1
|
Aleixo-Silva RL, Domingos RM, Trujillo M, Gomes F, Machado LO, Oliveira CLP, Baldini R, Netto LES. Interaction between 1-Cys peroxiredoxin and ascorbate in the response to H 2O 2 exposure in Pseudomonas aeruginosa. Redox Biol 2025; 84:103658. [PMID: 40367862 DOI: 10.1016/j.redox.2025.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Pseudomonas aeruginosa, a leading cause of hospital-acquired infections, triggers host defenses, including oxidant release by phagocytes. Targeting bacterial antioxidants could reduce pathogen infectivity. This study investigates LsfA, a 1-Cys peroxiredoxin (Prx), member of the Prx6 subfamily, involved in P. aeruginosa virulence. LsfA efficiently reduced various peroxides (106-107 M-1s-1), while exhibiting hyperoxidation resistance (khyperoxidation ∼102 M-1s-1). Despite its substrate oxidizing promiscuity, LsfA displayed specific reduction by ascorbate (2.2 × 103 M-1s-1). Moreover, elucidating the LsfA's crystallographic structures in the reduced and sulfinic/sulfonic acid states at 2.4 and 2.0 Å resolutions unveiled possible residues related to ascorbate binding. Small-angle X-ray scattering (SAXS) and size-exclusion chromatography (SEC) confirmed LsfA as a dimer regardless of its oxidative state. Microbiological assays, including a real-time analysis employing Hyper7, a genetically encoded probe, showed that ascorbate enhanced H2O2 removal in a LsfA-dependent manner. Hence, our integrated structural, biochemical, and microbiological analyses underscored the significance of the ascorbate-LsfA pathway in P. aeruginosa response to H2O2.
Collapse
Affiliation(s)
- Rogerio L Aleixo-Silva
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Renato M Domingos
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina y Centro de Investigaciones Biomédicas, Universidad de la República, Uruguay
| | - Fernando Gomes
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | | | | | - Regina Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Luis E S Netto
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
2
|
Ricardi MM, Tribelli PM, Costa CS, Pezzoni M. Global transcriptional response of Pseudomonas aeruginosa to UVA radiation. Photochem Photobiol Sci 2024; 23:2029-2044. [PMID: 39470974 DOI: 10.1007/s43630-024-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.
Collapse
Affiliation(s)
- Martiniano M Ricardi
- IFIByNE (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN (CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Bhardwaj RG, Khalaf ME, Karched M. Secretome analysis and virulence assessment in Abiotrophia defectiva. J Oral Microbiol 2024; 16:2307067. [PMID: 38352067 PMCID: PMC10863525 DOI: 10.1080/20002297.2024.2307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Abiotrophia defectiva, although infrequently occurring, is a notable cause of culture-negative infective endocarditis with limited research on its virulence. Associated with oral infections such as dental caries, exploring its secretome may provide insights into virulence mechanisms. Our study aimed to analyze and characterize the secretome of A. defectiva strain CCUG 27639. Methods Secretome of A. defectiva was prepared from broth cultures and subjected to mass spectrometry and proteomics for protein identification. Inflammatory potential of the secretome was assessed by ELISA. Results Eighty-four proteins were identified, with diverse subcellular localizations predicted by PSORTb. Notably, 20 were cytoplasmic, 12 cytoplasmic membrane, 5 extracellular, and 9 cell wall-anchored proteins. Bioinformatics tools revealed 54 proteins secreted via the 'Sec' pathway and 8 via a non-classical pathway. Moonlighting functions were found in 23 proteins, with over 20 exhibiting potential virulence properties, including peroxiredoxin and oligopeptide ABC transporter substrate-binding protein. Gene Ontology and KEGG analyses categorized protein sequences in various pathways. STRING analysis revealed functional protein association networks. Cytokine profiling demonstrated significant proinflammatory cytokine release (IL-8, IL-1β, and CCL5) from human PBMCs. Conclusions Our study provides a comprehensive understanding of A. defectiva's secretome, laying the foundation for insights into its pathogenicity.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| | - Mai E Khalaf
- Department of General Dental Practice, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
4
|
Hussein MJ, Hadwan MH. Fluorometric Protocol for Estimating Peroxiredoxin Activity in Biological Tissues. J Fluoresc 2023; 33:721-730. [PMID: 36508000 DOI: 10.1007/s10895-022-03111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
This protocol describes a detailed fluorometric method for measuring peroxiredoxin (Prx) enzyme activity in vitro. Peroxide dissociation is the rate-limiting step in the Prx-controlled enzymatic reaction. To prevent interference by the catalase enzyme, we developed a peroxiredoxin assay that measures Prx activity using the substrate tert-Butyl hydroperoxide (t-BOOH). Prx enzyme activity is measured by incubating the enzymatic substrates 1,4-dithio-DL-threitol (DTT) and t-BOOH in a suitable buffer at 37 °C for 10 min in the presence of the desired volume of Prx enzyme. Next, the reagent N-(9-Acridinyl)maleimide (NAM) is used to stop the enzymatic reaction and form a fluorescent end product. Finally, Prx activity is measured by thiol fluorometry using a Box-Behnken design to optimize reaction conditions. This novel protocol was validated by evaluating Prx activity in matched samples against a reference assay. The correlation coefficient between our protocol and the reference assay was 0.9933, demonstrating its precision compared with existing methods. The NAM-Prx protocol instead uses t-BOOH as a substrate to measure Prx activity. Because catalase does not participate in the dissociation of t-BOOH, this approach does not require sodium azide. Furthermore, the method eliminates the need for concentrated acids to terminate the Prx enzymatic reaction since the NAM reagent can inhibit the enzymatic reaction regulated by the Prx enzyme.
Collapse
Affiliation(s)
- Marwah Jaber Hussein
- Chemistry Department, College of Science, University of Babylon, 51002, Hilla City, Babylon Governorate, PO, Iraq
| | - Mahmoud Hussein Hadwan
- Chemistry Department, College of Science, University of Babylon, 51002, Hilla City, Babylon Governorate, PO, Iraq.
| |
Collapse
|
5
|
Avendaño R, Muñoz-Montero S, Rojas-Gätjens D, Fuentes-Schweizer P, Vieto S, Montenegro R, Salvador M, Frew R, Kim J, Chavarría M, Jiménez JI. Production of selenium nanoparticles occurs through an interconnected pathway of sulphur metabolism and oxidative stress response in Pseudomonas putida KT2440. Microb Biotechnol 2023; 16:931-946. [PMID: 36682039 PMCID: PMC10128140 DOI: 10.1111/1751-7915.14215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/23/2023] Open
Abstract
The soil bacterium Pseudomonas putida KT2440 has been shown to produce selenium nanoparticles aerobically from selenite; however, the molecular actors involved in this process are unknown. Here, through a combination of genetic and analytical techniques, we report the first insights into selenite metabolism in this bacterium. Our results suggest that the reduction of selenite occurs through an interconnected metabolic network involving central metabolic reactions, sulphur metabolism, and the response to oxidative stress. Genes such as sucA, D2HGDH and PP_3148 revealed that the 2-ketoglutarate and glutamate metabolism is important to convert selenite into selenium. On the other hand, mutations affecting the activity of the sulphite reductase decreased the bacteria's ability to transform selenite. Other genes related to sulphur metabolism (ssuEF, sfnCE, sqrR, sqr and pdo2) and stress response (gqr, lsfA, ahpCF and sadI) were also identified as involved in selenite transformation. Interestingly, suppression of genes sqrR, sqr and pdo2 resulted in the production of selenium nanoparticles at a higher rate than the wild-type strain, which is of biotechnological interest. The data provided in this study brings us closer to understanding the metabolism of selenium in bacteria and offers new targets for the development of biotechnological tools for the production of selenium nanoparticles.
