1
|
Xiang H, Chen B, Wang S, Zeng W, Jiang J, Kong W, Huang H, Mi Q, Ni S, Gao Q, Li Z. Development of an RNA virus vector for non-transgenic genome editing in tobacco and generation of berberine bridge enzyme-like mutants with reduced nicotine content. ABIOTECH 2024; 5:449-464. [PMID: 39650142 PMCID: PMC11624166 DOI: 10.1007/s42994-024-00188-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024]
Abstract
Tobacco (Nicotiana tabacum) plants synthesize the psychoactive pyridine alkaloid nicotine, which has sparked growing interest in reducing nicotine levels through genome editing aiming at inactivating key biosynthetic genes. Although stable transformation-mediated genome editing is effective in tobacco, its polyploid nature complicates the complete knockout of genes and the segregation of transgenes from edited plants. In this study, we developed a non-transgenic genome editing method in tobacco by delivering the CRISPR/Cas machinery via an engineered negative-strand RNA rhabdovirus vector, followed by the regeneration of mutant plants through tissue culture. Using this method, we targeted six berberine bridge enzyme-like protein (BBL) family genes for mutagenesis, which are implicated in the last steps of pyridine alkaloid biosynthesis, in the commercial tobacco cultivar Hongda. We generated a panel of 16 mutant lines that were homozygous for mutations in various combinations of BBL genes. Alkaloid profiling revealed that lines homozygous for BBLa and BBLb mutations exhibited drastically reduced nicotine levels, while other BBL members played a minor role in nicotine synthesis. The decline of nicotine content in these lines was accompanied by reductions in anatabine and cotinine levels but increases in nornicotine and its derivative myosmine. Preliminary agronomic evaluation identified two low-nicotine lines with growth phenotypes comparable to those of wild-type plants under greenhouse and field conditions. Our work provides potentially valuable genetic materials for breeding low-nicotine tobacco and enhances our understanding of alkaloid biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00188-y.
Collapse
Affiliation(s)
- Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Binhuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Jiarui Jiang
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Weisong Kong
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Haitao Huang
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Qili Mi
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Shuang Ni
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, 650106 China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
2
|
Gao Q, Zang Y, Qiao JH, Zhang ZY, Wang Y, Han CG, Wang XB. The plant rhabdovirus viroporin P9 facilitates insect-mediated virus transmission in barley. THE PLANT CELL 2024; 36:3483-3497. [PMID: 38819305 PMCID: PMC11371171 DOI: 10.1093/plcell/koae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of glycine 14 to threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-GFP (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Zang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Wang R, Cao X, Lu K, Chang Z, Dong X, Guo H, Wei X, Dang R, Wang J, Wang X, Xiao S, Liu H, Yang Z. Rescuing Newcastle disease virus with tag for screening viral-host interacting proteins based on highly efficient reverse genetics. Front Vet Sci 2024; 11:1418760. [PMID: 39100766 PMCID: PMC11294249 DOI: 10.3389/fvets.2024.1418760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The interaction between viral proteins and host proteins plays a crucial role in the process of virus infecting cells. Tags such as HA, His, and Flag do not interfere with the function of fusion proteins and are commonly used to study protein-protein interactions. Adding these tags to viral proteins will address the challenge of the lack of antibodies for screening host proteins that interact with viral proteins during infection. Obtaining viruses with tagged fusion proteins is crucial. This study established a new reverse genetic system with T7 promoter and three plasmids, which efficiently rescued Newcastle disease virus (NDV) regardless of its ability to replicate in cells. Subsequently, using this system, NDV containing a HA-tagged structural protein and NDV carrying a unique tag on each structural protein were successfully rescued. These tagged viruses replicated normally and exhibited genetic stability. Based on tag antibodies, every NDV structural protein was readily detected and showed correct subcellular localization in infected cells. After infecting cells with NDV carrying HA-tagged M protein, several proteins interacting with the M protein during the infection process were screened using HA tag antibodies. The establishment of this system laid the foundation for comprehensive exploration of the interaction between NDV proteins and host proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling, Xianyang, China
| |
Collapse
|
4
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
5
