1
|
Afghan TS, Khan SN, Awan FM, Obaid A, Basri R, Ullah A, Khan S, Naz A, Ullah K, Jabbar A. An integrated approach for genetic risk profiling of typhoid, tuberculosis, and cholera in local population of tehsil Haripur. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105756. [PMID: 40339732 DOI: 10.1016/j.meegid.2025.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Despite notable progress in public health throughout the 21st century, infectious diseases like tuberculosis, typhoid, and cholera remain serious threats to global health, particularly in high-risk regions. Understanding the genetic factors that influence susceptibility and resistance to these diseases is essential for developing more effective strategies for their prevention and treatment. This study investigates the genetic variations associated with these infectious diseases with a focus on regions where these diseases are most prevalent. The aim of this study is to identify genetic variants that may influence susceptibility to tuberculosis, typhoid, and cholera. A thorough analysis of genetic variants associated with susceptibility and resistance to tuberculosis, typhoid, and cholera was conducted. Using publicly available genetic data from various ethnic groups. The allele frequency of the prioritized variants was calculated to assess their distribution within the different populations, including Middle Eastern, Ashkenazi Jewish, European (Non-Finnish), Latino/Admixed American, South Asian, East Asian, European (Finnish), North Asian, Southeast Asian, African American, and Swedish populations. The variants of the IL1β gene exhibiting the highest allele frequencies in the South Asian population were identified and subsequently examined within the local population. Specifically, the variants rs1143627 and rs1143629, which demonstrate the highest allele frequencies and are associated with typhoid, tuberculosis, and cholera, were subjected to detailed analysis. To determine their distribution and potential impact on disease susceptibility. In the local population, statistical analysis of the available sample revealed allele frequencies of 0.1128 % for IL1β (rs1143627) and 0.18 % for IL1β (rs1143629). Furthermore, these findings revealed that certain genetic profiles may play a role in the population's overall response to infectious diseases such as tuberculosis, typhoid, and cholera. This research has the potential to guide future public health strategies for more effective management and prevention of these diseases.
Collapse
Affiliation(s)
- Tahira Sher Afghan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan.
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Amin Ullah
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Saira Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Kamran Ullah
- Department of Biology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Jabbar
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Lee OV, Ji DX, Rosa BA, Jaye DL, Suliman S, Mitreva M, Gabay C, Vance RE, Kotov DI. Interleukin-1 receptor antagonist is a conserved early factor for exacerbating tuberculosis susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.27.564420. [PMID: 37961447 PMCID: PMC10634924 DOI: 10.1101/2023.10.27.564420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mycobacterium tuberculosis (Mtb) causes 1.25 million deaths a year. However, tuberculosis (TB) pathogenesis remains poorly understood and is not fully recapitulated in standard mouse models. Here we find that gene signatures from three different Mtb-susceptible mouse models predict active TB disease in humans significantly better than a signature from resistant C57BL/6 (B6) mice. Conserved among susceptible mice, non-human primates, and humans, but largely absent from B6 mice, was Mtb-induced differentiation of macrophages into an Spp1 + differentiation state. Spp1 + macrophages expressed high levels of immunosuppressive molecules including IL-1 receptor antagonist (IL-1Ra). IL-1Ra was previously reported to cause Mtb susceptibility in one mouse model, but whether IL-1Ra is broadly important remains uncertain. Here we report that enhancement of IL-1 signaling via deletion of IL-Ra promoted bacterial control across three susceptible mouse models. We found IL-1 signaling amplified production of multiple cytokines by lymphoid and stromal cells, providing a multifactorial mechanism for how IL-1 promotes Mtb control. Our results indicate that myeloid cell expression of immunosuppressive molecules, in particular IL-1 receptor antagonist, is a conserved early mechanism limiting Mtb control in mice, non-human primates, and humans.
Collapse
Affiliation(s)
- Ophelia V. Lee
- Divison of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daisy X. Ji
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David L. Jaye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Sara Suliman
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, 94115, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Russell E. Vance
- Divison of Immunology and Molecular Medicine, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Dmitri I. Kotov
- Division of Infectious Diseases, Department of Medicine, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
3
|
Mubeen SA, Vats D, Yadav K, Sharma A, Singh A. CD14 ++CD16 - classical monocyte subset secreting IL-1ß and IL-10 is associated with 'Tuberculosis Resisters' phenotype. Hum Immunol 2025; 86:111240. [PMID: 39854792 DOI: 10.1016/j.humimm.2025.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 01/26/2025]
Abstract
Mycobacterium tuberculosis (M.tb) infection can lead to various outcomes, including active tuberculosis or latent tuberculosis infection (LTBI). Household contacts of TB cases have a high risk of acquiring LTBI. However, some contacts exposed to M.tb remain negative for tuberculin skin test (TST) and interferon-gamma release assay (IGRA) tests and are called 'TB resisters'. Characterization of immune responses in 'TB resisters' may help to understand correlates of protection against M.tb. Based on the TST and IGRA tests, household contacts were divided into 'LTBI' and 'TB Resisters'. Peripheral blood mononuclear cells (PBMCs) of the study participants were isolated and processed to characterize the monocyte subsets based on CD14 and CD16 expression in flow cytometry. Monocyte intracellular cytokine expression (IL-10, IL-6, TNF-α and IL-1ß) was assessed after Lipopolysaccharide (LPS) stimulation. LTBI and active TB patients showed a higher frequency of intermediate and non-classical monocyte subsets depicting the infectious stage. Higher frequency of classical monocyte subsets was associated with 'TB resisters'. Marked expression of IL-1ß and a higher monocyte to lymphocytes (M/L) ratio was seen in PTB, LTBI and TB resister groups compared to healthy controls indicating active disease or exposure to M.tb. Classical Monocytes (CM) were further found to be associated with higher expression of IL-1ß and IL-10 in the 'TB resister group', which might help in the clearance of infection at an early stage. LTBI and PTB showed significantly higher TNF-α producing monocytes than healthy controls and 'TB Resisters'. IL6-producing monocytes were significantly higher in LTBI compared to other study groups. These findings could further be explored with follow-up in cohort of 'TB resisters'. Also, the role of IL-1ß and IL10 secreting classical monocytes in early clearance of infection could be explored with in vitro mechanistic studies.
Collapse
Affiliation(s)
- Shaikh Abdul Mubeen
- Dept. of Biochemistry All India Institute of Medical Sciences New Delhi India
| | - Deepak Vats
- Dept. of Biochemistry All India Institute of Medical Sciences New Delhi India
| | - Kapil Yadav
- Dept. of Community Medicine (CCM) All India Institute of Medical Sciences New Delhi India
| | - Alpana Sharma
- Dept. of Biochemistry All India Institute of Medical Sciences New Delhi India
| | - Archana Singh
- Dept. of Biochemistry All India Institute of Medical Sciences New Delhi India.
| |
Collapse
|
4
|
Wang Z, Guo Z, Zhang Q, Yang C, Shi X, Wen Q, Xue Y, Zhang Z, Wang J. Relationship between iron deficiency and severity of tuberculosis: Influence on T cell subsets. iScience 2025; 28:111709. [PMID: 39898042 PMCID: PMC11783395 DOI: 10.1016/j.isci.2024.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Tuberculosis (TB) remains a leading cause of death globally, with nearly half of TB patients experiencing iron deficiency. The role of iron supplementation as an adjunct therapy remains controversial. This study examines the impact of iron deficiency on TB progression and immune function. We conducted a case-control study involving 808 pulmonary TB patients recruited from Changzhou Third People's Hospital (2018-2022) to investigate the association between serum iron levels and TB severity. Additionally, we evaluated the relationship between baseline serum iron levels and pulmonary lesion characteristics during antituberculosis treatment using a cohort study of 89 patients. We observed that low serum iron was associated with more severe lung symptoms, decreased MAIT, Vδ2+, and Treg cell percentages, and increased interleukin-1β (IL-1β) and IL-7 levels. Findings suggest that iron deficiency may exacerbate lung lesions by altering T cell subsets and cytokine profiles.
Collapse
Affiliation(s)
- Zheyue Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing 211166, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Zhenpeng Guo
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
| | - Qiang Zhang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenchen Yang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinling Shi
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qin Wen
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Xue
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
| | - Zhixin Zhang
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
- Department of Pulmonary Diseases, The Third People’s Hospital of Changzhou, Changzhou 213001, China
| | - Jianming Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China
- Department of Epidemiology, Gusu School, Nanjing Medical University, Nanjing 211166, China
- National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Ma R, Yang W, Guo W, Zhang H, Wang Z, Ge Z. Single-cell transcriptome analysis reveals the dysregulated monocyte state associated with tuberculosis progression. BMC Infect Dis 2025; 25:210. [PMID: 39939918 PMCID: PMC11823163 DOI: 10.1186/s12879-025-10612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND In tuberculosis (TB) infection, monocytes play a crucial role in regulating the balance between immune tolerance and immune response through various mechanisms. A deeper understanding of the roles of monocyte subsets in TB immune responses may facilitate the development of novel immunotherapeutic strategies and improve TB prevention and treatment. METHODS We retrieved and processed raw single-cell RNA-seq data from SRP247583. Single-cell RNA-seq combined with bioinformatics analysis was employed to investigate the roles of monocytes in TB progression. RESULTS Our findings revealed that classical monocytes expressing inflammatory mediators increased as the disease progressed, whereas non-classical monocytes expressing molecules associated with anti-pathogen infection were progressively depleted. Pseudotime analysis delineated the differentiation trajectory of monocytes from classical to intermediate to non-classical subsets. An abnormal differentiation trajectory to non-classical monocytes may represent a key mechanism underlying TB pathogenesis, with CEBPB and CORO1A identified as genes potentially related to TB development. Analysis of key transcription factors in non-classical monocytes indicated that IRF9 was the only downregulated transcription factor with high AUC activity in this subset. The expression of IRF9 exhibited a decreasing trend in both latent TB infection (LTBI) and active TB groups. Furthermore, dysregulation of transcription factor regulatory networks appeared to impair ferroptosis, with ferroptosis-associated genes MEF2C, MICU1, and PRR5 identified as potential targets of IRF9. Through cell communication analysis, we found that interactions between non-classical monocytes and other subpopulations may mediate TB progression, with MIF and LGALS9 highlighted as potential signaling pathways. CONCLUSION This study employs bioinformatics analysis in conjunction with single-cell sequencing technology to uncover the crucial role of monocyte subsets in tuberculosis infection.
Collapse
Affiliation(s)
- Rong Ma
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wanzhong Yang
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Guo
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
| | - Honglai Zhang
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
| | - Zemin Wang
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
| | - Zhaohui Ge
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China.
- General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
6
|
Magalhães DWA, Sidrônio MGS, Nogueira NNA, Carvalho DCM, de Freitas MEG, Oliveira EC, de Frazao Lima GF, de Araújo DAM, Scavone C, de Souza TA, Villar JAFP, Barbosa LA, Mendonça-Junior FJB, Rodrigues-Junior VS, Rodrigues-Mascarenhas S. Evaluation of the Anti-Mycobacterial and Anti-Inflammatory Activities of the New Cardiotonic Steroid γ-Benzylidene Digoxin-15 in Macrophage Models of Infection. Microorganisms 2025; 13:269. [PMID: 40005637 PMCID: PMC11857721 DOI: 10.3390/microorganisms13020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiotonic steroids modulate various aspects of the inflammatory response. The synthetic cardiotonic steroid γ-benzylidene digoxin 15 (BD-15), a digoxin derivative, has emerged as a promising candidate with potential immunomodulatory effects. However, its biological activity remains largely unexplored. This study investigated the anti-mycobacterial and anti-inflammatory effects of BD-15 in an in vitro macrophage infection model with Mycobacterium spp. Unlike digoxin, which showed significant toxicity at higher concentrations, BD-15 exhibited no cytotoxicity in RAW 264.7 cells (a murine macrophage cell line). Both compounds were evaluated in Mycobacterium smegmatis-infected RAW 264.7 cells, reducing bacterial burden without direct bactericidal activity. Additionally, both modulated pro-inflammatory cytokine levels, notably by decreasing tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels. BD-15 specifically reduced NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) inflammasome expression and increased interleukin-10 (IL-10) production. Notably, BD-15 reduced colony-forming unit (CFU) counts in Mycobacterium tuberculosis-infected RAW 264.7 cells. Toxicity assays in HepG2 cells (a human liver cancer cell line) showed that BD-15 had minimal hepatotoxicity compared to digoxin, and both demonstrated negligible acute toxicity in an Artemia salina bioassay. These findings revealed the immunomodulatory effects of cardiotonic steroids in a bacterial infection model and highlighted BD-15 as a safer alternative to digoxin for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Wilson A. Magalhães
- Postgraduate Program in Physiological Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.W.A.M.); (N.N.A.N.)
| | - Maria Gabriella S. Sidrônio
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Noêmia N. A. Nogueira
- Postgraduate Program in Physiological Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.W.A.M.); (N.N.A.N.)