Collapse
Affiliation(s)
- Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | | | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, San José, Costa Rica
| | - Sofía Vieto
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Rafael Montenegro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica
| | - Manuel Salvador
- Biotechnology Applications, IDENER Research & Development, Seville, Spain
| | - Rufus Frew
- Department of Chemistry, University of Leicester, Leicester, UK
| | - Juhyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu, Korea
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José, Costa Rica.,Escuela de Química, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Jose I Jiménez
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
6
|
Lee J, Choi J, Lee J, Cho Y, Kang IJ, Han SW. Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions. THE PLANT PATHOLOGY JOURNAL 2022; 38:410-416. [PMID: 35953061 PMCID: PMC9372105 DOI: 10.5423/ppj.nt.05.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.
Collapse
Affiliation(s)
- Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Junhyeok Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jeongwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Yongmin Cho
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
7
|
Octaviano CE, Abrantes NE, Puccia R. Extracellular Vesicles From Paracoccidioides brasiliensis Can Induce the Expression of Fungal Virulence Traits In Vitro and Enhance Infection in Mice. Front Cell Infect Microbiol 2022; 12:834653. [PMID: 35295759 PMCID: PMC8918656 DOI: 10.3389/fcimb.2022.834653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cellular components involved in cargo delivery to the extracellular environment, including the fungal cell wall. Their importance in cell–cell communication, cell wall remodeling, and fungal virulence is starting to be better explored. In the human pathogenic Paracoccidioides spp., our group has pioneered the description of the EV secretome, carbohydrate cargo, surface oligosaccharide ligands, lipid, and RNA content. Presently, we studied the role of fungal EVs in the context of the virulent/attenuated model of the P. brasiliensis Pb18 isolate, which consists of variants transiently displaying higher (vPb18) or attenuated (aPb18) virulence capacity. In this model, the virulence traits can be recovered through passages of aPb18 in mice. Here, we have been able to revert the aPb18 sensitivity to growth under oxidative and nitrosative stress upon previous co-incubation with vEVs from virulent vPb18. That was probably due to the expression of antioxidant molecules, considering that we observed increased gene expression of the alternative oxidase AOX and peroxiredoxins HYR1 and PRX1, in addition to higher catalase activity. We showed that aEVs from aPb18 stimulated macrophages of the RAW 264.7 and bone marrow-derived types to express high levels of inflammatory mediators, specifically, TNF-α, IL-6, MCP-1, and NO. In our experimental conditions, subcutaneous treatment with EVs (three doses, 7-day intervals) before vPb18 challenge exacerbated murine PCM, as concluded by higher colony-forming units in the lungs after 30 days of infection and histopathology analysis. That effect was largely pronounced after treatment with aEVs, probably because the lung TNF-α, IFN-γ, IL-6, and MCP-1 concentrations were specially increased in aEV-treated when compared with vEV-treated mice. Our present studies were performed with EVs isolated from yeast cell washes of confluent cultures in Ham’s F-12 defined medium. Under these conditions, vEVs and aEVs have similar sizes but probably distinct cargo, considering that vEVs tended to aggregate upon storage at 4°C and −20°C. Additionally, aEVs have decreased amounts of carbohydrate and protein. Our work brings important contribution to the understanding of the role of fungal EVs in cell–cell communication and on the effect of EVs in fungal infection, which clearly depends on the experimental conditions because EVs are complex and dynamic structures.
Collapse
|
8
|
Gu H, Cai X, Zhang X, Luo J, Zhang X, Hu X, Cai W, Li G. A previously uncharacterized two-component signaling system in uropathogenic Escherichia coli coordinates protection against host-derived oxidative stress with activation of hemolysin-mediated host cell pyroptosis. PLoS Pathog 2021; 17:e1010005. [PMID: 34653218 PMCID: PMC8550376 DOI: 10.1371/journal.ppat.1010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/27/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) deploy an array of virulence factors to successfully establish urinary tract infections. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Two-component signaling systems (TCSs) are a major mechanism by which bacteria sense environmental cues and respond by initiating adaptive responses. Here, we began this study by characterizing a novel TCS (C3564/C3565, herein renamed orhK/orhR for oxidative resistance and hemolysis kinase/regulator) that is encoded on a UPEC pathogenicity island, using bioinformatic and biochemical approaches. A prevalence analysis indicates that orhK/orhR is highly associated with the UPEC pathotype, and it rarely occurs in other E. coli pathotypes tested. We then demonstrated that OrhK/OrhR directly activates the expression of a putative methionine sulfoxide reductase system (C3566/C3567) and hemolysin (HlyA) in response to host-derived hydrogen peroxide (H2O2) exposure. OrhK/OrhR increases UPEC resistance to H2O2in vitro and survival in macrophages in cell culture via C3566/C3567. Additionally, OrhK/OrhR mediates hemolysin-induced renal epithelial cell and macrophage death via a pyroptosis pathway. Reducing intracellular H2O2 production by a chemical inhibitor impaired OrhK/OrhR-mediated activation of c3566-c3567 and hlyA. We also uncovered that UPEC links the two key virulence traits by cotranscribing the c3566-c3567 and hlyCABD operons. Taken together, our data suggest a paradigm in which a signal transduction system coordinates both bacterial pathogen defensive and offensive traits in the presence of host-derived signals; and this exquisite mechanism likely contributes to hemolysin-induced severe pathological outcomes. Uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections, and approximately half of UPEC isolates produce a pore-forming toxin, hemolysin. Clinically, hemolysin carriage is associated with severe pathology and symptoms during UPEC infections. However, overexpression of hemolysin can be detrimental to UPEC colonization. Therefore, fine-tuning of hemolysin expression in response to in vivo-relevant signals is critical for optimal UPEC fitness in the urinary tract. In this study, we describe a virulence strategy employed by UPEC, i.e., the bacteria use a two-component signaling (TCS) system to coordinate oxidative stress resistance and hemolysin-mediated pyroptosis of host cells in response to host-derived oxidative signals. The TCS achieves this coordination by cotranscribing genes encoding the oxidative stress resistance and the hemolysin. As a result, UPEC is able to link defense to offense, and this exquisite virulence mechanism likely contributes to UPEC fitness in vivo and hemolysin-induced severe pathological outcomes.