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Wang S, Chen B, Ni S, Liang Y, Li Z. Efficient generation of recombinant eggplant mottled dwarf virus and expression of foreign proteins in solanaceous hosts. Virology 2024; 591:109980. [PMID: 38215560 DOI: 10.1016/j.virol.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Reverse genetics systems have only been successfully developed for a few plant rhabdoviruses. Additional systems are needed for molecular virology studies of these diverse viruses and development of viral vectors for biotechnological applications. Eggplant mottled dwarf virus (EMDV) is responsible for significant agricultural losses in various crops throughout the Mediterranean region and the Middle East. In this study, we report efficient recovery of infectious EMDV from cloned DNAs and engineering of EMDV-based vectors for the expression of foreign proteins in tobacco, eggplant, pepper, and potato plants. Furthermore, we show that the EMDV-based vectors are capable of simultaneously expressing multiple foreign proteins. The developed EMDV reverse genetics system offers a versatile tool for studying virus pathology and plant-virus interactions and for expressing foreign proteins in a range of solanaceous crops.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Binhuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Ni
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Huang X, Wang J, Chen S, Liu S, Li Z, Wang Z, Chen B, Zhang C, Zhang Y, Wu J, Yang X, Xie Q, Li F, An H, Huang J, Li H, Liu C, Wu X, Liu DX, Yang X, Zhou G, Zhang T. Rhabdovirus encoded glycoprotein induces and harnesses host antiviral autophagy for maintaining its compatible infection. Autophagy 2024; 20:275-294. [PMID: 37656054 PMCID: PMC10813567 DOI: 10.1080/15548627.2023.2252273] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Macroautophagy/autophagy has been recognized as a central antiviral defense mechanism in plant, which involves complex interactions between viral proteins and host factors. Rhabdoviruses are single-stranded RNA viruses, and the infection causes serious harm to public health, livestock, and crop production. However, little is known about the role of autophagy in the defense against rhabdovirus infection by plant. In this work, we showed that Rice stripe mosaic cytorhabdovirus(RSMV) activated autophagy in plants and that autophagy served as an indispensable defense mechanism during RSMV infection. We identified RSMV glycoprotein as an autophagy inducer that interacted with OsSnRK1B and promoted the kinase activity of OsSnRK1B on OsATG6b. RSMV glycoprotein was toxic to rice cells and its targeted degradation by OsATG6b-mediated autophagy was essential to restrict the viral titer in plants. Importantly, SnRK1-glycoprotein and ATG6-glycoprotein interactions were well-conserved between several other rhabdoviruses and plants. Together, our data support a model that SnRK1 senses rhabdovirus glycoprotein for autophagy initiation, while ATG6 mediates targeted degradation of viral glycoprotein. This conserved mechanism ensures compatible infection by limiting the toxicity of viral glycoprotein and restricting the infection of rhabdoviruses.Abbreviations: AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy related; AZD: AZD8055; BiFC: bimolecular fluorescence complementation; BYSMV: barley yellow striate mosaic virus; Co-IP: co-immunoprecipitation; ConA: concanamycin A; CTD: C-terminal domain; DEX: dexamethasone; DMSO: dimethyl sulfoxide; G: glycoprotein; GFP: green fluorescent protein; MD: middle domain; MDC: monodansylcadaverine; NTD: N-terminal domain; OE: over expression; Os: Oryza sativa; PBS: phosphate-buffered saline; PtdIns3K: class III phosphatidylinositol-3-kinase; qRT-PCR: quantitative real-time reverse-transcription PCR; RFP: red fluorescent protein; RSMV: rice stripe mosaic virus; RSV: rice stripe virus; SGS3: suppressor of gene silencing 3; SnRK1: sucrose nonfermenting1-related protein kinase1; SYNV: sonchus yellow net virus; TEM: transmission electron microscopy; TM: transmembrane region; TOR: target of rapamycin; TRV: tobacco rattle virus; TYMaV: tomato yellow mottle-associated virus; VSV: vesicular stomatitis virus; WT: wild type; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Xiuqin Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junkai Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Siping Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Siying Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhanbiao Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhiyi Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Biao Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yifei Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinhui Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaorong Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Faqiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Jilei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoxian Wu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guohui Zhou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tong Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Bejerman N, Dietzgen R, Debat H. Novel Tri-Segmented Rhabdoviruses: A Data Mining Expedition Unveils the Cryptic Diversity of Cytorhabdoviruses. Viruses 2023; 15:2402. [PMID: 38140643 PMCID: PMC10747219 DOI: 10.3390/v15122402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10-16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name "Trirhavirus". Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory.
