1
|
Stryiński R, Fiedorowicz E, Mateos J, Andronowska A, Łopieńska-Biernat E, Carrera M. Exploring the exoproteome of the parasitic nematode Anisakis simplex (s. s.) and its impact on the human host - an in vitro cross-talk proteomic approach. Front Immunol 2025; 16:1509984. [PMID: 39963139 PMCID: PMC11830668 DOI: 10.3389/fimmu.2025.1509984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Anisakis simplex sensu stricto (s. s.) is one of the most widespread parasitic nematodes of marine organisms, with humans as accidental hosts. While many studies have explored nematode biology and host interactions, the role of extracellular vesicles (EVs) as signaling molecules in parasitic nematodes is less understood. Materials and methods Therefore, the proteins present in the EVs of A. simplex (s. s.) (Anis-EVs) were identified. In addition, a cross-talk proteomic approach was used to identify differentially regulated proteins (DRPs) in the proteome of the human intestinal epithelial cell line (Caco-2) co-cultured with L3 larvae of A. simplex (s. s.) or directly exposed to two concentrations (low or high) of Anis-EVs. In addition, DRPs were identified in the proteome of A. simplex (s. s.) larvae affected by co-culture with Caco-2. To achieve this goal, the shotgun proteomics method based on isobaric mass labeling (via tandem mass tags; TMT) was used with a combination of nano high-performance liquid chromatography (nLC) coupled with an LTQ-Orbitrap Elite mass spectrometer. In addition, ELISA assays were used to demonstrate if Caco-2 respond to A. simplex (s. s.) larvae and Anis-EVs with significant changes in selected cytokines secretion. Results The results of this study indicate the anti-inflammatory character of Anis-EVs in relation to Caco-2. At the same time, direct treatment with Anis-EVs resulted in more significant changes in the Caco-2 proteome than co-culture with L3 larvae. Discussion The results obtained should lead to a better understanding of the molecular mechanisms underlying the development of A. simplex (s. s.) infection in humans and will complement the existing knowledge on the role of EVs in host-parasite communication.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Food Technology, Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| |
Collapse
|
2
|
Wang J, Liu H. The Roles of Junctional Adhesion Molecules (JAMs) in Cell Migration. Front Cell Dev Biol 2022; 10:843671. [PMID: 35356274 PMCID: PMC8959349 DOI: 10.3389/fcell.2022.843671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/10/2022] [Indexed: 01/15/2023] Open
Abstract
The review briefly summarizes the role of the family of adhesion molecules, JAMs (junctional adhesion molecules), in various cell migration, covering germ cells, epithelial cells, endothelial cells, several leukocytes, and different cancer cells. These functions affect multiple diseases, including reproductive diseases, inflammation-related diseases, cardiovascular diseases, and cancers. JAMs bind to both similar and dissimilar proteins and take both similar and dissimilar effects on different cells. Concluding relevant results provides a reference to further research.
Collapse
Affiliation(s)
- Junqi Wang
- Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Han Liu
- Department of Pharmacy, People’s Hospital of Longhua, Shenzhen, China
- *Correspondence: Han Liu,
| |
Collapse
|
3
|
Longoni SS, Tiberti N, Bisoffi Z, Piubelli C. Monoclonal Antibodies for Protozoan Infections: A Future Reality or a Utopic Idea? Front Med (Lausanne) 2021; 8:745665. [PMID: 34712683 PMCID: PMC8545981 DOI: 10.3389/fmed.2021.745665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Following the SARS-CoV-2 pandemic, several clinical trials have been approved for the investigation of the possible use of mAbs, supporting the potential of this technology as a therapeutic approach for infectious diseases. The first monoclonal antibody (mAb), Muromonab CD3, was introduced for the prevention of kidney transplant rejection more than 30 years ago; since then more than 100 mAbs have been approved for therapeutic purposes. Nonetheless, only four mAbs are currently employed for infectious diseases: Palivizumab, for the prevention of respiratory syncytial virus (RSV) infections, Raxibacumab and Obiltoxaximab, for the prophylaxis and treatment against anthrax toxin and Bezlotoxumab, for the prevention of Clostridium difficile recurrence. Protozoan infections are often neglected diseases for which effective and safe chemotherapies are generally missing. In this context, drug resistance and drug toxicity are two crucial problems. The recent advances in bioinformatics, parasite genomics, and biochemistry methodologies are contributing to better understand parasite biology, which is essential to guide the development of new therapies. In this review, we present the efforts that are being made in the evaluation of mAbs for the prevention or treatment of leishmaniasis, Chagas disease, malaria, and toxoplasmosis. Particular emphasis will be placed on the potential strengths and weaknesses of biological treatments in the control of these protozoan diseases that are still affecting hundreds of thousands of people worldwide.