Collapse
Affiliation(s)
- Hongwei Gu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuwang Cai
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinyang Zhang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Luo
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Xiaoyang Zhang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Hu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (WC); (GL)
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail: (WC); (GL)
| |
Collapse
|
9
|
Rocha LS, Silva BPD, Correia TML, Silva RPD, Meireles DDA, Pereira R, Netto LES, Meotti FC, Queiroz RF. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence. Redox Biol 2021; 46:102075. [PMID: 34315109 PMCID: PMC8327333 DOI: 10.1016/j.redox.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium in patients with cystic fibrosis and hospital acquired infections. It presents a plethora of virulence factors and antioxidant enzymes that help to subvert the immune system. In this study, we identified the 2-Cys peroxiredoxin, alkyl-hydroperoxide reductase C1 (AhpC1), as a relevant scavenger of oxidants generated during inflammatory oxidative burst and a mechanism of P. aeruginosa (PA14) escaping from killing. Deletion of AhpC1 led to a higher sensitivity to hypochlorous acid (HOCl, IC50 3.2 ± 0.3 versus 19.1 ± 0.2 μM), hydrogen peroxide (IC50 91.2 ± 0.3 versus 496.5 ± 6.4 μM) and the organic peroxide urate hydroperoxide. ΔahpC1 strain was more sensitive to the killing by isolated neutrophils and less virulent in a mice model of infection. All mice intranasally instilled with ΔahpC1 survived as long as they were monitored (15 days), whereas 100% wild-type and ΔahpC1 complemented with ahpC1 gene (ΔahpC1 attB:ahpC1) died within 3 days. A significantly lower number of colonies was detected in the lung and spleen of ΔahpC1-infected mice. Total leucocytes, neutrophils, myeloperoxidase activity, pro-inflammatory cytokines, nitrite production and lipid peroxidation were much lower in lungs or bronchoalveolar liquid of mice infected with ΔahpC1. Purified AhpC neutralized the inflammatory organic peroxide, urate hydroperoxide, at a rate constant of 2.3 ± 0.1 × 106 M-1s-1, and only the ΔahpC1 strain was sensitive to this oxidant. Incubation of neutrophils with uric acid, the urate hydroperoxide precursor, impaired neutrophil killing of wild-type but improved the killing of ΔahpC1. Hyperuricemic mice presented higher levels of serum cytokines and succumbed much faster to PA14 infection when compared to normouricemic mice. In summary, ΔahpC1 PA14 presented a lower virulence, which was attributed to a poorer ability to neutralize the oxidants generated by inflammatory oxidative burst, leading to a more efficient killing by the host. The enzyme is particularly relevant in detoxifying the newly reported inflammatory organic peroxide, urate hydroperoxide.
Collapse
Affiliation(s)
- Leonardo Silva Rocha
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil
| | | | - Thiago M L Correia
- Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil
| | | | - Diogo de Abreu Meireles
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Rafael Pereira
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Programa Multicêntrico de Pós-graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar de Saúde, Universidade Federal da Bahia, Brazil; Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Flavia Carla Meotti
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| | - Raphael Ferreira Queiroz
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Universidade Estadual do Sudoeste da Bahia, Brazil; Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Brazil.
| |
Collapse
|
10
|
Relevance of peroxiredoxins in pathogenic microorganisms. Appl Microbiol Biotechnol 2021; 105:5701-5717. [PMID: 34258640 DOI: 10.1007/s00253-021-11360-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establishment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural peculiarities that differentiate them from the host's isoforms. In this context, the intrinsic characteristics of these enzymes may aid the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines. KEY POINTS: • Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress. • Functional and structural peculiarities differ pathogen and host enzymes. • Peroxiredoxins are potential targets to microbicidal drugs.
Collapse
|
11
|
Identification of two fnr genes and characterisation of their role in the anaerobic switch in Sphingopyxis granuli strain TFA. Sci Rep 2020; 10:21019. [PMID: 33273546 PMCID: PMC7713065 DOI: 10.1038/s41598-020-77927-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Sphingopyxis granuli strain TFA is able to grow on the organic solvent tetralin as the only carbon and energy source. The aerobic catabolic pathway for tetralin, the genes involved and their regulation have been fully characterised. Unlike most of the bacteria belonging to the sphingomonads group, this strain is able to grow in anoxic conditions by respiring nitrate, though not nitrite, as the alternative electron acceptor. In this work, two fnr-like genes, fnrN and fixK, have been identified in strain TFA. Both genes are functional in E. coli and Sphingopyxis granuli although fixK, whose expression is apparently activated by FnrN, seems to be much less effective than fnrN in supporting anaerobic growth. Global transcriptomic analysis of a ΔfnrN ΔfixK double mutant and identification of Fnr boxes have defined a minimal Fnr regulon in this bacterium. However, expression of a substantial number of anaerobically regulated genes was not affected in the double mutant. Additional regulators such regBA, whose expression is also activated by Fnr, might also be involved in the anaerobic response. Anaerobically induced stress response genes were not regulated by Fnr but apparently induced by stress conditions inherent to anaerobic growth, probably due to accumulation of nitrite and nitric oxide.
Collapse
|
12
|
Anschau V, Ferrer-Sueta G, Aleixo-Silva RL, Bannitz Fernandes R, Tairum CA, Tonoli CCC, Murakami MT, de Oliveira MA, Netto LES. Reduction of sulfenic acids by ascorbate in proteins, connecting thiol-dependent to alternative redox pathways. Free Radic Biol Med 2020; 156:207-216. [PMID: 32615144 DOI: 10.1016/j.freeradbiomed.2020.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Sulfenic acids are the primary product of thiol oxidation by hydrogen peroxide and other oxidants. Several aspects of sulfenic acid formation through thiol oxidation were established recently. In contrast, the reduction of sulfenic acids is still scarcely investigated. Here, we characterized the kinetics of the reduction of sulfenic acids by ascorbate in several proteins. Initially, we described the crystal structure of our model protein (Tsa2-C170S). There are other Tsa2 structures in distinct redox states in public databases and all of them are decamers, with the peroxidatic cysteine very accessible to reductants, convenient features to investigate kinetics. We determined that the reaction between Tsa2-C170S-Cys-SOH and ascorbate proceeded with a rate constant of 1.40 ± 0.08 × 103 M-1 s-1 through a competition assay developed here, employing 2,6-dichlorophenol-indophenol (DCPIP). A series of peroxiredoxin enzymes (Prx6 sub family) were also analyzed by this competition assay and we observed that the reduction of sulfenic acids by ascorbate was in the 0.4-2.2 × 103 M-1 s-1 range. We also evaluated the same reaction on glyceraldehyde 3-phosphate dehydrogenase and papain, as the reduction of their sulfenic acids by ascorbate were reported previously. Once again, the rate constants are in the 0.4-2.2 × 103 M-1 s-1 range. We also analyzed the reduction of Tsa2-C170S-SOH by ascorbate by a second, independent method, following hydrogen peroxide reduction through a specific electrode (ISO-HPO-2, World Precision Instruments) and employing a bi-substrate, steady state approach. The kcat/KMAsc was 7.4 ± 0.07 × 103 M-1 s-1, which was in the same order of magnitude as the value obtained by the DCPIP competition assay. In conclusion, our data indicates that reduction of sulfenic acid in various proteins proceed at moderate rate and probably this reaction is more relevant in biological systems where ascorbate concentrations are high.
Collapse
Affiliation(s)
- Valesca Anschau
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de La República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Rogerio Luis Aleixo-Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Renata Bannitz Fernandes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Carlos A Tairum
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Biorenewables National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory, National Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil.
| |
Collapse
|
13
|
Li CC, Yang MJ, Yang J, Kang M, Li T, He LH, Song YJ, Zhu YB, Zhao NL, Zhao C, Huang Q, Mou XY, Li H, Tong AP, Tang H, Bao R. Structural and biochemical analysis of 1-Cys peroxiredoxin ScPrx1 from Saccharomyces cerevisiae mitochondria. Biochim Biophys Acta Gen Subj 2020; 1864:129706. [PMID: 32805320 DOI: 10.1016/j.bbagen.2020.129706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND ScPrx1 is a yeast mitochondrial 1-Cys peroxiredoxins (Prx), a type of Prx enzyme which require thiol-containing reducing agents to resolve its peroxidatic cysteine. ScPrx1 plays important role in protection against oxidative stress. Mitochondrial thioredoxin ScTrx3 and glutathione have been reported to be the physiological electron donor for ScPrx1. However, the mechanism underlying their actions, especially the substrate recognition of ScPrx1 requires additional elucidation. METHODS The structure of ScPrx1 was obtained through crystallization experiments. The oligomeric state of ScPrx1 was monitored by Blue-Native PAGE. Mutations were generated by the QuikChange PCR-based method. The ScPrx1 activity assay was carried out by measuring the change of 340 nm absorption of the NADPH oxidation. RESULTS ScPrx1 exist as a homodimer in solution. The structure adopts a typical Prx-fold core which is preceded by an N-terminal β-hairpin and has a C-terminal extension. Mutations (Glu94Ala, Arg198Ala and Trp126) close to the active site could enhance the catalytic efficiency of ScPrx1 while His83Ala and mutations on α4-β6 region exhibited reduced activity. The biochemical data also show that the deletion or mutations on ScPrx1 C-terminal have 2-4.56 fold increased activity. CONCLUSION We inferred that conformational changes of ScPrx1 C-terminal segment were important for its reaction, and the α4-β6 loop regions around the ScPrx1 active sites were important for the catalytic function of ScPrx1. Collectively, these structural features provides a basis for understanding the diverse reductant species usage in different 1-Cys Prxs.