Collapse
Affiliation(s)
- Nicolas Bejerman
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| | - Ralf Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Humberto Debat
- Instituto de Patología Vegetal—Centro de Investigaciones Agropecuarias—Instituto Nacional de Tecnología Agropecuaria (IPAVE—CIAP—INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina
| |
Collapse
|
9
|
Liang Y, Zhang X, Wu B, Wang S, Kang L, Deng Y, Xie L, Li Z. Actomyosin-driven motility and coalescence of phase-separated viral inclusion bodies are required for efficient replication of a plant rhabdovirus. THE NEW PHYTOLOGIST 2023; 240:1990-2006. [PMID: 37735952 DOI: 10.1111/nph.19255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Phase separation has emerged as a fundamental principle for organizing viral and cellular membraneless organelles. Although these subcellular compartments have been recognized for decades, their biogenesis and mechanisms of regulation are poorly understood. Here, we investigate the formation of membraneless inclusion bodies (IBs) induced during the infection of a plant rhabdovirus, tomato yellow mottle-associated virus (TYMaV). We generated recombinant TYMaV encoding a fluorescently labeled IB constituent protein and employed live-cell imaging to characterize the intracellular dynamics and maturation of viral IBs in infected Nicotiana benthamiana cells. We show that TYMaV IBs are phase-separated biomolecular condensates and that viral nucleoprotein and phosphoprotein are minimally required for IB formation in vivo and in vitro. TYMaV IBs move along the microfilaments, likely through the anchoring of viral phosphoprotein to myosin XIs. Furthermore, pharmacological disruption of microfilaments or inhibition of myosin XI functions suppresses IB motility, resulting in arrested IB growth and inefficient virus replication. Our study establishes phase separation as a process driving the formation of liquid viral factories and emphasizes the role of the cytoskeletal system in regulating the dynamics of condensate maturation.
Collapse
Affiliation(s)
- Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Binyan Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Lihua Kang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yinlu Deng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Li Xie
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Nie Z, Zhang X, Li Y, Zhang Z, Han C, Wang Y. Molecular characterization of a novel cytorhabdovirus infecting Plumbago indica L. Arch Virol 2023; 168:289. [PMID: 37950823 DOI: 10.1007/s00705-023-05911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 11/13/2023]
Abstract
In 2021, Plumbago indica plants with necrotic spots on their leaves were observed in Beijing, China. Through high-throughput sequencing, we discovered a putative novel member of the genus Cytorhabdovirus, which was provisionally named "plumbago necrotic spot-associated virus" (PNSaV). The full-length negative-sense single-stranded RNA genome of this virus is 13,180 nucleotides in length and contains eight putative open reading frames (ORFs), in the order 3' leader-N-(P')-P-P3-M-G-P6-L-5' trailer. Phylogenetic analysis and pairwise comparisons suggested that PNSaV is most closely related to pastinaca cytorhabdovirus 1, with 59.2% nucleotide sequence identity in the complete genome and 56.4% amino acid sequence identity in the L protein. These findings suggest that PNSaV should be considered a new member of the genus Cytorhabdovirus.
Collapse
Affiliation(s)
- Zhangyao Nie
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiuqi Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yingxi Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zongying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Gao DM, Qiao JH, Gao Q, Zhang J, Zang Y, Xie L, Zhang Y, Wang Y, Fu J, Zhang H, Han C, Wang XB. A plant cytorhabdovirus modulates locomotor activity of insect vectors to enhance virus transmission. Nat Commun 2023; 14:5754. [PMID: 37717061 PMCID: PMC10505171 DOI: 10.1038/s41467-023-41503-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Transmission of many plant viruses relies on phloem-feeding insect vectors. However, how plant viruses directly modulate insect behavior is largely unknown. Barley yellow striate mosaic virus (BYSMV) is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus). Here, we show that BYSMV infects the central nervous system (CNS) of SBPHs, induces insect hyperactivity, and prolongs phloem feeding duration. The BYSMV accessory protein P6 interacts with the COP9 signalosome subunit 5 (LsCSN5) of SBPHs and suppresses LsCSN5-regulated de-neddylation from the Cullin 1 (CUL1), hereby inhibiting CUL1-based E3 ligases-mediated degradation of the circadian clock protein Timeless (TIM). Thus, virus infection or knockdown of LsCSN5 compromises TIM oscillation and induces high insect locomotor activity for transmission. Additionally, expression of BYSMV P6 in the CNS of transgenic Drosophila melanogaster disturbs circadian rhythm and induces high locomotor activity. Together, our results suggest the molecular mechanisms whereby BYSMV modulates locomotor activity of insect vectors for transmission.
Collapse
Affiliation(s)
- Dong-Min Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiang Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiawen Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Zang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Xie
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jingyan Fu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Kanakala S, Xavier CAD, Martin KM, Tran HH, Redinbaugh MG, Whitfield AE. Rescue of the first alphanucleorhabdovirus entirely from cloned complementary DNA: An efficient vector for systemic expression of foreign genes in maize and insect vectors. MOLECULAR PLANT PATHOLOGY 2023; 24:788-800. [PMID: 36239302 DOI: 10.1111/mpp.13273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/11/2023]
Abstract
Recent reverse genetics technologies have enabled genetic manipulation of plant negative-strand RNA virus (NSR) genomes. Here, we report construction of an infectious clone for the maize-infecting Alphanucleorhabdovirus maydis, the first efficient NSR vector for maize. The full-length infectious clone was established using agrobacterium-mediated delivery of full-length maize mosaic virus (MMV) antigenomic RNA and the viral core proteins (nucleoprotein N, phosphoprotein P, and RNA-directed RNA polymerase L) required for viral transcription and replication into Nicotiana benthamiana. Insertion of intron 2 ST-LS1 into the viral L gene increased stability of the infectious clone in Escherichia coli and Agrobacterium tumefaciens. To monitor virus infection in vivo, a green fluorescent protein (GFP) gene was inserted in between the N and P gene junctions to generate recombinant MMV-GFP. Complementary DNA (cDNA) clones of MMV-wild type (WT) and MMV-GFP replicated in single cells of agroinfiltrated N. benthamiana. Uniform systemic infection and high GFP expression were observed in maize inoculated with extracts of the infiltrated N. benthamiana leaves. Insect vectors supported virus infection when inoculated via feeding on infected maize or microinjection. Both MMV-WT and MMV-GFP were efficiently transmitted to maize by planthopper vectors. The GFP reporter gene was stable in the virus genome and expression remained high over three cycles of transmission in plants and insects. The MMV infectious clone will be a versatile tool for expression of proteins of interest in maize and cross-kingdom studies of virus replication in plant and insect hosts.