| | - Deyse Cristina Madruga Carvalho
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.C.M.C.); (S.R.-M.)
| | - Maria Eugênia G. de Freitas
- Laboratory of Biotechnology in Microorganisms, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Ericke Cardoso Oliveira
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Gustavo F. de Frazao Lima
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Demétrius A. M. de Araújo
- Postgraduate Program in Biotechnology (Renorbio), Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Cristoforo Scavone
- Laboratory of Neuropharmacology Research, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Thalisson Amorim de Souza
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - José Augusto F. P. Villar
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Leandro A. Barbosa
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindu, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (E.C.O.); (G.F.d.F.L.); (J.A.F.P.V.); (L.A.B.)
| | - Francisco Jaime Bezerra Mendonça-Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, João Pessoa 58071-160, PB, Brazil
| | - Valnês S. Rodrigues-Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.C.M.C.); (S.R.-M.)
| |
Collapse
|
7
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Pushpamithran G, Blomgran R. Macrophage-derived extracellular vesicles from Ascaris lumbricoides antigen exposure enhance Mycobacterium tuberculosis growth control, reduce IL-1β, and contain miR-342-5p, miR-516b-5p, and miR-570-3p that regulate PI3K/AKT and MAPK signaling pathways. Front Immunol 2024; 15:1454881. [PMID: 39569198 PMCID: PMC11576181 DOI: 10.3389/fimmu.2024.1454881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024] Open
Abstract
Background Helminth coinfection with tuberculosis (TB) can alter the phenotype and function of macrophages, which are the major host cells responsible for controlling Mycobacterium tuberculosis (Mtb). However, it is not known whether helminth infection stimulates the release of host-derived extracellular vesicles (EVs) to induce or maintain their regulatory network that suppresses TB immunity. We previously showed that pre-exposure of human monocyte-derived macrophages (hMDMs) with Ascaris lumbricoides protein antigens (ASC) results in reduced Mtb infection-driven proinflammation and gained bacterial control. This effect was entirely dependent on the presence of soluble components in the conditioned medium from helminth antigen-pre-exposed macrophages. Methods Our objective was to investigate the role of EVs released from helminth antigen-exposed hMDMs on Mtb-induced proinflammation and its effect on Mtb growth in hMDMs. Conditioned medium from 48-h pre-exposure with ASC or Schistosoma mansoni antigen (SM) was used to isolate EVs by ultracentrifugation. EVs were characterized by immunoblotting, flow cytometry, nanoparticle tracking assay, transmission electron microscopy, and a total of 377 microRNA (miRNA) from EVs screened by TaqMan array. Luciferase-expressing Mtb H37Rv was used to evaluate the impact of isolated EVs on Mtb growth control in hMDMs. Results EV characterization confirmed double-membraned EVs, with a mean size of 140 nm, expressing the classical exosome markers CD63, CD81, CD9, and flotillin-1. Specifically, EVs from the ASC conditioned medium increased the bacterial control in treatment-naïve hMDMs and attenuated Mtb-induced IL-1β at 5 days post-infection. Four miRNAs showed unique upregulation in response to ASC exposure in five donors. Pathway enrichment analysis showed that the MAPK and PI3K-AKT signaling pathways were regulated. Among the mRNA targets, relevant for regulating inflammatory responses and cellular stress pathways, CREB1 and MAPK13 were identified. In contrast, SM exposure showed significant regulation of the TGF-β signaling pathway with SMAD4 as a common target. Conclusion Overall, our findings suggest that miRNAs in EVs released from helminth-exposed macrophages regulate important signaling pathways that influence macrophage control of Mtb and reduce inflammation. Understanding these interactions between helminth-induced EVs, miRNAs, and macrophage responses may inform novel therapeutic strategies for TB management.
Collapse
Affiliation(s)
- Giggil Pushpamithran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Robert Blomgran
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Peng Y, Tang T, Li Q, Zhou S, Sun Q, Zhou X, Zhu Y, Wang C, Bermudez LE, Liu H, Chen H, Guo A, Chen Y. Mycobacterium tuberculosis FadD18 Promotes Proinflammatory Cytokine Secretion to Inhibit the Intracellular Survival of Bacillus Calmette-Guérin. Cells 2024; 13:1019. [PMID: 38920649 PMCID: PMC11201411 DOI: 10.3390/cells13121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This study created a Bacillus Calmette-Guérin (BCG) transposon library using a MycomarT7 phage carrying a Himar1 Mariner transposon to identify genes related to mycobacteria adhesion and invasion. Using adhesion and invasion model screening, we found that the mutant strain B2909 lacked adhesion and invasion abilities because of an inactive fadD18 gene, which encodes a fatty-acyl CoA ligase, although the specific function of this gene remains unclear. To investigate the role of FadD18, we constructed a complementary strain and observed that fadD18 expression enhanced the colony size and promoted the formation of a stronger cord-like structure; FadD18 expression also inhibited BCG growth and reduced BCG intracellular survival in macrophages. Furthermore, FadD18 expression elevated levels of the proinflammatory cytokines IL-6, IL-1β, and TNF-α in infected macrophages by stimulating the NF-κB and MAPK signaling pathways. Overall, the FadD18 plays a key role in the adhesion and invasion abilities of mycobacteria while modulating the intracellular survival of BCG by influencing the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Yongchong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Tang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiying Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinjun Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifan Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Han Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.P.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Passos BBS, Araújo-Pereira M, Vinhaes CL, Amaral EP, Andrade BB. The role of ESAT-6 in tuberculosis immunopathology. Front Immunol 2024; 15:1383098. [PMID: 38633252 PMCID: PMC11021698 DOI: 10.3389/fimmu.2024.1383098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Despite major global efforts to eliminate tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), this disease remains as a major plague of humanity. Several factors associated with the host and Mtb interaction favor the infection establishment and/or determine disease progression. The Early Secreted Antigenic Target 6 kDa (ESAT-6) is one of the most important and well-studied mycobacterial virulence factors. This molecule has been described to play an important role in the development of tuberculosis-associated pathology by subverting crucial components of the host immune responses. This review highlights the main effector mechanisms by which ESAT-6 modulates the immune system, directly impacting cell fate and disease progression.
Collapse
Affiliation(s)
- Beatriz B. S. Passos
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
| | - Mariana Araújo-Pereira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Caian L. Vinhaes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Departamento de Infectologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno B. Andrade
- Curso de Medicina, Universidade Salvador, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Instituto de Pesquisa Clínica e Translacional, Faculdade Zarns, Clariens Educação, Salvador, Brazil
- Laboratório de Pesquisa Clínica e Translacional, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Programa de Pós-Graduação em Medicina e Saúde Humana, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
11
|
Funes S, Jung J, Gadd DH, Mosqueda M, Zhong J, Shankaracharya, Unger M, Stallworth K, Cameron D, Rotunno MS, Dawes P, Fowler-Magaw M, Keagle PJ, McDonough JA, Boopathy S, Sena-Esteves M, Nickerson JA, Lutz C, Skarnes WC, Lim ET, Schafer DP, Massi F, Landers JE, Bosco DA. Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia. Nat Commun 2024; 15:2497. [PMID: 38509062 PMCID: PMC10954694 DOI: 10.1038/s41467-024-46695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Salome Funes
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jonathan Jung
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Del Hayden Gadd
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Michelle Mosqueda
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Matthew Unger
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Karly Stallworth
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Debra Cameron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Melissa S Rotunno
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pepper Dawes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Megan Fowler-Magaw
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Pamela J Keagle
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | - Sivakumar Boopathy
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Worcester, MA, 01605, USA
| | - Cathleen Lutz
- The Jackson Laboratory Center for Precision Genetics, Rare Disease Translational Center, Bar Harbor, ME, 04609, USA
| | - William C Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Elaine T Lim
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Dorothy P Schafer
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Neuroscience Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Biochemistry and Molecular Biotechnology Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
12
|
Dasgupta D, Ghosh S, Dey I, Majumdar S, Chowdhury S, Das S, Banerjee S, Saha M, Ghosh A, Roy N, Manna A, Ray S, Agarwal S, Bhaumik P, Datta S, Chowdhury A, Banerjee S. Influence of polymorphisms in TNF-α and IL1β on susceptibility to alcohol induced liver diseases and therapeutic potential of miR-124-3p impeding TNF-α/IL1β mediated multi-cellular signaling in liver microenvironment. Front Immunol 2023; 14:1241755. [PMID: 38146363 PMCID: PMC10749309 DOI: 10.3389/fimmu.2023.1241755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 12/27/2023] Open
Abstract
Background and aims Alcoholic liver disease (ALD) is the leading cause of the liver cirrhosis related death worldwide. Excessive alcohol consumption resulting enhanced gut permeability which trigger sensitization of inflammatory cells to bacterial endotoxins and induces secretion of cytokines, chemokines leading to activation of stellate cells, neutrophil infiltration and hepatocyte injury followed by steatohepatitis, fibrosis and cirrhosis. But all chronic alcoholics are not susceptible to ALD. This study investigated the causes of differential immune responses among ALD patients and alcoholic controls (ALC) to identify genetic risk factors and assessed the therapeutic potential of a microRNA, miR-124-3p. Materials and methods Bio-Plex Pro™ Human Chemokine analysis/qRT-PCR array was used for identification of deregulated immune genes. Sequencing/luciferase assay/ELISA detected and confirmed the polymorphisms. THP1 co-cultured with HepG2/LX2/HUVEC and apoptosis assay/qRT-PCR/neutrophil migration assay were employed as required. Results The combined data analysis of the GSE143318/Bio-Plex Pro™ Human Chemokine array and qRT-PCR array revealed that six genes (TNFα/IL1β/IL8/MCP1/IL6/TGFβ) were commonly overexpressed in both serum/liver tissue of ALD-patients compared to ALC. The promoter sequence analysis of these 6 genes among ALD (n=322)/ALC (n=168) samples revealed that only two SNPs, rs361525(G/A) at -238 in TNF-α/rs1143627(C/T) at -31 in IL1β were independently associated with ALD respectively. To evaluate the functional implication of these SNPs on ALD development, the serum level of TNF-α/IL1β was verified and observed significantly higher in ALD patients with risk genotypes TNF-α-238GA/IL1β-31CT+TT than TNF-α-238GG/IL1β-31CC. The TNF-α/IL1β promoter Luciferase-reporter assays showed significantly elevated level of luciferase activities with risk genotypes -238AA/-31TT than -238GG/-31CC respectively. Furthermore, treatment of conditioned medium of TNF-α/IL1β over-expressed THP1 cells to HepG2/LX2/HUVEC cells independently showed enhanced level of ER stress and apoptosis in HepG2/increased TGFβ and collagen-I production by LX2/huge neutrophil infiltration through endothelial layer. However, restoration of miR-124-3p in THP1 attenuated such inter-cellular communications and hepatocyte damage/collagen production/neutrophil infiltration were prohibited. Target analysis/luciferase-reporter assays revealed that both TNF-α/IL1β were inhibited by miR-124-3p along with multiple genes from TLR4 signaling/apoptosis/fibrogenesis pathways including MYD88, TRAF3/TRADD, Caspase8/PDGFRA, TGFβR2/MCP1, and ICAM1 respectively. Conclusion Thus, rs361525(G/A) in TNF-α and rs1143627(C/T) in IL1β gene may be used as early predictors of ALD susceptibility among East Indian population. Impeding overexpressed TNF-α/IL1β and various genes from associated immune response pathways, miR-124-3p exhibits robust therapeutic potential for ALD patients.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Suchandrima Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Indrashish Dey
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Swagata Majumdar
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Saheli Chowdhury
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Subhas Das
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sanjana Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Mehelana Saha
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Neelanjana Roy
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Alak Manna
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Ray
- Department Gastro-Surgery, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Shaleen Agarwal
- Liver Transplant and Biliary Sciences, Max Saket West Super Speciality Hospital, New Delhi, India
| | - Pradeep Bhaumik
- Department of Medicine, Agartala Government Medical College, West Tripura, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
13
|
Boicean A, Bratu D, Fleaca SR, Vasile G, Shelly L, Birsan S, Bacila C, Hasegan A. Exploring the Potential of Fecal Microbiota Transplantation as a Therapy in Tuberculosis and Inflammatory Bowel Disease. Pathogens 2023; 12:1149. [PMID: 37764957 PMCID: PMC10535282 DOI: 10.3390/pathogens12091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the potential benefits of fecal microbiota transplantation (FMT) as an adjunct treatment in tuberculosis (TB), drawing parallels from its efficacy in inflammatory bowel disease (IBD). FMT has shown promise in restoring the gut microbial balance and modulating immune responses in IBD patients. Considering the similarities in immunomodulation and dysbiosis between IBD and TB, this review hypothesizes that FMT may offer therapeutic benefits as an adjunct therapy in TB. Methods: We conducted a systematic review of the existing literature on FMT in IBD and TB, highlighting the mechanisms and potential implications of FMT in the therapeutic management of both conditions. The findings contribute to understanding FMT's potential role in TB treatment and underscore the necessity for future research in this direction to fully leverage its clinical applications. Conclusion: The integration of FMT into the comprehensive management of TB could potentially enhance treatment outcomes, reduce drug resistance, and mitigate the side effects of conventional therapies. Future research endeavors should focus on well-designed clinical trials to develop guidelines concerning the safety and short- and long-term benefits of FMT in TB patients, as well as to assess potential risks.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Dan Bratu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Gligor Vasile
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Leeb Shelly
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (G.V.); (L.S.)
