1
|
Cheng HY, Chu J, Limjunyawong N, Chen J, Ye Y, Chen KH, Koylass N, Sun S, Dong X, Qiu Z. Phagosome-mediated anti-bacterial immunity is governed by the proton-activated chloride channel in peritoneal macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640612. [PMID: 40060571 PMCID: PMC11888413 DOI: 10.1101/2025.02.27.640612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The success of phagosome degradation relies on the ability of phagocytes to regulate the maturation of phagosomes. However, its underlying molecular mechanisms remain poorly understood. Here, we identify the proton-activated chloride (PAC) channel as a key negative regulator of phagosome maturation. PAC deletion enhanced phagosomal acidification and protease activities, leading to augmented bacterial killing in large peritoneal macrophages (LPMs) upon Escherichia coli infection in mice. Surprisingly, phagosome degradation also stimulated STING-IRF3-interferon responses and inflammasome activation in LPMs, both of which are enhanced upon PAC deletion. The increased inflammasome activation induced the release of cleaved gasdermin D, which localized to the surface of bacteria in the peritoneum and further contributed to their killing. Finally, enhanced bacterial clearance by PAC-deficient LPMs reduced proinflammatory immune cell infiltration and peritoneal inflammation, resulting in improved survival in mice. Our study thus provides new insights into the molecular mechanism of phagosome maturation and the dynamics of host defense response following phagosome-mediated bacterial degradation in peritoneal macrophages. Summary The PAC channel mediates phagosome maturation during bacterial infection in macrophages. PAC deletion promotes phagosome-mediated STING-interferon signaling and inflammasome-mediated gasdermin D secretion during bacterial infection in peritoneal macrophages.
Collapse
|
2
|
Pletsch EA, Dawson HD, Cheung L, Ragonese JS, Chen CT, Smith AD. A type 4 resistant potato starch alters the cecal microbiome, gene expression and resistance to colitis in mice fed a Western diet based on NHANES data. Food Funct 2025; 16:3439-3464. [PMID: 40207550 DOI: 10.1039/d4fo04697h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Four major types of resistant starch (RS1-4) are present in foods and can be fermented to produce short-chain fatty acids (SCFAs), alter the microbiome and modulate post-prandial glucose metabolism. While studies in rodents have examined the effects of RS4 consumption on the microbiome, fewer have examined its effect on gene expression in the cecum or colon or resistance to bacterial-induced colitis, and those that have, use diets that do not reflect what is typically consumed by humans. Here we fed mice a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data for 6-7 weeks and then supplemented their diet with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch. After three weeks, mice were infected with Citrobacter rodentium (Cr) to induce colitis. Infected mice fed the 10% VF diet had the highest levels of Cr fecal excretion at days 4, 7 and 11 post-infection. Infected mice fed the 5% and 10%VF diets had increased hyperplasia and colonic damage compared with the control. Changes in bacterial genera relative abundance, and alpha and beta diversity due to diet were most evident in mice fed 10% VF. Cr infection also resulted in specific changes to the microbiome and gene expression both in the cecum and the colon compared with diet alone, including the expression of multiple antimicrobial genes, Reg3b, Reg3g, NOS2 and Ifng. These results demonstrate that VF, a RS4, alters cecal and colonic gene expression, the microbiome composition and resistance to bacterial-induced colitis.
Collapse
Affiliation(s)
- Elizabeth A Pletsch
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Harry D Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Lumei Cheung
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Jack S Ragonese
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Celine T Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Allen D Smith
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Rm. 228, Bldg. 307C, BARC-East, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Mariano IHDM, Blanco RM, de Souza CE, de Freitas GS, Ho PL, Martins EAL, Romero EC, da Silva JB. Chemokine profile in the serum of patients with leptospirosis. Front Cell Infect Microbiol 2024; 14:1484291. [PMID: 39534703 PMCID: PMC11554663 DOI: 10.3389/fcimb.2024.1484291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Leptospirosis is a global zoonosis that affects more than one million people per year, with a lethality rate of approximately 15%. Chemokines are crucial in the immune response against Leptospira, recruiting leukocytes to the site of infection and regulating immune activity. In previous studies, we have shown that CCL2, CXCL5, and CCL8 are involved in the leptospirosis process, although the mechanisms are not understood. Methods In this study, we present the frequency of Leptospira serovars in human samples. We then evaluated the profile of various chemokines in sera from patients diagnosed with leptospirosis, assessing the possible correlation between them. Moreover, we evaluated the changes in the chemokine profile on different days after the first symptoms. The frequency of the Leptospira serovars in human samples is presented. Results and discussion The main findings were that CCL5, CXCL5, and CXCL9 are highly expressed during leptospirosis, indicating a special role of these molecules in the immunity and pathogenesis of the disease. The correlation analysis of detected chemokines CXCL11, CXCL9, CCL3, and CCL2 helps to clarify the role of each cytokine in leptospirosis. The possible use of CCL5 as a biomarker for complementary diagnosis of the disease is suggested.
Collapse
Affiliation(s)
- Iago H. de Miranda Mariano
- Laboratory of Bacteriology, Butantan Institute, Sao Paulo, Brazil
- Biosciences Department, Rice University, Houston, TX, United States
| | - Roberta M. Blanco
- Laboratory of Bacteriology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | | | - Paulo Lee Ho
- Bioindustrial Division, Butantan Institute, São Paulo, Brazil
| | | | - Eliete C. Romero
- Laboratory of Bacteriology, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | |
Collapse
|
4
|
Pontejo SM, Martinez S, Zhao A, Barnes K, de Anda J, Alimohamadi H, Lee EY, Dishman AF, Volkman BF, Wong GC, Garboczi DN, Ballesteros A, Murphy PM. Chemokines Kill Bacteria by Binding Anionic Phospholipids without Triggering Antimicrobial Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.604863. [PMID: 39091850 PMCID: PMC11291121 DOI: 10.1101/2024.07.25.604863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show that only chemokines able to bind these two phospholipids kill Escherichia coli and Staphylococcus aureus and that they exert rapid bacteriostatic and bactericidal effects against E. coli with a higher potency than the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and membrane disruption by chemokines. Moreover, unlike conventional antibiotics, E. coli failed to develop resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophia Martinez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Zhao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Barnes
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaime de Anda
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Haleh Alimohamadi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Ernest Y. Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gerard C.L. Wong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - David N. Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela Ballesteros
- Section of Sensory Physiology and Biophysics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Rubel MZU, Ichii O, Namba T, Masum MA, Chuluunbaatar T, Hiraishi M, Nakamura T, Kon Y. Systemic autoimmune abnormalities alter the morphology of mucosa-associated lymphoid tissues in the rectum of MRL/MpJ-Fas lpr/lpr mice. Exp Anim 2024; 73:270-285. [PMID: 38311397 PMCID: PMC11254493 DOI: 10.1538/expanim.23-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Systemic autoimmune diseases (ADs) might affect the morphology and function of gut-associated lymphoid tissue (LTs) indirectly; however, their exact relationship remains unclear. Therefore, we investigated mouse LTs in the anorectal canal and morphologically compared them between MRL/MpJ-Fas+/+ and MRL/MpJ-Faslpr/lpr mice. LT aggregations, also known as rectal mucosa-associated lymphoid tissues (RMALTs), were exclusively seen in the lamina propria and submucosa of the rectum. The mean size and number of the LT aggregations both significantly increased in MRL/MpJ-Faslpr/lpr mice compared to those in MRL/MpJ-Fas+/+ mice. The distance from the anorectal junction to the first LT aggregate was significantly shorter in MRL/MpJ-Faslpr/lpr mice than that in MRL/MpJ-Fas+/+ mice. Immunostaining revealed that the RMALTs included CD3+, CD4+, and CD8+ T cells; B220+ B cells; IBA1+ macrophages; Ki67+ proliferative cells; and PNAd+ high-endothelial venules (HEVs). The numbers of macrophages, proliferative cells, CD4+ T cells, CD8+ T cells, and HEVs were significantly increased in MRL/MpJ-Faslpr/lpr mice compared to those in MRL/MpJ mice. Furthermore, the gene expression levels of chemokines (Cxcl9 and Cxcl13) and their corresponding receptors (Cxcr3 and Cxcr5) were significantly higher in MRL/MpJ-Faslpr/lpr mice than those in MRL/MpJ-Fas+/+ mice. Although the morphology of rectal epithelium was comparable between the strains, M cell number was significantly higher in MRL/MpJ-Faslpr/lpr mice than in MRL/MpJ-Fas+/+ mice. Thus, ADs could alter RMALT morphology, and quantitative changes in T-cell subsets, proliferative cells, macrophages, HEVs, chemokine expression, and M cells could affect their cell composition and development.
