1
|
Suludere MA, Malone M, Siah MC, Tarricone A, Coye TL, Najafi B, Lavery LA. The Infected Diabetic Foot: Does Negative Pressure Wound Therapy with Irrigation Reduce Bioburden and Improve Wound Healing? INT J LOW EXTR WOUND 2024:15347346241292125. [PMID: 39533885 DOI: 10.1177/15347346241292125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The aim of this study was to compare the microbial loads of patients with diabetic foot infections treated with negative pressure wound therapy (NPWT) with and without irrigation with polyhexamethylene biguanide (NPWTi-P). This is a post hoc analysis of combined data of two randomized clinical trials. We evaluated people with diabetes treated with moderate and severe diabetic foot infections that required surgery. Tissue specimens were obtained after the initial surgery and following a second planned return to the operating room after 48-72 h of NPWT or NPWTi-P, prior to the second surgery. We used quantitative polymerase chain reaction (qPCR) to determine the total microbial loads (Log10 16S copies per gram of tissue). There was no difference in mean quantitative bacterial cultures among patients that received NPWT and NPWTi-P (before first surgery Log10: NPWT = 6.4 ± 1.8, NPWTi-P = 7.5 ± 1.7 vs before second surgery Log10: NPWT = 6.7 ± 1.8, NPWTi-P = 7.6 ± 1.9 p = .12). There was no difference in wound healing (59.5% vs 50.0%, p = .51) or time to heal (127 ± 109.3 vs 143 ± 95.9), p = .71). There were fewer re-infections in people that received traditional NPWT (28.6% vs 56.3%, p = .05). Level of Clinical Evidence: Level 1.
Collapse
Affiliation(s)
- Mehmet A Suludere
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Malone
- Infectious Diseases and Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| | - Michael C Siah
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Arthur Tarricone
- Department of Orthopaedic Surgery, University of Texas health Science Center, San Antonio, TX, USA
| | - Tyler L Coye
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Bijan Najafi
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence A Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Pabon-Rodriguez FM, Brown GD, Scorza BM, Petersen CA. Within-host bayesian joint modeling of longitudinal and time-to-event data of Leishmania infection. PLoS One 2024; 19:e0297175. [PMID: 38335163 PMCID: PMC10857584 DOI: 10.1371/journal.pone.0297175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024] Open
Abstract
The host immune system plays a significant role in managing and clearing pathogen material during an infection, but this complex process presents numerous challenges from a modeling perspective. There are many mathematical and statistical models for these kinds of processes that take into account a wide range of events that happen within the host. In this work, we present a Bayesian joint model of longitudinal and time-to-event data of Leishmania infection that considers the interplay between key drivers of the disease process: pathogen load, antibody level, and disease. The longitudinal model also considers approximate inflammatory and regulatory immune factors. In addition to measuring antibody levels produced by the immune system, we adapt data from CD4+ and CD8+ T cell proliferation, and expression of interleukin 10, interferon-gamma, and programmed cell death 1 as inflammatory or regulatory factors mediating the disease process. The model is developed using data collected from a cohort of dogs naturally exposed to Leishmania infantum. The cohort was chosen to start with healthy infected animals, and this is the majority of the data. The model also characterizes the relationship features of the longitudinal outcomes and time-to-death due to progressive Leishmania infection. In addition to describing the mechanisms causing disease progression and impacting the risk of death, we also present the model's ability to predict individual trajectories of Canine Leishmaniosis (CanL) progression. The within-host model structure we present here provides a way forward to address vital research questions regarding the understanding of the progression of complex chronic diseases such as Visceral Leishmaniasis, a parasitic disease causing significant morbidity worldwide.