Collapse
Affiliation(s)
- Chang-Cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Mei-Jia Yang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Jing Yang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Mei Kang
- Department of Laboratory medicine, West, China Hospital, Sichuan University
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Li-Hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Ying-Jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Yi-Bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Ning-Lin Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Chang Zhao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Qin Huang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Xing-Yu Mou
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Hong Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Ai-Ping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Hong Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West, China Hospital, Sichuan University and Collaborative Innovation Center.
| |
Collapse
|
14
|
Longo LVG, Breyer CA, Novaes GM, Gegembauer G, Leitão NP, Octaviano CE, Toyama MH, de Oliveira MA, Puccia R. The Human Pathogen Paracoccidioides brasiliensis Has a Unique 1-Cys Peroxiredoxin That Localizes Both Intracellularly and at the Cell Surface. Front Cell Infect Microbiol 2020; 10:394. [PMID: 32850492 PMCID: PMC7417364 DOI: 10.3389/fcimb.2020.00394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus that causes systemic paracoccidioidomycosis, a granulomatous disease. The massive production of reactive oxygen species (ROS) by the host's cellular immune response is an essential strategy to restrain the fungal growth. Among the ROS, the hydroperoxides are very toxic antimicrobial compounds and fungal peroxidases are part of the pathogen neutralizing antioxidant arsenal against the host's defense. Among them, the peroxiredoxins are highlighted, since some estimates suggest that they are capable of decomposing most of the hydroperoxides generated in the host's mitochondria and cytosol. We presently characterized a unique P. brasiliensis 1-Cys peroxiredoxin (PbPrx1). Our results reveal that it can decompose hydrogen peroxide and organic hydroperoxides very efficiently. We showed that dithiolic, but not monothiolic compounds or heterologous thioredoxin reductant systems, were able to retain the enzyme activity. Structural analysis revealed that PbPrx1 has an α/β structure that is similar to the 1-Cys secondary structures described to date and that the quaternary conformation is represented by a dimer, independently of the redox state. We investigated the PbPrx1 localization using confocal microscopy, fluorescence-activated cell sorter, and immunoblot, and the results suggested that it localizes both in the cytoplasm and at the cell wall of the yeast and mycelial forms of P. brasiliensis, as well as in the yeast mitochondria. Our present results point to a possible role of this unique P. brasiliensis 1-Cys Prx1 in the fungal antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Larissa Valle Guilhen Longo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos Alexandre Breyer
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Gabriela Machado Novaes
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Gregory Gegembauer
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natanael Pinheiro Leitão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla Elizabete Octaviano
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | | | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Domingos RM, Teixeira RD, Zeida A, Agudelo WA, Alegria TGP, da Silva Neto JF, Vieira PS, Murakami MT, Farah CS, Estrin DA, Netto LES. Substrate and Product-Assisted Catalysis: Molecular Aspects behind Structural Switches along Organic Hydroperoxide Resistance Protein Catalytic Cycle. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Renato M. Domingos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Raphael D. Teixeira
- Departamento de Biociências, Instituto de Quı́mica, Universidade de São Paulo, 05508-000 Sao Paulo, Brazil
| | - Ari Zeida
- Departamento de Quı́mica Inorgánica Analı́tica y Quı́mica Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - William A. Agudelo
- Departamento de Quı́mica Inorgánica Analı́tica y Quı́mica Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Thiago G. P. Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - José F. da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Biociências, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14040-900 São Paulo, Brazil
| | - Plínio S. Vieira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil
| | - Mario T. Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil
| | - Chuck S. Farah
- Departamento de Biociências, Instituto de Quı́mica, Universidade de São Paulo, 05508-000 Sao Paulo, Brazil
| | - Dario A. Estrin
- Departamento de Quı́mica Inorgánica Analı́tica y Quı́mica Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Luis E. S. Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| |
Collapse
|
16
|
Aljannat MAK, Oldfield NJ, Albasri HM, Dorrington LKG, Ohri RL, Wooldridge KG, Turner DPJ. The moonlighting peroxiredoxin-glutaredoxin in Neisseria meningitidis binds plasminogen via a C-terminal lysine residue and contributes to survival in a whole blood model. Microb Pathog 2019; 139:103890. [PMID: 31765768 DOI: 10.1016/j.micpath.2019.103890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/24/2023]
Abstract
Neisseria meningitidis is a human-restricted bacterium that can invade the bloodstream and cross the blood-brain barrier resulting in life-threatening sepsis and meningitis. Meningococci express a cytoplasmic peroxiredoxin-glutaredoxin (Prx5-Grx) hybrid protein that has also been identified on the bacterial surface. Here, recombinant Prx5-Grx was confirmed as a plasminogen (Plg)-binding protein, in an interaction which could be inhibited by the lysine analogue ε-aminocapronic acid. rPrx5-Grx derivatives bearing a substituted C-terminal lysine residue (rPrx5-GrxK244A), but not the active site cysteine residue (rPrx5-GrxC185A) or the sub-terminal rPrx5-GrxK230A lysine residue, exhibited significantly reduced Plg-binding. The absence of Prx5-Grx did not significantly reduce the ability of whole meningococcal cells to bind Plg, but under hydrogen peroxide-mediated oxidative stress, the N. meningitidis Δpxn5-grx mutant survived significantly better than the wild-type or complemented strains. Significantly, using human whole blood as a model of meningococcal bacteremia, it was found that the N. meningitidis Δpxn5-grx mutant had a survival defect compared with the parental or complemented strain, confirming an important role for Prx5-Grx in meningococcal pathogenesis.
Collapse
Affiliation(s)
- Mahab A K Aljannat
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Neil J Oldfield
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hibah M Albasri
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Radhica L Ohri
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Karl G Wooldridge
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David P J Turner
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
17
|
Khan MM, Chattagul S, Tran BQ, Freiberg JA, Nita-Lazar A, Shirtliff ME, Sermswan RW, Ernst RK, Goodlett DR. Temporal proteomic profiling reveals changes that support Burkholderia biofilms. Pathog Dis 2019; 77:ftz005. [PMID: 30759239 PMCID: PMC6482045 DOI: 10.1093/femspd/ftz005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Melioidosis associated with opportunistic pathogen Burkholderia pseudomallei imparts a huge medical burden in Southeast Asia and Australia. At present there is no available human vaccine that protects against B. pseudomallei infection and antibiotic treatments are limited particularly for drug-resistant strains and bacteria in biofilm forms. Biofilm forming bacteria exhibit phenotypic features drastically different to their planktonic states, often exhibiting a diminished response to antimicrobial therapies. Our earlier work on global profiling of bacterial biofilms using transcriptomics and proteomics revealed transcript-decoupled protein abundance in bacterial biofilms. Here we employed reverse phase liquid chromatography tandem mass spectrometry (LC-MS/MS) to deduce temporal proteomic differences in planktonic and biofilm forms of Burkholderia thailandensis, which is weakly surrogate model of pathogenic B. pseudomallei as sharing a key element in genomic similarity. The proteomic analysis of B. thailandensis in biofilm versus planktonic states revealed that proteome changes support biofilm survival through decreased abundance of metabolic proteins while increased abundance of stress-related proteins. Interestingly, the protein abundance including for the transcription protein TEX, outer periplasmic TolB protein, and the exopolyphosphatase reveal adaption in bacterial biofilms that facilitate antibiotic tolerance through a non-specific mechanism. The present proteomics study of B. thailandensis biofilms provides a global snapshot of protein abundance differences and antimicrobial sensitivities in planktonic and sessile bacteria.