Collapse
Affiliation(s)
- Surapathrudu Kanakala
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - César A D Xavier
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Hong Hanh Tran
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | | | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Hu J, Miao T, Que K, Rahman MS, Zhang L, Dong X, Ji P, Dong J. Identification, molecular characterization and phylogenetic analysis of a novel nucleorhabdovirus infecting Paris polyphylla var. yunnanensis. Sci Rep 2023; 13:10040. [PMID: 37340012 DOI: 10.1038/s41598-023-37022-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
A novel betanucleorhabdovirus infecting Paris polyphylla var. yunnanensis, tentatively named Paris yunnanensis rhabdovirus 1 (PyRV1), was recently identified in Yunnan Province, China. The infected plants showed vein clearing and leaf crinkle at early stage of infection, followed by leaf yellowing and necrosis. Enveloped bacilliform particles were observed using electron microscopy. The virus was mechanically transmissible to Nicotiana bethamiana and N. glutinosa. The complete genome of PyRV1 consists of 13,509 nucleotides, the organization of which was typical of rhabdoviruses, containing six open reading frames encoding proteins N-P-P3-M-G-L on the anti-sense strand, separated by conserved intergenic regions and flanked by complementary 3'-leader and 5'-trailer sequences. The genome of PyRV1 shared highest nucleotide sequence identity (55.1%) with Sonchus yellow net virus (SYNV), and the N, P, P3, M, G, and L proteins showed 56.9%, 37.2%, 38.4%, 41.8%, 56.7%, and 49.4% amino acid sequence identities with respective proteins of SYNV, suggesting RyRV1 belongs to a new species of the genus Betanucleorhabdovirus.
Collapse
Affiliation(s)
- Jingyu Hu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Tianli Miao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Kaijuan Que
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Md Siddiqur Rahman
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh
| | - Lei Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Xian Dong
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Pengzhang Ji
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China
| | - Jiahong Dong
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Yunnan, 650500, China.
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Yunnan, 650500, China.
| |
Collapse
|
14
|
Liu Q, Zhao C, Sun K, Deng Y, Li Z. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. MOLECULAR PLANT 2023; 16:616-631. [PMID: 36751129 DOI: 10.1016/j.molp.2023.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas genome-editing tools provide unprecedented opportunities for basic plant biology research and crop breeding. However, the lack of robust delivery methods has limited the widespread adoption of these revolutionary technologies in plant science. Here, we report an efficient, non-transgenic CRISPR/Cas delivery platform based on the engineered tomato spotted wilt virus (TSWV), an RNA virus with a host range of over 1000 plant species. We eliminated viral elements essential for insect transmission to liberate genome space for accommodating large genetic cargoes without sacrificing the ability to infect plant hosts. The resulting non-insect-transmissible viral vectors enabled effective and stable in planta delivery of Cas12a and Cas9 nucleases as well as adenine and cytosine base editors. In systemically infected plant tissues, the deconstructed TSWV-derived vectors induced efficient somatic gene mutations and base conversions in multiple crop species with little genotype dependency. Plants with heritable, bi-allelic mutations could be readily regenerated by culturing the virus-infected tissues in vitro without antibiotic selection. Moreover, we showed that antiviral treatment with ribavirin during tissue culture cleared the viral vectors in 100% of regenerated plants and further augmented the recovery of heritable mutations. Because many plants are recalcitrant to stable transformation, the viral delivery system developed in this work provides a promising tool to overcome gene delivery bottlenecks for genome editing in various crop species and elite varieties.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chenglu Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yinlu Deng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Ma X, Li X, Li Z. Transgene-Free Genome Editing in Nicotiana benthamiana with CRISPR/Cas9 Delivered by a Rhabdovirus Vector. Methods Mol Biol 2023; 2653:173-185. [PMID: 36995626 DOI: 10.1007/978-1-0716-3131-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas systems have become the most widely adopted genome editing platform owing to their unprecedented simplicity, efficiency, and versatility. Typically, the genome editing enzyme is expressed in plant cells from an integrated transgene delivered by either Agrobacterium-mediated or biolistic transformation. Recently, plant virus vectors have emerged as promising tools for the in planta delivery of CRISPR/Cas reagent. Here, we provide a protocol for CRISPR/Cas9-mediated genome editing in the model tobacco plant Nicotiana benthamiana using a recombinant negative-stranded RNA rhabdovirus vector. The method is based on infection of N. benthamiana with a Sonchus yellow net virus (SYNV)-based vector that carries the Cas9 and guide RNA expression cassettes to target specific genome loci for mutagenesis. With this method, mutant plants free of foreign DNA can be obtained within 4-5 months.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xuemei Li