Collapse
Affiliation(s)
- Felix M. Pabon-Rodriguez
- Department of Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| | - Grant D. Brown
- Department of Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| | - Breanna M. Scorza
- Department of Epidemiology, The University of Iowa College of Public Health, Iowa City, Iowa, United States of America
- Center for Emerging Infectious Diseases, The University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| | - Christine A. Petersen
- Department of Epidemiology, The University of Iowa College of Public Health, Iowa City, Iowa, United States of America
- Center for Emerging Infectious Diseases, The University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| |
Collapse
|
3
|
Pabon-Rodriguez FM, Brown GD, Scorza BM, Petersen CA. Within-Host Bayesian Joint Modeling of Longitudinal and Time-to-Event Data of Leishmania Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557114. [PMID: 37745423 PMCID: PMC10515798 DOI: 10.1101/2023.09.11.557114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The host immune system plays a significant role in managing and clearing pathogen material during an infection, but this complex process presents numerous challenges from a modeling perspective. There are many mathematical and statistical models for these kinds of processes that take into account a wide range of events that happen within the host. In this work, we present a Bayesian joint model of longitudinal and time-to-event data of Leishmania infection that considers the interplay between key drivers of the disease process: pathogen load, antibody level, and disease. The longitudinal model also considers approximate inflammatory and regulatory immune factors. In addition to measuring antibody levels produced by the immune system, we adapt data from CD4+ and CD8+ T cell proliferation, and expression of interleukin 10, interferon-gamma, and programmed cell death 1 as inflammatory or regulatory factors mediating the disease process. The model is developed using data collected from a cohort of dogs naturally exposed to Leishmania infantum. The cohort was chosen to start with healthy infected animals, and this is the majority of the data. The model also characterizes the relationship features of the longitudinal outcomes and time of death due to progressive Leishmania infection. In addition to describing the mechanisms causing disease progression and impacting the risk of death, we also present the model's ability to predict individual trajectories of Canine Leishmaniosis (CanL) progression. The within-host model structure we present here provides a way forward to address vital research questions regarding the understanding progression of complex chronic diseases such as Visceral Leishmaniasis, a parasitic disease causing significant morbidity worldwide.
Collapse
Affiliation(s)
- Felix M. Pabon-Rodriguez
- Department of Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, United States
| | - Grant D. Brown
- Department of Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, United States
| | - Breanna M. Scorza
- Department of Epidemiology, The University of Iowa College of Public Health, Iowa City, Iowa, United States
- Center for Emerging Infectious Diseases, The University of Iowa College of Public Health, Iowa City, Iowa, United States
| | - Christine A. Petersen
- Department of Epidemiology, The University of Iowa College of Public Health, Iowa City, Iowa, United States
- Center for Emerging Infectious Diseases, The University of Iowa College of Public Health, Iowa City, Iowa, United States
| |
Collapse
|
4
|
Abstract
INTRODUCTION A novel virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was reported via nucleic acid identification in December, 2019. "Asymptomatic cases" have arised as an obstacle for an accurate diagnosis, curtailing the elimination of the ongoing pandemic. AREAS COVERED In this review, we analyze the definition of symptoms and the principles of diagnosing COVID-19. Also, we explore the major reasons for cases presenting a phenotype with mild symptoms. Host, viral and environmental aspects for a COVID-19 infection leading to mild symptoms are being highlighted. A final aspect regarding a rational primary asymptomatic COVID-19 infection is presumed. EXPERT OPINION Diagnosing a pandemic via a sole test can be risky. Epidemiological administration should be more accurate and precise, not only for the societal pandemic levels and following policies, but for the same scientific community, that studies SARS-CoV-2 and its mutants. Several other issues should be answered before analyzing human genome for the asymptomatic scenario.