Collapse
Affiliation(s)
- Mohd M Khan
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Supaksorn Chattagul
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jeffrey A Freiberg
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Rasana W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-308 Gdańsk, Poland
| |
Collapse
|
18
|
Non-Mammalian Prdx6 Enzymes (Proteins with 1-Cys Prdx Mechanism) Display PLA₂ Activity Similar to the Human Orthologue. Antioxidants (Basel) 2019; 8:antiox8030052. [PMID: 30832204 PMCID: PMC6466579 DOI: 10.3390/antiox8030052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Mammalian peroxiredoxin class 6 (Prdx6) are bifunctional enzymes. Non-mammalian Prdx6 enzymes display Cys-based peroxidase activity, but to date their putative phospholipase A2 (PLA2 activities) has not been experimentally investigated. Initially, we observed that five non-mammalian Prdx6 enzymes (enzymes from Arabidopsis thaliana (AtPER1), Triticum aestivum (TaPER1), Pseudomonas aeruginosa (PaLsfA) and Aspergillus fumigatus (AfPrx1 and AfPrxC)) present features compatible with PLA2 activities in mammalian Prdx6 by amino acid sequences alignment and tertiary structure modeling. Employing unilamellar liposomes with tracer amounts of [3H]-1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and thin layer chromatography, all the tested non-mammalian Prdx6 enzymes displayed PLA2 activities, with values ranging from 3.4 to 6.1 nmol/min/mg protein. It was previously shown that Thr177 phosphorylation of human Prdx6 increases its PLA2 activity, especially at neutral pH. Therefore, we investigated if human Erk2 kinase could also phosphorylate homologous Thr residues in non-mammalian Prdx6 proteins. We observed phosphorylation of the conserved Thr in three out of the five non-mammalian Prdx enzymes by mass spectrometry. In the case of the mitochondrial Prdx6 from A. fumigatus (AfPrxC), we also observed phosphorylation by western blot, and as a consequence, the PLA2 activity was increased in acidic and neutral conditions by the human Erk2 kinase treatment. The possible physiological meanings of these PLA2 activities described open new fields for future research.
Collapse
|
19
|
Medina A, García-Millán I, Martínez-Manazanares E, Moriñigo MA, Arijo S. Detection of specific immune response in sole (Solea senegalensis) against Photobacterium damselae subsp. piscicida antigens. FISH & SHELLFISH IMMUNOLOGY 2019; 86:942-946. [PMID: 30590157 DOI: 10.1016/j.fsi.2018.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The pathogenic bacteria Photobacterium damselae subsp. piscicida affects the development of Solea senegalensis culture. Vaccines made with inactivated cells have produced a relative protection against the sickness, however the administration of subcellular and purified antigens as vaccine could increase the effectiveness of the immune response. Thus, the aim of this work was the determination of antigens of P. damselae subsp. piscicida involved in the specific immune response of S. senegalensis. Fish were immunized by intraperitoneal injection (i.p.) with inactivated extracellular polymeric substances (ECP) and whole cells of P. damselae subsp. piscicida, and Freund's incomplete adjuvant. Two months later fish were boosted with the same antigens. Serum from fish was collected to determine by ELISA the title of antibodies against subcellular fractions of bacteria (ECP, capsule, outer membrane proteins, O antigen and formalized whole cells). Significant differences were found between control and immunized fish, but differences between first immunization and booster were only found for O antigen and capsule. Western blots derived from 2D-PAGE of ECP and Outer Membrane Proteins (OMP), using sole immunized serum, detected two high reactive antigens from ECP. Proteins were identified, by mass spectrometry, as ATP-dependent metalloprotease and Telurite resistance proteins. In the case of OMP, three antigenic proteins were detected and identified as Nrfa Y218f, Anti-oxidant AhpC/TSA, and a protein domain DNA binding heat shock related.
Collapse
Affiliation(s)
- A Medina
- Universidad de Málaga, Departamento de Microbiología, 29071, Málaga, Spain
| | - I García-Millán
- Universidad de Málaga, Departamento de Microbiología, 29071, Málaga, Spain
| | | | - M A Moriñigo
- Universidad de Málaga, Departamento de Microbiología, 29071, Málaga, Spain
| | - S Arijo
- Universidad de Málaga, Departamento de Microbiología, 29071, Málaga, Spain.
| |
Collapse
|
20
|
Jain M, Munoz-Bodnar A, Zhang S, Gabriel DW. A Secreted 'Candidatus Liberibacter asiaticus' Peroxiredoxin Simultaneously Suppresses Both Localized and Systemic Innate Immune Responses In Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1312-1322. [PMID: 29953333 DOI: 10.1094/mpmi-03-18-0068-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oxidative (H2O2) burst is a seminal feature of the basal plant defense response to attempted pathogen invasions. In 'Candidatus Liberibacter asiaticus' UF506, expression of the SC2 prophage-encoded secreted peroxidase (F489_gp15) increases bacterial fitness and delays symptom progression in citrus. Two chromosomal 1-Cys peroxiredoxin genes, CLIBASIA_RS00940 (Lasprx5) and CLIBASIA_RS00445 (Lasbcp), are conserved among all sequenced 'Ca. L. asiaticus' strains, including those lacking prophages. Both LasBCP and LasdPrx5 have only a single conserved peroxidatic Cys (CP/SH) and lack the resolving Cys (CR/SH). Lasprx5 appeared to be a housekeeping gene with similar moderate transcript abundance in both 'Ca. L. asiaticus'-infected psyllids and citrus. By contrast, Lasbcp was expressed only in planta, similar to the expression of the SC2 peroxidase. Since 'Ca. L. asiaticus' is uncultured, Lasbcp and Lasprx5 were functionally validated in a cultured surrogate species, Liberibacter crescens, and both genes significantly increased oxidative stress tolerance and cell viability in culture. LasBCP was nonclassically secreted and, in L. crescens, conferred 214-fold more resistance to tert-butyl hydroperoxide (tBOOH) than wild type. Transient overexpression of Lasbcp in tobacco suppressed H2O2-mediated transcriptional activation of RbohB, the key gatekeeper of the systemic plant defense signaling cascade. Lasbcp expression did not interfere with the perception of 'Ca. L. asiaticus' flagellin (flg22Las) but interrupted the downstream activation of RbohB and stereotypical deposition of callose in tobacco. Critically, LasBCP also protected against tBOOH-induced peroxidative degradation of lipid membranes in planta, preventing subsequent accumulation of antimicrobial oxylipins that can also trigger the localized hypersensitive cell death response.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | | | - Shujian Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
21
|
Analyses of the three 1-Cys Peroxiredoxins from Aspergillus fumigatus reveal that cytosolic Prx1 is central to H 2O 2 metabolism and virulence. Sci Rep 2018; 8:12314. [PMID: 30120327 PMCID: PMC6098058 DOI: 10.1038/s41598-018-30108-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Standing among the front defense strategies against pathogens, host phagocytic cells release various oxidants. Therefore, pathogens have to cope with stressful conditions at the site of infection. Peroxiredoxins (Prx) are highly reactive and abundant peroxidases that can support virulence and persistence of pathogens in distinct hosts. Here, we revealed that the opportunistic human pathogen A. fumigatus presents three 1-Cys Prx (Prx6 subfamily), which is unprecedented. We showed that PrxB and PrxC were in mitochondria, while Prx1 was in cytosol. As observed for other Prxs, recombinant Prx1 and PrxC decomposed H2O2 at elevated velocities (rate constants in the 107 M−1s−1 range). Deletion mutants for each Prx displayed higher sensitivity to oxidative challenge in comparison with the wild-type strain. Additionally, cytosolic Prx1 was important for A. fumigatus survival upon electron transport dysfunction. Expression of Prxs was dependent on the SakAHOG1 MAP kinase and the Yap1YAP1 transcription factor, a global regulator of the oxidative stress response in fungi. Finally, cytosolic Prx1 played a major role in pathogenicity, since it is required for full virulence, using a neutropenic mouse infection model. Our data indicate that the three 1-Cys Prxs act together to maintain the redox balance of A. fumigatus.