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, Kunming, Yunnan, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Su Y, Xu J, Jiang Q, Zhang Q, Wang C, Bin Y, Song Z. Construction of Full-Length Infectious cDNA Clones of Citrus Mosaic Virus RNA1 and RNA2 and Infection of Citrus Seedlings by Agrobacterium-Mediated Vacuum-Infiltration. PHYTOPATHOLOGY 2023; 113:6-10. [PMID: 35906769 DOI: 10.1094/phyto-05-22-0154-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of full-length infectious cDNA clones for plant RNA viruses is important for studying their molecular biological characteristics, functional genomics, pathogenesis, and vectorization applications. Citrus mosaic virus (CiMV), a member of the genus Sadwavirus, is of economic importance to the citrus industry and comprises a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral virions. In the present study, full-length cDNA clones of CiMV RNA1 and RNA2 were constructed based on a ternary yeast-Escherichia coli-Agrobacterium tumefaciens shuttle vector, pTY, using transformation-associated recombination (TAR) strategy. Infectivity of cDNA clones of CiMV RNA1 and RNA2 was examined in multiple citrus varieties via Agrobacterium-mediated vacuum-infiltration (AVI) through symptom observation, RT-PCR, and virion detection with an electron microscope. Furthermore, the genome-sized RT-PCR fragments of RNA1 and RNA2 were obtained from symptomatic Jinchengyou (Citrus grandis) plants infected by the cloned virus (CiMV211). In addition, CiMV211 produced typical symptoms of wild-type CiMV in cowpea (Vigna angularis) plants inoculated by Agrobacterium-mediated injection. This is the first report of infectious cDNA clones of CiMV, which may lay the foundation for research on the pathogenesis and vectorization of the virus.
Collapse
Affiliation(s)
- Yue Su
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Jianjian Xu
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qiqi Jiang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qi Zhang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Chunqing Wang
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yu Bin
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Zhen Song
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| |
Collapse
|
17
|
Pasin F. Assembly of plant virus agroinfectious clones using biological material or DNA synthesis. STAR Protoc 2022; 3:101716. [PMID: 36149792 PMCID: PMC9519601 DOI: 10.1016/j.xpro.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Infectious clone technology is universally applied for biological characterization and engineering of viruses. This protocol describes procedures that implement synthetic biology advances for streamlined assembly of virus infectious clones. Here, I detail homology-based cloning using biological material, as well as SynViP assembly using type IIS restriction enzymes and chemically synthesized DNA fragments. The assembled virus clones are based on compact T-DNA binary vectors of the pLX series and are delivered to host plants by Agrobacterium-mediated inoculation. For complete details on the use and execution of this protocol, please refer to Pasin et al. (2017, 2018) and Pasin (2021).
Collapse
Affiliation(s)
- Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain.
| |
Collapse
|
18
|
Kauffmann CM, de Jesus Boari A, Silva JMF, Blawid R, Nagata T. Complete genome sequence of patchouli chlorosis-associated cytorhabdovirus, a new cytorhabdovirus infecting patchouli plants in Brazil. Arch Virol 2022; 167:2817-2820. [PMID: 36125555 DOI: 10.1007/s00705-022-05594-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
A cytorhabdovirus, tentatively named "patchouli chlorosis-associated cytorhabdovirus" (PCaCV), was identified in a patchouli plant, using high-throughput sequencing, and its genome sequence was confirmed by Sanger sequencing. The PCaCV genome consists of 12,913 nucleotides and contains six open reading frames in the order 3'-N-P'-P-P3-M-(G)-L-5'. The glycoprotein gene was found to contain stop codons in the coding frame; hence, this gene is considered defective. PCaCV is most closely related to tomato yellow mottle-associated virus, sharing 61.1% nucleotide sequence identity in the complete genome and 73.9% amino acid sequence identity in the L protein. These data suggest that PCaCV should be considered a new member of the genus Cytorhabdovirus, and the binomial species name "Cytorhabdovirus patchoulii" is proposed.