Collapse
Affiliation(s)
- Md Zahir Uddin Rubel
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Department of Poultry Science, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sheikh Kamal Unushod Bhaban Road, Dhaka 1207, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Department of Anatomy, Histology, and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Sheikh Kamal Unushod Bhaban Road, Dhaka 1207, Bangladesh
| | - Tsolmon Chuluunbaatar
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Department of Basic Science of Veterinary Medicine, School of Veterinary Medicine, Mongolian University of Life Science, VWP5+JPX, Ulaanbaatar 17024, Mongolia
| | - Masaya Hiraishi
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Teppei Nakamura
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
6
|
Vllahu M, Voli A, Licursi V, Zagami C, D’Amore A, Traulsen J, Woelffling S, Schmid M, Crickley R, Lisle R, Link A, Tosco A, Meyer TF, Boccellato F. Inflammation promotes stomach epithelial defense by stimulating the secretion of antimicrobial peptides in the mucus. Gut Microbes 2024; 16:2390680. [PMID: 39244776 PMCID: PMC11382725 DOI: 10.1080/19490976.2024.2390680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
The mucus serves as a protective barrier in the gastrointestinal tract against microbial attacks. While its role extends beyond merely being a physical barrier, the extent of its active bactericidal properties remains unclear, and the mechanisms regulating these properties are not yet understood. We propose that inflammation induces epithelial cells to secrete antimicrobial peptides, transforming mucus into an active bactericidal agent. To investigate the properties of mucus, we previously developed mucosoid culture models that mimic the healthy human stomach epithelium. Similar to organoids, mucosoids are stem cell-driven cultures; however, the cells are cultivated on transwells at air-liquid interface. The epithelial cells of mucosoids form a polarized monolayer, allowing differentiation into all stomach lineages, including mucus-secreting cells. This setup facilitates the secretion and accumulation of mucus on the apical side of the mucosoids, enabling analysis of its bactericidal effects and protein composition, including antimicrobial peptides. Our findings show that TNFα, IL1β, and IFNγ induce the secretion of antimicrobials such as lactotransferrin, lipocalin2, complement component 3, and CXCL9 into the mucus. This antimicrobial-enriched mucus can partially eliminate Helicobacter pylori, a key stomach pathogen. The bactericidal activity depends on the concentration of each antimicrobial and their gene expression is higher in patients with inflammation and H.pylori-associated chronic gastritis. However, we also find that H. pylori infection can reduce the expression of antimicrobial encoding genes promoted by inflammation. These findings suggest that controlling antimicrobial secretion in the mucus is a critical component of epithelial immunity. However, pathogens like H. pylori can overcome these defenses and survive in the mucosa.
Collapse
Affiliation(s)
- Megi Vllahu
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology ‘‘C. Darwin’’, Sapienza University, Rome, Italy
| | - Claudia Zagami
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Antonella D’Amore
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jan Traulsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sara Woelffling
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Monika Schmid
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robbie Crickley
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht University of Kiel and University Hospital Schleswig-Holstein - Campus Kiel, Kiel, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Yadav SK, Ahmad R, Moshfegh CM, Sankarasubramanian J, Joshi V, Elkhatib SK, Chhonker YS, Murry DJ, Talmon GA, Guda C, Case AJ, Singh AB. Repeated Social Defeat Stress Induces an Inflammatory Gut Milieu by Altering the Mucosal Barrier Integrity and Gut Microbiota Homeostasis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:824-836. [PMID: 37881577 PMCID: PMC10593959 DOI: 10.1016/j.bpsgos.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD) is a mental health condition triggered by exposure to traumatic events in an individual's life. Patients with PTSD are also at a higher risk for comorbidities. However, it is not well understood how PTSD affects human health and/or promotes the risk for comorbidities. Nevertheless, patients with PTSD harbor a proinflammatory milieu and dysbiotic gut microbiota. Gut barrier integrity helps to maintain normal gut homeostasis and its dysregulation promotes gut dysbiosis and inflammation. Methods We used a mouse model of repeated social defeat stress (RSDS), a preclinical model of PTSD. Behavioral studies, metagenomics analysis of the microbiome, gut permeability assay (on mouse colon, using an Ussing chamber), immunoblotting, and immunohistochemical analyses were performed. Polarized intestinal epithelial cells and 3-dimensional crypt cultures were used for mechanistic analysis. Results The RSDS mice harbor a heightened proinflammatory gut environment and microbiota dysbiosis. The RSDS mice further showed significant dysregulation of gut barrier functions, including transepithelial electrical resistance, mucin homeostasis, and antimicrobial responses. RSDS mice also showed a specific increase in intestinal expression of claudin-2, a tight junction protein, and epinephrine, a stress-induced neurotransmitter. Treating intestinal epithelial cells or 3-dimensional cultured crypts with norepinephrine or intestinal luminal contents (fecal contents) upregulated claudin-2 expression and inhibited transepithelial electrical resistance. Conclusions Traumatic stress induces dysregulation of gut barrier functions, which may underlie the observed gut microbiota changes and proinflammatory gut milieu, all of which may have an interdependent effect on the health and increased risk of comorbidities in patients with PTSD.
