1
|
Madrid-Espinoza J, Salinas-Cornejo J, Norambuena L, Ruiz-Lara S. Tissue-Specific Regulation of Vesicular Trafficking Mediated by Rab-GEF Complex MON1/CCZ1 From Solanum chilense Increases Salt Stress Tolerance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1429-1444. [PMID: 39449264 DOI: 10.1111/pce.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Salt stress constrains the development and growth of plants. To tolerate it, mechanisms of endocytosis and vacuolar compartmentalization of Na+ are induced. In this work, the genes that encode a putative activator of vesicular trafficking called MON1/CCZ1 from Solanum chilense, SchMON1 and SchCCZ1, were co-expressed in roots of Arabidopsis thaliana to determine whether the increase in prevacuolar vesicular trafficking also increases the Na+ compartmentalization capacity and tolerance. Initially, we demonstrated that both SchMON1 and SchCCZ1 genes rescued the dwarf phenotype of both A. thaliana mon1-1 and ccz1a/b mutants associated with the loss of function, and both proteins colocalized with their functional targets, RabF and RabG, in endosomes. Transgenic A. thaliana plants co-expressing these genes improved salt stress tolerance compared to wild type plants, with SchMON1 contributing the most. At the sub-cellular level, co-expression of SchMON1/SchCCZ1 reduced ROS levels and increased endocytic activity, and number of acidic structures associated with autophagosomes. Notably, greater Na+ accumulation in vacuoles of cortex and endodermis was evidenced in the SchMON1 genotype. Molecular analysis of gene expression in each genotype supported these results. Altogether, our analysis shows that root activation of prevacuolar vesicular trafficking mediated by MON1/CCZ1 emerges as a promising physiological molecular mechanism to increase tolerance to salt stress in crops of economic interest.
Collapse
Affiliation(s)
- José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Center, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Yuan F, Qiu F, Xie J, Fan Y, Zhang B, Zhang T, Zhang Z, Gu L, Li M. Mechanism of Action of Fusarium oxysporum CCS043 Utilizing Allelochemicals for Rhizosphere Colonization and Enhanced Infection Activity in Rehmannia glutinosa. PLANTS (BASEL, SWITZERLAND) 2024; 14:38. [PMID: 39795298 PMCID: PMC11722847 DOI: 10.3390/plants14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Rehmannia glutinosa is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly Fusarium oxysporum; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce F. oxysporum CCS043 outbreaks. In this study; the genome of F. oxysporum CCS043 from R. glutinosa's rhizosphere microbiota was sequenced and assembled de novo; resulting in a 47.67 Mb genome comprising 16,423 protein-coding genes. Evolutionary analysis suggests that different F. oxysporum strains may adapt to the host rhizosphere microecosystem by acquiring varying numbers of specific genes while maintaining a constant number of core genes.The allelopathic effects of ferulic acid; verbascoside; and catalpol on F. oxysporum CCS043 were examined at the physiological and transcriptomic levels. The application of ferulic acid was observed to primarily facilitate the proliferation and growth of F. oxysporum CCS043; whereas verbascoside notably enhanced the biosynthesis of infection-related enzymes such as pectinase and cellulase. Catalpol demonstrated a moderate level of allelopathic effects in comparison to the other two. Furthermore; 10 effectors were identified by combining the genomic data. Meanwhile; it was found that among the effector-protein-coding genes; ChiC; VRDA; csn; and chitinase exhibited upregulated expression across all treatments. The expression patterns of these key genes were validated using qRT-PCR. Transient overexpression of the two effector-encoding genes in detached R. glutinosa leaves provided further confirmation that ChiC (GME8876_g) and csn (GME9251_g) are key effector proteins responsible for the induction of hypersensitive reactions in R. glutinosa leaf cells. This study provides a preliminary indication that the use of allelochemicals by F. oxysporum CCS043 can promote its own growth and proliferation and enhance infection activity. This finding offers a solid theoretical basis and data support for elucidating the fundamental causes of fungal disease outbreaks in continuous cropping of R. glutinosa and for formulating effective mitigation strategies.
Collapse
Affiliation(s)
- Feiyue Yuan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
| | - Fuxiang Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiawei Xie
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxi Fan
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Bao Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Tingting Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhongyi Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
| | - Li Gu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mingjie Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (F.Q.); (Z.Z.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
3
|
Liu D, Jelenska J, Morgan JM, Greenberg JT. Phytosulfokine downregulates defense-related WRKY transcription factors and attenuates pathogen-associated molecular pattern-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2367-2384. [PMID: 39661720 DOI: 10.1111/tpj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024]
Abstract
Phytosulfokine (PSK) is a plant growth-promoting peptide hormone that is perceived by its cell surface receptors PSKR1 and PSKR2 in Arabidopsis. Plants lacking the PSK receptors show phenotypes consistent with PSK signaling repressing some plant defenses. To gain further insight into the PSK signaling mechanism, comprehensive transcriptional profiling of Arabidopsis treated with PSK was performed, and the effects of PSK treatment on plant defense readouts were monitored. Our study indicates that PSK's major effect is to downregulate defense-related genes; it has a more modest effect on the induction of growth-related genes. WRKY transcription factors (TFs) emerged as key regulators of PSK-responsive genes, sharing commonality with a pathogen-associated molecular pattern (PAMP) responses, flagellin 22 (flg22), but exhibiting opposite regulatory directions. These PSK-induced transcriptional changes were accompanied by biochemical and physiological changes that reduced PAMP responses, notably mitogen-activated protein kinase (MPK) phosphorylation (previously implicated in WRKY activation) and the cell wall modification of callose deposition. Comparison with previous studies using other growth stimuli (the sulfated plant peptide containing sulfated tyrosine [PSY] and Pseudomonas simiae strain WCS417) also reveals WRKY TFs' overrepresentations in these pathways, suggesting a possible shared mechanism involving WRKY TFs for plant growth-defense trade-off.
Collapse
Affiliation(s)
- Dian Liu
- Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Jessica M Morgan
- Biophysical Sciences, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
4
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Gnyliukh N, Johnson A, Nagel MK, Monzer A, Babić D, Hlavata A, Alotaibi SS, Isono E, Loose M, Friml J. Role of the dynamin-related protein 2 family and SH3P2 in clathrin-mediated endocytosis in Arabidopsis thaliana. J Cell Sci 2024; 137:jcs261720. [PMID: 38506228 PMCID: PMC11112126 DOI: 10.1242/jcs.261720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development through controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scission machinery in plants, but the precise roles of these proteins in this process are not fully understood. Here, we characterised the roles of the plant dynamin-related protein 2 (DRP2) family (hereafter DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to recruiters of dynamins, such as endophilin and amphiphysin, in CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the sh3p123 triple mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggest that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that, despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME.
Collapse
Affiliation(s)
- Nataliia Gnyliukh
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Division of Anatomy, Centre for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Aline Monzer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - David Babić
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Annamaria Hlavata
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Erika Isono
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Loose
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| |
Collapse
|
6
|
Gandhi A, Tseng YH, Oelmüller R. The damage-associated molecular pattern cellotriose alters the phosphorylation pattern of proteins involved in cellulose synthesis and trans-Golgi trafficking in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2023; 18:2184352. [PMID: 36913771 PMCID: PMC10026868 DOI: 10.1080/15592324.2023.2184352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have recently demonstrated that the cellulose breakdown product cellotriose is a damage-associated molecular pattern (DAMP) which induces responses related to the integrity of the cell wall. Activation of downstream responses requires the Arabidopsis malectin domain-containing CELLOOLIGOMER RECEPTOR KINASE1 (CORK1)1. The cellotriose/CORK1 pathway induces immune responses, including NADPH oxidase-mediated reactive oxygen species production, mitogen-activated protein kinase 3/6 phosphorylation-dependent defense gene activation, and the biosynthesis of defense hormones. However, apoplastic accumulation of cell wall breakdown products should also activate cell wall repair mechanisms. We demonstrate that the phosphorylation pattern of numerous proteins involved in the accumulation of an active cellulose synthase complex in the plasma membrane and those for protein trafficking to and within the trans-Golgi network (TGN) are altered within minutes after cellotriose application to Arabidopsis roots. The phosphorylation pattern of enzymes involved in hemicellulose or pectin biosynthesis and the transcript levels for polysaccharide-synthesizing enzymes responded barely to cellotriose treatments. Our data show that the phosphorylation pattern of proteins involved in cellulose biosynthesis and trans-Golgi trafficking is an early target of the cellotriose/CORK1 pathway.
