cross-reactivity with the host immune lectins is known to exert the immune response of different intensity in selected pathological stages. Here, we focus on the last findings in the field of glycobiology in the context of the role of sialic acid in tissue tropism, viral entry kinetics and immune regulation in the CoVs infections.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| | - Katarzyna Godlewska
- Department of Haematology, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15276 Bialystok, Poland;
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15295 Bialystok, Poland;
| |
Collapse
|
19
|
Capsid Structure of a Marine Algal Virus of the Order Picornavirales. J Virol 2020; 94:JVI.01855-19. [PMID: 32024776 DOI: 10.1128/jvi.01855-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
The order Picornavirales includes viruses that infect different kinds of eukaryotes and that share similar properties. The capsid proteins (CPs) of viruses in the order that infect unicellular organisms, such as algae, presumably possess certain characteristics that have changed little over the course of evolution, and thus these viruses may resemble the Picornavirales ancestor in some respects. Herein, we present the capsid structure of Chaetoceros tenuissimus RNA virus type II (CtenRNAV-II) determined using cryo-electron microscopy at a resolution of 3.1 Å, the first alga virus belonging to the family Marnaviridae of the order Picornavirales A structural comparison to related invertebrate and vertebrate viruses revealed a unique surface loop of the major CP VP1 that had not been observed previously, and further, revealed that another VP1 loop obscures the so-called canyon, which is a host-receptor binding site for many of the mammalian Picornavirales viruses. VP2 has an N-terminal tail, which has previously been reported as a primordial feature of Picornavirales viruses. The above-mentioned and other critical structural features provide new insights on three long-standing theories about Picornavirales: (i) the canyon hypothesis, (ii) the primordial VP2 domain swap, and (iii) the hypothesis that alga Picornavirales viruses could share characteristics with the Picornavirales ancestor.IMPORTANCE Identifying the acquired structural traits in virus capsids is important for elucidating what functions are essential among viruses that infect different hosts. The Picornavirales viruses infect a broad spectrum of hosts, ranging from unicellular algae to insects and mammals and include many human pathogens. Those viruses that infect unicellular protists, such as algae, are likely to have undergone fewer structural changes during the course of evolution compared to those viruses that infect multicellular eukaryotes and thus still share some characteristics with the Picornavirales ancestor. This article describes the first atomic capsid structure of an alga Marnavirus, CtenRNAV-II. A comparison to capsid structures of the related invertebrate and vertebrate viruses identified a number of structural traits that have been functionally acquired or lost during the course of evolution. These observations provide new insights on past theories on the viability and evolution of Picornavirales viruses.
Collapse
|
20
|
Sriwilaijaroen N, Suzuki Y. Sialoglycovirology of Lectins: Sialyl Glycan Binding of Enveloped and Non-enveloped Viruses. Methods Mol Biol 2020; 2132:483-545. [PMID: 32306355 PMCID: PMC7165297 DOI: 10.1007/978-1-0716-0430-4_47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
On the cell sur "face", sialoglycoconjugates act as receptionists that have an important role in the first step of various cellular processes that bridge communication between the cell and its environment. Loss of Sia production can cause the developmental of defects and lethality in most animals; hence, animal cells are less prone to evolution of resistance to interactions by rapidly evolved Sia-binding viruses. Obligative intracellular viruses mostly have rapid evolution that allows escape from host immunity, leading to an epidemic variant, and that allows emergence of a novel strain, occasionally leading to pandemics that cause health-social-economic problems. Recently, much attention has been given to the mutual recognition systems via sialosugar chains between viruses and their host cells and there has been rapid growth of the research field "sialoglycovirology." In this chapter, the structural diversity of sialoglycoconjugates is overviewed, and enveloped and non-enveloped viruses that bind to Sia are reviewed. Also, interactions of viral lectins-host Sia receptors, which determine viral transmission, host range, and pathogenesis, are presented. The future direction of new therapeutic routes targeting viral lectins, development of easy-to-use detection methods for diagnosis and monitoring changes in virus binding specificity, and challenges in the development of suitable viruses to use in virus-based therapies for genetic disorders and cancer are discussed.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
21
|
Zhu H, Aloor A, Ma C, Kondengaden SM, Wang PG. Mass Spectrometric Analysis of Protein Glycosylation. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1346.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- He Zhu