Collapse
Affiliation(s)
- Santosh K. Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Vineet Joshi
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daryl J. Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Adam J. Case
- Department of Psychiatry and Behavior Sciences, Texas A&M University, College Station, Texas
- Department of Medical Physiology, Texas A&M University, College Station, Texas
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
8
|
Wang Z, Peters BA, Bryant M, Hanna DB, Schwartz T, Wang T, Sollecito CC, Usyk M, Grassi E, Wiek F, Peter LS, Post WS, Landay AL, Hodis HN, Weber KM, French A, Golub ET, Lazar J, Gustafson D, Sharma A, Anastos K, Clish CB, Burk RD, Kaplan RC, Knight R, Qi Q. Gut microbiota, circulating inflammatory markers and metabolites, and carotid artery atherosclerosis in HIV infection. MICROBIOME 2023; 11:119. [PMID: 37237391 PMCID: PMC10224225 DOI: 10.1186/s40168-023-01566-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Alterations in gut microbiota have been implicated in HIV infection and cardiovascular disease. However, how gut microbial alterations relate to host inflammation and metabolite profiles, and their relationships with atherosclerosis, have not been well-studied, especially in the context of HIV infection. Here, we examined associations of gut microbial species and functional components measured by shotgun metagenomics with carotid artery plaque assessed by B-mode carotid artery ultrasound in 320 women with or at high risk of HIV (65% HIV +) from the Women's Interagency HIV Study. We further integrated plaque-associated microbial features with serum proteomics (74 inflammatory markers measured by the proximity extension assay) and plasma metabolomics (378 metabolites measured by liquid chromatography tandem mass spectrometry) in relation to carotid artery plaque in up to 433 women. RESULTS Fusobacterium nucleatum, a potentially pathogenic bacteria, was positively associated with carotid artery plaque, while five microbial species (Roseburia hominis, Roseburia inulinivorans, Johnsonella ignava, Odoribacter splanchnicus, Clostridium saccharolyticum) were inversely associated with plaque. Results were consistent between women with and without HIV. Fusobacterium nucleatum was positively associated with several serum proteomic inflammatory markers (e.g., CXCL9), and the other plaque-related species were inversely associated with proteomic inflammatory markers (e.g., CX3CL1). These microbial-associated proteomic inflammatory markers were also positively associated with plaque. Associations between bacterial species (especially Fusobacterium nucleatum) and plaque were attenuated after further adjustment for proteomic inflammatory markers. Plaque-associated species were correlated with several plasma metabolites, including the microbial metabolite imidazole-propionate (ImP), which was positively associated with plaque and several pro-inflammatory markers. Further analysis identified additional bacterial species and bacterial hutH gene (encoding enzyme histidine ammonia-lyase in ImP production) associated with plasma ImP levels. A gut microbiota score based on these ImP-associated species was positively associated with plaque and several pro-inflammatory markers. CONCLUSION Among women living with or at risk of HIV, we identified several gut bacterial species and a microbial metabolite ImP associated with carotid artery atherosclerosis, which might be related to host immune activation and inflammation. Video Abstract.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California, La Jolla, San Diego, CA, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tara Schwartz
- Department of Pediatrics, University of California, La Jolla, San Diego, CA, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evan Grassi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fanua Wiek
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lauren St Peter
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wendy S Post
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Howard N Hodis
- Atherosclerosis Research Unit, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Audrey French
- Department of Internal Medicine, Stroger Hospital of Cook County, Chicago, IL, USA
| | - Elizabeth T Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jason Lazar
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, La Jolla, San Diego, CA, USA
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California, La Jolla, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Omptin Proteases of Enterobacterales Show Conserved Regulation by the PhoPQ Two-Component System but Exhibit Divergent Protection from Antimicrobial Host Peptides and Complement. Infect Immun 2023; 91:e0051822. [PMID: 36533918 PMCID: PMC9872669 DOI: 10.1128/iai.00518-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteria that colonize eukaryotic surfaces interact with numerous antimicrobial host-produced molecules, including host defense peptides, complement, and antibodies. Bacteria have evolved numerous strategies to both detect and resist these molecules, and in the Enterobacterales order of bacteria these include alterations of the cell surface lipopolysaccharide structure and/or charge and the production of proteases that can degrade these antimicrobial molecules. Here, we show that omptin family proteases from Escherichia coli and Citrobacter rodentium are regulated by the PhoPQ system. Omptin protease activity is induced by growth in low Mg2+, and deletion of PhoP dramatically reduces omptin protease activity, transcriptional regulation, and protein levels. We identify conserved PhoP-binding sites in the promoters of the E. coli omptin genes ompT, ompP, and arlC as well as in croP of Citrobacter rodentium and show that mutation of the putative PhoP-binding site in the ompT promoter abrogates PhoP-dependent expression. Finally, we show that although regulation by PhoPQ is conserved, each of the omptin proteins has differential activity toward host defense peptides, complement components, and resistance to human serum, suggesting that each omptin confers unique survival advantages against specific host antimicrobial factors.
Collapse
|
10
|
Giannos P, Prokopidis K, Isanejad M, Wright HL. Markers of immune dysregulation in response to the ageing gut: insights from aged murine gut microbiota transplants. BMC Gastroenterol 2022; 22:533. [PMID: 36544093 PMCID: PMC9773626 DOI: 10.1186/s12876-022-02613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perturbations in the composition and diversity of the gut microbiota are accompanied by a decline in immune homeostasis during ageing, characterized by chronic low-grade inflammation and enhanced innate immunity. Genetic insights into the interaction between age-related alterations in the gut microbiota and immune function remain largely unexplored. METHODS We investigated publicly available transcriptomic gut profiles of young germ-free mouse hosts transplanted with old donor gut microbiota to identify immune-associated differentially expressed genes (DEGs). Literature screening of the Gene Expression Omnibus and PubMed identified one murine (Mus musculus) gene expression dataset (GSE130026) that included small intestine tissues from young (5-6 weeks old) germ-free mice hosts that were compared following 8 weeks after transplantation with either old (~ 24-month old; n = 5) or young (5-6 weeks old; n = 4) mouse donor gut microbiota. RESULTS A total of 112 differentially expressed genes (DEGs) were identified and used to construct a gut network of encoded proteins, in which DEGs were functionally annotated as being involved in an immune process based on gene ontology. The association between the expression of immune-process DEGs and abundance of immune infiltrates from gene signatures in normal colorectal tissues was estimated from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. The analysis revealed a 25-gene signature of immune-associated DEGs and their expression profile was positively correlated with naïve T-cell, effector memory T-cell, central memory T-cell, resident memory T-cell, exhausted T-cell, resting Treg T-cell, effector Treg T-cell and Th1-like colorectal gene signatures. Conclusions These genes may have a potential role as candidate markers of immune dysregulation during gut microbiota ageing. Moreover, these DEGs may provide insights into the altered immune response to microbiota in the ageing gut, including reduced antigen presentation and alterations in cytokine and chemokine production.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Masoud Isanejad
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen L Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
11
|
Disparate Regions of the Human Chemokine CXCL10 Exhibit Broad-Spectrum Antimicrobial Activity against Biodefense and Antibiotic-Resistant Bacterial Pathogens. ACS Infect Dis 2022; 9:122-139. [PMID: 36475632 PMCID: PMC9841529 DOI: 10.1021/acsinfecdis.2c00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CXCL10 is a pro-inflammatory chemokine produced by the host in response to microbial infection. In addition to canonical, receptor-dependent actions affecting immune-cell migration and activation, CXCL10 has also been found to directly kill a broad range of pathogenic bacteria. Prior investigations suggest that the bactericidal effects of CXCL10 occur through two distinct pathways that compromise the cell envelope. These observations raise the intriguing notion that CXCL10 features a separable pair of antimicrobial domains. Herein, we affirm this possibility through peptide-based mapping and structure/function analyses, which demonstrate that discrete peptides derived from the N- and C-terminal regions of CXCL10 mediate bacterial killing. The N-terminal derivative, peptide P1, exhibited marked antimicrobial activity against Bacillus anthracis vegetative bacilli and spores, as well as antibiotic-resistant clinical isolates of Klebsiella pneumoniae, Acinetobacter baumannii, Enterococcus faecium, and Staphylococcus aureus, among others. At bactericidal concentrations, peptide P1 had a minimal degree of chemotactic activity, but did not cause red blood cell hemolysis or cytotoxic effects against primary human cells. The C-terminal derivative, peptide P9, exhibited antimicrobial effects, but only against Gram-negative bacteria in low-salt medium─conditions under which the peptide can adopt an α-helical conformation. The introduction of a hydrocarbon staple induced and stabilized α-helicity; accordingly, stapled peptide P9 displayed significantly improved bactericidal effects against both Gram-positive and Gram-negative bacteria in media containing physiologic levels of salt. Together, our findings identify and characterize the antimicrobial regions of CXCL10 and functionalize these novel determinants as discrete peptides with potential therapeutic utility against difficult-to-treat pathogens.