Collapse
Affiliation(s)
| | | | | | - Rosana Blawid
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Tatsuya Nagata
- Department of Plant Pathology, University of Brasilia, Brasília, Federal District, Brazil. .,Department of Molecular Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
19
|
Gao DM, Zhang ZJ, Qiao JH, Gao Q, Zang Y, Xu WY, Xie L, Fang XD, Ding ZH, Yang YZ, Wang Y, Wang XB. A rhabdovirus accessory protein inhibits jasmonic acid signaling in plants to attract insect vectors. PLANT PHYSIOLOGY 2022; 190:1349-1364. [PMID: 35771641 PMCID: PMC9516739 DOI: 10.1093/plphys/kiac319] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Plant rhabdoviruses heavily rely on insect vectors for transmission between sessile plants. However, little is known about the underlying mechanisms of insect attraction and transmission of plant rhabdoviruses. In this study, we used an arthropod-borne cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), to demonstrate the molecular mechanisms of a rhabdovirus accessory protein in improving plant attractiveness to insect vectors. Here, we found that BYSMV-infected barley (Hordeum vulgare L.) plants attracted more insect vectors than mock-treated plants. Interestingly, overexpression of BYSMV P6, an accessory protein, in transgenic wheat (Triticum aestivum L.) plants substantially increased host attractiveness to insect vectors through inhibiting the jasmonic acid (JA) signaling pathway. The BYSMV P6 protein interacted with the constitutive photomorphogenesis 9 signalosome subunit 5 (CSN5) of barley plants in vivo and in vitro, and negatively affected CSN5-mediated deRUBylation of cullin1 (CUL1). Consequently, the defective CUL1-based Skp1/Cullin1/F-box ubiquitin E3 ligases could not mediate degradation of jasmonate ZIM-domain proteins, resulting in compromised JA signaling and increased insect attraction. Overexpression of BYSMV P6 also inhibited JA signaling in transgenic Arabidopsis (Arabidopsis thaliana) plants to attract insects. Our results provide insight into how a plant cytorhabdovirus subverts plant JA signaling to attract insect vectors.
Collapse
Affiliation(s)
- Dong-Min Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Zang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Xie
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Zhou Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
20
|
Zhang C, Liu S, Li X, Zhang R, Li J. Virus-Induced Gene Editing and Its Applications in Plants. Int J Mol Sci 2022; 23:10202. [PMID: 36142116 PMCID: PMC9499690 DOI: 10.3390/ijms231810202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR/Cas-based genome editing technologies, which allow the precise manipulation of plant genomes, have revolutionized plant science and enabled the creation of germplasms with beneficial traits. In order to apply these technologies, CRISPR/Cas reagents must be delivered into plant cells; however, this is limited by tissue culture challenges. Recently, viral vectors have been used to deliver CRISPR/Cas reagents into plant cells. Virus-induced genome editing (VIGE) has emerged as a powerful method with several advantages, including high editing efficiency and a simplified process for generating gene-edited DNA-free plants. Here, we briefly describe CRISPR/Cas-based genome editing. We then focus on VIGE systems and the types of viruses used currently for CRISPR/Cas9 cassette delivery and genome editing. We also highlight recent applications of and advances in VIGE in plants. Finally, we discuss the challenges and potential for VIGE in plants.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
21
|
Ding ZH, Gao Q, Tong X, Xu WY, Ma L, Zhang ZJ, Wang Y, Wang XB. MAPKs trigger antiviral immunity by directly phosphorylating a rhabdovirus nucleoprotein in plants and insect vectors. THE PLANT CELL 2022; 34:3110-3127. [PMID: 35567529 PMCID: PMC9338794 DOI: 10.1093/plcell/koac143] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
Signaling by the evolutionarily conserved mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) plays critical roles in converting extracellular stimuli into immune responses. However, whether MAPK/ERK signaling induces virus immunity by directly phosphorylating viral effectors remains largely unknown. Barley yellow striate mosaic virus (BYSMV) is an economically important plant cytorhabdovirus that is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. Here, we found that the barley (Hordeum vulgare) MAPK MPK3 (HvMPK3) and the planthopper ERK (LsERK) proteins interact with the BYSMV nucleoprotein (N) and directly phosphorylate N protein primarily on serine 290. The overexpression of HvMPK3 inhibited BYSMV infection, whereas barley plants treated with the MAPK pathway inhibitor U0126 displayed greater susceptibility to BYSMV. Moreover, knockdown of LsERK promoted virus infection in SBPHs. A phosphomimetic mutant of the N Ser290 (S290D) completely abolished virus infection because of impaired self-interaction of BYSMV N and formation of unstable N-RNA complexes. Altogether, our results demonstrate that the conserved MAPK and ERK directly phosphorylate the viral nucleoprotein to trigger immunity against cross-kingdom infection of BYSMV in host plants and its insect vectors.