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (S.R.F.); (S.B.); (C.B.); (A.H.)
| |
Collapse
|
14
|
Sun Y, Liao Y, Xiong N, He X, Zhang H, Chen X, Xiao G, Wang Z, Rao W, Zhang G. Amino acid profiling as a screening and prognostic biomarker in active tuberculosis patients. Clin Chim Acta 2023; 548:117523. [PMID: 37625512 DOI: 10.1016/j.cca.2023.117523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Tuberculosis (TB) is one of the world's most deadly chronic infectious diseases; early diagnosis contributes to reducing disease transmission among populations. However, discovering novel diagnostic and prognostic biomarkers is still an important topic in the field of TB. Amino acid is the basic unit of protein composition, and its structure and physicochemical characteristics are more stable. Therefore, it is a potential target for TB diagnosis and the prediction of TB development. METHODS In this study, the blood of healthy people (HC), TB patients (TB), cured TB (RxTB), and other non-TB pneumonia patients (PN) were collected to detect the levels of amino acids in whole blood and plasma using ultra-high performance liquid chromatography coupled with mass spectrometry. RESULTS We detected that the amino acid levels correlated with participants status (TB, HC, RxTB, or PN) and the degree of lung damage. The results showed that phenylalanine had a good effect on the screening of TB (AUC = 0.924). We then built a TB prediction model. The model, which was based on the ratio of plasma amino acid content to whole blood amino acid content, showed good performance for the screening of TB, with 84% (95% CI = 60-97) sensitivity and 97% (95% CI = 83-100) specificity. The result of correlation between the HRCT score and amino acid level indicated that the glutamine content of plasma was significantly inversely associated with disease severity. Additionally, ornithine levels in the plasma of RxTB group reduced and four amino acids of which the ratio in plasma to whole blood showed significantly changed. CONCLUSIONS Taken together, amino acid profiling can be used for TB screening, and a multiparameter profiling model is better. The profiling can also reflect the severity of lung damage. Moreover, the amino acid profile is useful for reflecting the efficacy of TB treatment.
Collapse
Affiliation(s)
- Yunmei Sun
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yunli Liao
- Department of Mass Spectrometry, BGI-Shenzhen, Shenzhen 518083, China
| | - Nating Xiong
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Xing He
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Huihua Zhang
- Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen 518037, China
| | - Xiaomin Chen
- Department of Mass Spectrometry, BGI-Shenzhen, Shenzhen 518083, China
| | - Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Weiqiao Rao
- Department of Mass Spectrometry, BGI-Shenzhen, Shenzhen 518083, China.
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China; School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
15
|
Funes S, Gadd DH, Mosqueda M, Zhong J, Jung J, Shankaracharya, Unger M, Cameron D, Dawes P, Keagle PJ, McDonough JA, Boopathy S, Sena-Esteves M, Lutz C, Skarnes WC, Lim ET, Schafer DP, Massi F, Landers JE, Bosco DA. Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.541136. [PMID: 37398081 PMCID: PMC10312575 DOI: 10.1101/2023.06.01.541136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be fully elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited lipid dysmetabolism and deficits in phagocytosis, a critical microglia function. Our cumulative data implicate an effect of ALS-linked PFN1 on the autophagy pathway, including enhanced binding of mutant PFN1 to the autophagy signaling molecule PI3P, as an underlying cause of defective phagocytosis in ALS-PFN1 iMGs. Indeed, phagocytic processing was restored in ALS-PFN1 iMGs with Rapamycin, an inducer of autophagic flux. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and highlight microglia vesicular degradation pathways as potential therapeutic targets for these disorders.
Collapse
|
16
|
Rammaert B, Bochud PY, Brunel AS, Wojtowicz A, Candon S, Gallego Hernanz MP, Lortholary O. A Functional Polymorphism in IL-1B Is Associated With Immune Reconstitution Inflammatory Syndrome of Chronic Disseminated Candidiasis. Open Forum Infect Dis 2023; 10:ofad078. [PMID: 36879623 PMCID: PMC9984983 DOI: 10.1093/ofid/ofad078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
We investigated single nucleotide polymorphisms (SNPs) possibly involved in immune reconstitution inflammatory syndrome of chronic disseminated candidiasis (IRIS-CDC) through a candidate gene approach and a prospective matched-control study. We found that an SNP located in interleukin-1B at rs1143627 was significantly associated with the risk of developing IRIS-CDC.
Collapse
Affiliation(s)
- Blandine Rammaert
- Université de Paris Cité, APHP, Service des Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Centre d'Infectiologie Necker-Pasteur, Institut Imagine, Paris, France
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, CHUV, Lausanne, Switzerland
| | - Anne-Sophie Brunel
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, CHUV, Lausanne, Switzerland
| | - Agnieszka Wojtowicz
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, CHUV, Lausanne, Switzerland
| | - Sophie Candon
- INSERM U1234, CHU de Rouen Normandie, Université de Rouen Normandie, Rouen, France
| | | | - Olivier Lortholary
- Université de Paris Cité, APHP, Service des Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Centre d'Infectiologie Necker-Pasteur, Institut Imagine, Paris, France.,Institut Pasteur, CNRS, Département de Mycologie, UMR 2000, Centre National de Référence Mycoses Invasives et Antifongiques, Paris, France
| |
Collapse
|
17
|
Mundra A, Yegiazaryan A, Karsian H, Alsaigh D, Bonavida V, Frame M, May N, Gargaloyan A, Abnousian A, Venketaraman V. Pathogenicity of Type I Interferons in Mycobacterium tuberculosis. Int J Mol Sci 2023; 24:3919. [PMID: 36835324 PMCID: PMC9965986 DOI: 10.3390/ijms24043919] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Tuberculosis (TB) is a leading cause of mortality due to infectious disease and rates have increased during the emergence of COVID-19, but many of the factors determining disease severity and progression remain unclear. Type I Interferons (IFNs) have diverse effector functions that regulate innate and adaptive immunity during infection with microorganisms. There is well-documented literature on type I IFNs providing host defense against viruses; however, in this review, we explore the growing body of work that indicates high levels of type I IFNs can have detrimental effects to a host fighting TB infection. We report findings that increased type I IFNs can affect alveolar macrophage and myeloid function, promote pathological neutrophil extracellular trap responses, inhibit production of protective prostaglandin 2, and promote cytosolic cyclic GMP synthase inflammation pathways, and discuss many other relevant findings.
Collapse
Affiliation(s)
- Akaash Mundra
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Aram Yegiazaryan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Haig Karsian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Dijla Alsaigh
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Victor Bonavida
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mitchell Frame
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nicole May
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Areg Gargaloyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91768, USA
| |
Collapse
|
18
|
PU.1-CD23 signaling mediates pulmonary innate immunity against Aspergillus fumigatus infection by driving inflammatory response. BMC Immunol 2023; 24:4. [PMID: 36650424 PMCID: PMC9844028 DOI: 10.1186/s12865-023-00539-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Aspergillosis is a common cause of morbidity and mortality in immunocompromised populations. PU.1 is critical for innate immunity against Aspergillus fumigatus (AF) in macrophages. However, the molecular mechanism underlying PU.1 mediating immunity against AF infection in human alveolar macrophages (AMs) is still unclear. METHODS In this study, we detected the expressions of PU.1, CD23, p-ERK, CCL20 and IL-8 and key inflammatory markers IL-1β, IL-6, TNF-α and IL-12 in human THP-1-derived macrophages (HTMs) or PU.1/CD23-overexpressed immunodeficient mice with AF infection. Moreover, we examined these expressions in PU.1-overexpressed/interfered HTMs. Additionally, we detected the phagocytosis of macrophages against AF infection with altered PU.1 expression. Dual luciferase, ChIP and EMSAs were performed to detect the interaction of PU.1 and CD23. And we invested the histological changes in mouse lung tissues transfected with PU.1/CD23-expressing adenoviruses in AF infection. RESULTS The results showed that the expressions of PU.1, CD23, p-ERK, CCL20, IL-8, IL-1β, IL-6, TNF-α and IL-12 increased significantly with AF infection, and PU.1 regulated the later 8 gene expressions in HTMs. Moreover, CD23 was directly activated by PU.1, and overexpression of CD23 in PU.1-interfered HTMs upregulated IL-1β, IL-6, TNF-α and IL-12 levels which were downregulated by PU.1 interference. PU.1 overexpression strengthened the phagocytosis of the HTMs against AF. And injection of PU.1/CD23-expressing adenoviruses attenuated pathological defects in immunodeficient mouse lung tissues with AF infection. Adenovirus (Ad)-PU.1 increased the CD23, p-ERK, CCL20, IL-8 levels. CONCLUSIONS Our study concluded that PU.1-CD23 signaling mediates innate immunity against AF in lungs through regulating inflammatory response. Therefore, PU.1-CD23 may be a new anti-aspergillosis therapeutic for the treatment of invasive aspergillosis with the deepening of gene therapy and its wide application in the clinic.
Collapse
|
19
|
Jones SS, Ozturk M, Kieswetter NS, Poswayo SKL, Hazra R, Tamgue O, Parihar SP, Suzuki H, Brombacher F, Guler R. Lyl1-deficiency promotes inflammatory responses and increases mycobacterial burden in response to Mycobacterium tuberculosis infection in mice. Front Immunol 2022; 13:948047. [PMID: 36119114 PMCID: PMC9481033 DOI: 10.3389/fimmu.2022.948047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphoblastic leukemia 1 (Lyl1) is a well-studied transcription factor known to exhibit oncogenic potential in various forms of leukemia with pivotal roles in hematopoietic stem cell biology. While its role in early hematopoiesis is well established, its function in mature innate cells is less explored. Here, we identified Lyl1 as a drastically perturbed gene in the Mycobacterium tuberculosis (Mtb) infected mouse macrophage transcriptome. We report that Lyl1 downregulation upon immune stimulation is a host-driven process regulated by NFκB and MAP kinase pathways. Interestingly, Lyl1-deficient macrophages have decreased bacterial killing potential with reduced nitric oxide (NO) levels while expressing increased levels of pro-inflammatory interleukin-1 and CXCL1. Lyl1-deficient mice show reduced survival to Mtb HN878 infection with increased bacterial burden and exacerbated inflammatory responses in chronic stages. We observed that increased susceptibility to infection was accompanied by increased neutrophil recruitment and IL-1, CXCL1, and CXCL5 levels in the lung homogenates. Collectively, these results suggest that Lyl1 controls Mtb growth, reduces neutrophilic inflammation and reveals an underappreciated role for Lyl1 in innate immune responses.
Collapse
Affiliation(s)
- Shelby-Sara Jones
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Epigenomics & Single Cell Biophysics Group, Department of Cell Biology Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Nathan Scott Kieswetter
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sibongiseni K. L. Poswayo
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudranil Hazra
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ousman Tamgue
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Suraj P. Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Harukazu Suzuki
- Laboratory for. Cellular Function Conversion Technology RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Moreira JD, Iakhiaev A, Vankayalapati R, Jung BG, Samten B. Histone Deacetylase-2 Controls IL-1β Production through the Regulation of NLRP3 Expression and Activation in Tuberculosis Infection. iScience 2022; 25:104799. [PMID: 35982796 PMCID: PMC9379586 DOI: 10.1016/j.isci.2022.104799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylases (HDACs) are critical immune regulators. However, their roles in interleukin-1β (IL-1β) production remain unclear. By screening 11 zinc-dependent HDACs with chemical inhibitors, we found that HDAC1 inhibitor, 4-(dimethylamino)-N-[6-(hydroxyamino)-6-oxohexyl]-benzamide (DHOB), enhanced IL-1β production by macrophage and dendritic cells upon TLR4 stimulation or Mycobacterium tuberculosis infection through IL-1β maturation via elevated NLRP3 expression, increased cleaved caspase-1, and enhanced ASC oligomerization. DHOB rescued defective IL-1β production by dendritic cells infected with M. tuberculosis with ESAT-6 deletion, a virulence factor shown to activate NLRP3 inflammasome. DHOB increased IL-1β production and NLRP3 expression in a tuberculosis mouse model. Although DHOB inhibited HDAC activities of both HDAC1 and HDAC2 by direct binding, knockdown of HDAC2, but not HDAC1, increased IL-1β production and NLRP3 expression in M. tuberculosis-infected macrophages. These data suggest that HDAC2, but not HDAC1, controls IL-1β production through NLRP3 inflammasome activation, a mechanism with a significance in chronic inflammatory diseases including tuberculosis. HDAC1 inhibitor, DHOB, increased IL-1β production via NLRP3 inflammasome activation DHOB suppressed deacetylase activities of both HDAC1 and HDAC2 by direct interaction Deletion of HDAC2, but not HDAC1, increased IL-β production by increased NLRP3 expression DHOB increased IL-1β and NLRP3 expression in a mouse model of TB infection
Collapse
Affiliation(s)
- Jôsimar Dornelas Moreira
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alexei Iakhiaev
- Division of Natural & Computational Sciences, Texas College, 2404 North Grand Avenue, Tyler, TX 75702, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Corresponding author
| |
Collapse
|
21
|
Gideon HP, Hughes TK, Tzouanas CN, Wadsworth MH, Tu AA, Gierahn TM, Peters JM, Hopkins FF, Wei JR, Kummerlowe C, Grant NL, Nargan K, Phuah JY, Borish HJ, Maiello P, White AG, Winchell CG, Nyquist SK, Ganchua SKC, Myers A, Patel KV, Ameel CL, Cochran CT, Ibrahim S, Tomko JA, Frye LJ, Rosenberg JM, Shih A, Chao M, Klein E, Scanga CA, Ordovas-Montanes J, Berger B, Mattila JT, Madansein R, Love JC, Lin PL, Leslie A, Behar SM, Bryson B, Flynn JL, Fortune SM, Shalek AK. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 2022; 55:827-846.e10. [PMID: 35483355 PMCID: PMC9122264 DOI: 10.1016/j.immuni.2022.04.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/08/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.