Collapse
Affiliation(s)
- Dimitra S Mouliou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | | |
Collapse
|
5
|
Bai X, Plastow GS. Breeding for disease resilience: opportunities to manage polymicrobial challenge and improve commercial performance in the pig industry. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:6. [PMID: 35072100 PMCID: PMC8761052 DOI: 10.1186/s43170-022-00073-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/06/2022] [Indexed: 05/31/2023]
Abstract
Disease resilience, defined as an animal's ability to maintain productive performance in the face of infection, provides opportunities to manage the polymicrobial challenge common in pig production. Disease resilience can deliver a number of benefits, including more sustainable production as well as improved animal health and the potential for reduced antimicrobial use. However, little progress has been made to date in the application of disease resilience in breeding programs due to a number of factors, including (1) confusion around definitions of disease resilience and its component traits disease resistance and tolerance, and (2) the difficulty in characterizing such a complex trait consisting of multiple biological functions and dynamic elements of rates of response and recovery from infection. Accordingly, this review refines the definitions of disease resistance, tolerance, and resilience based on previous studies to help improve the understanding and application of these breeding goals and traits under different scenarios. We also describe and summarize results from a "natural disease challenge model" designed to provide inputs for selection of disease resilience. The next steps for managing polymicrobial challenges faced by the pig industry will include the development of large-scale multi-omics data, new phenotyping technologies, and mathematical and statistical methods adapted to these data. Genome editing to produce pigs resistant to major diseases may complement selection for disease resilience along with continued efforts in the more traditional areas of biosecurity, vaccination and treatment. Altogether genomic approaches provide exciting opportunities for the pig industry to overcome the challenges provided by hard-to-manage diseases as well as new environmental challenges associated with climate change.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Graham S. Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
6
|
Challenger JD, Foo CY, Wu Y, Yan AWC, Marjaneh MM, Liew F, Thwaites RS, Okell LC, Cunnington AJ. Modelling upper respiratory viral load dynamics of SARS-CoV-2. BMC Med 2022; 20:25. [PMID: 35022051 PMCID: PMC8755404 DOI: 10.1186/s12916-021-02220-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/15/2021] [Indexed: 02/09/2023] Open
Abstract
Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.
Collapse
Affiliation(s)
- Joseph D Challenger
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Cher Y Foo
- School of Medicine, Imperial College London, London, UK
| | - Yue Wu
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ada W C Yan
- Department of Infectious Disease, Imperial College London, London, UK
| | - Mahdi Moradi Marjaneh
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Felicity Liew
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lucy C Okell
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK.,Centre for Paediatrics and Child Health, Imperial College London, London, UK
| |
Collapse
|
7
|
Yuan H, Tian J, Chao Y, Chien YS, Luo RH, Guo JY, Li S, Chou YJ, Shum HC, Chen CF. Hand-Powered Microfluidics for Parallel Droplet Digital Loop-Mediated Isothermal Amplification Assays. ACS Sens 2021; 6:2868-2874. [PMID: 34156242 DOI: 10.1021/acssensors.1c00184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Droplet digital loop-mediated isothermal amplification (ddLAMP) is an important assay for pathogen detection due to its high accuracy, specificity, and ability to quantify nucleic acids. However, performing ddLAMP requires expensive instrumentation and the need for highly trained personnel with expertise in microfluidics. To make ddLAMP more accessible, a ddLAMP assay is developed, featuring significantly decreased operational difficulty and instrumentation requirements. The proposed assay consists of three simplified steps: (1) droplet generation step, in which a LAMP mixture can be emulsified just by manually pulling a syringe connected to a microfluidic device. In this step, for the first time, we verify that highly monodispersed droplets can be generated with unstable flow rates or pressures, allowing untrained personnel to operate the microfluidic device and perform ddLAMP assay; (2) heating step, in which the droplets are isothermally heated in a water bath, which can be found in most laboratories; and (3) result analysis step, in which the ddLAMP result can be determined using only a fluorescence microscopy and an open-source analyzing software. Throughout the process, no droplet microfluidic expertise or equipment is required. More importantly, the proposed system enables multiple samples to be processed simultaneously with a detection limit of 10 copies/μL. The test is simple and intuitive to operate in most laboratories for multi-sample detection, significantly enhancing the accessibility and detection throughput of the ddLAMP technique.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuh-Shiuan Chien