Collapse
|
12
|
Yu X, Chen Y, Cui L, Yang K, Wang X, Lei L, Zhang Y, Kong X, Lao W, Li Z, Liu Y, Li Y, Bi C, Wu C, Zhai A. CXCL8, CXCL9, CXCL10, and CXCL11 as biomarkers of liver injury caused by chronic hepatitis B. Front Microbiol 2022; 13:1052917. [PMID: 36504808 PMCID: PMC9730243 DOI: 10.3389/fmicb.2022.1052917] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Chronic hepatitis B (CHB) remains a significant global health problem, leading to recurrent inflammation and liver-damaging diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, although diagnostic markers for CHB are well established, the indicators for predicting liver injury caused by hepatitis B virus (HBV) infection still need to be further explored. Thus, the identification of credible infectious indicators is urgently needed to facilitate timely clinical intervention and avoid the progression of disease malignancy. Methods The Gene Expression Omnibus (GEO) database GSE83148 data set was used to explore the hub genes for HBV infection. The quantitative real-time polymerase chain reaction (qPCR) was used to identify the impact of HBV infection on the expression of hub gene at the cell level. At the same time, serum samples and clinical information were collected from healthy, HBV-free and CHB patients. The enzyme-linked immunosorbent assay (ELISA) was used to verify the results of cell experiments and Pearson correlation analysis was used to clarify hub genes correlation with HBV infection indicators and liver injury-related indicators. Finally, the Gene Expression Profiling Interactive Analysis (GEPIA) database was used to analyze the differences in the expression of hub gene in liver injury diseases. Results Chemokine (C-X-C motif) ligand (CXCL)8, CXCL9, CXCL10, and CXCL11 were identified as hub genes in HBV infection. After HBV infection, the expression of the four chemokines was significantly increased and the concentrations secreted into serum were also increased. Moreover, the four chemokines were significantly correlated with HBV infection-related indicators and liver injury-related indicators, which were positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatitis B e antigen (HBeAg), and negatively correlated with AST/ALT ratio and hepatitis B core antibody (HBcAb). In addition, the expression of CXCL9, CXCL10, and CXCL11 in HCC tissues was significantly higher than in normal tissues. Conclusion Using a combination of bioinformatics, cell experiments, and clinical correlation analysis, this study showed that CXCL8, CXCL9, CXCL10, and CXCL11 can be used as serum biomarkers to forecast liver injury caused by HBV infection.
Collapse
Affiliation(s)
- Xin Yu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lele Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xumeng Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,Department of Microbiology, Harbin Medical University, Harbin, China
| | - Linyuan Lei
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanping Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,*Correspondence: Changlong Bi,
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,Chao Wu,
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,Aixia Zhai, ;
| |
Collapse
|
13
|
Wei J, Zhang C, Gao Y, Li Y, Zhang Q, Qi H, Jin M, Yang X, Su X, Zhang Y, Yang R. Gut Epithelial-derived CXCL9 Maintains Gut Homeostasis Through Preventing Overgrown E. coli. J Crohns Colitis 2022; 16:963-977. [PMID: 34964882 DOI: 10.1093/ecco-jcc/jjab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/25/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Increased E. coli in the colon are related to the occurrence and development of multiple diseases. Chemokines are shown to possess potential antimicrobial activity, including against Gram-positive and -negative bacterial pathogens. We here investigated function[s] of chemokine CXCL9 expressed in the gut epithelial cells, and mechanism[s] of CXCL9 by which to kill E. coli. METHODS We generated CXCL9fl/flpvillin-creT mice [pvillin-cre positive mice] and their control CXCL9fl/flpvillin-crewmice [pvillin-cre negative mice], and then employed a dextran sulphate sodium [DSS]-mediated colitis model to determine the sensitivity of CXCL9fl/flpvillin-creT mice. We analysed the composition of the gut microbiota by using 16S ribosomal RNA [V3-V4 variable region] sequencing and shotgun metagenomic analyses. We generated E. coli ΔFtsX [FtsX-depleted E. coli] and E. coli ΔaceE [aceE-depleted E. coli] by using a bacterium red recombining system to investigate the mechanism[s] of CXCL9 by which to kill E. coli. RESULTS CXCL9 fl/flpvillin-creTmice were more sensitive to chemically induced colitis than their control littermates, CXCL9fl/flpvillin-crewmice. After DSS treatment, there were markedly increased gut E. coli [Escherichia-Shigella] in the colonic contents of CXCL9fl/flpvillin-creT mice as compared with control CXCL9fl/flpvillin-crew mice. The increased E. coli could promote colitis through NLRC4 and caspase 1/11-mediated IL-18, which was derived from gut epithelial cells. We finally demonstrated that CXCL9 expressed in gut epithelial cells could kill the overgrown E. coli. E. coli expressed Ftsx and PDHc subunits aceE. E.coliΔaceE but not E. coliΔFtsX were resistant to CXCL9-mediated killing. CONCLUSIONS Gut epithelial cells-derived CXCL9 can kill the expanded E. coli through aceE, to remain gut homeostasis.