Collapse
Affiliation(s)
- Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Fang X, Qiao J, Zang Y, Gao Q, Xu W, Gao D, Yang Y, Xie L, Wang Y, Wang X. Developing reverse genetics systems of northern cereal mosaic virus to reveal superinfection exclusion of two cytorhabdoviruses in barley plants. MOLECULAR PLANT PATHOLOGY 2022; 23:749-756. [PMID: 35124878 PMCID: PMC8995060 DOI: 10.1111/mpp.13188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/11/2023]
Abstract
Recently, reverse genetics systems of plant negative-stranded RNA (NSR) viruses have been developed to study virus-host interactions. Nonetheless, genetic rescue of plant NSR viruses in both insect vectors and monocot plants is very limited. Northern cereal mosaic virus (NCMV), a plant cytorhabdovirus, causes severe diseases in cereal plants through transmission by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. In this study, we first developed a minireplicon system of NCMV in Nicotiana benthamiana plants, and then recovered a recombinant NCMV virus (rNCMV-RFP), with a red fluorescent protein (RFP) insertion, in SBPHs and barley plants. We further used rNCMV-RFP and green fluorescent protein (GFP)-tagged barley yellow striate mosaic virus (rBYSMV-GFP), a closely related cytorhabdovirus, to study superinfection exclusion, a widely observed phenomenon in dicot plants rarely studied in monocot plants. Interestingly, cellular superinfection exclusion of rBYSMV-GFP and rNCMV-RFP was observed in barley leaves. Our results demonstrate that two insect-transmitted cytorhabdoviruses are enemies rather than friends at the cellular level during coinfections in plants.
Collapse
Affiliation(s)
- Xiao‐Dong Fang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ji‐Hui Qiao
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ying Zang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qiang Gao
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Wen‐Ya Xu
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dong‐Min Gao
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yi‐Zhou Yang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Liang Xie
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ying Wang
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Xian‐Bing Wang
- State Key Laboratory of Agro‐BiotechnologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
23
|
Chen X, Luo H, Zhang J, Ma Y, Li K, Xiong F, Yang Y, Yang J, Lan P, Wei T, Xu Y, Chen H, Li F. Synergism Among the Four Tobacco Bushy Top Disease Casual Agents in Symptom Induction and Aphid Transmission. Front Microbiol 2022; 13:846857. [PMID: 35444628 PMCID: PMC9014100 DOI: 10.3389/fmicb.2022.846857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tobacco bushy top disease (TBTD), caused by multiple pathogens including tobacco bushy top virus (TBTV), tobacco vein distorting virus (TVDV), TBTV satellite RNA (TBTVsatRNA), and TVDV-associated RNA (TVDVaRNA), is a destructive disease in tobacco fields. To date, how these causal agents are co-transmitted by aphid vectors in field and their roles in disease symptom induction remain largely unknown, due mainly to the lack of purified causal agents. In this study, we have constructed four full-length infectious clones, representing the Yunnan Kunming isolates of TVDV, TBTV, TBTVsatRNA, and TVDVaRNA (TVDV-YK, TBTV-YK, TBTVsatRNA-YK, and TVDVaRNA-YK), respectively. Co-inoculation of these four causal agents to tobacco K326 plants caused typical TBTD symptoms, including smaller leaves, necrosis, and plant stunting. In addition, inoculation of tobacco K326 plants with TBTV alone caused necrosis in systemic leaves by 7 dpi. Tobacco K326 and Nicotiana benthamiana plants infected by single virus or multiple viruses showed very different disease symptoms at various dpi. RT-PCR results indicated that co-infection of TVDVaRNA-YK could increase TVDV-YK or TBTV-YK accumulation in N. benthamiana plants, suggesting that TVDVaRNA-YK can facilitate TVDV-YK and TBTV-YK replication and/or movement in the infected plants. Aphid transmission assays showed that the successful transmission of TBTV-YK, TBTVsatRNA-YK, and TVDVaRNA-YK by Myzus persicae depended on the presence of TVDV-YK, while the presence of TBTVsatRNA-YK increased the aphid transmission efficiency of TBTV and TVDV. We consider that these four new infectious clones will allow us to further dissect the roles of these four causal agents in TBTD induction as well as aphid transmission.