Collapse
Affiliation(s)
- Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
- CONTACT Ralf Oelmüller Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
7
|
Greenwood KN, King CL, Melena I, Stegemann KA, Donnelly M, Childers A, Mozal R, Collins CA, Spears BJ. The brassinosteroid-responsive protein OCTOPUS is a novel regulator of Arabidopsis thaliana immune signaling. PLANT DIRECT 2023; 7:e524. [PMID: 37638229 PMCID: PMC10448135 DOI: 10.1002/pld3.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Phloem is a critical tissue for transport of photosynthates and extracellular signals in vascular plants. However, it also represents an ideal environment for pathogens seeking access to valuable host nutrients. Although many vascular pathogens induce economically relevant crop damage, there is still little known about the mechanisms by which immune signaling operates through the phloem. An existing phosphoproteomic dataset was mined to identify proteins that were both phosphorylated in response to the defense-elicitor flagellin (flg22) and expressed in vascular cells. A single candidate, OCTOPUS (OPS), is polarly associated with the plasma membrane of sieve element cells and has been characterized as an inhibitor of brassinosteroid insensitive-2 in promotion of brassinosteroid-related phytohormone signaling. The observation that OPS is differentially phosphorylated in response to flg22 led us to the examine whether OPS may also regulate flg22-induced immune signaling. Two independent alleles of ops exhibited enhanced immunity outputs across multiple signaling branches of PAMP-triggered immunity (PTI), constitutively and in response to flg22 treatment. Together with our observation that interactions between OPS and brassinosteroid insensitive-2 were disrupted by induction of salicylic acid and depletion of brassinosteriod, these data support a model whereby OPS modulates brassinolide and immune signaling to control downstream responses. We present OPS as a novel addition to the list of proteins with documented roles in PAMP-PTI signaling. These results further indicate that immune signaling in the phloem may be a significant and unique component of the host detection and response to pathogens in vascular plants.
Collapse
Affiliation(s)
- Kaitlyn N. Greenwood
- Department of Chemistry and PhysicsDrury UniversitySpringfieldMissouriUSA
- Present address:
DaVita DialysisOverland ParkKansasUSA
| | - Courtney L. King
- Department of Chemistry and PhysicsDrury UniversitySpringfieldMissouriUSA
- Present address:
Department of Chemistry and BiochemistryUniversity of Notre DameSouth BendIndianaUSA
| | - Isabella Melena
- Department of Chemistry and PhysicsDrury UniversitySpringfieldMissouriUSA
- Present address:
School of MedicineWashington University in St. LouisSt. LouisMissouriUSA
| | - Katherine A. Stegemann
- Department of BiologyMarian UniversityIndianapolisIndianaUSA
- Present address:
Krannert School of Physical TherapyUniversity of IndianapolisIndianapolisIndianaUSA
| | - Maura Donnelly
- Present address:
Department of Biological SciencesButler UniversityIndianapolisIndianaUSA
| | - Anna Childers
- Present address:
Department of Biological SciencesButler UniversityIndianapolisIndianaUSA
| | - Raegan Mozal
- Present address:
Department of Biological SciencesButler UniversityIndianapolisIndianaUSA
| | - Carina A. Collins
- Department of Chemistry and PhysicsDrury UniversitySpringfieldMissouriUSA
- Department of BiologyMarian UniversityIndianapolisIndianaUSA
- Present address:
Eli Lilly and CompanyLilly Corporate CenterIndianapolisIndianaUSA
| | - Benjamin J. Spears
- Present address:
Department of Biological SciencesButler UniversityIndianapolisIndianaUSA
| |
Collapse
|
8
|
Hurst CH, Turnbull D, Xhelilaj K, Myles S, Pflughaupt RL, Kopischke M, Davies P, Jones S, Robatzek S, Zipfel C, Gronnier J, Hemsley PA. S-acylation stabilizes ligand-induced receptor kinase complex formation during plant pattern-triggered immune signaling. Curr Biol 2023; 33:1588-1596.e6. [PMID: 36924767 DOI: 10.1016/j.cub.2023.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Plant receptor kinases are key transducers of extracellular stimuli, such as the presence of beneficial or pathogenic microbes or secreted signaling molecules. Receptor kinases are regulated by numerous post-translational modifications.1,2,3 Here, using the immune receptor kinases FLS24 and EFR,5 we show that S-acylation at a cysteine conserved in all plant receptor kinases is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine residues within proteins, altering their biochemical properties and behavior within the membrane environment.6 We observe S-acylation of FLS2 at C-terminal kinase domain cysteine residues within minutes following the perception of its ligand, flg22, in a BAK1 co-receptor and PUB12/13 ubiquitin ligase-dependent manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signaling and resistance to bacterial infection. Similarly, mutating the corresponding conserved cysteine residue in EFR suppressed elf18-triggered signaling. Analysis of unstimulated and activated FLS2-containing complexes using microscopy, detergents, and native membrane DIBMA nanodiscs indicates that S-acylation stabilizes, and promotes retention of, activated receptor kinase complexes at the plasma membrane to increase signaling efficiency.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kaltra Xhelilaj
- ZMBP Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sally Myles
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robin L Pflughaupt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michaela Kopischke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Davies
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Jones
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Julien Gronnier
- ZMBP Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany; Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
9
|
Ekanayake G, Leslie ME, Smith JM, Heese A. Arabidopsis Dynamin-Related Protein AtDRP2A Contributes to Late Flg22-Signaling and Effective Immunity Against Pseudomonas syringae Bacteria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:201-207. [PMID: 36653183 DOI: 10.1094/mpmi-10-22-0207-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In eukaryotes, dynamins and dynamin-related proteins (DRPs) are high-molecular weight GTPases responsible for mechanochemical fission of organelles or membranes. Of the six DRP subfamilies in Arabidopsis thaliana, AtDRP1 and AtDRP2 family members serve as endocytic accessory proteins in clathrin-mediated endocytosis. Most studies have focused on AtDRP1A and AtDRP2B as critical modulators of plant pattern-triggered immunity (PTI) against pathogenic, flagellated Pseudomonas syringae pv. tomato DC3000 bacteria and immune signaling in response to the bacterial flagellin peptide flg22. Much less is known about AtDRP2A, the closely related paralog of AtDRP2B. AtDRP2A and AtDRP2B are the only classical, or bona fide, dynamins in Arabidopsis, based on their evolutionary conserved domain structure with mammalian dynamins functioning in endocytosis. AtDRP2B but not AtDRP2A is required for robust ligand-induced endocytosis of the receptor kinase FLAGELLIN SENSING2 for dampening of early flg22 signaling. Here, we utilized Arabidopsis drp2a null mutants to identify AtDRP2A as a positive contributor to effective PTI against P. syringae pv. tomato DC3000 bacteria, consistent with reduced PATHOGEN RELATED1 (PR1) messenger RNA accumulation. We provide evidence that AtDRP2A is a novel modulator of late flg22 signaling, contributing positively to PR1 gene induction but negatively to polyglucan callose deposition. AtDRP2A has no apparent roles in flg22-elicited mitogen-activated protein kinase defense marker gene induction. In summary, this study adds the evolutionary conserved dynamin AtDRP2A to a small group of vesicular trafficking proteins with roles as non-canonical contributors in immune responses, likely due to modulating one or both the localization and activity of multiple different proteins with distinct contributions to immune signaling. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gayani Ekanayake
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, U.S.A
| | - Michelle E Leslie
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, U.S.A
| | - John M Smith
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, U.S.A
- University of Missouri-Columbia, Division of Plant Sciences & Technology, Columbia, MO, U.S.A
| | - Antje Heese
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, U.S.A
| |
Collapse
|
10
|
Lu Y, Zhang Y, Lian N, Li X. Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. Int J Mol Sci 2023; 24:ijms24076059. [PMID: 37047032 PMCID: PMC10094514 DOI: 10.3390/ijms24076059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The plasma membrane (PM), which is composed of a lipid layer implanted with proteins, has diverse functions in plant responses to environmental triggers. The heterogenous dynamics of lipids and proteins in the plasma membrane play important roles in regulating cellular activities with an intricate pathway that orchestrates reception, signal transduction and appropriate response in the plant immune system. In the process of the plasma membrane participating in defense responses, the cytoskeletal elements have important functions in a variety of ways, including regulation of protein and lipid dynamics as well as vesicle trafficking. In this review, we summarized how the plasma membrane contributed to plant immunity and focused on the dynamic process of cytoskeleton regulation of endocytosis and exocytosis and propose future research directions.