Collapse
Affiliation(s)
- Jianmei Wei
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunze Zhang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin,China
| | - Yunhuan Gao
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Li
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Mengli Jin
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xiaorong Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Li H, Sun Y, Sun L. A Teleost CXCL10 Is Both an Immunoregulator and an Antimicrobial. Front Immunol 2022; 13:917697. [PMID: 35795684 PMCID: PMC9251016 DOI: 10.3389/fimmu.2022.917697] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokines are a group of cytokines that play important roles in cell migration, inflammation, and immune defense. In this study, we identified a CXC chemokine, CXCL10, from Japanese flounder Paralichthys olivaceus (named PoCXCL10) and investigated its immune function. Structurally, PoCXCL10 possesses an N-terminal coil, three β-strands, and a C-terminal α-helix with cationic and amphipathic properties. PoCXCL10 expression occurred in multiple tissues and was upregulated by bacterial pathogens. Recombinant PoCXCL10 (rPoCXCL10) promoted the migration, cytokine expression, and phagocytosis of flounder peripheral blood leukocytes (PBLs). rPoCXCL10 bound to and inhibited the growth of a variety of common Gram-negative and Gram-positive fish pathogens. rPoCXCL10 killed the pathogens by causing bacterial membrane permeabilization and structure destruction. When introduced in vivo, rPoCXCL10 significantly inhibited bacterial dissemination in fish tissues. A peptide derived from the C-terminal α-helix exhibited bactericidal activity and competed with rPoCXCL10 for bacterial binding. Deletion of the α-helix affected the in vitro bactericidal activity but not the chemotaxis or in vivo antimicrobial activity of PoCXCL10. Together, these results indicate that PoCXCL10 exerts the role of both an immunoregulator and a bactericide/bacteriostatic via different structural domains. These findings provide new insights into the immune function and working mechanism of fish CXC chemokines.
Collapse
Affiliation(s)
- Huili Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Li Sun,
| |
Collapse
|
15
|
Chen W, Liu D, Ren C, Su X, Wong CK, Yang R. A Special Network Comprised of Macrophages, Epithelial Cells, and Gut Microbiota for Gut Homeostasis. Cells 2022; 11:cells11020307. [PMID: 35053422 PMCID: PMC8774616 DOI: 10.3390/cells11020307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
A number of gut epithelial cells derived immunological factors such as cytokines and chemokines, which are stimulated by the gut microbiota, can regulate host immune responses to maintain a well-balance between gut microbes and host immune system. Multiple specialized immune cell populations, such as macrophages, dendritic cells (DCs), innate lymphoid cells, and T regulatory (Treg) cells, can communicate with intestinal epithelial cells (IEC) and/or the gut microbiota bi-directionally. The gut microbiota contributes to the differentiation and function of resident macrophages. Situated at the interface between the gut commensals and macrophages, the gut epithelium is crucial for gut homeostasis in microbial recognition, signaling transformation, and immune interactions, apart from being a physical barrier. Thus, three distinct but interactive components—macrophages, microbiota, and IEC—can form a network for the delicate and dynamic regulation of intestinal homeostasis. In this review, we will discuss the crucial features of gut microbiota, macrophages, and IEC. We will also summarize recent advances in understanding the cooperative and dynamic interactions among the gut microbiota, gut macrophages, and IEC, which constitute a special network for gut homeostasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Dan Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Changhao Ren
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Xiaomin Su
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China; (W.C.); (D.L.); (C.R.); (X.S.)
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
16
|
Cytokines Induced by Edwardsiella tarda: Profile and Role in Antibacterial Immunity. Biomolecules 2021; 11:biom11081242. [PMID: 34439908 PMCID: PMC8391551 DOI: 10.3390/biom11081242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad range of hosts, including fish and mammals. In the present study, we used an advanced antibody array technology to identify the expression pattern of cytokines induced by E. tarda in a mouse infection model. In total, 31 and 24 differentially expressed cytokines (DECs) were identified in the plasma at 6 h and 24 h post-infection (hpi), respectively. The DECs were markedly enriched in the Gene Ontology (GO) terms associated with cell migration and response to chemokine and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with immunity, diseases, and infection. Ten key DECs, including IL6 and TNF-α, were found to form extensive protein-protein interaction networks. IL6 was demonstrated to inhibit E. tarda infection and be required for E. tarda-induced inflammatory response. TNF-α also exerted an inhibitory effect on E. tarda infection, and knockdown of fish (Japanese flounder) TNF-α promoted E. tarda invasion in host cells. Together, the results of this study revealed a comprehensive profile of cytokines induced by E. tarda, thus adding new insights into the role of cytokine-associated immunity against bacterial infection and also providing the potential plasma biomarkers of E. tarda infection for future studies.
Collapse
|
17
|
Ramirez VT, Sladek J, Godinez DR, Rude KM, Chicco P, Murray K, Brust-Mascher I, Gareau MG, Reardon C. Sensory Nociceptive Neurons Contribute to Host Protection During Enteric Infection With Citrobacter rodentium. J Infect Dis 2021; 221:1978-1988. [PMID: 31960920 DOI: 10.1093/infdis/jiaa014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neurons are an integral component of the immune system that functions to coordinate responses to bacterial pathogens. Sensory nociceptive neurons that can detect bacterial pathogens are found throughout the body with dense innervation of the intestinal tract. METHODS In this study, we assessed the role of these nerves in the coordination of host defenses to Citrobacter rodentium. Selective ablation of nociceptive neurons significantly increased bacterial burden 10 days postinfection and delayed pathogen clearance. RESULTS Because the sensory neuropeptide CGRP (calcitonin gene-related peptide) regulates host responses during infection of the skin, lung, and small intestine, we assessed the role of CGRP receptor signaling during C rodentium infection. Although CGRP receptor blockade reduced certain proinflammatory gene expression, bacterial burden and Il-22 expression was unaffected. CONCLUSIONS Our data highlight that sensory nociceptive neurons exert a significant host protective role during C rodentium infection, independent of CGRP receptor signaling.
Collapse
Affiliation(s)
- Valerie T Ramirez
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Jessica Sladek
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Dayn Romero Godinez
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Pamela Chicco
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kaitlin Murray
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Melanie G Gareau
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Colin Reardon
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
18
|
Xiao X, Zhu W, Zhang Y, Liao Z, Wu C, Yang C, Zhang Y, Xiao S, Su J. Broad-Spectrum Robust Direct Bactericidal Activity of Fish IFNφ1 Reveals an Antimicrobial Peptide-like Function for Type I IFNs in Vertebrates. THE JOURNAL OF IMMUNOLOGY 2021; 206:1337-1347. [PMID: 33568398 DOI: 10.4049/jimmunol.2000680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Type I IFNs (IFN-Is) play pivotal roles in host defense against viral infections but remain enigmatic against bacterial pathogens. In this study, we recombinantly expressed and purified intact grass carp (Ctenopharyngodon idella) IFNφ1 (gcIFNφ1), a teleost IFN-I. gcIFNφ1 widely powerfully directly kills both Gram-negative and Gram-positive bacteria in a dose-dependent manner. gcIFNφ1 binds to LPS or peptidoglycan and provokes bacterial membrane depolarization and disruption, resulting in bacterial death. Furthermore, gcIFNφ1 can efficiently protect zebrafish against Aeromonas hydrophila infection and significantly reduce the bacterial loads in tissues by an infection model. In addition, we wonder whether antibacterial IFN-I members exist in other vertebrates. The amino acid compositions of representative IFN-Is with strong positive charges from Pisces, Amphibia, reptiles, Aves, and Mammalia demonstrate high similarities with those of 2237 reported cationic antimicrobial peptides in antimicrobial peptide database. Recombinant intact representative IFN-I members from the nonmammalian sect exhibit potent broad-spectrum robust bactericidal activity through bacterial membrane depolarization; in contrast, the bactericidal activity is very weak from mammalian IFN-Is. The findings display a broad-spectrum potent direct antimicrobial function for IFN-Is, to our knowledge previously unknown. The results highlight that IFN-Is are important and robust in host defense against bacterial pathogens, and unify direct antibacterial and indirect antiviral bifunction in nonmammalian jawed vertebrates.