- These authors contributed equally
| | | | | | | | - Peng George Wang
- Current Address: Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
22
|
Rustmeier NH, Strebl M, Stehle T. The Symmetry of Viral Sialic Acid Binding Sites-Implications for Antiviral Strategies. Viruses 2019; 11:v11100947. [PMID: 31615155 PMCID: PMC6832341 DOI: 10.3390/v11100947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Virus infections are initiated by the attachment of the viral particle to protein or carbohydrate receptors on the host cell. Sialic acid-bearing glycan structures are prominently displayed at the cell surface, and, consequently, these structures can function as receptors for a large number of diverse viruses. Structural biology research has helped to establish the molecular bases for many virus–sialic acid interactions. Due to the icosahedral 532 point group symmetry that underlies many viral capsids, the receptor binding sites are frequently arranged in a highly symmetric fashion and linked by five-fold, three-fold, or two-fold rotation axes. For the inhibition of viral attachment, one emerging strategy is based on developing multivalent sialic acid-based inhibitors that can simultaneously engage several of these binding sites, thus binding viral capsids with high avidity. In this review, we will evaluate the structures of non-enveloped virus capsid proteins bound to sialylated glycan receptors and discuss the potential of these structures for the development of potent antiviral attachment inhibitors.
Collapse
Affiliation(s)
- Nils H Rustmeier
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany.
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany.
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany.
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
23
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
24
|
Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol 2019; 34:117-129. [PMID: 30849709 PMCID: PMC6476673 DOI: 10.1016/j.coviro.2019.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Attachment of viruses to cell-surface receptors is the initial step in infection. Many mammalian viruses have evolved to recognize receptors that are glycans on cell-surface glycoproteins or glycolipids. Although glycans are a ubiquitous component of mammalian cells, the types of terminal structures expressed vary among different cell-types and tissues, and even between comparable cells and tissues from different species, frequently leading to specific tissue and species tropisms as a direct consequence of glycan receptor recognition. Covering the majority of known virus families, this review provides an overview of mammalian viruses that use glycans as receptors, and their roles in determining in host recognition and tropism.
Collapse
Affiliation(s)
- Andrew J Thompson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - James C Paulson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
25
|
Gonzalez G, Yawata N, Aoki K, Kitaichi N. Challenges in management of epidemic keratoconjunctivitis with emerging recombinant human adenoviruses. J Clin Virol 2019; 112:1-9. [PMID: 30654207 DOI: 10.1016/j.jcv.2019.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 01/14/2023]
Abstract
Adenoviral epidemic keratoconjunctivitis (EKC) presents as severe conjunctival inflammations involving the cornea that can lead to the development of corneal opacities and blurred vision, which can persist for months. EKC is highly contagious and responsible for outbreaks worldwide, therefore accurate diagnosis and rapid containment are imperative. EKC is caused by a number of types within Human adenovirus species D (HAdV-D): 8, 37 and 64 (formerly known as 19a) and these types were considered the major causes of EKC for over fifty years. Nonetheless, recent improved molecular typing methodologies have identified recombinant HAdV-D types 53, 54 and 56, as newly emerging etiologic agents of EKC infections worldwide. EKC cases due to these recombinant types have potentially been underdiagnosed and underestimated as a source of new EKC outbreaks. Recombination events among circulating HAdV-D types represent a source of new infectious disease threats. Also, the growing number of adenoviral types enabled genomic and phenotypic comparisons to determine pathological properties related to EKC. This review covers the clinical features of EKC, current challenges in clinical practice and recent progress in EKC-related HAdV research, which focuses on the development of novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nobuyo Yawata
- Department of Medicine, Ophthalmology, Fukuoka Dental College, Fukuoka, Japan; Singapore Eye Research Institute, Singapore; Department of Ophthalmology, Kyushu University, Japan; Duke-NUS Medical School, Singapore
| | - Koki Aoki
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Ophthalmology, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Nobuyoshi Kitaichi
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Ophthalmology, Health Sciences University of Hokkaido, Sapporo, Japan.