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Hao Luo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jun-Yu Guo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Shanshan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
| | - Yi-Ju Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
8
|
Gillis A, Ben Yaacov A, Agur Z. A New Method for Optimizing Sepsis Therapy by Nivolumab and Meropenem Combination: Importance of Early Intervention and CTL Reinvigoration Rate as a Response Marker. Front Immunol 2021; 12:616881. [PMID: 33732241 PMCID: PMC7959825 DOI: 10.3389/fimmu.2021.616881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Recently, there has been a growing interest in applying immune checkpoint blockers (ICBs), so far used to treat cancer, to patients with bacterial sepsis. We aimed to develop a method for predicting the personal benefit of potential treatments for sepsis, and to apply it to therapy by meropenem, an antibiotic drug, and nivolumab, a programmed cell death-1 (PD-1) pathway inhibitor. Methods: We defined an optimization problem as a concise framework of treatment aims and formulated a fitness function for grading sepsis treatments according to their success in accomplishing the pre-defined aims. We developed a mathematical model for the interactions between the pathogen, the cellular immune system and the drugs, whose simulations under diverse combined meropenem and nivolumab schedules, and calculation of the fitness function for each schedule served to plot the fitness landscapes for each set of treatments and personal patient parameters. Results: Results show that treatment by meropenem and nivolumab has maximum benefit if the interval between the onset of the two drugs does not exceed a dose-dependent threshold, beyond which the benefit drops sharply. However, a second nivolumab application, within 7–10 days after the first, can extinguish a pathogen which the first nivolumab application failed to remove. The utility of increasing nivolumab total dose above 6 mg/kg is contingent on the patient's personal immune attributes, notably, the reinvigoration rate of exhausted CTLs and the overall suppression rates of functional CTLs. A baseline pathogen load, higher than 5,000 CFU/μL, precludes successful nivolumab and meropenem combination therapy, whereas when the initial load is lower than 3,000 CFU/μL, meropenem monotherapy suffices for removing the pathogen. Discussion: Our study shows that early administration of nivolumab, 6 mg/kg, in combination with antibiotics, can alleviate bacterial sepsis in cases where antibiotics alone are insufficient and the initial pathogen load is not too high. The study pinpoints the role of precision medicine in sepsis, suggesting that personalized therapy by ICBs can improve pathogen elimination and dampen immunosuppression. Our results highlight the importance in using reliable markers for classifying patients according to their predicted response and provides a valuable tool in personalizing the drug regimens for patients with sepsis.
Collapse
Affiliation(s)
- Avi Gillis
- Institute for Medical Biomathematics (IMBM), Bene Ataroth, Israel
| | - Anat Ben Yaacov
- Institute for Medical Biomathematics (IMBM), Bene Ataroth, Israel
| | - Zvia Agur
- Institute for Medical Biomathematics (IMBM), Bene Ataroth, Israel
| |
Collapse
|
9
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
10
|
Althaus T, Thaipadungpanit J, Greer RC, Swe MMM, Dittrich S, Peerawaranun P, Smit PW, Wangrangsimakul T, Blacksell S, Winchell JM, Diaz MH, Day NPJ, Smithuis F, Turner P, Lubell Y. Causes of fever in primary care in Southeast Asia and the performance of C-reactive protein in discriminating bacterial from viral pathogens. Int J Infect Dis 2020; 96:334-342. [PMID: 32437937 PMCID: PMC7211754 DOI: 10.1016/j.ijid.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study investigated causes of fever in the primary levels of care in Southeast Asia, and evaluated whether C-reactive protein (CRP) could distinguish bacterial from viral pathogens. METHODS Blood and nasopharyngeal swab specimens were taken from children and adults with fever (>37.5 °C) or history of fever (<14 days) in Thailand and Myanmar. RESULTS Of 773 patients with at least one blood or nasopharyngeal swab specimen collected, 227 (29.4%) had a target organism detected. Influenza virus type A was detected in 85/227 cases (37.5%), followed by dengue virus (30 cases, 13.2%), respiratory syncytial virus (24 cases, 10.6%) and Leptospira spp. (nine cases, 4.0%). Clinical outcomes were similar between patients with a bacterial or a viral organism, regardless of antibiotic prescription. CRP was higher among patients with a bacterial organism compared with those with a viral organism (median 18 mg/L, interquartile range [10-49] versus 10 mg/L [≤8-22], p = 0.003), with an area under the curve of 0.65 (95% CI 0.55-0.75). CONCLUSIONS Serious bacterial infections requiring antibiotics are an exception rather than the rule in the first line of care. CRP testing could assist in ruling out such cases in settings where diagnostic uncertainty is high and routine antibiotic prescription is common. The original CRP randomised controlled trial was registered with ClinicalTrials.gov, number NCT02758821.