Collapse
Affiliation(s)
- Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis K Hughes
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Constantine N Tzouanas
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc H Wadsworth
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ang Andy Tu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Todd M Gierahn
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua M Peters
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Forrest F Hopkins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jun-Rong Wei
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Conner Kummerlowe
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole L Grant
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Jia Yao Phuah
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Caylin G Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah K Nyquist
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sharie Keanne C Ganchua
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kush V Patel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine T Cochran
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samira Ibrahim
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lonnie James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacob M Rosenberg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Angela Shih
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Chao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edwin Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh PA, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua T Mattila
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rajhmun Madansein
- Department of Cardiothoracic Surgery, University of KwaZulu Natal, Durban, South Africa
| | - J Christopher Love
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Infection and Immunity, University College London, London, UK
| | - Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bryan Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Alex K Shalek
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Peng Y, Zhu X, Gao L, Wang J, Liu H, Zhu T, Zhu Y, Tang X, Hu C, Chen X, Chen H, Chen Y, Guo A. Mycobacterium tuberculosis Rv0309 Dampens the Inflammatory Response and Enhances Mycobacterial Survival. Front Immunol 2022; 13:829410. [PMID: 35281073 PMCID: PMC8907127 DOI: 10.3389/fimmu.2022.829410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
To reveal functions of novel Mycobacterium tuberculosis (M. tb) proteins responsible for modulating host innate immunity is essential to elucidation of mycobacterial pathogenesis. In this study, we aimed to identify the role of a putative protein Rv0309 encoded within RD8 of M. tb genome in inhibiting the host inflammatory response and the underlying mechanism, using in-vitro and in-vivo experiments. A recombinant M. smegmatis strain Ms_rv0309 expressing Rv0309 and a mutant Bacillus Calmette-Guérin (BCG)ΔRS01790 strain with deletion of BCG_RS01790, 100% homologue of Rv0309 in BCG, were constructed. Rv0309 was found to localize in the cell wall and be able to decrease cell wall permeability. Purified recombinant rRv0309 protein inhibited lipopolysaccharide-induced IL-6 release in RAW264.7 cells. BCG_RS01790 in BCG or Rv0309 in Ms_rv0309 strain greatly inhibited production of IL-6, IL-1β, and TNF-α in RAW264.7 cells. Similarly, BCGΔRS01790 strongly induced expression of these cytokines compared with wild-type BCG and complement strain, cBCGΔRS01790::RS01790. Further BCG_RS01790 or Rv0309 suppressed cytokine production through NF-κB p65/IκBα and MAPK ERK/JNK signaling. Importantly, BCG_RS01790 in BCG and Rv0309 in Ms_rv0309 strain enhanced mycobacterial survival in macrophages. Mice infected with BCGΔRS01790 exhibited high levels of IFN-γ, TNF-α and IL-1β, and large numbers of neutrophils and lymphocytes in the early stage, and minimal lung bacterial load and inflammatory damage in late stage of the experiment. In conclusion, the cell wall protein Rv0309 or BCG_RS01790 enhanced mycobacterial intracellular survival after infection likely through inhibition of the pro-inflammatory response and decrease of bacterial cell wall permeability, thereby contributing to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojie Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jieru Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Chen L, Zhang G, Li G, Wang W, Ge Z, Yang Y, He X, Liu Z, Zhang Z, Mai Q, Chen Y, Chen Z, Pi J, Yang S, Cui J, Liu H, Shen L, Zeng L, Zhou L, Chen X, Ge B, Chen ZW, Zeng G. Ifnar gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nat Metab 2022; 4:359-373. [PMID: 35288721 DOI: 10.1038/s42255-022-00547-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Both host genetics and the gut microbiome have important effects on human health, yet how host genetics regulates gut bacteria and further determines disease susceptibility remains unclear. Here, we find that the gut microbiome pattern of participants with active tuberculosis is characterized by a reduction of core species found across healthy individuals, particularly Akkermansia muciniphila. Oral treatment of A. muciniphila or A. muciniphila-mediated palmitoleic acid strongly inhibits tuberculosis infection through epigenetic inhibition of tumour necrosis factor in mice infected with Mycobacterium tuberculosis. We use three independent cohorts comprising 6,512 individuals and identify that the single-nucleotide polymorphism rs2257167 'G' allele of type I interferon receptor 1 (encoded by IFNAR1 in humans) contributes to stronger type I interferon signalling, impaired colonization and abundance of A. muciniphila, reduced palmitoleic acid production, higher levels of tumour necrosis factor, and more severe tuberculosis disease in humans and transgenic mice. Thus, host genetics are critical in modulating the structure and functions of gut microbiome and gut microbial metabolites, which further determine disease susceptibility.
Collapse
Affiliation(s)
- Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guoliang Zhang
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Wei Wang
- Department of Clinical Laboratory, Foshan Fourth People's Hospital, Foshan, China
| | - Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xing He
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhi Liu
- National Clinical Research Center for Infection Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyi Zhang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Qiongdan Mai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zixu Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiang Pi
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shuai Yang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhou
- Guangdong Center for Tuberculosis Control, National Clinical Research Center for Tuberculosis, Guangzhou, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Lovey A, Verma S, Kaipilyawar V, Ribeiro-Rodrigues R, Husain S, Palaci M, Dietze R, Ma S, Morrison RD, Sherman DR, Ellner JJ, Salgame P. Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nat Commun 2022; 13:884. [PMID: 35173157 PMCID: PMC8850437 DOI: 10.1038/s41467-022-28506-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mechanisms underlying variability in transmission of Mycobacterium tuberculosis strains remain undefined. By characterizing high and low transmission strains of M.tuberculosis in mice, we show here that high transmission M.tuberculosis strain induce rapid IL-1R-dependent alveolar macrophage migration from the alveolar space into the interstitium and that this action is key to subsequent temporal events of early dissemination of bacteria to the lymph nodes, Th1 priming, granulomatous response and bacterial control. In contrast, IL-1R-dependent alveolar macrophage migration and early dissemination of bacteria to lymph nodes is significantly impeded in infection with low transmission M.tuberculosis strain; these events promote the development of Th17 immunity, fostering neutrophilic inflammation and increased bacterial replication. Our results suggest that by inducing granulomas with the potential to develop into cavitary lesions that aids bacterial escape into the airways, high transmission M.tuberculosis strain is poised for greater transmissibility. These findings implicate bacterial heterogeneity as an important modifier of TB disease manifestations and transmission.
Collapse
Affiliation(s)
- Arianne Lovey
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sheetal Verma
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Vaishnavi Kaipilyawar
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | - Seema Husain
- The Genomics Center, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Moises Palaci
- Núcleo de Doenças Infecciosas, NDI/Universidade Federal do Espirito Santo-UFES, Vitoria, Brazil
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, NDI/Universidade Federal do Espirito Santo-UFES, Vitoria, Brazil
- Global Health & Tropical Medicine-Instituto de Higiene e Medicina Tropical-Universidade Nova de Lisboa, Lisbon, Portugal
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, WA, 98109-8070, USA
| | - Jerrold J Ellner
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Padmini Salgame
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
25
|
Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol 2022; 13:791136. [PMID: 35237260 PMCID: PMC8882646 DOI: 10.3389/fimmu.2022.791136] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The inflammasome complex is important for host defense against intracellular bacterial infections. Mycobacterium tuberculosis (Mtb) is a facultative intracellular bacterium which is able to survive in infected macrophages. Here we discuss how the host cell inflammasomes sense Mtb and other related mycobacterial species. Furthermore, we describe the molecular mechanisms of NLRP3 inflammasome sensing of Mtb which involve the type VII secretion system ESX-1, cell surface lipids (TDM/TDB), secreted effector proteins (LpqH, PPE13, EST12, EsxA) and double-stranded RNA acting on the priming and/or activation steps of inflammasome activation. In contrast, Mtb also mediates inhibition of the NLRP3 inflammasome by limiting exposure of cell surface ligands via its hydrolase, Hip1, by inhibiting the host cell cathepsin G protease via the secreted Mtb effector Rv3364c and finally, by limiting intracellular triggers (K+ and Cl- efflux and cytosolic reactive oxygen species production) via its serine/threonine kinase PknF. In addition, Mtb inhibits the AIM2 inflammasome activation via an unknown mechanism. Overall, there is good evidence for a tug-of-war between Mtb trying to limit inflammasome activation and the host cell trying to sense Mtb and activate the inflammasome. The detailed molecular mechanisms and the importance of inflammasome activation for virulence of Mtb or host susceptibility have not been fully investigated.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
26
|
Idris AB, Idris AB, Gumaa MA, Idris MB, Elgoraish A, Mansour M, Allam D, Arbab BMO, Beirag N, Ibrahim EAM, Hassan MA. Identification of functional tumor necrosis factor-alpha promoter variants associated with Helicobacter pylori infection in the Sudanese population: Computational approach. World J Gastroenterol 2022; 28:242-262. [PMID: 35110948 PMCID: PMC8776532 DOI: 10.3748/wjg.v28.i2.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a ubiquitous bacterium that affects nearly half of the world's population with a high morbidity and mortality rate. Polymorphisms within the tumor necrosis factor-alpha (TNF-A) promoter region are considered a possible genetic basis for this disease. AIM To functionally characterize the genetic variations in the TNF-A 5'-region (-584 to +107) of Sudanese patients infected with H. pylori using in silico tools. METHODS An observational study was carried out in major public and private hospitals in Khartoum state. A total of 122 gastric biopsies were taken from patients who had been referred for endoscopy. Genomic DNA was extracted. Genotyping of the TNF-A-1030 polymorphism was performed using PCR with confronting two-pair primer to investigate its association with the susceptibility to H. pylori infection in the Sudanese population. Furthermore, Sanger sequencing was applied to detect single nucleotide polymorphisms in the 5'-region (-584 to +107) of TNF-A in H. pylori-infected patients. Bioinformatics analyses were used to predict whether these mutations would alter transcription factor binding sites or composite regulatory elements in this region. A comparative profiling analysis was conducted in 11 species using the ECR browser and multiple-sequence local alignment and visualization search engine to investigate the possible conservation. Also, a multivariate logistic regression model was constructed to estimate odds ratios and their 95% confidence intervals for the association between TNF-A-1030, sociodemographic characteristics and H. pylori infection. Differences were statistically significant if P < 0.05. Statistical analyses were performed using Stata version 11 software. RESULTS A total of seven single nucleotide polymorphisms were observed in the TNF-A 5'-region of Sudanese patients infected with H. pylori. Only one of them (T > A, -76) was located at the in silico-predicted promoter region (-146 to +10), and it was predicted to alter transcription factor binding sites and composite regulatory elements. A novel mutation (A > T, +27) was detected in the 5' untranslated region, and it could affect the post-transcriptional regulatory pathways. Genotyping of TNF-A-1030 showed a lack of significant association between -1030T and susceptibility to H. pylori and gastric cancer in the studied population (P = 0.1756) and (P = 0.8116), respectively. However, a significant association was detected between T/C genotype and H. pylori infection (39.34% vs 19.67%, odds ratio = 2.69, 95% confidence interval: 1.17-6.17, P = 0.020). Mammalian conservation was observed for the (-146 to +10) region in chimpanzee (99.4%), rhesus monkey (95.6%), cow (91.8%), domesticated dog (89.3%), mouse (84.3%), rat (82.4%) and opossum (78%). CONCLUSION Computational analysis was a valuable method for understanding TNF-A gene expression patterns and guiding further in vitro and in vivo experimental validation.