Collapse
Affiliation(s)
- Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; and.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Changsong Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobo Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; and
| |
Collapse
|
19
|
Jasinska AJ, Dong TS, Lagishetty V, Katzka W, Jacobs JP, Schmitt CA, Cramer JD, Ma D, Coetzer WG, Grobler JP, Turner TR, Freimer N, Pandrea I, Apetrei C. Shifts in microbial diversity, composition, and functionality in the gut and genital microbiome during a natural SIV infection in vervet monkeys. MICROBIOME 2020; 8:154. [PMID: 33158452 PMCID: PMC7648414 DOI: 10.1186/s40168-020-00928-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The microbiota plays an important role in HIV pathogenesis in humans. Microbiota can impact health through several pathways such as increasing inflammation in the gut, metabolites of bacterial origin, and microbial translocation from the gut to the periphery which contributes to systemic chronic inflammation and immune activation and the development of AIDS. Unlike HIV-infected humans, SIV-infected vervet monkeys do not experience gut dysfunction, microbial translocation, and chronic immune activation and do not progress to immunodeficiency. Here, we provide the first reported characterization of the microbial ecosystems of the gut and genital tract in a natural nonprogressing host of SIV, wild vervet monkeys from South Africa. RESULTS We characterized fecal, rectal, vaginal, and penile microbiomes in vervets from populations heavily infected with SIV from diverse locations across South Africa. Geographic site, age, and sex affected the vervet microbiome across different body sites. Fecal and vaginal microbiome showed marked stratification with three enterotypes in fecal samples and two vagitypes, which were predicted functionally distinct within each body site. External bioclimatic factors, biome type, and environmental temperature influenced microbiomes locally associated with vaginal and rectal mucosa. Several fecal microbial taxa were linked to plasma levels of immune molecules, for example, MIG was positively correlated with Lactobacillus and Escherichia/Shigella and Helicobacter, and IL-10 was negatively associated with Erysipelotrichaceae, Anaerostipes, Prevotella, and Anaerovibrio, and positively correlated with Bacteroidetes and Succinivibrio. During the chronic phase of infection, we observed a significant increase in gut microbial diversity, alterations in community composition (including a decrease in Proteobacteria/Succinivibrio in the gut) and functionality (including a decrease in genes involved in bacterial invasion of epithelial cells in the gut), and partial reversibility of acute infection-related shifts in microbial abundance observed in the fecal microbiome. As part of our study, we also developed an accurate predictor of SIV infection using fecal samples. CONCLUSIONS The vervets infected with SIV and humans infected with HIV differ in microbial responses to infection. These responses to SIV infection may aid in preventing microbial translocation and subsequent disease progression in vervets, and may represent host microbiome adaptations to the virus. Video Abstract.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
- Eye on Primates, Los Angeles, CA, USA.
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William Katzka
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Jennifer Danzy Cramer
- Department of Sociology, Anthropology, and General Studies, American Public University System, Charles Town, WV, USA
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Willem G Coetzer
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Trudy R Turner
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Ivona Pandrea
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Feuerstein R, Forde AJ, Lohrmann F, Kolter J, Ramirez NJ, Zimmermann J, Gomez de Agüero M, Henneke P. Resident macrophages acquire innate immune memory in staphylococcal skin infection. eLife 2020; 9:55602. [PMID: 32639232 PMCID: PMC7343389 DOI: 10.7554/elife.55602] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a common colonizer of healthy skin and mucous membranes. At the same time, S. aureus is the most frequent cause of skin and soft tissue infections. Dermal macrophages (Mφ) are critical for the coordinated defense against invading S. aureus, yet they have a limited life span with replacement by bone marrow derived monocytes. It is currently poorly understood whether localized S. aureus skin infections persistently alter the resident Mφ subset composition and resistance to a subsequent infection. In a strictly dermal infection model we found that mice, which were previously infected with S. aureus, showed faster monocyte recruitment, increased bacterial killing and improved healing upon a secondary infection. However, skin infection decreased Mφ half-life, thereby limiting the duration of memory. In summary, resident dermal Mφ are programmed locally, independently of bone marrow-derived monocytes during staphylococcal skin infection leading to transiently increased resistance against a second infection.
Collapse
Affiliation(s)
- Reinhild Feuerstein
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florens Lohrmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Biology, University of Freiburg and IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Neftali Jose Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (Department for Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories (Department for Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Inhibiting expression of Cxcl9 promotes angiogenesis in MSCs-HUVECs co-culture. Arch Biochem Biophys 2019; 675:108108. [PMID: 31550444 DOI: 10.1016/j.abb.2019.108108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/18/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
The insufficient vascularization is a major challenge in bone tissue engineering, leading to partial necrosis of the implant. Pre-vascularization is a promising way via in vitro cells co-culture strategies using osteogenic cells and vasculogenic cells, and the cross-talk of cells is essential. In the present study, the effect of rat bone-marrow derived mesenchymal stem cells (BMSCs) on angiogenic capability of human umbilical vein endothelial cells (HUVECs) in growth medium (GM) and osteogenic induction medium (OIM) was investigated. It was demonstrated that cells co-cultured in OIM showed high efficiency in osteogenesis but failed to form capillary-like structure while the results of co-culture in GM were the opposite. By comparing the angiogenic capacity of co-cultures under GM and OIM, chemokine (C-X-C motif) ligand 9 (Cxcl9), secreted by BMSCs in OIM, was identified to be an angiostatic factor to counter-regulate vascular endothelial growth factor (VEGF) and prevent its binding to HUVECs, which abrogated angiogenesis of MSCs-ECs co-culture. Moreover, Cxcl9 was proved to suppress the osteogenic differentiation of BMSCs monoculture. The molecular mechanism of Cxcl9 activation in BMSCs involved mTOR/STAT1 signaling pathway. Therefore, blocking this signaling pathway via rapamycin addition resulted in the inhibition of Cxcl9 and improvement of osteogenic differentiation and angiogenic capacity of co-culture in OIM. These results reveal that Cxcl9 is a negative modulator of angiogenesis and osteogenesis, and its inhibition could promote pre-vascularization of bone tissue engineering.