Collapse
Affiliation(s)
- Thomas Althaus
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rachel C Greer
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Myo Maung Maung Swe
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Myanmar-Oxford Clinical Research Unit (MOCRU), Medical Action Myanmar (MAM), Yangon, Myanmar
| | - Sabine Dittrich
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Pimnara Peerawaranun
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pieter W Smit
- Maasstad Ziekenhuis Hospital, Department of Medical Microbiology, Rotterdam, The Netherlands; Public Health Laboratory (GGD), Amsterdam, The Netherlands
| | - Tri Wangrangsimakul
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stuart Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jonas M Winchell
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maureen H Diaz
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Myanmar-Oxford Clinical Research Unit (MOCRU), Medical Action Myanmar (MAM), Yangon, Myanmar
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; Cambodia-Oxford Medical Research Unit (COMRU), Angkor Hospital for Children, Siem Reap, Cambodia
| | - Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Makiola A, Dickie IA, Holdaway RJ, Wood JR, Orwin KH, Glare TR. Land use is a determinant of plant pathogen alpha‐ but not beta‐diversity. Mol Ecol 2019; 28:3786-3798. [DOI: 10.1111/mec.15177] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Andreas Makiola
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Université Bourgogne Franche‐Comté Dijon France
- Bio‐Protection Research Centre Lincoln University Lincoln New Zealand
| | - Ian A. Dickie
- Bio‐Protection Research Centre, School of Biological Sciences University of Canterbury Christchurch New Zealand
| | | | - Jamie R. Wood
- Manaaki Whenua – Landcare Research Lincoln New Zealand
| | - Kate H. Orwin
- Manaaki Whenua – Landcare Research Lincoln New Zealand
| | - Travis R. Glare
- Bio‐Protection Research Centre Lincoln University Lincoln New Zealand
| |
Collapse
|
12
|
Khojandi N, Haselkorn TS, Eschbach MN, Naser RA, DiSalvo S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. THE ISME JOURNAL 2019; 13:2068-2081. [PMID: 31019270 PMCID: PMC6776111 DOI: 10.1038/s41396-019-0419-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are "farmers" that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO, 63104, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, 201 Donaghey Avenue, Conway, AR, 72035, USA
| | - Madison N Eschbach
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Rana A Naser
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
13
|
Modelling pathogen load dynamics to elucidate mechanistic determinants of host-Plasmodium falciparum interactions. Nat Microbiol 2019; 4:1592-1602. [PMID: 31209307 PMCID: PMC6708439 DOI: 10.1038/s41564-019-0474-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
During infection, increasing pathogen load stimulates both protective and
harmful aspects of the host response. The dynamics of this interaction are hard
to quantify in humans, but doing so could improve understanding of mechanisms of
disease and protection. We sought to model the contributions of parasite
multiplication rate and host response to observed parasite load in individual
subjects with Plasmodium falciparum malaria, using only data
obtained at the time of clinical presentation, and then to identify their
mechanistic correlates. We predicted higher parasite multiplication rates and
lower host responsiveness in severe malaria cases, with severe anemia being more
insidious than cerebral malaria. We predicted that parasite growth-inhibition
was associated with platelet consumption, lower expression of
CXCL10 and type-1 interferon-associated genes, but
increased cathepsin G and matrix metallopeptidase 9 expression. We found that
cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion
into erythrocytes. Parasite multiplication rate was associated with host iron
availability and higher complement factor H levels, lower expression of
gametocyte-associated genes but higher expression of translation-associated
genes in the parasite. Our findings demonstrate the potential of using explicit
modelling of pathogen load dynamics to deepen understanding of host-pathogen
interactions and identify mechanistic correlates of protection.