Collapse
Affiliation(s)
- Abeer Babiker Idris
- Department of Agricultural Science and Technology, Institute of Natural and Applied Sciences, Erciyes University, Kayseri 38039, Turkey
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum 11111, Sudan.
| | - Alaa B Idris
- Department of Neurosurgery, Ribat University Hospital, Khartoum 11111, Sudan
| | - Manal A Gumaa
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum 11111, Sudan
| | - Mohammed Babiker Idris
- BioMérieux Clinical and Application Advisor, Al-Jeel Medical Co., Riyadh 11422, Saudi Arabia
| | - Amanda Elgoraish
- Department of Epidemiology, Tropical Medicine Research Institute, Khartoum 11111, Sudan
| | - Mohamed Mansour
- Department of Gastroenterology, Ibn Sina Specialized Hospital, Khartoum 11111, Sudan
| | - Dalia Allam
- Department of Gastroenterology, Ibn Sina Specialized Hospital, Khartoum 11111, Sudan
| | - Bashir MO Arbab
- Department of Gastroenterology, Modern Medical Centre, Khartoum 11111, Sudan
| | - Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University, London UB8 3PH, Uxbridge, United Kingdom
| | - El-Amin M Ibrahim
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum 11111, Sudan
| | - Mohamed A Hassan
- Department of Bioinformatics, Africa city of technology, Khartoum 11111, Sudan
- Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri 38350, Turkey
- Department of Translation Bioinformatics, Detavax Biotech, Kayseri 38350, Turkey
| |
Collapse
|
27
|
Abstract
Interleukin-1 (IL-1) is a key player in the immune response to pathogens due to its role in promoting inflammation and recruiting immune cells to the site of infection. In tuberculosis (TB), tight regulation of IL-1 responses is critical to ensure host resistance to infection while preventing immune pathology. In the mouse model of Mycobacterium tuberculosis infection, both IL-1 absence and overproduction result in exacerbated disease and mortality. In humans, several polymorphisms in the IL1B gene have been associated with increased susceptibility to TB. Importantly, M. tuberculosis itself has evolved several strategies to manipulate and regulate host IL-1 responses for its own benefit. Given all this, IL-1 appears as a promising target for host-directed therapies in TB. However, for that to succeed, more detailed knowledge on the biology and mechanisms of action of IL-1 in vivo, together with a deep understanding of how host-M. tuberculosis interactions modulate IL-1, is required. Here, we discuss the most recent advances in the biology and therapeutic potential of IL-1 in TB as well as the outstanding questions that remain to be answered.
Collapse
|
28
|
Valtierra-Alvarado MA, Lugo-Villarino G, Dueñas-Arteaga F, González-Contreras BE, Lugo-Sánchez A, Castañeda-Delgado JE, González-Amaro R, Venegas Gurrola OA, Del Rocío González Valadez A, Enciso-Moreno JA, Serrano CJ. Impact of Type 2 Diabetes on the capacity of human macrophages infected with Mycobacterium tuberculosis to modulate monocyte differentiation through a bystander effect. Immunol Cell Biol 2021; 99:1026-1039. [PMID: 34379824 DOI: 10.1111/imcb.12497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for the development of tuberculosis (TB) through mechanisms poorly understood. Monocytes and macrophages are key effector cells to control TB, but they are also subverted by Mycobacterium tuberculosis (Mtb). Specifically, Mtb can induce a bystander effect that skews monocyte differentiation towards macrophages with a permissive phenotype to infection. Here, we evaluated whether T2DM impacts this TB aspect. Our approach was to differentiate monocytes from healthy control (HC) subjects and T2DM patients into macrophages (MDM), and then assess their response to Mtb infection, including their secretome content and bystander effect capacity. Through flow cytometry analyses, we found a lower level of activation markers in MDM from T2DM patients in comparison to those from HC in response to mock (HLA-DR, CD86, and CD163) or Mtb challenge (CD14 and CD80). In spite of high TGF-β1 levels in mock-infected MDM from T2DM patients, cytometric bead arrays indicated there were no major differences in the secretome cytokine content in these cells relative to HC-MDM, even in response to Mtb. Mimicking a bystander effect, the secretome of Mtb-infected HC-MDM drove HC monocytes towards MDM with a permissive phenotype for Mtb intracellular growth. However, the secretome from Mtb-infected T2DM-MDM did not exacerbate the Mtb load compared to cmMTB-HC, possibly due to the high IL-1β production relative to Mtb-infected HC-MDM. Collectively, despite T2DM affecting the basal MDM activation, our approach revealed it has no major consequence on their response to Mtb or capacity to generate a bystander effect influencing monocyte differentiation.
Collapse
Affiliation(s)
- Monica Alejandra Valtierra-Alvarado
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México.,Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fátima Dueñas-Arteaga
- Hospital General No. 26, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Zacatecas, México
| | - Beatriz Elena González-Contreras
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México.,Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Anahí Lugo-Sánchez
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México.,Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Julio Enrique Castañeda-Delgado
- Cátedras CONACyT, Consejo Nacional de Ciencia y Tecnología (CONACyT- México), Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, México
| | - Roberto González-Amaro
- Departamento de Inmunología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí (UASLP), México
| | - Omar Alberto Venegas Gurrola
- Hospital General No. 26, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Zacatecas, México
| | | | | | - Carmen Judith Serrano
- Unidad de Investigación Biomédica Zacatecas, Instituto Mexicano del Seguro Social, México
| |
Collapse
|
29
|
Pollara G, Turner CT, Rosenheim J, Chandran A, Bell LCK, Khan A, Patel A, Peralta LF, Folino A, Akarca A, Venturini C, Baker T, Ecker S, Ricciardolo FLM, Marafioti T, Ugarte-Gil C, Moore DAJ, Chain BM, Tomlinson GS, Noursadeghi M. Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease. Sci Transl Med 2021; 13:13/592/eabg7673. [PMID: 33952677 PMCID: PMC7610803 DOI: 10.1126/scitranslmed.abg7673] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Host immune responses at the site of Mycobacterium tuberculosis (Mtb) infection can mediate pathogenesis of tuberculosis (TB) and onward transmission of infection. We hypothesized that pathological immune responses would be enriched at the site of host-pathogen interactions modelled by a standardized tuberculin skin test (TST) challenge in patients with active TB compared to those without disease, and interrogated immune responses by genome-wide transcriptional profiling. We show exaggerated interleukin (IL)-17A and Th17 responses among 48 individuals with active TB compared to 191 with latent TB infection, associated with increased neutrophil recruitment and matrix metalloproteinase-1 expression, both involved in TB pathogenesis. Curative antimicrobial treatment reversed these observed changes. Increased IL-1β and IL-6 responses to mycobacterial stimulation were evident in both circulating monocytes and in molecular changes at the site of TST in individuals with active TB, supporting a model in which monocyte-derived IL-1β and IL-6 promote Th17 differentiation within tissues. Modulation of these cytokine pathways may provide a rational strategy for host-directed therapy in active TB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna Folino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | - Cesar Ugarte-Gil
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru.,TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - David A J Moore
- TB Centre, London School of Hygiene & Tropical Medicine, London, UK.,Laboratorio de Investigación de Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
30
|
Liao Y, Liu C, Wang J, Song Y, Sabir N, Hussain T, Yao J, Luo L, Wang H, Cui Y, Yang L, Zhao D, Zhou X. Caspase-1 inhibits IFN-β production via cleavage of cGAS during M. bovis infection. Vet Microbiol 2021; 258:109126. [PMID: 34020176 DOI: 10.1016/j.vetmic.2021.109126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Mycobacterium bovis (M. bovis) infection triggers cytokine production via pattern recognition receptors. These cytokines include type I interferons (IFNs) and interleukin-1β (IL-1β). Excessive type I IFN levels impair host resistance to M. bovis infection. Therefore, strict control of type I IFN production is helpful to reduce pathological damage and bacterial burden. Here, we found that a deficiency in caspase-1, which is the critical component of the inflammasome responsible for IL-1β production, resulted in increased IFN-β production upon M. bovis infection. Subsequent experiments demonstrated that caspase-1 activation reduced cyclic GMP-AMP synthase (cGAS) expression, thereby inhibiting downstream TANK-binding kinase 1 (TBK1)- interferon regulatory factor 3 (IRF3) signaling and ultimately reducing IFN production. A deficiency in caspase-1 activation enhanced the bacterial burden during M. bovis infection in vitro and in vivo and aggravated pathological lesion formation. Thus, caspase-1 activation reduced IFN-β production upon M. bovis infection by dampening cGAS-TBK1-IRF3 signaling, suggesting that the inflammasome protects hosts by negatively regulating harmful cytokines.
Collapse
Affiliation(s)
- Yi Liao
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Chunfa Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jie Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yinjuan Song
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Naveed Sabir
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Tariq Hussain
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Jiao Yao
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Lijia Luo
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Haoran Wang
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Yongyong Cui
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - Lifeng Yang
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Deming Zhao
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China
| | - Xiangmei Zhou
- Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100093, China.
| |
Collapse
|
31
|
Jung BG, Vankayalapati R, Samten B. Mycobacterium tuberculosis stimulates IL-1β production by macrophages in an ESAT-6 dependent manner with the involvement of serum amyloid A3. Mol Immunol 2021; 135:285-293. [PMID: 33957478 DOI: 10.1016/j.molimm.2021.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022]
Abstract
Despite its critical roles in immune responses against tuberculosis infection and immune pathology, the molecular details of interleukin (IL)-1β production in tuberculosis infection remain elusive. To explore IL-1β production in tuberculosis infection, we infected mouse bone marrow-derived macrophages (BMDM) with Mycobacterium tuberculosis (Mtb) H37Rv, its early secreted antigenic target protein of 6 kDa (ESAT-6) gene deletion (H37Rv:Δ3875) or complemented strain (H37Rv:Δ3875C) and evaluated IL-1β production. H37Rv induced significantly increased IL-1β production by BMDMs compared to non-infected BMDMs. In contrast, H37Rv:Δ3875 induced significantly less mature IL-1β production despite eliciting comparable levels of pro-IL-1β and IL-8 from BMDMs compared to H37Rv and H37Rv:Δ3875C. Blocking either NLRP3 or K+ efflux diminished H37Rv-induced IL-1β production by BMDMs. Infection of mice intranasally with H37Rv:Δ3875 induced less IL-1β production in the lungs compared with H37Rv. Intranasal delivery of ESAT-6 but not CFP10 induced production of IL-1β in mouse lungs and RNA-Seq analysis identified serum amyloid A (SAA) 3 as one of the highly expressed genes in mouse lungs. Infection of mice with H37Rv but not H37Rv:Δ3875 induced expression of lung SAA3 mRNA and protein, consistent with the effect of intranasal delivery of ESAT-6. Silencing SAA3 reduced Mtb-induced IL-1β production by BMDMs. We conclude that SAA3 plays critical role in ESAT-6 dependent IL-1β production by macrophages in tuberculosis infection.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, TX, 75708, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, TX, 75708, USA
| | - Buka Samten
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, TX, 75708, USA.
| |
Collapse
|
32
|
Figueira MBDA, de Lima DS, Boechat AL, Filho MGDN, Antunes IA, Matsuda JDS, Ribeiro TRDA, Felix LS, Gonçalves ASF, da Costa AG, Ramasawmy R, Pontillo A, Ogusku MM, Sadahiro A. Single-Nucleotide Variants in the AIM2 - Absent in Melanoma 2 Gene (rs1103577) Associated With Protection for Tuberculosis. Front Immunol 2021; 12:604975. [PMID: 33868225 PMCID: PMC8047195 DOI: 10.3389/fimmu.2021.604975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) remains a serious public health burden worldwide. TB is an infectious disease caused by the Mycobacterium tuberculosis Complex. Innate immune response is critical for controlling mycobacterial infection. NOD-like receptor pyrin domain containing 3/ absent in melanoma 2 (NLRP3/AIM2) inflammasomes are suggested to play an important role in TB. NLRP3/AIM2 mediate the release of pro-inflammatory cytokines IL-1β and IL-18 to control M. tuberculosis infection. Variants of genes involved in inflammasomes may contribute to elucidation of host immune responses to TB infection. The present study evaluated single-nucleotide variants (SNVs) in inflammasome genes AIM2 (rs1103577), CARD8 (rs2009373), and CTSB (rs1692816) in 401 patients with pulmonary TB (PTB), 133 patients with extrapulmonary TB (EPTB), and 366 healthy control (HC) subjects with no history of TB residing in the Amazonas state. Quantitative Real Time PCR was performed for allelic discrimination. The SNV of AIM2 (rs1103577) is associated with protection for PTB (padj: 0.033, ORadj: 0.69, 95% CI: 0.49-0.97). CTSB (rs1692816) is associated with reduced risk for EPTB when compared with PTB (padj: 0.034, ORadj: 0.50, 95% CI: 0.27-0.94). Serum IL-1β concentrations were higher in patients with PTB than those in HCs (p = 0,0003). The SNV rs1103577 of AIM2 appeared to influence IL-1β release. In a dominant model, individuals with the CC genotype (mean 3.78 ± SD 0.81) appeared to have a higher level of IL-1β compared to carriers of the T allele (mean 3.45 ± SD 0.84) among the patients with PTB (p = 0,0040). We found that SNVs of AIM2 and CTSB were associated with TB, and the mechanisms involved in this process require further study.