Collapse
Affiliation(s)
- Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Yang Q, Zhang H, You J, Yang J, Zhang Q, Zhao J, Aimaier R, Zhang J, Han S, Zhao H, Zhao H. Transcriptome and metabolome analyses reveal that Bacillus subtilis BS-Z15 lipopeptides mycosubtilin homologue mediates plant defense responses. FRONTIERS IN PLANT SCIENCE 2023; 13:1088220. [PMID: 36815011 PMCID: PMC9940755 DOI: 10.3389/fpls.2022.1088220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/30/2022] [Indexed: 05/30/2023]
Abstract
Microbial-plant interactions protect plants from external stimuli, releasing various elicitor that activate the plants defense response and regulate its growth. Bacillus subtilis BS-Z15 was screened from cotton inter-rhizosphere soil, antagonized various plant pathogens, and protected cotton against Verticillium dahliae. This study showed that the BS-Z15 lipopeptide mycosubtilin homologue could act as an elicitor to induce systemic resistance (ISR) in plants. Mycosubtilin homologue induced ROS burst and deposition, callose deposition, MAPK cascade phosphorylation, and up-regulated PR1 and PDF1.2 gene expression in Arabidopsis seedlings, moreover enhanced resistance of Arabidopsis to Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) and V. dahliae. Transcriptome analysis was then used to evaluate the impact of mycosubtilin homologue on plant gene expression control. Mycosubtilin homologues activated Arabidopsis ISR on genes in metabolic pathways such as Arabidopsis plant-pathogen interactions, phenylpropanoid biosynthesis, MAPK signaling pathway, and phytohormone signaling. These analyses revealed that mycosubtilin homologues mediate the regulation of plant systemic resistance and growth and development by affecting related metabolites in glycolysis and gluconeogenesis, pentose phosphate pathway, tricarboxylic acid cycle, and amino acid metabolism in Arabidopsis. These findings confirmed that a mycosubtilin homologue could trigger the initiation of the Arabidopsis ISR by interacting with a variety of PTI components and transcriptional metabolic signaling pathways.
Collapse
Affiliation(s)
- Qilin Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Hui Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jia You
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jun Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Qi Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jinjin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Reyihanguli Aimaier
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jingbo Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
12
|
Mc Gowan G, Ekanayake G, Ingle RA, Heese A. Novel roles for Arabidopsis dynamin-related proteins DRP1A and DRP2B in resistance against Botrytis cinerea fungal infection. PLANT SIGNALING & BEHAVIOR 2022; 17:2129296. [PMID: 36200597 PMCID: PMC9543063 DOI: 10.1080/15592324.2022.2129296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Arabidopsis DYNAMIN-RELATED PROTEIN1A (AtDRP1A) and AtDRP2B are large GTPases that function together in endocytosis for effective cytokinesis, cell enlargement and development. A recent study shows that these DRPs contribute to ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (AtFLS2) to modulate flg22-immune signaling, and they are required for immunity against Pseudomonas syringae pv. tomato bacteria. Here, we demonstrate that atdrp1a and atdrp2b single mutants showed increased susceptibility to Botrytis cinerea indicating that AtDRP1A and AtDRP2B are necessary for effective resistance against this necrotrophic fungus. Thus, we expanded our limited understanding of clathrin endocytic accessory proteins in immunity against plant pathogens.
Collapse
Affiliation(s)
- Grant Mc Gowan
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Gayani Ekanayake
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Robert A. Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Antje Heese
- University of Missouri-Columbia, Division of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| |
Collapse
|
13
|
Spears BJ, McInturf SA, Collins C, Chlebowski M, Cseke LJ, Su J, Mendoza-Cózatl DG, Gassmann W. Class I TCP transcription factor AtTCP8 modulates key brassinosteroid-responsive genes. PLANT PHYSIOLOGY 2022; 190:1457-1473. [PMID: 35866682 PMCID: PMC9516767 DOI: 10.1093/plphys/kiac332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/01/2022] [Indexed: 05/17/2023]
Abstract
The plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family is most closely associated with regulating plant developmental programs. Recently, TCPs were also shown to mediate host immune signaling, both as targets of pathogen virulence factors and as regulators of plant defense genes. However, comprehensive characterization of TCP gene targets is still lacking. Loss of function of the class I TCP gene AtTCP8 attenuates early immune signaling and, when combined with mutations in AtTCP14 and AtTCP15, additional layers of defense signaling in Arabidopsis (Arabidopsis thaliana). Here, we focus on TCP8, the most poorly characterized of the three to date. We used chromatin immunoprecipitation and RNA sequencing to identify TCP8-bound gene promoters and differentially regulated genes in the tcp8 mutant; these datasets were heavily enriched in signaling components for multiple phytohormone pathways, including brassinosteroids (BRs), auxin, and jasmonic acid. Using BR signaling as a representative example, we showed that TCP8 directly binds and activates the promoters of the key BR transcriptional regulatory genes BRASSINAZOLE-RESISTANT1 (BZR1) and BRASSINAZOLE-RESISTANT2 (BZR2/BES1). Furthermore, tcp8 mutant seedlings exhibited altered BR-responsive growth patterns and complementary reductions in BZR2 transcript levels, while TCP8 protein demonstrated BR-responsive changes in subnuclear localization and transcriptional activity. We conclude that one explanation for the substantial targeting of TCP8 alongside other TCP family members by pathogen effectors may lie in its role as a modulator of BR and other plant hormone signaling pathways.
Collapse
Affiliation(s)
| | - Samuel A McInturf
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Carina Collins
- Department of Biology, Marian University, Indianapolis, Indiana, USA
| | - Meghann Chlebowski
- Department of Biological Sciences, Butler University, Indianapolis, Indiana, USA
| | - Leland J Cseke
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Jianbin Su
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - David G Mendoza-Cózatl
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Walter Gassmann
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
- Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
14
|
Leibman-Markus M, Schuster S, Vasquez-Soto B, Bar M, Avni A, Pizarro L. Dynamin-Related Proteins Enhance Tomato Immunity by Mediating Pattern Recognition Receptor Trafficking. MEMBRANES 2022; 12:membranes12080760. [PMID: 36005675 PMCID: PMC9415932 DOI: 10.3390/membranes12080760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pattern recognition receptor (PRR) trafficking to the plasma membrane and endocytosis plays a crucial role in pattern triggered immunity (PTI). Dynamin-related proteins (DRPs) participate in endocytosis and recycling. In Arabidopsis, DRP1 and DRP2 are involved in plasma membrane scission during endocytosis. They are required for the PRR FLS2 endocytosis induction and PTI activation after elicitation with flg22, the MAMP recognized by FLS2. In tomato, SlDRP2A regulates the PRR LeEIX2 endocytosis and PTI activation in response to EIX, the MAMP recognized by LeEIX2. However, it is unknown if other DRPs participate in these processes. Taking advantage of bioinformatics tools, we selected SlDRP2B among the eight DRP2 tomato orthologues to study its functionality in trafficking and plant immunity. Through transient expression of SlDRP1B and its dominant-negative mutant on Nicotiana benthamiana and Nicotiana tabacum, we analyzed SlDRP1B function. We observed that SlDRP1B is physically associated with the LeEIX2 and modifies LeEIX2 trafficking, increasing its presence in endosomes. An enhancement of EIX-elicitated defense responses accompanies the role of SlDRP1B on LeEIX endocytosis. In addition, SlDRP1B overexpression enhanced flg22-elicited defense response. With these results, we conclude that SlDRP1B regulates PRR trafficking and, therefore, plant immunity, similarly to the SlDRP2A role.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Beatriz Vasquez-Soto
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Adi Avni
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: ; Tel.: +56-233-286-050
| |
Collapse
|
15
|
Peischard S, Möller M, Disse P, Ho HT, Verkerk AO, Strutz-Seebohm N, Budde T, Meuth SG, Schweizer PA, Morris S, Mücher L, Eisner V, Thomas D, Klingel K, Busch K, Seebohm G. Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cell Mol Life Sci 2022; 79:440. [PMID: 35864219 PMCID: PMC9304080 DOI: 10.1007/s00018-022-04435-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
The enterovirus Coxsackievirus B3 (CVB3) is known to be a major source for the development of cardiac dysfunctions like viral myocarditis (VMC) and dilatative cardiomyopathy (DCM), but also results in bradycardia and fatal cardiac arrest. Besides clinical reports on bradycardia and sudden cardiac death, very little is known about the influence of CVB3 on the activity of human cardiac pacemaker cells. Here, we address this issue using the first human induced pluripotent stem cell (hiPSC)-derived pacemaker-like cells, in which the expression of a transgenic non-infectious variant of CVB3 can be controlled dose- and time-dependently. We found that CVB3 drastically changed hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) distribution and function in hiPSC-derived pacemaker-like tissue. In addition, using HCN4 cell expression systems, we found that HCN4 currents were decreased with altered voltage dependency of activation when CVB3 was expressed. Increased autophagosome formation and autophagosomal HCN4 insertion was observed in hiPSC-derived pacemaker-like cells under CVB3 expression as well. Individual effects of single, non-structural CVB3 proteins were analyzed and demonstrated that CVB3 proteins 2C and 3A had the most robust effect on HCN4 activity. Treatment of cells with the Rab7 inhibitor CID 106770 or the CVB3-3A inhibitor GW5074 led to the recovery of the cytoplasmatic HCN4 accumulation into a healthy appearing phenotype, indicating that malfunctioning Rab7-directed autophagosome transport is involved in the disturbed, cytoplasmatic HCN4 accumulation in CVB3-expressing human pacemaker-like cells. Summarizing, the enterovirus CVB3 inhibits human cardiac pacemaker function by reducing the pacemaker channel plasma membrane density, an effect that can be corrected by pharmacological intervention of endocytic vesicle trafficking.