| |
Collapse
|
26
|
Zhu L, Sun Y, Fan J, Zhu B, Cao L, Gao Q, Zhang Y, Liu H, Rao Z, Wang X. Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating. Nat Commun 2018; 9:4985. [PMID: 30478256 PMCID: PMC6255764 DOI: 10.1038/s41467-018-07531-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus A10 (CVA10), a human type-A Enterovirus (HEV-A), can cause diseases ranging from hand-foot-and-mouth disease to polio-myelitis-like disease. CVA10, together with some other HEV-As, utilizing the molecule KREMEN1 as an entry receptor, constitutes a KREMEN1-dependent subgroup within HEV-As. Currently, there is no vaccine or antiviral therapy available for treating diseases caused by CVA10. The atomic-resolution structure of the CVA10 virion, which is within the KREMEN1-dependent subgroup, shows significant conformational differences in the putative receptor binding sites and serotype-specific epitopes, when compared to the SCARB2-dependent subgroup of HEV-A, such as EV71, highlighting specific differences between the sub-groups. We also report two expanded structures of CVA10, an empty particle and uncoating intermediate at atomic resolution, as well as a medium-resolution genome structure reconstructed using a symmetry-mismatch method. Structural comparisons coupled with previous results, reveal an ordered signal transmission process for enterovirus uncoating, converting exo-genetic receptor-attachment inputs into a generic RNA release mechanism. The disease-causing pathogen Coxsackievirus A10 (CVA10) is a human type-A Enterovirus. Here the authors present the cryo-EM structures of the mature CVA10 virion and the empty- and A-particles of CVA10, which is of interest for CVA10 vaccine development.
Collapse
Affiliation(s)
- Ling Zhu
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yao Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinyan Fan
- Beijing Productivity Center, Major Project Department, Beijing, 100088, China
| | - Bin Zhu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures, and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Lei Cao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Gao
- Sinovac Biotech Co., Ltd, Beijing, 100085, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Hongrong Liu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Key Laboratory of Low-dimensional Quantum Structures, and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Abstract
Sialic acid-based glycoconjugates cover the surfaces of many different cell types, defining key properties of the cell surface such as overall charge or likely interaction partners. Because of this prominence, sialic acids play prominent roles in mediating attachment and entry to viruses belonging to many different families. In this review, we first describe how interactions between viruses and sialic acid-based glycan structures can be identified and characterized using a range of techniques. We then highlight interactions between sialic acids and virus capsid proteins in four different viruses, and discuss what these interactions have taught us about sialic acid engagement and opportunities to interfere with binding.
Collapse
Affiliation(s)
- Bärbel S Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
28
|
Zheng H, Wang J, Li B, Guo L, Li H, Song J, Yang Z, Li H, Fan H, Huang X, Long H, Cheng C, Chu M, He Z, Yu W, Li J, Gao Y, Ning R, Li N, Yang J, Wu Q, Shi H, Sun M, Liu L. A Novel Neutralizing Antibody Specific to the DE Loop of VP1 Can Inhibit EV-D68 Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:2557-2569. [PMID: 30282753 DOI: 10.4049/jimmunol.1800655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022]
Abstract
Enterovirus D68 (EV-D68) belongs to the picornavirus family and was first isolated in CA, USA, in 1962. EV-D68 can cause severe cranial nerve system damage such as flaccid paralysis and acute respiratory diseases such as pneumonia. There are currently no efficient therapeutic methods or effective prophylactics. In this study, we isolated the mAb A6-1 from an EV-D68-infected rhesus macaque (Macaca mulatta) and found that the Ab provided effective protection in EV-D68 intranasally infected suckling mice. We observed that A6-1 bound to the DE loop of EV-D68 VP1 and interfered with the interaction between the EV-D68 virus and α2,6-linked sialic acids of the host cell. The production of A6-1 and its Ab properties present a bridging study for EV-D68 vaccine design and provide a tool for analyzing the process by which Abs can inhibit EV-D68 infection.