Collapse
Affiliation(s)
- Mariana Brasil de Andrade Figueira
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Dhêmerson Souza de Lima
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Antonio Luiz Boechat
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | | | | | - Luana Sousa Felix
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Ariane Senna Fonseca Gonçalves
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Mauricio Morishi Ogusku
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Aya Sadahiro
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| |
Collapse
|
33
|
Weiner J, Domaszewska T, Donkor S, Kaufmann SHE, Hill PC, Sutherland JS. Changes in Transcript, Metabolite, and Antibody Reactivity During the Early Protective Immune Response in Humans to Mycobacterium tuberculosis Infection. Clin Infect Dis 2021; 71:30-40. [PMID: 31412355 PMCID: PMC7312225 DOI: 10.1093/cid/ciz785] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
Background Strategies to prevent Mycobacterium tuberculosis (Mtb) infection are urgently required. In this study, we aimed to identify correlates of protection against Mtb infection. Methods Two groups of Mtb-exposed contacts of tuberculosis (TB) patients were recruited and classified according to their Mtb infection status using the tuberculin skin test (TST; cohort 1) or QuantiFERON (QFT; cohort 2). A negative reading at baseline with a positive reading at follow-up classified TST or QFT converters and a negative reading at both time points classified TST or QFT nonconverters. Ribonucleic acid sequencing, Mtb proteome arrays, and metabolic profiling were performed. Results Several genes were found to be differentially expressed at baseline between converters and nonconverters. Gene set enrichment analysis revealed a distinct B-cell gene signature in TST nonconverters compared to converters. When infection status was defined by QFT, enrichment of type I interferon was observed. A remarkable area under the curve (AUC) of 1.0 was observed for IgA reactivity to Rv0134 and an AUC of 0.98 for IgA reactivity to both Rv0629c and Rv2188c. IgG reactivity to Rv3223c resulted in an AUC of 0.96 and was markedly higher compared to TST nonconverters. We also identified several differences in metabolite profiles, including changes in biomarkers of inflammation, fatty acid metabolism, and bile acids. Pantothenate (vitamin B5) was significantly increased in TST nonconverters compared to converters at baseline (q = 0.0060). Conclusions These data provide new insights into the early protective response to Mtb infection and possible avenues to interfere with Mtb infection, including vitamin B5 supplementation. Analysis of blood from highly exposed household contacts from The Gambia who never develop latent Mycobacterium tuberculosis infection shows distinct transcriptomic, antibody, and metabolomic profiles compared to those who develop latent tuberculosis infection but prior to any signs of infection.
Collapse
Affiliation(s)
- January Weiner
- Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, USA
| | - Philip C Hill
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia.,Otago University, Otago, New Zealand
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
34
|
Naik S, Alexander M, Kumar P, Kulkarni V, Deshpande P, Yadana S, Leu CS, Araújo-Pereira M, Andrade BB, Bhosale R, Babu S, Gupta A, Mathad JS, Shivakoti R. Systemic Inflammation in Pregnant Women With Latent Tuberculosis Infection. Front Immunol 2021; 11:587617. [PMID: 33584652 PMCID: PMC7873478 DOI: 10.3389/fimmu.2020.587617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background Recent studies in adults have characterized differences in systemic inflammation between adults with and without latent tuberculosis infection (LTBI+ vs. LTBI−). Potential differences in systemic inflammation by LTBI status has not been assess in pregnant women. Methods We conducted a cohort study of 155 LTBI+ and 65 LTBI− pregnant women, stratified by HIV status, attending an antenatal clinic in Pune, India. LTBI status was assessed by interferon gamma release assay. Plasma was used to measure systemic inflammation markers using immunoassays: IFNβ, CRP, AGP, I-FABP, IFNγ, IL-1β, soluble CD14 (sCD14), sCD163, TNF, IL-6, IL-17a and IL-13. Linear regression models were fit to test the association of LTBI status with each inflammation marker. We also conducted an exploratory analysis using logistic regression to test the association of inflammatory markers with TB progression. Results Study population was a median age of 23 (Interquartile range: 21–27), 28% undernourished (mid-upper arm circumference (MUAC) <23 cm), 12% were vegetarian, 10% with gestational diabetes and 32% with HIV. In multivariable models, LTBI+ women had significantly lower levels of third trimester AGP, IL1β, sCD163, IL-6 and IL-17a. Interestingly, in exploratory analysis, LTBI+ TB progressors had significantly higher levels of IL1β, IL-6 and IL-13 in multivariable models compared to LTBI+ non-progressors. Conclusions Our data shows a distinct systemic immune profile in LTBI+ pregnant women compared to LTBI− women. Data from our exploratory analysis suggest that LTBI+ TB progressors do not have this immune profile, suggesting negative association of this profile with TB progression. If other studies confirm these differences by LTBI status and show a causal relationship with TB progression, this immune profile could identify subsets of LTBI+ pregnant women at high risk for TB progression and who can be targeted for preventative therapy.
Collapse
Affiliation(s)
- Shilpa Naik
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Department of Obstetrics and Gynecology, Byramjee Jeejeebhoy Government Medical College, Pune, India
| | - Mallika Alexander
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Pavan Kumar
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India
| | - Vandana Kulkarni
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Prasad Deshpande
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Su Yadana
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Cheng-Shiun Leu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mariana Araújo-Pereira
- Instituto Goncalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research, Fundação José Silveira, New York, NY, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruno B Andrade
- Instituto Goncalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research, Fundação José Silveira, New York, NY, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil.,Escola de Medicina, Universidade Salvador (UNIFACS), Laureate International Universities, Salvador, Brazil.,Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| | - Ramesh Bhosale
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Department of Obstetrics and Gynecology, Byramjee Jeejeebhoy Government Medical College, Pune, India
| | - Subash Babu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai, India
| | - Amita Gupta
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jyoti S Mathad
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Rupak Shivakoti
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States
| |
Collapse
|
35
|
Idris AB, Idris EB, Ataelmanan AE, Mohamed AEA, Osman Arbab BM, Ibrahim EAM, Hassan MA. First insights into the molecular basis association between promoter polymorphisms of the IL1B gene and Helicobacter pylori infection in the Sudanese population: computational approach. BMC Microbiol 2021; 21:16. [PMID: 33413117 PMCID: PMC7792167 DOI: 10.1186/s12866-020-02072-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infects nearly half of the world's population with a variation in incidence among different geographic regions. Genetic variants in the promoter regions of the IL1B gene can affect cytokine expression and creates a condition of hypoacidity which favors the survival and colonization of H. pylori. Therefore, the aim of this study was to characterize the polymorphic sites in the 5'- region [-687_ + 297] of IL1B in H. pylori infection using in silico tools. RESULTS A total of five nucleotide variations were detected in the 5'-regulatory region [-687_ + 297] of IL1B which led to the addition or alteration of transcription factor binding sites (TFBSs) or composite regulatory elements (CEs). Genotyping of IL1B - 31 C > T revealed a significant association between -31 T and susceptibility to H. pylori infection in the studied population (P = 0.0363). Comparative analysis showed conservation rates of IL1B upstream [-368_ + 10] region above 70% in chimpanzee, rhesus monkey, a domesticated dog, cow and rat. CONCLUSIONS In H. pylori-infected patients, three detected SNPs (- 338, - 155 and - 31) located in the IL1B promoter were predicted to alter TFBSs and CE, which might affect the gene expression. These in silico predictions provide insight for further experimental in vitro and in vivo studies of the regulation of IL1B expression and its relationship to H. pylori infection. However, the recognition of regulatory motifs by computer algorithms is fundamental for understanding gene expression patterns.
Collapse
Affiliation(s)
- Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Einas Babiker Idris
- Medical Laboratory Specialist, Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | - Amany Eltayib Ataelmanan
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Al-Gazirah, Wad Madani, Sudan
| | | | | | - El-Amin Mohamed Ibrahim
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mohamed A. Hassan
- Department of Bioinformatics, Africa city of technology, Khartoum, Sudan
- Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey
- Department of Translation Bioinformatics, Detavax Biotech, Kayseri, Turkey
| |
Collapse
|
36
|
Lovewell RR, Baer CE, Mishra BB, Smith CM, Sassetti CM. Granulocytes act as a niche for Mycobacterium tuberculosis growth. Mucosal Immunol 2021; 14:229-241. [PMID: 32483198 PMCID: PMC7704924 DOI: 10.1038/s41385-020-0300-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 02/04/2023]
Abstract
Granulocyte recruitment to the pulmonary compartment is a hallmark of progressive tuberculosis (TB). This process is well-documented to promote immunopathology, but can also enhance the replication of the pathogen. Both the specific granulocytes responsible for increasing mycobacterial burden and the underlying mechanisms remain obscure. We report that the known immunomodulatory effects of these cells, such as suppression of protective T-cell responses, play a limited role in altering host control of mycobacterial replication in susceptible mice. Instead, we find that the adaptive immune response preferentially restricts the burden of bacteria within monocytes and macrophages compared to granulocytes. Specifically, mycobacteria within inflammatory lesions are preferentially found within long-lived granulocytes that express intermediate levels of the Ly6G marker and low levels of antimicrobial genes. These cells progressively accumulate in the lung and correlate with bacterial load and disease severity, and the ablation of Ly6G-expressing cells lowers mycobacterial burden. These observations suggest a model in which dysregulated granulocytic influx promotes disease by creating a permissive intracellular niche for mycobacterial growth and persistence.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Bibhuti B Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
37
|
Mily A, Sarker P, Taznin I, Hossain D, Haq MA, Kamal SMM, Agerberth B, Brighenti S, Raqib R. Slow radiological improvement and persistent low-grade inflammation after chemotherapy in tuberculosis patients with type 2 diabetes. BMC Infect Dis 2020; 20:933. [PMID: 33287713 PMCID: PMC7722325 DOI: 10.1186/s12879-020-05473-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Diabetes mellitus type 2 (DM) may impede immune responses in tuberculosis (TB) and thus contribute to enhanced disease severity. In this study, we aimed to evaluate DM-mediated alterations in clinical, radiological and immunological outcomes in TB disease. Methods Newly diagnosed pulmonary TB patients with or without DM (TB n = 40; TB-DM n = 40) were recruited in Dhaka, Bangladesh. Clinical symptoms, sputum smear and culture conversion as well as chest radiography were assessed. Peripheral blood and sputum samples were collected at the time of diagnosis (baseline) and after 1, 2 and 6 months of standard anti-TB treatment. Blood samples were also obtained from healthy controls (n = 20). mRNA expression of inflammatory markers in blood and sputum samples were quantified using real-time PCR. Results The majority of TB-DM patients had poor glycemic control (HbA1c > 8%) and displayed elevated pulmonary pathology (P = 0.039) particularly in the middle (P < 0.004) and lower lung zones (P < 0.02) throughout the treatment period. However, reduction of clinical symptoms and time to sputum smear and culture conversion did not differ between the groups. Transcripts levels of the pro-inflammatory cytokines IL-1β (P = 0.003 at month-1 and P = 0.045 at month-2) and TNF-α (P = 0.005 at month-1) and the anti-inflammatory cytokine IL-10 (P = 0.005 at month-2) were higher in peripheral blood after anti-TB treatment in TB-DM compared to TB patients. Conversely in sputum, TB-DM patients had reduced CD4 (P < 0.009 at month-1) and IL-10 (P = 0.005 at month-1 and P = 0.006 at month-2) transcripts, whereas CD8 was elevated (P = 0.016 at month-2). At 1- and 2-month post-treatment, sputum IL-10 transcripts were inversely correlated with fasting blood glucose and HbA1c levels in all patients. Conclusion Insufficient up-regulation of IL-10 in the lung may fuel persistent local inflammation thereby promoting lung pathology in TB-DM patients with poorly controlled DM.