Collapse
|
22
|
Lamichhane R, Schneider M, de la Harpe SM, Harrop TW, Hannaway RF, Dearden PK, Kirman JR, Tyndall JD, Vernall AJ, Ussher JE. TCR- or Cytokine-Activated CD8+ Mucosal-Associated Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune Responses. Cell Rep 2019; 28:3061-3076.e5. [DOI: 10.1016/j.celrep.2019.08.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
|
23
|
Phage Therapy of Pneumonia Is Not Associated with an Overstimulation of the Inflammatory Response Compared to Antibiotic Treatment in Mice. Antimicrob Agents Chemother 2019; 63:AAC.00379-19. [PMID: 31182526 DOI: 10.1128/aac.00379-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
Abstract
Supported by years of clinical use in some countries and more recently by literature on experimental models, as well as its compassionate use in Europe and in the United States, bacteriophage (phage) therapy is providing a solution for difficult-to-treat bacterial infections. However, studies of the impact of such treatments on the host remain scarce. Murine acute pneumonia initiated by intranasal instillation of two pathogenic strains of Escherichia coli (536 and LM33) was treated by two specific bacteriophages (536_P1 and LM33_P1; intranasal) or antibiotics (ceftriaxone, cefoxitin, or imipenem-cilastatin; intraperitoneal). Healthy mice also received phages alone. The severity of pulmonary edema, acute inflammatory cytokine concentration (blood and lung homogenates), complete blood counts, and bacterial and bacteriophage counts were determined at early (≤12 h) and late (≥20 h) time points. The efficacy of bacteriophage to decrease bacterial load was faster than with antibiotics, but the two displayed similar endpoints. Bacteriophage treatment was not associated with overinflammation but in contrast tended to lower inflammation and provided a faster correction of blood cell count abnormalities than did antibiotics. In the absence of bacterial infection, bacteriophage 536_P1 promoted a weak increase in the production of antiviral cytokines (gamma interferon [IFN-γ] and interleukin-12 [IL-12]) and chemokines in the lungs but not in the blood. However, such variations were no longer observed when bacteriophage 536_P1 was administered to treat infected animals. The rapid lysis of bacteria by bacteriophages in vivo does not increase the innate inflammatory response compared to that with antibiotic treatment.
Collapse
|
24
|
Chung LK, Raffatellu M. G.I. pros: Antimicrobial defense in the gastrointestinal tract. Semin Cell Dev Biol 2019; 88:129-137. [PMID: 29432952 PMCID: PMC6087682 DOI: 10.1016/j.semcdb.2018.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is a complex environment in which the host immune system interacts with a diverse array of microorganisms, both symbiotic and pathogenic. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Here we focus on the mechanisms by which intestinal antimicrobial peptides regulate microbial communities during dysbiosis and infection. We also discuss classes of bacterial peptides that contribute to reducing enteric pathogen outgrowth. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota.
Collapse
Affiliation(s)
- Lawton K Chung
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La Jolla, CA, 92093-0704, United States
| | - Manuela Raffatellu
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, La Jolla, CA, 92093-0704, United States; Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla CA, United States.
| |
Collapse
|
25
|
Crawford MA, Margulieux KR, Singh A, Nakamoto RK, Hughes MA. Mechanistic insights and therapeutic opportunities of antimicrobial chemokines. Semin Cell Dev Biol 2019; 88:119-128. [PMID: 29432954 PMCID: PMC6613794 DOI: 10.1016/j.semcdb.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 12/27/2022]
Abstract
Chemokines are a family of small proteins best known for their ability to orchestrate immune cell trafficking and recruitment to sites of infection. Their role in promoting host defense is multiplied by a number of additional receptor-dependent biological activities, and most, but not all, chemokines have been found to mediate direct antimicrobial effects against a broad range of microorganisms. The molecular mechanism(s) by which antimicrobial chemokines kill bacteria remains unknown; however, recent observations have expanded our fundamental understanding of chemokine-mediated bactericidal activity to reveal increasingly diverse and complex actions. In the current review, we present and consider mechanistic insights of chemokine-mediated antimicrobial activity against bacteria. We also discuss how contemporary advances are reshaping traditional paradigms and opening up new and innovative avenues of research with translational implications. Towards this end, we highlight a developing framework for leveraging chemokine-mediated bactericidal and immunomodulatory effects to advance pioneering therapeutic approaches for treating bacterial infections, including those caused by multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Matthew A Crawford
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Katie R Margulieux
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Arpita Singh
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Molly A Hughes
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
26
|
Solaymani-Mohammadi S, Berzofsky JA. Interleukin 21 collaborates with interferon-γ for the optimal expression of interferon-stimulated genes and enhances protection against enteric microbial infection. PLoS Pathog 2019; 15:e1007614. [PMID: 30818341 PMCID: PMC6413951 DOI: 10.1371/journal.ppat.1007614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/12/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
The mucosal surface of the intestinal tract represents a major entry route for many microbes. Despite recent progress in the understanding of the IL-21/IL-21R signaling axis in the generation of germinal center B cells, the roles played by this signaling pathway in the context of enteric microbial infections is not well-understood. Here, we demonstrate that Il21r-/- mice are more susceptible to colonic microbial infection, and in the process discovered that the IL-21/IL-21R signaling axis surprisingly collaborates with the IFN-γ/IFN-γR signaling pathway to enhance the expression of interferon-stimulated genes (ISGs) required for protection, via amplifying activation of STAT1 in mucosal CD4+ T cells in a murine model of Citrobacter rodentium colitis. As expected, conditional deletion of STAT3 in CD4+ T cells indicated that STAT3 also contributed importantly to host defense against C. rodentium infection in the colon. However, the collaboration between IL-21 and IFN-γ to enhance the phosphorylation of STAT1 and upregulate ISGs was independent of STAT3. Unveiling this previously unreported crosstalk between these two cytokine networks and their downstream genes induced will provide insight into the development of novel therapeutic targets for colonic infections, inflammatory bowel disease, and promotion of mucosal vaccine efficacy.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SSM); (JAB)
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SSM); (JAB)
| |
Collapse
|
27
|
Myeloid-restricted ablation of Shp2 restrains melanoma growth by amplifying the reciprocal promotion of CXCL9 and IFN-γ production in tumor microenvironment. Oncogene 2018; 37:5088-5100. [PMID: 29795405 DOI: 10.1038/s41388-018-0337-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
Abstract
The Src homology 2 domain-containing protein tyrosine phosphatase 2 (Shp2) is generally considered to be an oncogene owing to its ability in enhancing the malignancy of multiple types of tumor cells; however, its role in modulating tumor immunity remains largely elusive. Here, we reported that myeloid-restricted ablation of Shp2 suppressed melanoma growth. Mechanistically, loss of Shp2 potentiates macrophage production of CXCL9 in response to IFN-γ and tumor cell-derived cytokines, thereby facilitating the tumor infiltration of IFN-γ-producing T cells that could in turn support CXCL9 production within tumor microenvironment. Collectively, our findings highlight a causative role of myeloid Shp2 in dampening T cell-mediated antitumor immunity by restraining the macrophage/CXCL9-T cell/IFN-γ feedback loop. Thus, targeting macrophage Shp2 may help to create a Th1-dominant tumor immune microenvironment.