Collapse
Affiliation(s)
- Huiwen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Bingxiang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zening Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Hongzhe Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Haitao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Xing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Haiting Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Chen Cheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Manman Chu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jiaqi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - You Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ruotong Ning
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Nan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Jinxi Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Qiongwen Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Haijing Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; and Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming 650118, China
| |
Collapse
|
29
|
Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proc Natl Acad Sci U S A 2017; 115:397-402. [PMID: 29284752 DOI: 10.1073/pnas.1713284115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute hemorrhagic conjunctivitis (AHC) is a painful, contagious eye disease, with millions of cases in the last decades. Coxsackievirus A24 (CV-A24) was not originally associated with human disease, but in 1970 a pathogenic "variant" (CV-A24v) emerged, which is now the main cause of AHC. Initially, this variant circulated only in Southeast Asia, but it later spread worldwide, accounting for numerous AHC outbreaks and two pandemics. While both CV-A24 variant and nonvariant strains still circulate in humans, only variant strains cause AHC for reasons that are yet unknown. Since receptors are important determinants of viral tropism, we set out to map the CV-A24 receptor repertoire and establish whether changes in receptor preference have led to the increased pathogenicity and rapid spread of CV-A24v. Here, we identify ICAM-1 as an essential receptor for both AHC-causing and non-AHC strains. We provide a high-resolution cryo-EM structure of a virus-ICAM-1 complex, which revealed critical ICAM-1-binding residues. These data could help identify a possible conserved mode of receptor engagement among ICAM-1-binding enteroviruses and rhinoviruses. Moreover, we identify a single capsid substitution that has been adopted by all pandemic CV-A24v strains and we reveal that this adaptation enhances the capacity of CV-A24v to bind sialic acid. Our data elucidate the CV-A24v receptor repertoire and point to a role of enhanced receptor engagement in the adaptation to the eye, possibly enabling pandemic spread.
Collapse
|
30
|
Roedig P, Ginn HM, Pakendorf T, Sutton G, Harlos K, Walter TS, Meyer J, Fischer P, Duman R, Vartiainen I, Reime B, Warmer M, Brewster AS, Young ID, Michels-Clark T, Sauter NK, Kotecha A, Kelly J, Rowlands DJ, Sikorsky M, Nelson S, Damiani DS, Alonso-Mori R, Ren J, Fry EE, David C, Stuart DI, Wagner A, Meents A. High-speed fixed-target serial virus crystallography. Nat Methods 2017; 14:805-810. [PMID: 28628129 PMCID: PMC5588887 DOI: 10.1038/nmeth.4335] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/15/2017] [Indexed: 12/19/2022]
Abstract
We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.
Collapse
Affiliation(s)
- Philip Roedig
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Helen M. Ginn
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Tim Pakendorf
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Geoff Sutton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas S. Walter
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jan Meyer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Pontus Fischer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Ramona Duman
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Ismo Vartiainen
- Institute of Photonics, University of Eastern Finland, Joensuu, Finland
| | - Bernd Reime
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Martin Warmer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Aaron S. Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Iris D. Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Tara Michels-Clark
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Nicholas K. Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - James Kelly
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- The Pirbright Institute, Pirbright, United Kingdom
| | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Marcin Sikorsky
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Daniel S. Damiani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth E. Fry
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - David I. Stuart
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Armin Wagner
- Diamond Light Source Limited, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Alke Meents
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Center for Free Electron Laser Science (CFEL), Hamburg, Germany
| |
Collapse
|
31
|
Shanker S, Hu L, Ramani S, Atmar RL, Estes MK, Venkataram Prasad BV. Structural features of glycan recognition among viral pathogens. Curr Opin Struct Biol 2017; 44:211-218. [PMID: 28591681 DOI: 10.1016/j.sbi.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Recognition and binding to host glycans present on cellular surfaces is an initial and critical step in viral entry. Diverse families of host glycans such as histo-blood group antigens, sialoglycans and glycosaminoglycans are recognized by viruses. Glycan binding determines virus-host specificity, tissue tropism, pathogenesis and potential for interspecies transmission. Viruses including noroviruses, rotaviruses, enteroviruses, influenza, and papillomaviruses have evolved novel strategies to bind specific glycans often in a strain-specific manner. Structural studies have been instrumental in elucidating the molecular determinants of these virus-glycan interactions, aiding in developing vaccines and antivirals targeting this key interaction. Our review focuses on these key structural aspects of virus-glycan interactions, particularly highlighting the different strain-specific strategies employed by viruses to bind host glycans.