Collapse
Affiliation(s)
- Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Melina Möller
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Huyen Tran Ho
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, Amsterdam, The Netherlands
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Institute of Physiology I, Westfälische-Wilhems Universität Münster, 48149, Münster, Germany
| | - Sven G Meuth
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Silke Morris
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Lena Mücher
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tuebingen, 72076, Tübingen, Germany
| | - Karin Busch
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany. .,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
16
|
Dahhan DA, Bednarek SY. Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Lett 2022; 596:2269-2287. [PMID: 35674447 DOI: 10.1002/1873-3468.14420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
Endocytic trafficking underlies processes essential for plant growth and development, including the perception of and response to abiotic and extracellular stimuli, post-Golgi and exocytic trafficking, and cytokinesis. Protein adaptors and regulatory factors of clathrin-mediated endocytosis that contribute to the formation of endocytic clathrin-coated vesicles are evolutionarily conserved. Yet, work of the last ten years has identified differences between the endocytic mechanisms of plants and Opisthokonts involving the endocytic adaptor TPLATE complex, the requirement of actin during CME, and the function of clathrin-independent endocytosis in the uptake of plant-specific plasma membrane proteins. Here, we review clathrin-mediated and -independent pathways in plants and describe recent advances enabled by new proteomic and imaging methods, and conditional perturbation of endocytosis. In addition, we summarize the formation and trafficking of clathrin-coated vesicles based on temporal and structural data garnered from high-resolution quantitative imaging studies. Finally, new information about the cross-talk between endocytosis and other endomembrane trafficking pathways and organelles will also be discussed.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
17
|
Wang F, Cheng Z, Wang J, Zhang F, Zhang B, Luo S, Lei C, Pan T, Wang Y, Zhu Y, Wang M, Chen W, Lin Q, Zhu S, Zhou Y, Zhao Z, Wang J, Guo X, Zhang X, Jiang L, Bao Y, Ren Y, Wan J. Rice STOMATAL CYTOKINESIS DEFECTIVE2 regulates cell expansion by affecting vesicular trafficking in rice. PLANT PHYSIOLOGY 2022; 189:567-584. [PMID: 35234957 PMCID: PMC9157159 DOI: 10.1093/plphys/kiac073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/20/2022] [Indexed: 05/13/2023]
Abstract
Vesicular trafficking plays critical roles in cell expansion in yeast and mammals, but information linking vesicular trafficking and cell expansion in plants is limited. Here, we isolated and characterized a rice (Oryza sativa) mutant, decreased plant height 1-1 (dph1-1), which exhibited a wide spectrum of developmental phenotypes, including reduced plant height and smaller panicles and grains. Cytological analysis revealed that limited cell expansion was responsible for the dph1-1 mutant phenotype compared to the wild-type. Map-based cloning revealed that DPH1 encodes a plant-specific protein, OsSCD2, which is homologous to Arabidopsis (Arabidopsis thaliana) STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). Subcellular localization revealed that OsSCD2 is associated with clathrin. Confocal microscopy showed that the dph1-1 mutant has defective endocytosis and post-Golgi trafficking. Biochemical and confocal data indicated that OsSCD2 physically interacts with OsSCD1 and that they are associated with intracellular structures that colocalize with microtubules. Furthermore, we found that cellulose synthesis was affected in the dph1-1 mutant, evidenced by reduced cellulose synthase gene accumulation at the transcript and protein levels, most likely resulting from an impaired localization pattern. Our results suggest that OsSCD2 is involved in clathrin-related vesicular trafficking with an important role in maintaining plant growth in rice.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for correspondence: ,
| |
Collapse
|
18
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 PMCID: PMC9134090 DOI: 10.1093/plcell/koac071] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
| | | | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | | | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
19
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
20
|
Arabidopsis Plasma Membrane ATPase AHA5 Is Negatively Involved in PAMP-Triggered Immunity. Int J Mol Sci 2022; 23:ijms23073857. [PMID: 35409217 PMCID: PMC8998810 DOI: 10.3390/ijms23073857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Plants evolve a prompt and robust immune system to defend themselves against pathogen infections. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first battle layer activated upon the PAMP’s perception, which leads to multiple defense responses. The plasma membrane (PM) H+-ATPases are the primary ion pumps to create and maintain the cellular membrane potential that is critical for various essential biological processes, including plant growth, development, and defense. This study discovered that the PM H+-ATPase AHA5 is negatively involved in Arabidopsis PTI against the virulent pathogen Pseudomonas syringae pvr. tomato (Pto) DC3000 infection. The aha5 mutant plants caused the reduced stomata opening upon the Pto infection, which was associated with the salicylic acid (SA) pathway. In addition, the aha5 mutant plants caused the increased levels of callose deposition, defense-related gene expression, and SA accumulation. Our results also indicate that the PM H+-ATPase activity of AHA5 probably mediates the coupling of H2O2 generation and the apoplast alkalization in PTI responses. Moreover, AHA5 was found to interact with a vital defense regulator, RPM1-interacting protein 4 (RIN4), in vitro and in vivo, which might also be critical for its function in PTI. In summary, our studies show that AHA5 functions as a novel and critical component that is negatively involved in PTI by coordinating different defense responses during the Arabidopsis–Pto DC3000 interaction.
Collapse
|
21
|
Cho SH, Tóth K, Kim D, Vo PH, Lin CH, Handakumbura PP, Ubach AR, Evans S, Paša-Tolić L, Stacey G. Activation of the plant mevalonate pathway by extracellular ATP. Nat Commun 2022; 13:450. [PMID: 35064110 PMCID: PMC8783019 DOI: 10.1038/s41467-022-28150-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
The mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca2+-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling. MVK interacts directly with the plant extracellular ATP (eATP) receptor P2K1 and is phosphorylated by P2K1 in response to eATP. Mutation of P2K1-mediated phosphorylation sites in MVK eliminates the ATP-induced cytoplasmic calcium response, MVK enzymatic activity, and suppresses pathogen defense. The data demonstrate that the plasma membrane associated P2K1 directly impacts plant cellular metabolism by phosphorylation of MVK, a key enzyme in the mevalonate pathway. The results underline the importance of purinergic signaling in plants and the ability of eATP to influence the activity of a key metabolite pathway with global effects on plant metabolism. Products of the mevalonate pathway support plant development. Here the authors show that the extracellular ATP receptor P2K1 phosphorylates mevalonate kinase and this affects the mevalonate pathway.
Collapse
|
22
|
Yip Delormel T, Avila-Ospina L, Davanture M, Zivy M, Lang J, Valentin N, Rayapuram N, Hirt H, Colcombet J, Boudsocq M. In vivo identification of putative CPK5 substrates in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111121. [PMID: 34895550 DOI: 10.1016/j.plantsci.2021.111121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Calcium signaling mediates most developmental processes and stress responses in plants. Among plant calcium sensors, the calcium-dependent protein kinases display a unique structure harboring both calcium sensing and kinase responding activities. AtCPK5 is an essential member of this family in Arabidopsis that regulates immunity and abiotic stress tolerance. To understand the underlying molecular mechanisms, we implemented a biochemical approach to identify in vivo substrates of AtCPK5. We generated transgenic lines expressing a constitutively active form of AtCPK5 under the control of a dexamethasone-inducible promoter. Lines expressing a kinase-dead version were used as a negative control. By comparing the phosphoproteome of the kinase-active and kinase-dead lines upon dexamethasone treatment, we identified 5 phosphopeptides whose abundance increased specifically in the kinase-active lines. Importantly, we showed that all 5 proteins were phosphorylated in vitro by AtCPK5 in a calcium-dependent manner, suggesting that they are direct targets of AtCPK5. We also detected several interaction patterns between the kinase and the candidates in the cytosol, membranes or nucleus, consistent with the ubiquitous localization of AtCPK5. Finally, we further validated the two phosphosites S245 and S280 targeted by AtCPK5 in the E3 ubiquitin ligase ATL31. Altogether, those results open new perspectives to decipher AtCPK5 biological functions.