Collapse
Affiliation(s)
- Silvia Stefania Longoni
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Natalia Tiberti
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
4
|
Rebouças A, Silva TS, Medina LS, Paredes BD, Aragão LS, Souza BSF, Borges VM, Schriefer A, Veras PST, Brodskyn CI, de Menezes JPB. Leishmania-Induced Dendritic Cell Migration and Its Potential Contribution to Parasite Dissemination. Microorganisms 2021; 9:1268. [PMID: 34207943 PMCID: PMC8230586 DOI: 10.3390/microorganisms9061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/03/2023] Open
Abstract
Leishmania, an intracellular parasite species, causes lesions on the skin and in the mucosa and internal organs. The dissemination of infected host cells containing Leishmania is crucial to parasite survival and the establishment of infection. Migratory phenomena and the mechanisms underlying the dissemination of Leishmania-infected human dendritic cells (hDCs) remain poorly understood. The present study aimed to investigate differences among factors involved in hDC migration by comparing infection with visceral leishmaniasis (VL) induced by Leishmaniainfantum with diverse clinical forms of tegumentary leishmaniasis (TL) induced by Leishmaniabraziliensis or Leishmania amazonensis. Following the infection of hDCs by isolates obtained from patients with different clinical forms of Leishmania, the formation of adhesion complexes, actin polymerization, and CCR7 expression were evaluated. We observed increased hDC migration following infection with isolates of L. infantum (VL), as well as disseminated (DL) and diffuse (DCL) forms of cutaneous leishmaniasis (CL) caused by L. braziliensis and L. amazonensis, respectively. Increased expression of proteins involved in adhesion complex formation and actin polymerization, as well as higher CCR7 expression, were seen in hDCs infected with L. infantum, DL and DCL isolates. Together, our results suggest that hDCs play an important role in the dissemination of Leishmania parasites in the vertebrate host.
Collapse
Affiliation(s)
- Amanda Rebouças
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Thaílla S. Silva
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Lilian S. Medina
- Immunology Service, Professor Edgard Santos Hospital, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.S.M.); (A.S.)
| | - Bruno D. Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-900, BA, Brazil; (B.D.P.); (L.S.A.); (B.S.F.S.)
- D’Or Institute for Research and Education, Salvador 41253-900, BA, Brazil
| | - Luciana S. Aragão
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-900, BA, Brazil; (B.D.P.); (L.S.A.); (B.S.F.S.)
- D’Or Institute for Research and Education, Salvador 41253-900, BA, Brazil
| | - Bruno S. F. Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-900, BA, Brazil; (B.D.P.); (L.S.A.); (B.S.F.S.)
- D’Or Institute for Research and Education, Salvador 41253-900, BA, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil
| | - Valéria M. Borges
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil;
| | - Albert Schriefer
- Immunology Service, Professor Edgard Santos Hospital, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.S.M.); (A.S.)
- Department of Bio-Interaction, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Patricia S. T. Veras
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Claudia I. Brodskyn
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| | - Juliana P. B. de Menezes
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador 40296-710, BA, Brazil; (A.R.); (T.S.S.); (P.S.T.V.); (C.I.B.)
| |
Collapse
|
5
|
Structure and Immune Function of Afferent Lymphatics and Their Mechanistic Contribution to Dendritic Cell and T Cell Trafficking. Cells 2021; 10:cells10051269. [PMID: 34065513 PMCID: PMC8161367 DOI: 10.3390/cells10051269] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.
Collapse
|
6
|
Tibúrcio R, Nunes S, Nunes I, Rosa Ampuero M, Silva IB, Lima R, Machado Tavares N, Brodskyn C. Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. Front Immunol 2019; 10:227. [PMID: 30873156 PMCID: PMC6401646 DOI: 10.3389/fimmu.2019.00227] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are a diverse group of leukocytes responsible for bridging innate and adaptive immunity. Despite their functional versatility, DCs exist primarily in two basic functional states: immature and mature. A large body of evidence suggests that upon interactions with pathogens, DCs undergo intricate cellular processes that culminate in their activation, which is paramount to the orchestration of effective immune responses against Leishmania parasites. Herein we offer a concise review of the emerging hallmarks of DCs activation in leishmaniasis as well as a comprehensive discussion of the following underlying molecular events: DC-Leishmania interaction, antigen uptake, costimulatory molecule expression, parasite ability to affect DC migration, antigen presentation, metabolic reprogramming, and epigenetic alterations.