Collapse
|
22
|
Luu LDW, Octavia S, Zhong L, Raftery MJ, Sintchenko V, Lan R. Proteomic Adaptation of Australian Epidemic Bordetella pertussis. Proteomics 2018; 18:e1700237. [PMID: 29464899 DOI: 10.1002/pmic.201700237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/08/2018] [Indexed: 12/20/2022]
Abstract
Bordetella pertussis causes whooping cough. The predominant strains in Australia changed to single nucleotide polymorphism (SNP) cluster I (pertussis toxin promoter allele ptxP3/pertactin gene allele prn2) from cluster II (non-ptxP3/non-prn2). Cluster I was mostly responsible for the 2008-2012 Australian epidemic and was found to have higher fitness compared to cluster II using an in vivo mouse competition assay, regardless of host's immunization status. This study aimed to identify proteomic differences that explain higher fitness in cluster I using isobaric tags for relative and absolute quantification (iTRAQ), and high-resolution multiple reaction monitoring (MRM-hr). A few key differences in the whole cell and secretome were identified between the cluster I and II strains tested. In the whole cell, nine proteins were upregulated (>1.2 fold change, q < 0.05) and three were downregulated (<0.8 fold change, q < 0.05) in cluster I. One downregulated protein was BP1569, a TLR2 agonist for Th1 immunity. In the secretome, 12 proteins were upregulated and 1 was downregulated which was Bsp22, a type III secretion system (T3SS) protein. Furthermore, there was a trend of downregulation in three T3SS effectors and other virulence factors. Three proteins were upregulated in both whole cell and supernatant: BP0200, molybdate ABC transporter (ModB), and tracheal colonization factor A (TcfA). Important expression differences in lipoprotein, T3SS, and transport proteins between the cluster I and II strains were identified. These differences may affect immune evasion, virulence and metabolism, and play a role in increased fitness of cluster I.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ling Zhong
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research-Pathology West, Westmead Hospital, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Carvalho LAC, Lopes JPPB, Kaihami GH, Silva RP, Bruni-Cardoso A, Baldini RL, Meotti FC. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells. Redox Biol 2018; 16:179-188. [PMID: 29510342 PMCID: PMC5952876 DOI: 10.1016/j.redox.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl-/H2O2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Uric acid decreased microbicide activity and release of cytokines by dHL-60 cells. Uric acid decreased HOCl in cells and in the myeloperoxidase/Cl-/H2O2 system. Uric acid induces a pro-oxidant redox imbalance. HOCl is crucial for Pseudomonas aeruginosa killing by dHL-60.
Collapse
Affiliation(s)
- Larissa A C Carvalho
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - João P P B Lopes
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gilberto H Kaihami
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Railmara P Silva
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Regina L Baldini
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flavia C Meotti
- Departamento de Bioquímica, Instituto de Química (IQUSP), Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Santos CS, Bannitz-Fernandes R, Lima AS, Tairum CA, Malavazi I, Netto LES, Bertotti M. Monitoring H 2O 2 inside Aspergillus fumigatus with an Integrated Microelectrode: The Role of Peroxiredoxin Protein Prx1. Anal Chem 2018; 90:2587-2593. [PMID: 29345916 DOI: 10.1021/acs.analchem.7b04074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxiredoxins (Prx) are important proteins involved in hydroperoxide degradation and are related to virulence in several pathogens, including Aspergillus fumigatus. In this work, in vivo studies on the degradation of hydrogen peroxide (H2O2) in the microenvironment of A. fumigatus fungus were performed by using an integrated Pt microelectrode. Three A. fumigatus strains were used to confirm the role of the cytosolic protein Prx1 in the defense mechanism of this microorganism: a wild-type strain, capable to expressing the protein Prx1; a Δprx strain, whose gene prx1 was removed; and a genetically complemented Δprx1::prx1+ strain generated from the Δprx1 and in which the gene prx1 was reintroduced. The fabricated microelectrode was shown to be a reliable inert probe tip for in situ and real-time measurements of H2O2 in such microenvironments, with potential applications in investigations involving the mechanism of oxidative stress.
Collapse
Affiliation(s)
- Carla Santana Santos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo , Av. Professor Lineu Prestes, 748, 05513-970, São Paulo - SP Brazil
| | - Renata Bannitz-Fernandes
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo , Rua do Matão, 321, 05508-090, São Paulo - SP Brazil
| | - Alex S Lima
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo , Av. Professor Lineu Prestes, 748, 05513-970, São Paulo - SP Brazil
| | - Carlos A Tairum
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo , Rua do Matão, 321, 05508-090, São Paulo - SP Brazil
| | - Iran Malavazi
- Department of Genetics and Evolution, Federal University of São Carlos , Rodovia Washington Luís, s/n, 13565-905, São Carlos - SP Brazil
| | - Luis E S Netto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo , Rua do Matão, 321, 05508-090, São Paulo - SP Brazil
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo , Av. Professor Lineu Prestes, 748, 05513-970, São Paulo - SP Brazil
| |
Collapse
|
25
|
Fennessey CM, McMahon MB, Sechler AJ, Kaiser J, Garrett WM, Tancos MA, Luster DG, Rogers EE, Schneider WL. Partial Proteome of the Corynetoxin-Producing Gram-Positive Bacterium, Rathayibacter toxicus. Proteomics 2018; 18. [PMID: 29327412 DOI: 10.1002/pmic.201700350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Indexed: 11/12/2022]
Abstract
Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry it up to the seed head of the host plant. ARGT is caused by a tunicamycin-like corynetoxin that is produced in R. toxicus-infected seed galls. We analyzed protein expression in R. toxicus under stationary growth phase conditions to obtain a more complete understanding of the biology of this organism and identify potential targets for immunoassay development. A total of 323 unique proteins were identified, including those with putative roles in secondary metabolism and pathogenicity. The proteome analysis for this complex phytopathogenic Gram-positive bacterium will facilitate in the characterization of proteins necessary for host colonization and toxin production, and assist in the development of diagnostic assays. Data are available via ProteomeXchange with identifier PXD004238.