Collapse
Affiliation(s)
- Tiffany Yip Delormel
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Liliana Avila-Ospina
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Marlène Davanture
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Évolution (GQE) - Le Moulon, 91190, Gif-sur-Yvette, France.
| | - Michel Zivy
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Évolution (GQE) - Le Moulon, 91190, Gif-sur-Yvette, France.
| | - Julien Lang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Nicolas Valentin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Naganand Rayapuram
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Heribert Hirt
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| | - Marie Boudsocq
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
23
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
24
|
Chung PJ, Singh GP, Huang CH, Koyyappurath S, Seo JS, Mao HZ, Diloknawarit P, Ram RJ, Sarojam R, Chua NH. Rapid Detection and Quantification of Plant Innate Immunity Response Using Raman Spectroscopy. FRONTIERS IN PLANT SCIENCE 2021; 12:746586. [PMID: 34745179 PMCID: PMC8566886 DOI: 10.3389/fpls.2021.746586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
We have developed a rapid Raman spectroscopy-based method for the detection and quantification of early innate immunity responses in Arabidopsis and Choy Sum plants. Arabidopsis plants challenged with flg22 and elf18 elicitors could be differentiated from mock-treated plants by their Raman spectral fingerprints. From the difference Raman spectrum and the value of p at each Raman shift, we derived the Elicitor Response Index (ERI) as a quantitative measure of the response whereby a higher ERI value indicates a more significant elicitor-induced immune response. Among various Raman spectral bands contributing toward the ERI value, the most significant changes were observed in those associated with carotenoids and proteins. To validate these results, we investigated several characterized Arabidopsis pattern-triggered immunity (PTI) mutants. Compared to wild type (WT), positive regulatory mutants had ERI values close to zero, whereas negative regulatory mutants at early time points had higher ERI values. Similar to elicitor treatments, we derived an analogous Infection Response Index (IRI) as a quantitative measure to detect the early PTI response in Arabidopsis and Choy Sum plants infected with bacterial pathogens. The Raman spectral bands contributing toward a high IRI value were largely identical to the ERI Raman spectral bands. Raman spectroscopy is a convenient tool for rapid screening for Arabidopsis PTI mutants and may be suitable for the noninvasive and early diagnosis of pathogen-infected crop plants.
Collapse
Affiliation(s)
- Pil Joong Chung
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Gajendra P. Singh
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Chung-Hao Huang
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Sayuj Koyyappurath
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Jun Sung Seo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Hui-Zhu Mao
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Piyarut Diloknawarit
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Rajeev J. Ram
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rajani Sarojam
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
25
|
Mason KN, Ekanayake G, Heese A. Staining and automated image quantification of callose in Arabidopsis cotyledons and leaves. Methods Cell Biol 2021; 160:181-199. [PMID: 32896315 DOI: 10.1016/bs.mcb.2020.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Callose is a β-1,3-glucan polysaccharide that is deposited at discrete sites in the plant cell wall in response to microbial pathogens, likely contributing to protection against pathogen infection. Increased callose deposition also occurs in response to the 22-amino acid peptide flg22, a pathogen-associated molecular pattern (PAMP) derived from bacterial flagellin protein. Here, we provide protocols for callose staining using aniline blue in cotyledon and leaf tissue of the model plant Arabidopsis thaliana. Aniline blue stain utilizes a fluorochrome that complexes with callose for its visualization by microscopy using an ultraviolet (UV) filter. For robust quantification of callose deposits, we outline an automated image analysis workflow utilizing the freely available Fiji (Fiji Is Just ImageJ; NIH) software and a Trainable Weka Segmentation (TWS) plugin. Our methodology for automated analysis of large batches of images can be easily adapted to quantify callose in other tissues and plant species, as well as to quantify fluorescent structures other than callose.
Collapse
Affiliation(s)
- Kelly N Mason
- Division of Biochemistry, Interdisciplinary Plant Group (IPG), University of Missouri, Columbia, MO, United States
| | - Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group (IPG), University of Missouri, Columbia, MO, United States
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group (IPG), University of Missouri, Columbia, MO, United States.
| |
Collapse
|
26
|
Machado Wood AK, Panwar V, Grimwade-Mann M, Ashfield T, Hammond-Kosack KE, Kanyuka K. The vesicular trafficking system component MIN7 is required for minimizing Fusarium graminearum infection. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5010-5023. [PMID: 33877328 PMCID: PMC8364293 DOI: 10.1093/jxb/erab170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
Plants have developed intricate defense mechanisms, referred to as innate immunity, to defend themselves against a wide range of pathogens. Plants often respond rapidly to pathogen attack by the synthesis and delivery to the primary infection sites of various antimicrobial compounds, proteins, and small RNA in membrane vesicles. Much of the evidence regarding the importance of vesicular trafficking in plant-pathogen interactions comes from studies involving model plants whereas this process is relatively understudied in crop plants. Here we assessed whether the vesicular trafficking system components previously implicated in immunity in Arabidopsis play a role in the interaction with Fusarium graminearum, a fungal pathogen well-known for its ability to cause Fusarium head blight disease in wheat. Among the analysed vesicular trafficking mutants, two independent T-DNA insertion mutants in the AtMin7 gene displayed a markedly enhanced susceptibility to F. graminearum. Earlier studies identified this gene, encoding an ARF-GEF protein, as a target for the HopM1 effector of the bacterial pathogen Pseudomonas syringae pv. tomato, which destabilizes MIN7 leading to its degradation and weakening host defenses. To test whether this key vesicular trafficking component may also contribute to defense in crop plants, we identified the candidate TaMin7 genes in wheat and knocked-down their expression through virus-induced gene silencing. Wheat plants in which TaMin7 genes were silenced displayed significantly more Fusarium head blight disease. This suggests that disruption of MIN7 function in both model and crop plants compromises the trafficking of innate immunity signals or products resulting in hypersusceptibility to various pathogens.
Collapse
Affiliation(s)
- Ana K Machado Wood
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Vinay Panwar
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Mike Grimwade-Mann
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Tom Ashfield
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden AL5 2JQ, UK
| | | | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK
- Correspondence:
| |
Collapse
|
27
|
Yu TY, Sun MK, Liang LK. Receptors in the Induction of the Plant Innate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:587-601. [PMID: 33512246 DOI: 10.1094/mpmi-07-20-0173-cr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Meng-Kun Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Li-Kun Liang
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
28
|
Ekanayake G, Smith JM, Jones KB, Stiers HM, Robinson SJ, LaMontagne ED, Kostos PH, Cornish PV, Bednarek SY, Heese A. DYNAMIN-RELATED PROTEIN DRP1A functions with DRP2B in plant growth, flg22-immune responses, and endocytosis. PLANT PHYSIOLOGY 2021; 185:1986-2002. [PMID: 33564884 PMCID: PMC8133600 DOI: 10.1093/plphys/kiab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/25/2020] [Indexed: 05/10/2023]
Abstract
Ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (FLS2) is critical for maintaining its proper abundance in the plasma membrane (PM) to initiate and subsequently down regulate cellular immune responses to bacterial flagellin or flg22-peptide. The molecular components governing PM abundance of FLS2, however, remain mostly unknown. Here, we identified Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1A (DRP1A), a member of a plant-specific family of large dynamin GTPases, as a critical contributor to ligand-induced endocytosis of FLS2 and its physiological roles in flg22-signaling and immunity against Pseudomonas syringae pv. tomato DC3000 bacteria in leaves. Notably, drp1a single mutants displayed similar flg22-defects as those previously reported for mutants in another dynamin-related protein, DRP2B, that was previously shown to colocalize with DRP1A. Our study also uncovered synergistic roles of DRP1A and DRP2B in plant growth and development as drp1a drp2b double mutants exhibited severely stunted roots and cotyledons, as well as defective cell shape, cytokinesis, and seedling lethality. Furthermore, drp1a drp2b double mutants hyperaccumulated FLS2 in the PM prior to flg22-treatment and exhibited a block in ligand-induced endocytosis of FLS2, indicating combinatorial roles for DRP1A and DRP1B in governing PM abundance of FLS2. However, the increased steady-state PM accumulation of FLS2 in drp1a drp2b double mutants did not result in increased flg22 responses. We propose that DRP1A and DRP2B are important for the regulation of PM-associated levels of FLS2 necessary to attain signaling competency to initiate distinct flg22 responses, potentially through modulating the lipid environment in defined PM domains.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - John M Smith
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
- Division of Plant Sciences, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Kody B Jones
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Hayley M Stiers
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Samuel J Robinson
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Erica D LaMontagne
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Paxton H Kostos
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Peter V Cornish
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Antje Heese