Collapse
Affiliation(s)
- Rafael Tibúrcio
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Ivanéia Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Reinan Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Natalia Machado Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Cláudia Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia (INCT) iii Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
7
|
Schineis P, Runge P, Halin C. Cellular traffic through afferent lymphatic vessels. Vascul Pharmacol 2018; 112:31-41. [PMID: 30092362 DOI: 10.1016/j.vph.2018.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
The lymphatic system has long been known to serve as a highway for migrating leukocytes from peripheral tissue to draining lymph nodes (dLNs) and back to circulation, thereby contributing to the induction of adaptive immunity and immunesurveillance. Lymphatic vessels (LVs) present in peripheral tissues upstream of a first dLN are generally referred to as afferent LVs. In contrast to migration through blood vessels (BVs), the detailed molecular and cellular requirements of cellular traffic through afferent LVs have only recently started to be unraveled. Progress in our ability to track the migration of lymph-borne cell populations, in combination with cutting-edge imaging technologies, nowadays allows the investigation and visualization of lymphatic migration of endogenous leukocytes, both at the population and at the single-cell level. These studies have revealed that leukocyte trafficking through afferent LVs generally follows a step-wise migration pattern, relying on the active interplay of numerous molecules. In this review, we will summarize and discuss current knowledge of cellular traffic through afferent LVs. We will first outline how the structure of the afferent LV network supports leukocyte migration and highlight important molecules involved in the migration of dendritic cells (DCs), T cells and neutrophils, i.e. the most prominent cell types trafficking through afferent LVs. Additionally, we will describe how tumor cells hijack the lymphatic system for their dissemination to draining LNs. Finally, we will summarize and discuss our current understanding of the functional significance as well as the therapeutic implications of cell traffic through afferent LVs.
Collapse
Affiliation(s)
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland.
| |
Collapse
|
8
|
Hintermann E, Bayer M, Conti CB, Fuchs S, Fausther M, Leung PS, Aurrand-Lions M, Taubert R, Pfeilschifter JM, Friedrich-Rust M, Schuppan D, Dranoff JA, Gershwin ME, Manns MP, Imhof BA, Christen U. Junctional adhesion molecules JAM-B and JAM-C promote autoimmune-mediated liver fibrosis in mice. J Autoimmun 2018; 91:83-96. [PMID: 29753567 DOI: 10.1016/j.jaut.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022]
Abstract
Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JAM-B and JAM-C were investigated in three mouse models of autoimmune-driven liver inflammation. A PBC-like disease was induced by immunization with 2-octynoic acid-BSA conjugate, which resulted in the upregulation of both JAMs in fibrotic portal triads. Analysis of a murine model of PSC revealed a role of JAM-C in PF cell-cell adhesion and contractility. In mice suffering from AIH, endothelial cells increased JAM-B level and HSCs and capsular fibroblasts became JAM-C-positive. Most importantly, AIH-mediated liver fibrosis was reduced in JAM-B-/- mice or when JAM-C was blocked by soluble recombinant JAM-C. Interestingly, loss of JAM-B/JAM-C function had no effect on leukocyte infiltration, suggesting that the well-documented function of JAMs in leukocyte recruitment to inflamed tissue was not effective in the tested chronic models. This might be different in patients and may even be complicated by the fact that human leukocytes express JAM-C. Our findings delineate JAM-C as a mediator of myofibroblast-operated contraction of the liver capsule, intrahepatic vasoconstriction and bile duct stricture. Due to its potential to interact heterophilically with endothelial JAM-B, JAM-C supports also HSC/PF mural cell function. Together, these properties allow JAM-B and JAM-C to actively participate in vascular remodeling associated with liver/biliary fibrosis and suggest them as valuable targets for anti-fibrosis therapies.
Collapse
Affiliation(s)
- Edith Hintermann
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Monika Bayer
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Clara Benedetta Conti
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany; Fondazione IRCCS Cà, Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Organ Transplantation, Milan, Italy.
| | - Sina Fuchs
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Michel Fausther
- Division of Gastroenterology and Hepatology, University of Arkansas, Little Rock, AR, USA.
| | - Patrick S Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Michel Aurrand-Lions
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France.
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Mireen Friedrich-Rust
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas, Little Rock, AR, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Beat A Imhof
- Department of Pathology and Immunology, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland.
| | - Urs Christen
- Pharmazentrum Frankfurt, ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Kummer D, Ebnet K. Junctional Adhesion Molecules (JAMs): The JAM-Integrin Connection. Cells 2018; 7:cells7040025. [PMID: 29587442 PMCID: PMC5946102 DOI: 10.3390/cells7040025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are cell surface adhesion receptors of the immunoglobulin superfamily. JAMs are involved in a variety of biological processes both in the adult organism but also during development. These include processes such as inflammation, angiogenesis, hemostasis, or epithelial barrier formation, but also developmental processes such as hematopoiesis, germ cell development, and development of the nervous system. Several of these functions of JAMs depend on a physical and functional interaction with integrins. The JAM – integrin interactions in trans regulate cell-cell adhesion, their interactions in cis regulate signaling processes originating at the cell surface. The JAM – integrin interaction can regulate the function of the JAM as well as the function of the integrin. Beyond the physical interaction with integrins, JAMs can regulate integrin function through intracellular signaling indicating an additional level of JAM – integrin cross-talk. In this review, we describe the various levels of the functional interplay between JAMs and integrins and the role of this interplay during different physiological processes.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, D-48149 Münster, Germany.