Collapse
Affiliation(s)
- Christine M Fennessey
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA.,AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael B McMahon
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Aaron J Sechler
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Jaclyn Kaiser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wesley M Garrett
- USDA, ARS, Animal Biosciences and Biotechnology Laboratory, Beltsville, MD, USA
| | - Matthew A Tancos
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Douglas G Luster
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - Elizabeth E Rogers
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| | - William L Schneider
- USDA, ARS, Foreign Disease Weed Science Research Unit, Fort Detrick, MD, USA
| |
Collapse
|
26
|
Li S, Yu W, Guan X, Luo Z, Chen G, Liu W, Zhang J. Deletion of NADH oxidase in Listeria monocytogenes promotes the bacterial infection of brain. Free Radic Biol Med 2017; 112:608-615. [PMID: 28916475 DOI: 10.1016/j.freeradbiomed.2017.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022]
Abstract
NADH oxidase (NOX) plays important roles in respiration and reactive oxygen species (ROS) generation in cells. In this study, we explored the function of NOX in Listeria monocytogenes by gene deletion. From our results, nox mutant strain (∆nox) had lower H2O2 level and showed no significant alteration in bacteria growth activity. But it had enhanced invasiveness during the invasion of glial cells and mice brain compared to wildtype strain. Furthermore, several virulence genes involved in invasion, such as inlA, inlB, vip and sigB, were upregulated in ∆nox, and the alterations could be restored by complementation. To explore if nox was involved in the interaction of pathogen and host, we examined the generation of host ROS including superoxide and H2O2 during infection, and found ∆nox invasion leading to less superoxide and H2O2 generation. Besides, the upregulation of pro-inflammatory factors in glial cells was restrained when invaded by ∆nox compared to wildtype and complementary strain. In conclusion, our study evaluated the function of nox in L. monocytogenes and indicated that nox could regulate the invasion of L. monocytogenes by regulating virulence genes expression and the interaction of host-and- pathogens.
Collapse
Affiliation(s)
- Sen Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenwen Yu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhen Luo
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guowei Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wukang Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingchen Zhang
- Certification and Review Center, Shanghai Municipal Food and Drug Administration, Shanghai 200020, China
| |
Collapse
|
27
|
Llama-Palacios A, Potupa O, Sánchez MC, Figuero E, Herrera D, Sanz M. Aggregatibacter actinomycetemcomitans Growth in Biofilm versus Planktonic State: Differential Expression of Proteins. J Proteome Res 2017; 16:3158-3167. [PMID: 28707473 DOI: 10.1021/acs.jproteome.7b00127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a pathogenic bacterium residing in the subgingival plaque biofilm strongly associated with the pathogenesis of periodontitis. The aim of this investigation was to study the protein differential expression of Aa when growing on biofilm compared with planktonic state using proteomic analysis by the 2D-DIGE system. Eighty-seven proteins were differentially expressed during biofilm growth (1.5-fold, p < 0.05), with 13 overexpressed and 37 down-expressed. Those repressed were mainly proteins involved in metabolism, biosynthesis, and transport. The overexpressed proteins were outer membrane proteins (OMPs) and highly immunogenic proteins such as YaeT (OMP), FtsZ, OMP39, OMP18/16, the chaperone GroEL, OMPA, adenylate kinase (Adk), and dihydrolipoamide acetyltransferase. The enrichment fractions of the OMPs from biofilm and planktonic states were obtained, and these proteins were analyzed by Western blotting with human serum from a periodontitis patient and one healthy control. These immunogenic proteins overexpressed in the biofilm may represent candidate virulence factors.
Collapse
Affiliation(s)
- Arancha Llama-Palacios
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - Oksana Potupa
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - María C Sánchez
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| |
Collapse
|
28
|
The Atypical Response Regulator AtvR Is a New Player in Pseudomonas aeruginosa Response to Hypoxia and Virulence. Infect Immun 2017; 85:IAI.00207-17. [PMID: 28533471 DOI: 10.1128/iai.00207-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Two-component systems are widespread in bacteria, allowing adaptation to environmental changes. The classical pathway is composed of a histidine kinase that phosphorylates an aspartate residue in the cognate response regulator (RR). RRs lacking the phosphorylatable aspartate also occur, but their function and contribution during host-pathogen interactions are poorly characterized. AtvR (PA14_26570) is the only atypical response regulator with a DNA-binding domain in the opportunistic pathogen Pseudomonas aeruginosa Macrophage infection with the atvR mutant strain resulted in higher levels of tumor necrosis factor alpha secretion as well as increased bacterial clearance compared to those for macrophages infected with the wild-type strain. In an acute pneumonia model, mice infected with the atvR mutant presented increased amounts of proinflammatory cytokines, increased neutrophil recruitment to the lungs, reductions in bacterial burdens, and higher survival rates in comparison with the findings for mice infected with the wild-type strain. Further, several genes involved in hypoxia/anoxia adaptation were upregulated upon atvR overexpression, as seen by high-throughput transcriptome sequencing (RNA-Seq) analysis. In addition, atvR was more expressed in hypoxia in the presence of nitrate and required for full expression of nitrate reductase genes, promoting bacterial growth under this condition. Thus, AtvR would be crucial for successful infection, aiding P. aeruginosa survival under conditions of low oxygen tension in the host. Taken together, our data demonstrate that the atypical response regulator AtvR is part of the repertoire of transcriptional regulators involved in the lifestyle switch from aerobic to anaerobic conditions. This finding increases the complexity of regulation of one of the central metabolic pathways that contributes to Pseudomonas ubiquity and versatility.
Collapse
|
29
|
Núñez-Díaz JA, Fumanal M, Viguera E, Moriñigo MA, Balebona MC. Use of in vivo induced technology to identify antigens expressed by Photobacterium damselae subsp. piscicida during infection of Senegalese sole (Solea senegalensis). FISH & SHELLFISH IMMUNOLOGY 2017; 64:446-456. [PMID: 28359946 DOI: 10.1016/j.fsi.2017.03.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
Photobacterium damselae subsp. piscicida (Phdp), the causative agent of photobacteriosis, is an important pathogen in marine aquaculture that affects many different fish species worldwide, including Solea senegalensis, an important fish species for aquaculture in the south of Europe. Bacteria express different repertoires of proteins in response to environmental conditions and when invading a host, sense in vivo environment and adapt by changing the expression of specific proteins. In the case of pathogens, identification of genes with up-regulated expression in vivo compared to in vitro conditions might give an insight into the genes relevant to the bacterial virulence. In the present work, in vivo induced antigen technology (IVIAT) has been used to search for Phdp genes only expressed or up-regulated in infected S. senegalensis. An expression library from Phdp was assayed against pooled sera from convalescent S. senegalensis specimens and 18 clones were positive, indicating that proteins encoded are expressed by Phdp during S. senegalensis infection and are immunogenic for this fish species. In addition, five proteins were reactive against adsorbed sera, indicating their in vivo induced character. Inosine-5'-monophosphate dehydrogenase, serine hydroxy methyltransferase and alanyl-tRNA synthethase, involved in aminoacid and nucleotide metabolism, the protein with antioxidant activity alkyl hydroperoxide reductase and a non-ribosomal peptide synthetase responsible for the synthesis of the siderophore piscibactin have been identified as antigens induced in Phdp during S. senegalensis infection. Proteins induced during in vivo growth of Phdp represent promising targets for the development of novel antimicrobial or prophylactic agents in the treatment and prevention of photobacteriosis.