- Interdisciplinary Plant Group (IPG), Division of Biochemistry, University of Missouri–Columbia, Columbia, Missouri 65211
| |
Collapse
|
29
|
Jezek M. Butterfly-plant interaction - A dicey ménage à trois? PLANT, CELL & ENVIRONMENT 2020; 43:1811-1814. [PMID: 32572988 DOI: 10.1111/pce.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. THE NEW PHYTOLOGIST 2020; 227:529-544. [PMID: 32119118 DOI: 10.1111/nph.16515] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
The plasma membrane (PM)-localized receptor kinase FLAGELLIN SENSING 2 (FLS2) recognizes bacterial flagellin or its immunogenic epitope flg22, and initiates microbe-associated molecular pattern-triggered immunity, which inhibits infection by bacterial pathogens. The localization, abundance and activity of FLS2 are under dynamic control. Here, we demonstrate that Arabidopsis thaliana EXO70B1, a subunit of the exocyst complex, plays a critical role in FLS2 signaling that is independent of the truncated Toll/interleukin-1 receptor-nucleotide binding sequence protein TIR-NBS2 (TN2). In the exo70B1-3 mutant, the abundance of FLS2 protein at the PM is diminished, consistent with the impaired flg22 response of this mutant. EXO70B1-GFP plants showed increased FLS2 accumulation at the PM and therefore enhanced FLS2 signaling. The EXO70B1-mediated trafficking of FLS2 to the PM is partially independent of the PENETRATION 1 (PEN1)-containing secretory pathway. In addition, EXO70B1 interacts with EXO70B2, a close homolog of EXO70B1, and both proteins associate with FLS2 and contribute to the accumulation of FLS2 at the PM. Taken together, our data suggest that the exocyst complex subunits EXO70B1 and EXO70B2 regulate the trafficking of FLS2 to the PM, which represents a new layer of regulation of FLS2 function in plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
31
|
Ma X, Claus LAN, Leslie ME, Tao K, Wu Z, Liu J, Yu X, Li B, Zhou J, Savatin DV, Peng J, Tyler BM, Heese A, Russinova E, He P, Shan L. Ligand-induced monoubiquitination of BIK1 regulates plant immunity. Nature 2020; 581:199-203. [PMID: 32404997 PMCID: PMC7233372 DOI: 10.1038/s41586-020-2210-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/21/2020] [Indexed: 11/09/2022]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) triggers the first line of inducible defence against invading pathogens1-3. Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants4. The mechanisms that underlie the activation of RLCKs are unclear. Here we show that when MAMPs are detected, the RLCK BOTRYTIS-INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)-BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. The Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent release of BIK1 from the FLS2-BAK1 complex and activation of immune signalling. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics that are distinct from those of the PRR FLS2. Our study reveals the intertwined regulation of PRR-RLCK complex activation by protein phosphorylation and ubiquitination, and shows that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signalling.
Collapse
Affiliation(s)
- Xiyu Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Lucas A N Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michelle E Leslie
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, MO, USA.,Elemental Enzymes, St Louis, MO, USA
| | - Kai Tao
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Zhiping Wu
- Department of Structural Biology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Xiao Yu
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Bo Li
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Jinggeng Zhou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Daniel V Savatin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Junmin Peng
- Department of Structural Biology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Developmental Neurobiology, Center for Proteomics and Metabolomics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Antje Heese
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, MO, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA. .,Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA.
| | - Libo Shan
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA. .,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
32
|
Collins CA, LaMontagne ED, Anderson JC, Ekanayake G, Clarke AS, Bond LN, Salamango DJ, Cornish PV, Peck SC, Heese A. EPSIN1 Modulates the Plasma Membrane Abundance of FLAGELLIN SENSING2 for Effective Immune Responses. PLANT PHYSIOLOGY 2020; 182:1762-1775. [PMID: 32094305 PMCID: PMC7140936 DOI: 10.1104/pp.19.01172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/14/2020] [Indexed: 05/25/2023]
Abstract
The plasma membrane (PM) provides a critical interface between plant cells and their environment to control cellular responses. To perceive the bacterial flagellin peptide flg22 for effective defense signaling, the immune receptor FLAGELLIN SENSING2 (FLS2) needs to be at its site of function, the PM, in the correct abundance. However, the intracellular machinery that controls PM accumulation of FLS2 remains largely undefined. The Arabidopsis (Arabidopsis thaliana) clathrin adaptor EPSIN1 (EPS1) is implicated in clathrin-coated vesicle formation at the trans-Golgi network (TGN), likely aiding the transport of cargo proteins from the TGN for proper location; but EPS1's impact on physiological responses remains elusive. Here, we identify EPS1 as a positive regulator of flg22 signaling and pattern-triggered immunity against Pseudomonas syringae pv tomato DC3000. We provide evidence that EPS1 contributes to modulating the PM abundance of defense proteins for effective immune signaling because in eps1, impaired flg22 signaling correlated with reduced PM accumulation of FLS2 and its coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1). The eps1 mutant also exhibited reduced responses to the pathogen/damage-associated molecular patterns elf26 and AtPep1, which are perceived by the coreceptor BAK1 and cognate PM receptors. Furthermore, quantitative proteomics of enriched PM fractions revealed that EPS1 was required for proper PM abundance of a discrete subset of proteins with different cellular functions. In conclusion, our study expands the limited understanding of the physiological roles of EPSIN family members in plants and provides novel insight into the TGN-associated clathrin-coated vesicle trafficking machinery that impacts plant PM-derived defense processes.
Collapse
Affiliation(s)
- Carina A Collins
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Erica D LaMontagne
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Jeffrey C Anderson
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Gayani Ekanayake
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Alexander S Clarke
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Lauren N Bond
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Daniel J Salamango
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Peter V Cornish
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Scott C Peck
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Antje Heese
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| |
Collapse
|
33
|
Heng T, Kaga A, Chen X, Somta P. Two tightly linked genes coding for NAD-dependent malic enzyme and dynamin-related protein are associated with resistance to Cercospora leaf spot disease in cowpea (Vigna unguiculata (L.) Walp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:395-407. [PMID: 31691838 DOI: 10.1007/s00122-019-03470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/28/2019] [Indexed: 05/20/2023]
Abstract
Cercospora leaf spot (CLS) caused by Cercospora canescens is an important disease of cowpea (Vigna unguiculata). A previous study using an F2 population [CSR12906 (susceptible) × IT90K-59-120 (resistant)] identified a major QTL qCLS9.1 for resistance to CLS. In this study, we finely mapped and identified candidate genes of qCLS9.1 using an F3:4 population of 699 individuals derived from two F2:3 individuals segregating at qCLS9.1 from the original population. Fine mapping narrowed down the qCLS9.1 for the resistance to a 60.6-Kb region on cowpea chromosome 10. There were two annotated genes in the 60.6-Kb region; Vigun10g019300 coding for NAD-dependent malic enzyme 1 (NAD-ME1) and Vigun10g019400 coding for dynamin-related protein 1C (DRP1C). DNA sequence analysis revealed 12 and 2 single nucleotide polymorphisms (SNPs) in the coding sequence (CDS) and the 5' untranslated region and TATA boxes of Vigun10g019300 and Vigun10g019400, respectively. Three SNPs caused amino acid changes in NAD-ME1 in CSR12906, N299S, S488N and S544N. Protein prediction analysis suggested that S488N of CSR12906 may have a deleterious effect on the function of NAD-ME1. Gene expression analysis demonstrated that IT90K-59-120 and CSR12906 challenged with C. canescens showed different expression in both Vigun10g019300 and Vigun10g019400. Taken together, these results indicated that Vigun10g019300 and Vigun10g019400 are the candidate genes for CLS resistance in the cowpea IT90K-59-120. Two derived cleaved amplified polymorphic sequence markers were developed to detect the resistance alleles at Vigun10g019300 and Vigun10g019400 in IT90K-59-120.
Collapse
Affiliation(s)
- Titnarong Heng
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand.
| |
Collapse
|
34
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
35
|
Castroverde CDM. Sebastian Bednarek. THE PLANT CELL 2019; 31:1931-1933. [PMID: 31311835 PMCID: PMC6751126 DOI: 10.1105/tpc.19.00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
36
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
37
|
van der Burgh AM, Joosten MHAJ. Plant Immunity: Thinking Outside and Inside the Box. TRENDS IN PLANT SCIENCE 2019; 24:587-601. [PMID: 31171472 DOI: 10.1016/j.tplants.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 05/23/2023]
Abstract
Models are extensively used to describe the coevolution of plants and microbial attackers. Such models distinguish between different classes of plant immune responses, based on the type of danger signal that is recognized or on the strength of the defense response that the danger signal provokes. However, recent molecular and biochemical advances have shown that these dichotomies are blurred. With molecular proof in hand, we propose here to abandon the current classification of plant immune responses, and to define the different forms of plant immunity solely based on the site of microbe recognition - either extracellular or intracellular. Using this spatial partition, our 'spatial immunity model' facilitates a broadly inclusive, but clearly distinguishing nomenclature to describe immune signaling in plant-microbe interactions.