Collapse
Affiliation(s)
- Sreejesh Shanker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology.
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology
| | | | - Robert L Atmar
- Department of Molecular Virology and Microbiology; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary K Estes
- Department of Molecular Virology and Microbiology; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | | |
Collapse
|
32
|
Glycan-protein interactions in viral pathogenesis. Curr Opin Struct Biol 2016; 40:153-162. [PMID: 27792989 PMCID: PMC5526076 DOI: 10.1016/j.sbi.2016.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022]
Abstract
The surfaces of host cells and viruses are decorated by complex glycans, which play multifaceted roles in the dynamic interplay between the virus and the host including viral entry into host cell, modulation of proteolytic cleavage of viral proteins, recognition and neutralization of virus by host immune system. These roles are mediated by specific multivalent interactions of glycans with their cognate proteins (generally termed as glycan-binding proteins or GBPs or lectins). The advances in tools and technologies to chemically synthesize and structurally characterize glycans and glycan-GBP interactions have offered several insights into the role of glycan-GBP interactions in viral pathogenesis and have presented opportunities to target these interactions for novel antiviral therapeutic or vaccine strategies. This review covers aspects of role of host cell surface glycan receptors and viral surface glycans in viral pathogenesis and offers perspectives on how to employ various analytical tools to target glycan-GBP interactions.
Collapse
|
33
|
Wasik BR, Barnard KN, Parrish CR. Effects of Sialic Acid Modifications on Virus Binding and Infection. Trends Microbiol 2016; 24:991-1001. [PMID: 27491885 PMCID: PMC5123965 DOI: 10.1016/j.tim.2016.07.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022]
Abstract
Sialic acids (Sias) are abundantly displayed on the surfaces of vertebrate cells, and particularly on all mucosal surfaces. Sias interact with microbes of many types, and are the targets of specific recognition by many different viruses. They may mediate virus binding and infection of cells, or alternatively can act as decoy receptors that bind virions and block virus infection. These nine-carbon backbone monosaccharides naturally occur in many different modified forms, and are attached to underlying glycans through varied linkages, creating significant diversity in the pathogen receptor forms. Here we review the current knowledge regarding the distribution of modified Sias in different vertebrate hosts, tissues, and cells, their effects on viral pathogens where those have been examined, and outline unresolved questions. Sialic acids (Sias) are components of cell-surface glycoproteins and glycolipids, as well as secreted glycoproteins and milk oligosaccharides. Sias play important roles in cell signaling, development, and host–pathogen interactions. Cellular enzymes can modify Sias, yet how modifications vary between tissues and hosts has not been fully elucidated. Many viruses use Sias as receptors, with different modifications aiding or inhibiting virus infection. How modified Sias influence viral protein evolution and determine host/tissue tropism are poorly understood, and are important areas of research. New advances in molecular glycobiology using pathogen proteins to detect varied forms allows for improved study of modified Sias that have otherwise proven difficult to isolate. This opens new avenues of inquiry for virology, as well as host interactions with bacterial and eukaryotic pathogens.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Complete genome analysis of coxsackievirus A24 isolated in Yunnan, China, in 2013. Arch Virol 2016; 161:1705-9. [PMID: 26935916 DOI: 10.1007/s00705-016-2792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Human coxsackievirus A24 (CVA24) belongs to the species Enterovirus C, and variants of this virus frequently cause acute hemorrhagic conjunctivitis (AHC). The complete genome of the K282/YN/CHN/2013 strain, isolated from a healthy child in Yunnan, China, in 2013, is reported here for the first time. The strain showed 80.0 % and 79.9 % nucleotide sequence identity to CVA24 prototype strain Joseph and CVA24 variant prototype EH24, respectively. The K282/YN/CHN/2013 strain belongs to the CVA24 serotype. Twelve amino acid differences, most of which are in structural regions, were found between the CVA24 and CVA24v strains. In the whole-length genome sequence, only the structural region of K282/YN/CHN/2013 was similar to that of the CVA24 strains; the other genome regions were more similar to those of other members of the species Enterovirus C. Recombination analysis showed evidence of recombination with other viruses of the same species.