Collapse
Affiliation(s)
- J A Núñez-Díaz
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M Fumanal
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - E Viguera
- Universidad de Málaga, Área de Genética, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M A Moriñigo
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - M C Balebona
- Universidad de Málaga, Departamento de Microbiología, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
30
|
Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1. Int J Mol Sci 2016; 17:ijms17091419. [PMID: 27618897 PMCID: PMC5037698 DOI: 10.3390/ijms17091419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system.
Collapse
|
31
|
Kumawat M, Pesingi PK, Agarwal RK, Goswami TK, Mahawar M. Contribution of protein isoaspartate methyl transferase (PIMT) in the survival of Salmonella Typhimurium under oxidative stress and virulence. Int J Med Microbiol 2016; 306:222-30. [DOI: 10.1016/j.ijmm.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 04/07/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
|
32
|
Li S, Li Y, Chen G, Zhang J, Xu F, Wu M. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells. Redox Rep 2016; 22:190-196. [PMID: 27120397 DOI: 10.1080/13510002.2016.1173327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. METHODS Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. RESULTS DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. DISCUSSION Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.
Collapse
Affiliation(s)
- Sen Li
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Yixuan Li
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Guowei Chen
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Jingchen Zhang
- b Certification and Review Center, Shanghai Municipal Food and Drug, Administration , Shanghai 200020 , China
| | - Fei Xu
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| | - Man Wu
- a School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093 , China
| |
Collapse
|
33
|
Priyathilaka TT, Kim Y, Udayantha HMV, Lee S, Herath HMLPB, Lakmal HHC, Elvitigala DAS, Umasuthan N, Godahewa GI, Kang SI, Jeong HB, Kim SK, Kim DJ, Lim BS. Identification and molecular characterization of peroxiredoxin 6 from Japanese eel (Anguilla japonica) revealing its potent antioxidant properties and putative immune relevancy. FISH & SHELLFISH IMMUNOLOGY 2016; 51:291-302. [PMID: 26911410 DOI: 10.1016/j.fsi.2015.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Peroxiredoxins (Prdx) are thiol specific antioxidant enzymes that play a pivotal role in cellular oxidative stress by reducing toxic peroxide compounds into nontoxic products. In this study, we identified and characterized a peroxiredoxin 6 counterpart from Japanese eel (Anguilla japonica) (AjPrdx6) at molecular, transcriptional and protein level. The identified full-length coding sequence of AjPrdx6 (669 bp) coded for a polypeptide of 223 aa residues (24.9 kDa). Deduced protein of AjPrdx6 showed analogy to characteristic structural features of 1-cysteine peroxiredoxin sub-family. According to the topology of the generated phylogenetic reconstruction AjPrdx6 showed closest evolutionary relationship with Salmo salar. As detected by Quantitative real time PCR (qPCR), AjPrdx6 mRNA was constitutively expressed in all the tissues examined. Upon the immune challenges with Edwardsiella tarda, lipopolysaccharides and polyinosinic:polycytidylic acid, expression of AjPrdx6 mRNA transcripts were significantly induced. The general functional properties of Prdx6 were confirmed using purified recombinant AjPrdx6 protein by deciphering its potent protective effects on cultured vero cells (kidney epithelial cell from an African green monkey) against H2O2-induced oxidative stress and protection against oxidative DNA damage elicited by mixed function oxidative (MFO) system. Altogether, our findings suggest that AjPrdx6 is a potent antioxidant protein in Japanese eels and its putative immune relevancy in pathogen stress mounted by live-bacteria or pathogen associated molecular patterns (PAMPs).
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - Yucheol Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - H M L P B Herath
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - H H Chaminda Lakmal
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - Seong Il Kang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - Hyung Bok Jeong
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea
| | - Shin Kwon Kim
- New Strategy Research Center, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea
| | - Dae Jung Kim
- New Strategy Research Center, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea.
| | - Bong Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 695-965, Republic of Korea.
| |
Collapse
|
34
|
Molina L, Udaondo Z, Duque E, Fernández M, Bernal P, Roca A, de la Torre J, Ramos JL. Specific Gene Loci of Clinical Pseudomonas putida Isolates. PLoS One 2016; 11:e0147478. [PMID: 26820467 PMCID: PMC4731212 DOI: 10.1371/journal.pone.0147478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host’s immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- * E-mail:
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Estrella Duque
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Matilde Fernández
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Patricia Bernal
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Imperial College London, South Kensington Campus, London, United Kingdom
| | - Amalia Roca
- Bio-Iliberis R&D, C/ Capileira 7, 18210 Peligros, Granada, Spain
| | - Jesús de la Torre
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Juan Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| |
Collapse
|
35
|
Li S, Chen G, Wu M, Zhang J, Wu S. Restraining of reactive oxygen species promotes invasion ofListeria monocytogenesinto glia cells. FEMS Microbiol Lett 2015; 363:fnv228. [DOI: 10.1093/femsle/fnv228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
|
36
|
Zeida A, Reyes AM, Lichtig P, Hugo M, Vazquez DS, Santos J, González Flecha FL, Radi R, Estrin DA, Trujillo M. Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis. Biochemistry 2015; 54:7237-47. [DOI: 10.1021/acs.biochem.5b00758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Aníbal M. Reyes
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | - Martín Hugo
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | | | | | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | - Madia Trujillo
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
37
|
Abstract
Iron-sulfur clusters act as important cofactors for a number of transcriptional regulators in bacteria, including many mammalian pathogens. The sensitivity of iron-sulfur clusters to iron availability, oxygen tension, and reactive oxygen and nitrogen species enables bacteria to use such regulators to adapt their gene expression profiles rapidly in response to changing environmental conditions. In this review, we discuss how the [4Fe-4S] or [2Fe-2S] cluster-containing regulators FNR, Wbl, aconitase, IscR, NsrR, SoxR, and AirSR contribute to bacterial pathogenesis through control of both metabolism and classical virulence factors. In addition, we briefly review mammalian iron homeostasis as well as oxidative/nitrosative stress to provide context for understanding the function of bacterial iron-sulfur cluster sensors in different niches within the host.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
38
|
Lobet E, Letesson JJ, Arnould T. Mitochondria: a target for bacteria. Biochem Pharmacol 2015; 94:173-85. [PMID: 25707982 DOI: 10.1016/j.bcp.2015.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/12/2023]
Abstract
Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammatory state required to control the infection. In addition, pathogens evolved to subvert those responses (with passive and active strategies) allowing their entry and persistence in the host cells and tissues. Indeed, several bacteria actively manipulate immune system or interfere with the cell fate for their own benefit. One can imagine that bacterial effectors can potentially manipulate every single organelle in the cell. However, the multiple functions fulfilled by mitochondria especially their involvement in the regulation of innate immune response, make mitochondria a target of choice for bacterial pathogens as they are not only a key component of the central metabolism through ATP production and synthesis of various biomolecules but they also take part to cell signalling through ROS production and control of calcium homeostasis as well as the control of cell survival/programmed cell death. Furthermore, considering that mitochondria derived from an ancestral bacterial endosymbiosis, it is not surprising that a special connection does exist between this organelle and bacteria. In this review, we will discuss different mitochondrial functions that are affected during bacterial infection as well as different strategies developed by bacterial pathogens to subvert functions related to calcium homeostasis, maintenance of redox status and mitochondrial morphology.
Collapse
Affiliation(s)
- Elodie Lobet
- Laboratory of Biochemistry and Cellular Biology (URBC), NAmur Research Institute for LIfe Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| | - Jean-Jacques Letesson
- Research Unit in Microorganisms Biology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), NAmur Research Institute for LIfe Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|