Collapse
Affiliation(s)
- Aranka M van der Burgh
- Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
38
|
Spears BJ, Howton TC, Gao F, Garner CM, Mukhtar MS, Gassmann W. Direct Regulation of the EFR-Dependent Immune Response by Arabidopsis TCP Transcription Factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:540-549. [PMID: 30480481 DOI: 10.1094/mpmi-07-18-0201-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One layer of the innate immune system allows plants to recognize pathogen-associated molecular patterns (PAMPS), activating a defense response known as PAMP-triggered immunity (PTI). Maintaining an active immune response, however, comes at the cost of plant growth and development; accordingly, optimization of the balance between defense and development is critical to plant fitness. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor family consists of well-characterized transcriptional regulators of plant development and morphogenesis. The three closely related class I TCP transcription factors TCP8, TCP14, and TCP15 have also been implicated in the regulation of effector-triggered immunity, but there has been no previous characterization of PTI-related phenotypes. To identify TCP targets involved in PTI, we screened a PAMP-induced gene promoter library in a yeast one-hybrid assay and identified interactions of these three TCPs with the EF-Tu RECEPTOR (EFR) promoter. The direct interactions between TCP8 and EFR were confirmed to require an intact TCP binding site in planta. A tcp8 tcp14 tcp15 triple mutant was impaired in EFR-dependent PTI and exhibited reduced levels of PATHOGENESIS-RELATED PROTEIN 2 and induction of EFR expression after elicitation with elf18 but also increased production of reactive oxygen species relative to Col-0. Our data support an increasingly complex role for TCPs at the nexus of plant development and defense.
Collapse
Affiliation(s)
- Benjamin J Spears
- 1 Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7310, U.S.A
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
| | - T C Howton
- 3 Department of Biology, University of Alabama, Birmingham, AL, 35233, U.S.A.; and
| | - Fei Gao
- 1 Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7310, U.S.A
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
| | - Christopher M Garner
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
- 4 Division of Biological Sciences, University of Missouri
| | - M Shahid Mukhtar
- 3 Department of Biology, University of Alabama, Birmingham, AL, 35233, U.S.A.; and
| | - Walter Gassmann
- 1 Division of Plant Sciences, University of Missouri, Columbia, MO 65211-7310, U.S.A
- 2 C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri
| |
Collapse
|
39
|
Zhang W, Cai C, Staiger CJ. Myosins XI Are Involved in Exocytosis of Cellulose Synthase Complexes. PLANT PHYSIOLOGY 2019; 179:1537-1555. [PMID: 30705068 PMCID: PMC6446754 DOI: 10.1104/pp.19.00018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 05/18/2023]
Abstract
In plants, cellulose is synthesized at the cell surface by plasma membrane (PM)-localized cellulose synthase (CESA) complexes (CSCs). The molecular and cellular mechanisms that underpin delivery of CSCs to the PM, however, are poorly understood. Cortical microtubules have been shown to interact with CESA-containing compartments and mark the site for CSC delivery, but are not required for the delivery itself. Here, we demonstrate that myosin XI and the actin cytoskeleton mediate CSC delivery to the PM by coordinating the exocytosis of CESA-containing compartments. Measurement of cellulose content indicated that cellulose biosynthesis was significantly reduced in a myosin xik xi1 xi2 triple-knockout mutant. By combining genetic and pharmacological disruption of myosin activity with quantitative live-cell imaging, we observed decreased abundance of PM-localized CSCs and reduced delivery rate of CSCs in myosin-deficient cells. These phenotypes correlated with a significant increase in failed vesicle secretion events at the PM as well as an abnormal accumulation of CESA-containing compartments at the cell cortex. Through high-resolution spatiotemporal assays of cortical vesicle behavior, we identified defects in CSC vesicle tethering and fusion at the PM. Furthermore, disruption of myosin activity reduced the delivery of several other secretory markers to the PM and reduced constitutive and receptor-mediated endocytosis. These findings reveal a previously undescribed role for myosin in vesicle secretion and cellulose production at the cytoskeleton-PM-cell wall nexus.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Chao Cai
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
40
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Avni A. Tomato Dynamin Related Protein 2A Associates With LeEIX2 and Enhances PRR Mediated Defense by Modulating Receptor Trafficking. FRONTIERS IN PLANT SCIENCE 2019; 10:936. [PMID: 31379912 PMCID: PMC6658876 DOI: 10.3389/fpls.2019.00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/04/2019] [Indexed: 05/17/2023]
Abstract
The endocytic trafficking pathway is employed by the plant to regulate immune responses, and is often targeted by pathogen effectors to promote virulence. The model system of the tomato receptor-like protein (RLP) LeEIX2 and its ligand, the elicitor EIX, employs endocytosis to transmit receptor-mediated signals, with some of the signaling events occurring directly from endosomal compartments. Here, to explore the trafficking mechanism of LeEIX2-mediated immune signaling, we used a proteomic approach to identify LeEIX2-associating proteins. We report the identification of SlDRP2A, a dynamin related protein, as an associating partner for LeEIX2. SlDRP2A localizes at the plasma membrane. Overexpression of SlDRP2A increases the sub-population of LeEIX2 in VHAa1 endosomes, and enhances LeEIX2- and FLS2-mediated defense. The effect of SlDRP2A on induction of plant immunity highlights the importance of endomembrane components and endocytosis in signal propagation during plant immune responses.
Collapse
Affiliation(s)
- Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
| | - Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
- *Correspondence: Maya Bar,
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Adi Avni,
| |
Collapse
|
41
|
Wu G, Cui X, Chen H, Renaud JB, Yu K, Chen X, Wang A. Dynamin-Like Proteins of Endocytosis in Plants Are Coopted by Potyviruses To Enhance Virus Infection. J Virol 2018; 92:e01320-18. [PMID: 30258010 PMCID: PMC6232491 DOI: 10.1128/jvi.01320-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023] Open
Abstract
Endocytosis and endosomal trafficking regulate the proteins targeted to the plasma membrane and play essential roles in diverse cellular processes, including responses to pathogen attack. Here, we report the identification of Glycine max (soybean) endocytosis dynamin-like protein 5A (GmSDL5A) associated with purified soybean mosaic virus (SMV) virions from soybean using a bottom-up proteomics approach. Knockdown of GmSDL5A and its homologous gene GmSDL12A inhibits SMV infection in soybean. The role of analogous dynamin-like proteins in potyvirus infection was further confirmed and investigated using the Arabidopsis/turnip mosaic virus (TuMV) pathosystem. We demonstrate that dynamin-related proteins 2A and 2B in Arabidopsis thaliana (AtDRP2A, AtDRP2B), homologs of GmSDL5A, are recruited to the virus replication complex (VRC) of TuMV. TuMV infection is inhibited in both A. thalianadrp2a (atdrp2a) and atdrp2b knockout mutants. Overexpression of AtDRP2 promotes TuMV replication and intercellular movement. AtRDP2 interacts with TuMV VPg, CP, CI, and 6K2. Of these viral proteins, VPg, CP, and CI are essential for viral intercellular movement, and 6K2, VPg, and CI are critical components of the VRC. We reveal that VPg and CI are present in the punctate structures labeled by the endocytic tracer FM4-64, suggesting that VPg and CI can be endocytosed. Treatment of plant leaves with a dynamin-specific inhibitor disrupts the delivery of VPg and CI to endocytic structures and suppresses TuMV replication and intercellular movement. Taken together, these data suggest that dynamin-like proteins are novel host factors of potyviruses and that endocytic processes are involved in potyvirus infection.IMPORTANCE It is well known that animal viruses enter host cells via endocytosis, whereas plant viruses require physical assistance, such as human and insect activities, to penetrate the host cell to establish their infection. In this study, we report that the endocytosis pathway is also involved in virus infection in plants. We show that plant potyviruses recruit endocytosis dynamin-like proteins to support their infection. Depletion of them by knockout of the corresponding genes suppresses virus replication, whereas overexpression of them enhances virus replication and intercellular movement. We also demonstrate that the dynamin-like proteins interact with several viral proteins that are essential for virus replication and cell-to-cell movement. We further show that treatment of a dynamin-specific inhibitor disrupts endocytosis and inhibits virus replication and intercellular movement. Therefore, the dynamin-like proteins are novel host factors of potyviruses. The corresponding genes may be manipulated using advanced biotechnology to control potyviral diseases.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyan Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Hui Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
42
|
Claus LAN, Savatin DV, Russinova E. The crossroads of receptor-mediated signaling and endocytosis in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:827-840. [PMID: 29877613 DOI: 10.1111/jipb.12672] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 05/20/2023]
Abstract
Plants deploy numerous plasma membrane receptors to sense and rapidly react to environmental changes. Correct localization and adequate protein levels of the cell-surface receptors are critical for signaling activation and modulation of plant development and defense against pathogens. After ligand binding, receptors are internalized for degradation and signaling attenuation. However, one emerging notion is that the ligand-induced endocytosis of receptor complexes is important for the signal duration, amplitude, and specificity. Recently, mutants of major endocytosis players, including clathrin and dynamin, have been shown to display defects in activation of a subset of signal transduction pathways, implying that signaling in plants might not be solely restricted to the plasma membrane. Here, we summarize the up-to-date knowledge of receptor complex endocytosis and its effect on the signaling outcome, in the context of plant development and immunity.