Collapse
|
35
|
Royston L, Tapparel C. Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC. Viruses 2016; 8:E16. [PMID: 26761027 PMCID: PMC4728576 DOI: 10.3390/v8010016] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper respiratory tract infections and among the most frequent infectious agents in humans worldwide. Both are classified in the Enterovirus genus within the Picornaviridae family and they have been assigned to seven distinct species, RV-A, B, C and EV-A, B, C, D. As viral infections of public health significance, they represent an important financial burden on health systems worldwide. However, the lack of efficient antiviral treatment or vaccines against these highly prevalent pathogens prevents an effective management of RV-related diseases. Current advances in molecular diagnostic techniques have revealed the presence of RV in the lower respiratory tract and its role in lower airway diseases is increasingly reported. In addition to an established etiological role in the common cold, these viruses demonstrate an unexpected capacity to spread to other body sites under certain conditions. Some of these viruses have received particular attention recently, such as EV-D68 that caused a large outbreak of respiratory illness in 2014, respiratory EVs from species C, or viruses within the newly-discovered RV-C species. This review provides an update of the latest findings on clinical and fundamental aspects of RV and respiratory EV, including a summary of basic knowledge of their biology.
Collapse
Affiliation(s)
- Léna Royston
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| | - Caroline Tapparel
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| |
Collapse
|
36
|
Sialic acid-dependent cell entry of human enterovirus D68. Nat Commun 2015; 6:8865. [PMID: 26563423 PMCID: PMC4660200 DOI: 10.1038/ncomms9865] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/09/2015] [Indexed: 01/30/2023] Open
Abstract
Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. The human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory infections, but despite its prevalence the exact mechanism mediating its cell entry have not been fully established. Here, the authors show how EV-D68 binds to sialic acid on the cell surface to initiate infection.
Collapse
|
37
|
Tulane virus recognizes sialic acids as cellular receptors. Sci Rep 2015; 5:11784. [PMID: 26146020 PMCID: PMC4491846 DOI: 10.1038/srep11784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/05/2015] [Indexed: 12/17/2022] Open
Abstract
The recent discovery that human noroviruses (huNoVs) recognize sialic acids (SAs) in addition to histo-blood group antigens (HBGAs) pointed to a new direction in studying virus-host interactions during calicivirus infection. HuNoVs remain difficult to study due to the lack of an effective cell culture model. In this study, we demonstrated that Tulane virus (TV), a cultivable primate calicivirus, also recognizes SAs in addition to the previously known TV-HBGA interactions. Evidence supporting this discovery includes that TV virions bound synthetic sialoglycoconjugates (SGCs) and that treatment of TV permissive LLC-MK2 cells with either neuraminidases or SA-binding lectins inhibited TV infectivity. In addition, we found that Maackia amurensis leukoagglutinin (MAL), a lectin that recognizes the α-2,3 linked SAs, bound LLC-MK2 cells, as well as TV, by which MAL promoted TV infectivity in cell culture. Our findings further highlight TV as a valuable surrogate for huNoVs, particularly in studying virus-host interactions that may involve two host carbohydrate receptors or co-receptors for infection.
Collapse
|
38
|
Lawrence RM, Conrad CE, Zatsepin NA, Grant TD, Liu H, James D, Nelson G, Subramanian G, Aquila A, Hunter MS, Liang M, Boutet S, Coe J, Spence JCH, Weierstall U, Liu W, Fromme P, Cherezov V, Hogue BG. Serial femtosecond X-ray diffraction of enveloped virus microcrystals. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041720. [PMID: 26798819 PMCID: PMC4711640 DOI: 10.1063/1.4929410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/12/2015] [Indexed: 05/22/2023]
Abstract
Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ∼700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ∼40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is an important step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | | | | | | | | | | | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California , Los Angeles, California 90089, USA
| | | |
Collapse
|