Collapse
|
14
|
Martínková N, Škrabánek P, Pikula J. Modelling invasive pathogen load from non-destructive sampling data. J Theor Biol 2018; 464:98-103. [PMID: 30578799 DOI: 10.1016/j.jtbi.2018.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/22/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
Where microbes colonizing skin surface may help maintain organism homeostasis, those that invade living skin layers cause disease. In bats, white-nose syndrome is a fungal skin infection that affects animals during hibernation and may lead to mortality in severe cases. Here, we inferred the amount of fungus that had invaded skin tissue of diseased animals. We used simulations to estimate the unobserved disease severity in a non-lethal wing punch biopsy and to relate the simulated pathology to the measured fungal load in paired biopsies. We found that a single white-nose syndrome skin lesion packed with spores and hyphae of the causative agent, Pseudogymnoascus destructans, contains 48.93 pg of the pathogen DNA, which amounts to about 1560 P destructans genomes in one skin lesion. Relating the information to the known UV fluorescence in Nearctic and Palearctic bats shows that Nearctic bats carry about 1.7 µg of fungal DNA per cm2, whereas Palearctic bats have 0.04 µg cm-2 of P. destructans DNA. With the information on the fungal load that had invaded the host skin, the researchers can now calculate disease severity as a function of invasive fungal growth using non-destructive UV light transillumination of each bat's wing membranes. Our results will enable and promote thorough disease severity assessment in protected bat species without the need for extensive animal and laboratory labor sacrifices.
Collapse
Affiliation(s)
- Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic.
| | - Pavel Škrabánek
- Institute of Automation and Computer Science, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|
15
|
Lee HJ, Georgiadou A, Walther M, Nwakanma D, Stewart LB, Levin M, Otto TD, Conway DJ, Coin LJ, Cunnington AJ. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci Transl Med 2018; 10:eaar3619. [PMID: 29950443 PMCID: PMC6326353 DOI: 10.1126/scitranslmed.aar3619] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
The pathogenesis of infectious diseases depends on the interaction of host and pathogen. In Plasmodium falciparum malaria, host and parasite processes can be assessed by dual RNA sequencing of blood from infected patients. We performed dual transcriptome analyses on samples from 46 malaria-infected Gambian children to reveal mechanisms driving the systemic pathophysiology of severe malaria. Integrating these transcriptomic data with estimates of parasite load and detailed clinical information allowed consideration of potentially confounding effects due to differing leukocyte proportions in blood, parasite developmental stage, and whole-body pathogen load. We report hundreds of human and parasite genes differentially expressed between severe and uncomplicated malaria, with distinct profiles associated with coma, hyperlactatemia, and thrombocytopenia. High expression of neutrophil granule-related genes was consistently associated with all severe malaria phenotypes. We observed severity-associated variation in the expression of parasite genes, which determine cytoadhesion to vascular endothelium, rigidity of infected erythrocytes, and parasite growth rate. Up to 99% of human differential gene expression in severe malaria was driven by differences in parasite load, whereas parasite gene expression showed little association with parasite load. Coexpression analyses revealed interactions between human and P. falciparum, with prominent co-regulation of translation genes in severe malaria between host and parasite. Multivariate analyses suggested that increased expression of granulopoiesis and interferon-γ-related genes, together with inadequate suppression of type 1 interferon signaling, best explained severity of infection. These findings provide a framework for understanding the contributions of host and parasite to the pathogenesis of severe malaria and identifying new treatments.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Michael Walther
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Davis Nwakanma
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Fajara, The Gambia