Collapse
|
28
|
Serum Cytokine Profiles in Patients with Dengue Fever at the Acute Infection Phase. DISEASE MARKERS 2018; 2018:8403937. [PMID: 29651328 PMCID: PMC5831957 DOI: 10.1155/2018/8403937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Background Dengue virus (DENV) is transmitted by mosquito and has been circulating in Guangdong, China, for over 30 years. Dengue infection causes mild to severe disease symptoms in human. Cytokine profiles were suggested to be crucial especially during the acute stage in the dengue infection. Aim To determine the cytokine profiles at the acute stage in patients with primary or secondary dengue infection in Guangzhou city in the 2014 outbreak. Methods We investigated 23 inflammatory cytokines in serum collected from dengue-infected patients and analyzed their correlations with their clinical indexes. Results The concentrations of CXCL9, IP-10, CXCL11, IL-8, IL-10, and CCL2 in serum were significantly higher in the groups of DENV-infected patients during the first two weeks than those of control group while CCL17 and CXCL5 showed lower expression level in the patients. Among these cytokines, CXCL9, CCL17, and CXCL5 showed statistical difference between the groups of primary and secondary infections. The platelet count and lactate dehydrogenase were correlated with the level of CCL17 and MIP-1α/CXCL5, respectively, in the group of secondary infection. Conclusions We determined the cytokine profiles in serum of the patients during the 2014 dengue outbreak. The expression of specific cytokines was associated with the secondary infection.
Collapse
|
29
|
Erickson DL, Lew CS, Kartchner B, Porter NT, McDaniel SW, Jones NM, Mason S, Wu E, Wilson E. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines. PLoS One 2016; 11:e0157092. [PMID: 27275606 PMCID: PMC4898787 DOI: 10.1371/journal.pone.0157092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/24/2016] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.
Collapse
Affiliation(s)
- David L. Erickson
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
- * E-mail:
| | - Cynthia S. Lew
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Brittany Kartchner
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Nathan T. Porter
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - S. Wade McDaniel
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Nathan M. Jones
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Sara Mason
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Erin Wu
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| | - Eric Wilson
- Department of Microbiology and Molecular Biology, 4007 LSB, Brigham Young University, Provo, UT 84602, United States of America
| |
Collapse
|
30
|
Abstract
Bacillus anthracis is killed by the interferon-inducible, ELR(−) CXC chemokine CXCL10. Previous studies showed that disruption of the gene encoding FtsX, a conserved membrane component of the ATP-binding cassette transporter-like complex FtsE/X, resulted in resistance to CXCL10. FtsX exhibits some sequence similarity to the mammalian CXCL10 receptor, CXCR3, suggesting that the CXCL10 N-terminal region that interacts with CXCR3 may also interact with FtsX. A C-terminal truncated CXCL10 was tested to determine if the FtsX-dependent antimicrobial activity is associated with the CXCR3-interacting N terminus. The truncated CXCL10 exhibited antimicrobial activity against the B. anthracis parent strain but not the ΔftsX mutant, which supports a key role for the CXCL10 N terminus. Mutations in FtsE, the conserved ATP-binding protein of the FtsE/X complex, resulted in resistance to both CXCL10 and truncated CXCL10, indicating that both FtsX and FtsE are important. Higher concentrations of CXCL10 overcame the resistance of the ΔftsX mutant to CXCL10, suggesting an FtsX-independent killing mechanism, likely involving its C-terminal α-helix, which resembles a cationic antimicrobial peptide. Membrane depolarization studies revealed that CXCL10 disrupted membranes of the B. anthracis parent strain and the ΔftsX mutant, but only the parent strain underwent depolarization with truncated CXCL10. These findings suggest that CXCL10 is a bifunctional molecule that kills B. anthracis by two mechanisms. FtsE/X-dependent killing is mediated through an N-terminal portion of CXCL10 and is not reliant upon the C-terminal α-helix. The FtsE/X-independent mechanism involves membrane depolarization by CXCL10, likely because of its α-helix. These findings present a new paradigm for understanding mechanisms by which CXCL10 and related chemokines kill bacteria. Chemokines are a class of molecules known for their chemoattractant properties but more recently have been shown to possess antimicrobial activity against a wide range of Gram-positive and Gram-negative bacterial pathogens. The mechanism(s) by which these chemokines kill bacteria is not well understood, but it is generally thought to be due to the conserved amphipathic C-terminal α-helix that resembles cationic antimicrobial peptides in charge and secondary structure. Our present study indicates that the interferon-inducible, ELR(−) chemokine CXCL10 kills the Gram-positive pathogen Bacillus anthracis through multiple molecular mechanisms. One mechanism is mediated by interaction of CXCL10 with the bacterial FtsE/X complex and does not require the presence of the CXCL10 C-terminal α-helix. The second mechanism is FtsE/X receptor independent and kills through membrane disruption due to the C-terminal α-helix. This study represents a new paradigm for understanding how chemokines exert an antimicrobial effect that may prove applicable to other bacterial species.
Collapse
|
31
|
Vanheule V, Vervaeke P, Mortier A, Noppen S, Gouwy M, Snoeck R, Andrei G, Van Damme J, Liekens S, Proost P. Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem Pharmacol 2015; 100:73-85. [PMID: 26551597 DOI: 10.1016/j.bcp.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Chemokines attract leukocytes to sites of infection in a G protein-coupled receptor (GPCR) and glycosaminoglycan (GAG) dependent manner. Therefore, chemokines are crucial molecules for proper functioning of our antimicrobial defense mechanisms. In addition, some chemokines have GPCR-independent defensin-like antimicrobial activities against bacteria and fungi. Recently, high affinity for GAGs has been reported for the positively charged COOH-terminal region of the chemokine CXCL9. In addition to CXCL9, also CXCL12γ has such a positively charged COOH-terminal region with about 50% positively charged amino acids. In this report, we compared the affinity of COOH-terminal peptides of CXCL9 and CXCL12γ for GAGs and KD values in the low nM range were detected. Several enveloped viruses such as herpesviruses, hepatitis viruses, human immunodeficiency virus (HIV), dengue virus (DENV), etc. are known to bind to GAGs such as the negatively charged heparan sulfate (HS). In this way GAGs are important for the initial contacts between viruses and host cells and for the infection of the cell. Thus, inhibiting the virus-cell interactions, by blocking GAG-binding sites on the host cell, might be a way to target multiple virus families and resistant strains. This article reports that the COOH-terminal peptides of CXCL9 and CXCL12γ have antiviral activity against DENV serotype 2, clinical and laboratory strains of herpes simplex virus (HSV)-1 and respiratory syncytial virus (RSV). Moreover, we show that CXCL9(74-103) competes with DENV envelope protein domain III for binding to heparin. These short chemokine-derived peptides may be lead molecules for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Vincent Vanheule
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Peter Vervaeke
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Anneleen Mortier
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Sam Noppen
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Robert Snoeck
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Graciela Andrei
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Sandra Liekens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|