Collapse
Affiliation(s)
- Lucas Alves Neubus Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniel V Savatin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
43
|
Li J, Staiger CJ. Understanding Cytoskeletal Dynamics During the Plant Immune Response. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:513-533. [PMID: 29975609 DOI: 10.1146/annurev-phyto-080516-035632] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant cytoskeleton is a dynamic framework of cytoplasmic filaments that rearranges as the needs of the cell change during growth and development. Incessant turnover mechanisms allow these networks to be rapidly redeployed in defense of host cytoplasm against microbial invaders. Both chemical and mechanical stimuli are recognized as danger signals to the plant, and these are perceived and transduced into cytoskeletal dynamics and architecture changes through a collection of well-recognized, previously characterized players. Recent advances in quantitative cell biology approaches, along with the powerful molecular genetics techniques associated with Arabidopsis, have uncovered two actin-binding proteins as key intermediaries in the immune response to phytopathogens and defense signaling. Certain bacterial phytopathogens have adapted to the cytoskeletal-based defense mechanism during the basal immune response and have evolved effector proteins that target actin filaments and microtubules to subvert transcriptional reprogramming, secretion of defense-related proteins, and cell wall-based defenses. In this review, we describe current knowledge about host cytoskeletal dynamics operating at the crossroads of the molecular and cellular arms race between microbes and plants.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Christopher J Staiger
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
44
|
Liu C, Shen W, Yang C, Zeng L, Gao C. Knowns and unknowns of plasma membrane protein degradation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:55-61. [PMID: 29807606 DOI: 10.1016/j.plantsci.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lizhang Zeng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
45
|
Park E, Nedo A, Caplan JL, Dinesh-Kumar SP. Plant-microbe interactions: organelles and the cytoskeleton in action. THE NEW PHYTOLOGIST 2018; 217:1012-1028. [PMID: 29250789 DOI: 10.1111/nph.14959] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/10/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 1012 I. Introduction 1012 II. The endomembrane system in plant-microbe interactions 1013 III. The cytoskeleton in plant-microbe interactions 1017 IV. Organelles in plant-microbe interactions 1019 V. Inter-organellar communication in plant-microbe interactions 1022 VI. Conclusions and prospects 1023 Acknowledgements 1024 References 1024 SUMMARY: Plants have evolved a multilayered immune system with well-orchestrated defense strategies against pathogen attack. Multiple immune signaling pathways, coordinated by several subcellular compartments and interactions between these compartments, play important roles in a successful immune response. Pathogens use various strategies to either directly attack the plant's immune system or to indirectly manipulate the physiological status of the plant to inhibit an immune response. Microscopy-based approaches have allowed the direct visualization of membrane trafficking events, cytoskeleton reorganization, subcellular dynamics and inter-organellar communication during the immune response. Here, we discuss the contributions of organelles and the cytoskeleton to the plant's defense response against microbial pathogens, as well as the mechanisms used by pathogens to target these compartments to overcome the plant's defense barrier.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Alexander Nedo
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Jeffrey L Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
46
|
Tripathi D, Zhang T, Koo AJ, Stacey G, Tanaka K. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense. PLANT PHYSIOLOGY 2018; 176:511-523. [PMID: 29180381 PMCID: PMC6108377 DOI: 10.1104/pp.17.01477] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/22/2017] [Indexed: 05/20/2023]
Abstract
Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis (Arabidopsis thaliana) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1-3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1, but not in the JA biosynthesis mutant, aos, or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Tong Zhang
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Abraham J Koo
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| |
Collapse
|
47
|
Reynolds GD, Wang C, Pan J, Bednarek SY. Inroads into Internalization: Five Years of Endocytic Exploration. PLANT PHYSIOLOGY 2018; 176:208-218. [PMID: 29074601 PMCID: PMC5761813 DOI: 10.1104/pp.17.01117] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/23/2017] [Indexed: 05/21/2023]
Abstract
Advances over recent years underlines a growing interest in investigating endocytosis in plants.
Collapse
Affiliation(s)
- Gregory D Reynolds
- Department of Biochemistry University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, College of Life Sciences, Lanzhou University, Lanzhou 730000, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Sebastian Y Bednarek
- Department of Biochemistry University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
48
|
LaMontagne ED, Heese A. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:114-121. [PMID: 28915433 DOI: 10.1016/j.pbi.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses.
Collapse
Affiliation(s)
- Erica D LaMontagne
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA
| | - Antje Heese
- University of Missouri, Div. of Biochemistry, Interdisciplinary Plant Group (IPG), Columbia, MO, USA.
| |
Collapse
|
49
|
Jiang L, Wan Y, Anderson JC, Hou J, Islam SM, Cheng J, Peck SC. Genetic dissection of Arabidopsis MAP kinase phosphatase 1-dependent PAMP-induced transcriptional responses. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5207-5220. [PMID: 29045691 PMCID: PMC5853853 DOI: 10.1093/jxb/erx335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
Plant immunity is initiated by extracellular detection of pathogen-associated molecular patterns (PAMPs) through surface-localized pattern recognition receptors (PRRs). PRR activation induces many responses including the activation of mitogen-activated protein kinases (MAPKs) that ultimately limit bacterial growth. Previous work identified Arabidopsis MAP kinase phosphatase 1 (MKP1) as a negative regulator of signaling pathways required for some, but not all, of PAMP-initiated responses. Specifically, loss of MAPK MPK6 in an mkp1 background suppressed a subset of the mkp1-dependent biological phenotypes, indicating the requirement for MPK6 in MKP1-dependent signaling. To further genetically separate the outputs of PAMP-responsive signaling pathways, we performed a transcriptome analysis in Arabidopsis wild type, mkp1 and mkp1 mpk6 seedlings treated with the bacterially derived PAMP elf26 for 0, 30, and 90 min. Using differential genetic and temporal clustering analyses between and within genotypes, we identified and separated 6963 elf26-responsive transcripts based on both genetic requirements of MKP1 (with or without a requirement for MPK6) and temporal transcriptional accumulation patterns, and some of these novel response markers were validated by qRT-PCR over a more extended time course. Taken together, our transcriptome analysis provides novel information for delineating PAMP signaling pathways.
Collapse
Affiliation(s)
- Lingyan Jiang
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Ying Wan
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Jie Hou
- Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - Soliman M Islam
- Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Scott C Peck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Correspondence:
| |
Collapse
|
50
|
Gu Y, Zavaliev R, Dong X. Membrane Trafficking in Plant Immunity. MOLECULAR PLANT 2017; 10:1026-1034. [PMID: 28698057 PMCID: PMC5673114 DOI: 10.1016/j.molp.2017.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 05/20/2023]
Abstract
Plants employ sophisticated mechanisms to interact with pathogenic as well as beneficial microbes. Of those, membrane trafficking is key in establishing a rapid and precise response. Upon interaction with pathogenic microbes, surface-localized immune receptors undergo endocytosis for signal transduction and activity regulation while cell wall components, antimicrobial compounds, and defense proteins are delivered to pathogen invasion sites through polarized secretion. To sustain mutualistic associations, host cells also reprogram the membrane trafficking system to accommodate invasive structures of symbiotic microbes. Here, we provide an analysis of recent advances in understanding the roles of secretory and endocytic membrane trafficking pathways in plant immune activation. We also discuss strategies deployed by adapted microbes to manipulate these pathways to subvert or inhibit plant defense.
Collapse
Affiliation(s)
- Yangnan Gu
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Raul Zavaliev
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|