| | - Lindsay B Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael Levin
- Section of Paediatrics, Imperial College, London W2 1PG, UK
| | - Thomas D Otto
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, UK
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
16
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
17
|
de Jong GM, Slager JJ, Verbon A, van Hellemond JJ, van Genderen PJJ. Systematic review of the role of angiopoietin-1 and angiopoietin-2 in Plasmodium species infections: biomarkers or therapeutic targets? Malar J 2016; 15:581. [PMID: 27905921 PMCID: PMC5134107 DOI: 10.1186/s12936-016-1624-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/19/2016] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Levels of both angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) correlate with malaria disease severity and are proposed as biomarkers and possible therapeutic targets. To establish their role in malaria, a systematic review was performed of the literature on Ang-1 and Ang-2 with regard to their potential as biomarkers in malaria and discuss their possible place in adjuvant treatment regimens. METHODS Ten electronic databases were systematically searched to identify studies investigating Ang-1 and Ang-2 in human and murine malaria in both clinical and experimental settings. Information about the predictive value of Ang-1 and Ang-2 for disease severity and their regulatory changes in interventional studies were extracted. RESULTS Some 579 studies were screened; 26 were included for analysis. In all five studies that determined Ang-1 levels and in all 11 studies that determined Ang-2 in different disease severity states in falciparum malaria, a decline in Ang-1 and an increase of Ang-2 levels was associated with increasing disease severity. All nine studies that determined angiopoietin levels in Plasmodium falciparum patients to study their ability as biomarkers could distinguish between multiple disease severity states; the more the disease severity states differed, the better they could be distinguished. Five studies differentiating malaria survivors from non-survivors with Ang-2 as marker found an AUROC in a range of 0.71-0.83, which performed as well or better than lactate. Prophylactic administration of FTY720, rosiglitazone or inhalation of nitric oxide (NO) during malaria disease in mice resulted in an increase in Ang-1, a decrease in Ang-2 and an increased survival. For rosiglitazone, a decrease in Ang-2/Ang-1 ratio was observed after post-infection treatment in mice and humans with malaria, but for inhalation of NO, an effect on Ang-1 and survival was only observed in mice. CONCLUSION Both Ang-1 and Ang-2 levels correlate with and can distinguish between malaria disease severity states within the group of malaria-infected patients. However, distinct comparisons of disease severity states were made in distinct studies and not all distinctions made had clinical relevance. Changes in levels of Ang-1 and Ang-2 might also reflect treatment effectiveness and are promising therapeutic targets as part of multi-targeted therapy.
Collapse
Affiliation(s)
- Gerdie M. de Jong
- Institute for Tropical Diseases, Harbour Hospital, Haringvliet 2, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Jasper J. Slager
- Institute for Tropical Diseases, Harbour Hospital, Haringvliet 2, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
18
|
Li R, Li N, Zhang J, Wang Y, Liu J, Cai Y, Chai T, Wei L. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC). Front Microbiol 2016; 7:637. [PMID: 27199963 PMCID: PMC4853417 DOI: 10.3389/fmicb.2016.00637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/18/2016] [Indexed: 12/04/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis.
Collapse
Affiliation(s)
- Rong Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Ning Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Yao Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Jiyuan Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Yumei Cai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| | - Liangmeng Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural UniversityTai'an, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong ProvinceTai'an, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical CollegeTai'an, China
| |
Collapse
|