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, D-48149 Münster, Germany.
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
10
|
Reglero-Real N, Colom B, Bodkin JV, Nourshargh S. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation. Arterioscler Thromb Vasc Biol 2016; 36:2048-2057. [PMID: 27515379 DOI: 10.1161/atvbaha.116.307610] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022]
Abstract
Endothelial cells line the lumen of all blood vessels and play a critical role in maintaining the barrier function of the vasculature. Sealing of the vessel wall between adjacent endothelial cells is facilitated by interactions involving junctionally expressed transmembrane proteins, including tight junctional molecules, such as members of the junctional adhesion molecule family, components of adherence junctions, such as VE-Cadherin, and other molecules, such as platelet endothelial cell adhesion molecule. Of importance, a growing body of evidence indicates that the expression of these molecules is regulated in a spatiotemporal manner during inflammation: responses that have significant implications for the barrier function of blood vessels against blood-borne macromolecules and transmigrating leukocytes. This review summarizes key aspects of our current understanding of the dynamics and mechanisms that regulate the expression of endothelial cells junctional molecules during inflammation and discusses the associated functional implications of such events in acute and chronic scenarios.
Collapse
Affiliation(s)
- Natalia Reglero-Real
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Bartomeu Colom
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.,Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Jennifer Victoria Bodkin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
11
|
Weinkopff T, Konradt C, Christian DA, Discher DE, Hunter CA, Scott P. Leishmania major Infection-Induced VEGF-A/VEGFR-2 Signaling Promotes Lymphangiogenesis That Controls Disease. THE JOURNAL OF IMMUNOLOGY 2016; 197:1823-31. [PMID: 27474074 DOI: 10.4049/jimmunol.1600717] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Cutaneous leishmaniasis causes a spectrum of diseases from self-healing to severe nonhealing lesions. Defining the factors contributing to lesion resolution may help in developing new therapies for those patients with chronic disease. We found that infection with Leishmania major increases the expression of vascular endothelial growth factor-A and vascular endothelial growth factor receptor (VEGFR)-2 and is associated with significant changes in the blood and lymphatic vasculature at the site of infection. Ab blockade of VEGFR-2 during infection led to a reduction in lymphatic endothelial cell proliferation and simultaneously increased lesion size without altering the parasite burden. These data show that L. major infection initiates enhanced vascular endothelial growth factor-A/VEGFR-2 signaling and suggest that VEGFR-2-dependent lymphangiogenesis is a mechanism that restricts tissue inflammation in leishmaniasis.
Collapse
Affiliation(s)
- Tiffany Weinkopff
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Dennis E Discher
- Biophysical Eng'g Labs, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
12
|
Bradfield PF, Menon A, Miljkovic-Licina M, Lee BP, Fischer N, Fish RJ, Kwak B, Fisher EA, Imhof BA. Divergent JAM-C Expression Accelerates Monocyte-Derived Cell Exit from Atherosclerotic Plaques. PLoS One 2016; 11:e0159679. [PMID: 27442505 PMCID: PMC4956249 DOI: 10.1371/journal.pone.0159679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Paul F. Bradfield
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
- * E-mail:
| | - Arjun Menon
- Division of Cardiology, New York University Langone Medical Center, New York, New York 10016, United States of America
| | - Marijana Miljkovic-Licina
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| | - Boris P. Lee
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| | - Nicolas Fischer
- NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva, Switzerland
| | - Brenda Kwak
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| | - Edward A. Fisher
- Division of Cardiology, New York University Langone Medical Center, New York, New York 10016, United States of America
| | - Beat A. Imhof
- Department of Pathology and Immunology, CMU, University of Geneva, 1211, rue Michel Servet 1, Geneva 4, Switzerland
| |
Collapse
|
13
|
Hintermann E, Bayer M, Ehser J, Aurrand-Lions M, Pfeilschifter JM, Imhof BA, Christen U. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr 2016; 10:419-33. [PMID: 27111582 DOI: 10.1080/19336918.2016.1178448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.
Collapse
Affiliation(s)
- Edith Hintermann
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | - Monika Bayer
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | - Janine Ehser
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | | | - Josef M Pfeilschifter
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| | - Beat A Imhof
- c Department of Pathology and Immunology , Centre Médical Universitaire, University of Geneva , Geneva , Switzerland
| | - Urs Christen
- a Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|