Collapse
Affiliation(s)
- Akhirunnesa Mily
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden.,Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Protim Sarker
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Inin Taznin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Delwar Hossain
- Respiratory Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka, Bangladesh
| | - Md Ahsanul Haq
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - S M Mostofa Kamal
- National Institute of the Diseases of the Chest and Hospital, Dhaka, Bangladesh
| | - Birgitta Agerberth
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.
| |
Collapse
|
38
|
Abdalla AE, Yan S, Zeng J, Deng W, Xie L, Xie J. Mycobacterium tuberculosis Rv0341 Promotes Mycobacterium Survival in In Vitro Hostile Environments and within Macrophages and Induces Cytokines Expression. Pathogens 2020; 9:pathogens9060454. [PMID: 32521796 PMCID: PMC7350357 DOI: 10.3390/pathogens9060454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis represents an ancient deadly human pathogen that can survive and multiply within macrophages. The effectors are key players for the successful pathogenesis of this bacterium. M. tuberculosis open reading frame (ORF) Rv0341, a pathogenic mycobacteria-specific gene, was found to be upregulated in macrophages isolated from human tuberculosis granuloma and inside the macrophages during in vitro infection by M. tuberculosis. To understand the exact role of this gene, we expressed the Rv0341 gene in M. smegmatis, which is a non-pathogenic Mycobacterium. We found that Rv0341 expression can alter colony morphology, reduce the sliding capability, and decrease the cell wall permeability of M. smegmatis. Furthermore, Rv0341 remarkably enhanced M. smegmatis survival within macrophages and under multiple in vitro stress conditions when compared with the control strain. Ms_Rv0341 significantly induced expression of TNF-α, IL-1β, and IL-10 compared with M. smegmatis harboring an empty vector. In summary, these data suggest that Rv0341 is one of the M. tuberculosis virulence determinants that can promote bacilli survival in harsh conditions and inside macrophages.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf 2014, Saudi Arabia
| | - Shuangquan Yan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Correspondence: ; Tel.: +86-135-9439-2126
| |
Collapse
|
39
|
Winchell CG, Mishra BB, Phuah JY, Saqib M, Nelson SJ, Maiello P, Causgrove CM, Ameel CL, Stein B, Borish HJ, White AG, Klein EC, Zimmerman MD, Dartois V, Lin PL, Sassetti CM, Flynn JL. Evaluation of IL-1 Blockade as an Adjunct to Linezolid Therapy for Tuberculosis in Mice and Macaques. Front Immunol 2020; 11:891. [PMID: 32477361 PMCID: PMC7235418 DOI: 10.3389/fimmu.2020.00891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In 2017 over 550,000 estimated new cases of multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) occurred, emphasizing a need for new treatment strategies. Linezolid (LZD) is a potent antibiotic for drug-resistant Gram-positive infections and is an effective treatment for TB. However, extended LZD use can lead to LZD-associated host toxicities, most commonly bone marrow suppression. LZD toxicities may be mediated by IL-1, an inflammatory pathway important for early immunity during M. tuberculosis infection. However, IL-1 can contribute to pathology and disease severity late in TB progression. Since IL-1 may contribute to LZD toxicity and does influence TB pathology, we targeted this pathway with a potential host-directed therapy (HDT). We hypothesized LZD efficacy could be enhanced by modulation of IL-1 pathway to reduce bone marrow toxicity and TB associated-inflammation. We used two animal models of TB to test our hypothesis, a TB-susceptible mouse model and clinically relevant cynomolgus macaques. Antagonizing IL-1 in mice with established infection reduced lung neutrophil numbers and partially restored the erythroid progenitor populations that are depleted by LZD. In macaques, we found no conclusive evidence of bone marrow suppression associated with LZD, indicating our treatment time may have been short enough to avoid the toxicities observed in humans. Though treatment was only 4 weeks (the FDA approved regimen at the time of study), we observed sterilization of the majority of granulomas regardless of co-administration of the FDA-approved IL-1 receptor antagonist (IL-1Rn), also known as Anakinra. However, total lung inflammation was significantly reduced in macaques treated with IL-1Rn and LZD compared to LZD alone. Importantly, IL-1Rn administration did not impair the host response against Mtb or LZD efficacy in either animal model. Together, our data support that inhibition of IL-1 in combination with LZD has potential to be an effective HDT for TB and the need for further research in this area.
Collapse
Affiliation(s)
- Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bibhuti B. Mishra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jia Yao Phuah
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chelsea M. Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brianne Stein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of the University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
40
|
Lavalett L, Ortega H, Barrera LF. Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of Mycobacterium tuberculosis Induces Alterations in Myeloid Effector Functions. Front Cell Infect Microbiol 2020; 10:163. [PMID: 32391286 PMCID: PMC7190864 DOI: 10.3389/fcimb.2020.00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung, where they participate in the control of infection during active tuberculosis (TB). Alternatively, inflammatory monocytes may participate in inflammation or serve as niches for Mtb infection. Monocytes response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, we have examined the baseline mRNA profiles of circulating human monocytes from patients with active TB (MoTB) compared with monocytes from healthy individuals (MoCT). Circulating MoTB displayed a pro-inflammatory transcriptome characterized by increased gene expression of genes associated with cytokines, monocytopoiesis, and down-regulation of MHC class II gene expression. In response to in vitro infection with two clinical isolates of the LAM family of Mtb (UT127 and UT205), MoTB displayed an attenuated inflammatory mRNA profile associated with down-regulation the TREM1 signaling pathway. Furthermore, the gene expression signature induced by Mtb UT205 clinical strain was characterized by the enrichment of genes in pathways and biological processes mainly associated with a signature of IFN-inducible genes and the inhibition of cell death mechanisms compared to MoTB-127, which could favor the establishment and survival of Mtb within the monocytes. These results suggest that circulating MoTB have an altered transcriptome that upon infection with Mtb may help to maintain chronic inflammation and infection. Moreover, this functional abnormality of monocytes may also depend on potential differences in virulence of circulating clinical strains of Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
41
|
Sousa J, Cá B, Maceiras AR, Simões-Costa L, Fonseca KL, Fernandes AI, Ramos A, Carvalho T, Barros L, Magalhães C, Chiner-Oms Á, Machado H, Veiga MI, Singh A, Pereira R, Amorim A, Vieira J, Vieira CP, Bhatt A, Rodrigues F, Rodrigues PNS, Gagneux S, Castro AG, Guimarães JT, Bastos HN, Osório NS, Comas I, Saraiva M. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun 2020; 11:1949. [PMID: 32327653 PMCID: PMC7181847 DOI: 10.1038/s41467-020-15832-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/23/2020] [Indexed: 01/26/2023] Open
Abstract
Genetic diversity of Mycobacterium tuberculosis affects immune responses and clinical outcomes of tuberculosis (TB). However, how bacterial diversity orchestrates immune responses to direct distinct TB severities is unknown. Here we study 681 patients with pulmonary TB and show that M. tuberculosis isolates from cases with mild disease consistently induce robust cytokine responses in macrophages across multiple donors. By contrast, bacteria from patients with severe TB do not do so. Secretion of IL-1β is a good surrogate of the differences observed, and thus to classify strains as probable drivers of different TB severities. Furthermore, we demonstrate that M. tuberculosis isolates that induce low levels of IL-1β production can evade macrophage cytosolic surveillance systems, including cGAS and the inflammasome. Isolates exhibiting this evasion strategy carry candidate mutations, generating sigA recognition boxes or affecting components of the ESX-1 secretion system. Therefore, we provide evidence that M. tuberculosis strains manipulate host-pathogen interactions to drive variable TB severities.
Collapse
Grants
- The authors thank the excellent support from the i3S scientific platforms, namely Animal facility, Advanced Light Microscopy and BioSciences Screening, member of the national infrastructure PPBI - Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122). This work was financed by FCT - Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação grant POCI-01-0145-FEDER-028955 (to MS) and by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013, to MIV, FR, AGC and NSO). IC acknowledges the support of Ministerio de Ciencia, Innovación y Universidades (SAF2016-77346-R) and the European Research Council (638553-TB-ACCELERATE). HNB acknowledges the support of Bolsa D. Manuel de Mello and of the Portuguese Society for Pneumology; AB and MS were also recipients of an International Exchanges Grant from the Royal Society. JS is funded by a research fellow NORTE-01-0145-FEDER-000012; BC and KLF are funded by FCT PhD scholarships SFRH/BD/114403/2016 and SFRH/BD/114405/2016, respectively; MIV is funded by FCT through DL 57/2016 (CRP) and MS through Estimulo Individual ao Emprego Científico.
Collapse
Affiliation(s)
- Jeremy Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Baltazar Cá
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Luisa Simões-Costa
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Kaori L Fonseca
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Doctoral Program in Molecular and Cell Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Angélica Ramos
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
| | - Teresa Carvalho
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
| | - Leandro Barros
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Henrique Machado
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Rui Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
| | - António Amorim
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jorge Vieira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Cristina P Vieira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro N S Rodrigues
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - António Gil Castro
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Tiago Guimarães
- São João Hospital Center & EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- São João Hospital Center, Porto, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iñaki Comas
- Biomedicine Institute of Valencia (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal.
| |
Collapse
|
42
|
Allelic-Specific Regulation of xCT Expression Increases Susceptibility to Tuberculosis by Modulating microRNA-mRNA Interactions. mSphere 2020; 5:5/2/e00263-20. [PMID: 32321821 PMCID: PMC7178550 DOI: 10.1128/msphere.00263-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent globally, and the development of multidrug resistance represents a serious health concern, particularly in the developing world. Novel effective treatments are urgently required. xCT expression is known to increase susceptibility to TB, and certain polymorphisms in the gene encoding this protein interrupt the binding of microRNA and prevent its suppression. Taking advantage of the FDA approval for the use of sulfasalazine (SASP), which inhibits xCT-mediated cystine transport in humans, we demonstrate how host genotype-specific therapies tailored to the xCT genotype can improve TB outcomes. xCT forms part of the xc− cysteine-glutamate antiporter which inhibits antimicrobial inflammatory immune functions and thus increases susceptibility to tuberculosis (TB). However, the associations between xCT gene polymorphisms and susceptibility to TB, as well as whether these modulate xCT expression or affect treatment with the xCT inhibitor sulfasalazine (SASP), are unclear. In the present study, we genotyped xCT polymorphisms in a large Chinese cohort and found that the single-nucleotide polymorphism (SNP) rs13120371 was associated with susceptibility to TB. The rs13120371 AA genotype was strongly associated with an increased risk of TB and increased xCT mRNA expression levels compared to those with the GG or AG genotype. rs13120371 is located on the 3′ untranslated (UTR) region of the xCT gene, in the putative binding site for miR-142-3p, and the results of luciferase reporter assays indicated that the rs13120371 AA genotype inhibited the binding of miR-42-3p to xCT. Bacterial burden was also significantly higher in cells with the AA genotype than in those with the GG genotype. Furthermore, pretreatment with SASP alleviated this burden in cells with the AA genotype but conferred no benefit in cells with the GG phenotype. In summary, we identified a functional SNP (rs13120371) in the xCT 3′ UTR region that increases susceptibility to TB through interacting with miR-142-3p. IMPORTANCE Tuberculosis (TB) is the leading cause of death from a single infectious agent globally, and the development of multidrug resistance represents a serious health concern, particularly in the developing world. Novel effective treatments are urgently required. xCT expression is known to increase susceptibility to TB, and certain polymorphisms in the gene encoding this protein interrupt the binding of microRNA and prevent its suppression. Taking advantage of the FDA approval for the use of sulfasalazine (SASP), which inhibits xCT-mediated cystine transport in humans, we demonstrate how host genotype-specific therapies tailored to the xCT genotype can improve TB outcomes.
Collapse
|
43
|
Lavalett L, Ortega H, Barrera LF. Human Alveolar and Splenic Macrophage Populations Display a Distinct Transcriptomic Response to Infection With Mycobacterium tuberculosis. Front Immunol 2020; 11:630. [PMID: 32373118 PMCID: PMC7186480 DOI: 10.3389/fimmu.2020.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects alveolar macrophages (AMs), causing pulmonary tuberculosis (PTB), the most common form of the disease. Less frequently, Mtb is disseminated to many other organs and tissues, resulting in different extrapulmonary forms of TB. Nevertheless, very few studies have addressed the global mRNA response of human AMs, particularly from humans with the active form of the disease. Strikingly, almost no studies have addressed the response of human extrapulmonary macrophages to Mtb infection. In this pilot study, using microarray technology, we examined the transcriptomic ex vivo response of AMs from PTB patients (AMTBs) and AMs from control subjects (AMCTs) infected with two clinical isolates of Mtb. Furthermore, we also studied the infection response of human splenic macrophages (SMs) to Mtb isolates, as a model for extrapulmonary infection, and compared the transcriptomic response between AMs and SMs. Our results showed a striking difference in global mRNA profiles in response to infection between AMs and SMs, implicating a tissue-specific macrophage response to Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia.,Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia.,Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
44
|
Abstract
Macrophage dysfunction is associated with increased tuberculosis (TB) susceptibility in patients with human immunodeficiency virus (HIV) infection. However, the mechanisms underlying how HIV infection impairs macrophage function are unclear. Here, we found that levels of autoantibodies against red blood cells (RBCs) were significantly elevated in patients with HIV as determined by direct antiglobulin test (DAT). DAT positivity was significantly associated with TB incidence in both univariate and multivariate analyses (odds ratio [OR] = 11.96 [confidence interval {CI}, 4.68 to 30.93] and 12.65 [3.33 to 52.75], respectively). Ex vivo analysis showed that autoantibodies against RBCs enhanced erythrophagocytosis and thus significantly impaired macrophage bactericidal function against intracellular Mycobacterium tuberculosis Mechanistically, autoantibody-mediated erythrophagocytosis increased heme oxygenase-1 (HO-1) expression, which inhibited M. tuberculosis-induced autophagy in macrophages. Silencing ATG5, a key component for autophagy, completely abrogated the effect of erythrophagocytosis on macrophage bactericidal activity against M. tuberculosis In conclusion, we have demonstrated that HIV infection increases autoantibody-mediated erythrophagocytosis. This process impairs macrophage bactericidal activity against M. tuberculosis by inhibiting HO-1-associated autophagy. These findings reveal a novel mechanism as to how HIV infection increases TB susceptibility.IMPORTANCE HIV infection significantly increases TB susceptibility due to CD4 T-cell loss and macrophage dysfunction. Although it is relatively clear that CD4 T-cell loss represents a direct effect of HIV infection, the mechanism underlying how HIV infection dampens macrophage function is unknown. Here, we show that HIV infection enhances autoantibody-mediated erythrophagocytosis, which dampens macrophage bactericidal activity against TB by inhibiting HO-1-associated autophagy. Our findings reveal a novel mechanism explaining how HIV infection increases susceptibility to TB. We propose that DAT could be a potential measure to identify HIV patients who are at high TB risk and who would be suitable for anti-TB chemotherapy preventive treatment.
Collapse
|
45
|
Salum KCR, Castro MCS, Moreira VB, Nani ASF, Kohlrausch FB. Interleukin 1α and 1β gene variations are associated with tuberculosis in silica exposed subjects. Am J Ind Med 2020; 63:74-84. [PMID: 31692000 DOI: 10.1002/ajim.23066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Silicosis is a fibrotic lung disease resulting from the inhalation of crystalline silica and can be classified as simple or complicated according to the International Labour Organization criteria. Furthermore, individuals exposed to crystalline silica also have a higher risk for the development of tuberculosis (Tb). The contribution of inflammatory cytokines to the risk of silicosis and Tb in different populations has previously been reported. Since genetic background might be related to susceptibility to silicosis and Tb, the study of polymorphisms within IL-1α, IL-1β, and tumor necrosis factor protein-coding genes may contribute to elucidating the genetic basis of these diseases. METHODS Single nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction using restriction fragment length polymorphism or by Taqman methodology, in a sample of 102 silica-exposed patients from Brazil. RESULTS No significant associations were observed between the SNPs studied and the severity of silicosis. However, significant associations were found between Tb and the C allele (odds ratio [OR] = 1.93, 95% confidence interval [CI], 1.01-3.73) and the CC genotype (OR = 2.34, 95% CI, 1.04-5.31) of IL1A -899C>T. The IL1B +3954C>T polymorphism also showed an association with Tb (T allele dominant model OR = 2.38, 95% CI, 1.04-5.41). CONCLUSION These preliminary results demonstrate that the IL1A and IL1B gene variations may contribute to some extent to susceptibility to Tb, but not silicosis. However, additional studies are still needed to confirm these results.
Collapse
Affiliation(s)
| | - Marcos Cesar Santos Castro
- Departamento de Medicina Clínica, Hospital Universitário Antônio PedroUniversidade Federal FluminenseNiterói Brazil
- Ambulatório de Pneumologia, Hospital Universitário Pedro ErnestoUniversidade do Estado do Rio de JaneiroRio de Janeiro Brazil
| | - Valéria Barbosa Moreira
- Departamento de Medicina Clínica, Hospital Universitário Antônio PedroUniversidade Federal FluminenseNiterói Brazil
| | - Angela Santos Ferreira Nani
- Departamento de Medicina Clínica, Hospital Universitário Antônio PedroUniversidade Federal FluminenseNiterói Brazil
| | | |
Collapse
|
46
|
Wang W, Deng G, Zhang G, Yu Z, Yang F, Chen J, Cai Y, Werz O, Chen X. Genetic polymorphism rs8193036 of IL17A is associated with increased susceptibility to pulmonary tuberculosis in Chinese Han population. Cytokine 2019; 127:154956. [PMID: 31864094 DOI: 10.1016/j.cyto.2019.154956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Th17 cells play a key role in immunity against Mycobacterium tuberculosis, our previous research showed that reduced Th17 responses were associated with the severe outcome of Mtb infection. The associations between IL17A polymorphisms and susceptibility of TB has been reported, but the results are inconsistent and the underlying mechanisms is unknown. In this study, we identified a genetic variation (rs8193036) in the promoter region of IL17A is associated with susceptibility to TB. The minor allele T frequency of rs8193036 was significantly different between patients with active TB (29.7%) and healthy controls (32.3%) (OR = 0.81; 95%CI, 0.71-0.93; P = 0.0026). Peripheral blood mononuclear cells from individuals carrying rs8193036CC genotypes produced significantly lower amount of IL17A upon CD3/28 stimulation compared to the individuals carrying rs8193036TT genotypes. Functional assay by reporter luciferase activity and EMSA demonstrated that rs8193036C exhibited significantly lower promotor transcription activities. In conclusion, our study confirmed that IL17A (rs8193036) is a functional SNP that could regulate gene expression though influencing transcription factor binding activity.
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Guofang Deng
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Guoliang Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China
| | - Ziqi Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fan Yang
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jianyong Chen
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Cai
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany.
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China; Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection & Immunity, Shenzhen Third People's Hospital, Shenzhen, China.
| |
Collapse
|
47
|
Differed IL-1 Beta Response between Active TB and LTBI Cases by Ex Vivo Stimulation of Human Monocyte-Derived Macrophage with TB-Specific Antigen. DISEASE MARKERS 2019; 2019:7869576. [PMID: 31781307 PMCID: PMC6875314 DOI: 10.1155/2019/7869576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 01/09/2023]
Abstract
Background The difference of macrophage-specific interleukin-1 beta (IL-1b) response between latent tuberculosis infection (LTBI) and active tuberculosis (TB) remains less studied. Method We performed this prospective study and recruited active TB patients, contacts with LTBI, and uninfected contacts. The gene and protein expression of human monocyte-derived macrophage (hMDM) after ex vivo stimulation by early secretory antigenic target-6KD (ESAT-6) and tuberculin purified protein derivatives (PPD) was studied by real-time PCR and flow cytometry. The effect of caspase-1 inhibitor was also studied. Result The IL-1b gene expression after 6 hr ESAT-6 1 μg/ml stimulation was different among active TB patients (n = 12), LTBI cases (n = 12), and uninfected contacts (n = 23) (log fold change: 0.98 ± 1.26 vs. 2.20 ± 0.96 vs. 2.20 ± 0.96, P = 0.013). The IL-1b gene expression at 24 hours was higher than that at 6 hours in LTBI cases (n = 4) and uninfected contacts (n = 6). After 24 hr ESAT-6 1 μg/ml stimulation, the percentage of IL-1b-expressed hMDM was borderline lower in the active TB patients (n = 9) than in the LTBI cases (n = 10) (14.0 ± 11.2% vs. 31.6 ± 22.5%, P = 0.065). Compared with ESAT-6 1 μg/ml stimulation but without the addition of caspase-1 inhibitor (CasI) (55.6 ± 16.3%), the percentage of IL-1b-positive hMDMs decreased after addition of CasI (50 μg/ml CasI: 49.8 ± 18.2%, P = 0.078; 100 μg/ml CasI: 46.6 ± 20.8%, P = 0.030; 150 μg/ml CasI: 33.7 ± 15.5%, P = 0.016). Conclusions This study revealed that macrophage-specific IL-1b response differed among different stages of Mycobacterium tuberculosis infection. The role of IL-1b and inflammasome in the process of LTBI progressing to active TB warrants further investigation.
Collapse
|
48
|
Korneev KV, Sviriaeva EN, Mitkin NA, Gorbacheva AM, Uvarova AN, Ustiugova AS, Polanovsky OL, Kulakovskiy IV, Afanasyeva MA, Schwartz AM, Kuprash DV. Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165626. [PMID: 31785408 DOI: 10.1016/j.bbadis.2019.165626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Toll-like receptor 4 (TLR4) is an innate immunity receptor predominantly expressed on myeloid cells and involved in the development of various diseases, many of them with complex genetics. Here we present data on functionality of single nucleotide polymorphism rs7873784 located in the 3'-untranslated region (3'-UTR) of TLR4 gene and associated with various pathologies involving chronic inflammation. We demonstrate that TLR4 3'-UTR strongly enhanced the activity of TLR4 promoter in U937 human monocytic cell line while minor rs7873784(C) allele created a binding site for transcription factor PU.1 (encoded by SPI1 gene), a known regulator of TLR4 expression. Increased binding of PU.1 further augmented the TLR4 transcription while PU.1 knockdown or complete disruption of the PU.1 binding site abrogated the effect. We hypothesize that additional functional PU.1 site may increase TLR4 expression in individuals carrying minor C variant of rs7873784 and modulate the development of certain pathologies, such as rheumatoid arthritis and type-2 diabetes mellitus.
Collapse
Affiliation(s)
- Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina N Sviriaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikita A Mitkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alisa M Gorbacheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Oleg L Polanovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
49
|
Li G, Yang F, He X, Liu Z, Pi J, Zhu Y, Ke X, Liu S, Ou M, Guo H, Zhang Z, Zeng G, Zhang G. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients. Microbes Infect 2019; 22:119-126. [PMID: 31678658 DOI: 10.1016/j.micinf.2019.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
CD4+/CD8+ T cells play a major role in conferring immune protection against tuberculosis (TB), but it remains unknown how the immune responses of CD4+/CD8+ T cells exactly correlate with the clinical variables and disease statuses during anti-TB chemotherapy. To address this, several major immune parameters of CD4+/CD8+ T cells in peripheral blood derived from pulmonary TB patients and healthy volunteers were evaluated. We observed that active TB infection induced lower CD3+ T cell and CD4+ T cell levels but higher CD8+T cell levels, while anti-TB chemotherapy reversed these effects. Also, anti-TB treatment induced enhanced production of IL-2 and IFN-γ but reduced expression of IL-10 and IL-6. Moreover, the dynamic changes of CD3, CD4, and CD8 levels did not show a significant association with sputum smear positivity. However, the frequencies of IL-2+CD4+ or IL-10 + CD4+ T effector subpopulation or IL-1β production in peripheral blood showed significant difference between patients positive for sputum smear and patients negative for sputum smear after anti-TB treatment. These findings implicated that recovery of Th1/CD8+T cell effector levels might be critical immunological events in pulmonary TB patients after treatment and further suggested the importance of these immunological parameters as potential biomarkers for prediction of TB progress and prognosis.
Collapse
Affiliation(s)
- Guobao Li
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Fang Yang
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xing He
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zhi Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Jiang Pi
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xue Ke
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shuyan Liu
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Min Ou
- Department of Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Huixin Guo
- National Clinical Research Center for Tuberculosis and Guangdong Center for Tuberculosis Control, Guangzhou, 510430, China
| | - Zhuoran Zhang
- Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, 92618, USA
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guoliang Zhang
- National Clinical Research Center for Tuberculosis, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China.
| |
Collapse
|
50
|
Delgobo M, Mendes DA, Kozlova E, Rocha EL, Rodrigues-Luiz GF, Mascarin L, Dias G, Patrício DO, Dierckx T, Bicca MA, Bretton G, Tenório de Menezes YK, Starick MR, Rovaris D, Del Moral J, Mansur DS, Van Weyenbergh J, Báfica A. An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte expansion and tuberculosis severity in humans. eLife 2019; 8:47013. [PMID: 31637998 PMCID: PMC6819084 DOI: 10.7554/elife.47013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
Monocyte counts are increased during human tuberculosis (TB) but it has not been determined whether Mycobacterium tuberculosis (Mtb) directly regulates myeloid commitment. We demonstrated that exposure to Mtb directs primary human CD34+ cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast, Mtb enhanced IL-6 responses by CD34+ cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloid IL-6/IL6R/CEBP gene module associated with disease severity. Furthermore, genetic and functional analysis revealed the IL6/IL6R/CEBP gene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggest Mtb co-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.
Collapse
Affiliation(s)
- Murilo Delgobo
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel Agb Mendes
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edgar Kozlova
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz Rocha
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Boston Children's Hospital, Boston, United States
| | - Gabriela F Rodrigues-Luiz
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucas Mascarin
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Dias
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel O Patrício
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tim Dierckx
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Maíra A Bicca
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gaëlle Bretton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
| | - Yonne Karoline Tenório de Menezes
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márick R Starick
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Darcita Rovaris
- Laboratório Central do Estado de Santa Catarina/LACEN, Florianópolis, Brazil
| | - Joanita Del Moral
- Serviço de Hematologia, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daniel S Mansur
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - André Báfica
- Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|