Collapse
Affiliation(s)
- Xiaojiao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Hengming Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jingyi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Kehua Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Feng Xiong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yahui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiazhen Yang
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Pingxiu Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Hairu Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Fan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
24
|
Urrutia CD, Romay G, Shaw BD, Verchot J. Advancing the Rose Rosette Virus Minireplicon and Encapsidation System by Incorporating GFP, Mutations, and the CMV 2b Silencing Suppressor. Viruses 2022; 14:836. [PMID: 35458566 PMCID: PMC9031449 DOI: 10.3390/v14040836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Plant infecting emaraviruses have segmented negative strand RNA genomes and little is known about their infection cycles due to the lack of molecular tools for reverse genetic studies. Therefore, we innovated a rose rosette virus (RRV) minireplicon containing the green fluorescent protein (GFP) gene to study the molecular requirements for virus replication and encapsidation. Sequence comparisons among RRV isolates and structural modeling of the RNA dependent RNA polymerase (RdRp) and nucleocapsid (N) revealed three natural mutations of the type species isolate that we reverted to the common species sequences: (a) twenty-one amino acid truncations near the endonuclease domain (named delA), (b) five amino acid substitutions near the putative viral RNA binding loop (subT), and (c) four amino acid substitutions in N (NISE). The delA and subT in the RdRp influenced the levels of GFP, gRNA, and agRNA at 3 but not 5 days post inoculation (dpi), suggesting these sequences are essential for initiating RNA synthesis and replication. The NISE mutation led to sustained GFP, gRNA, and agRNA at 3 and 5 dpi indicating that the N supports continuous replication and GFP expression. Next, we showed that the cucumber mosaic virus (CMV strain FNY) 2b singularly enhanced GFP expression and RRV replication. Including agRNA2 with the RRV replicon produced observable virions. In this study we developed a robust reverse genetic system for investigations into RRV replication and virion assembly that could be a model for other emaravirus species.
Collapse
Affiliation(s)
| | | | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77845, USA; (C.D.U.); (G.R.); (B.D.S.)
| |
Collapse
|
25
|
Abstract
Rhabdoviruses are ubiquitous and diverse viruses that propagate owing to bidirectional interactions with their vertebrate, arthropod, and plant hosts, and some of them could pose global health or agricultural threats. However, rhabdoviruses have rarely been reported in fungi. Here, two newly identified fungal rhabdoviruses, Rhizoctonia solani rhabdovirus 1 (RsRhV1) and RsRhV2, were discovered and molecularly characterized from the phytopathogenic fungus Rhizoctonia solani. The genomic organizations of RsRhV1 and RsRhV2 are 11,716 and 11,496 nucleotides (nt) in length, respectively, and consist of five open reading frames (ORFs) (ORFs I to V). ORF I, ORF IV, and ORF V encode the viral nucleocapsid (N), glycoprotein (G), and RNA polymerase (L), respectively. The putative protein encoded by ORF III has a lower level of identity with the matrix protein of rhabdoviruses. ORF II encodes a hypothetical protein with unknown function. Phylogenetic trees based on multiple alignments of N, L, and G proteins revealed that RsRhV1 and RsRhV2 are new members of the family Rhabdoviridae, but they form an independent evolutionary branch significantly distinct from other known nonfungal rhabdoviruses, suggesting that they represent a novel viral evolutionary lineage within Rhabdoviridae. Compared to strains lacking rhabdoviruses, strains harboring RsRhV2 and RsRhV1 showed hypervirulence, suggesting that RsRhV1 and RsRhV2 might be associated with the virulence of R. solani. Taken together, this study enriches our understanding of the diversity and host range of rhabdoviruses. IMPORTANCE Mycoviruses have been attracting an increasing amount of attention due to their impact on important medical, agricultural, and industrial fungi. Rhabdoviruses are prevalent across a wide spectrum of hosts, from plants to invertebrates and vertebrates. This study molecularly characterized two novel rhabdoviruses from four Rhizoctonia solani strains, based on their genomic structures, transcription strategy, phylogenetic relationships, and biological impact on their host. Our study makes a significant contribution to the literature because it not only enriches the mycovirus database but also expands the known host range of rhabdoviruses. It also offers insight into the evolutionary linkage between animal viruses and mycoviruses and the transmission of viruses from one host to another. Our study will also help expand the contemporary knowledge of the classification of rhabdoviruses, as well as providing a new model to study rhabdovirus-host interactions, which will benefit the agriculture and medical areas of human welfare.
Collapse
|
26
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
27
|
Gentzel IN, Ohlson EW, Redinbaugh MG, Wang GL. VIGE: virus-induced genome editing for improving abiotic and biotic stress traits in plants. STRESS BIOLOGY 2022; 2:2. [PMID: 37676518 PMCID: PMC10441944 DOI: 10.1007/s44154-021-00026-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/12/2021] [Indexed: 09/08/2023]
Abstract
Agricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.
Collapse
Affiliation(s)
- Irene N Gentzel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Erik W Ohlson
- USDA, Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
28
|
Qiao JH, Gao Q, Zang Y, Fang XD, Wang XB. A Versatile Expression Platform in Insects and Cereals Based on a Cytorhabdovirus. Methods Mol Biol 2022; 2400:163-170. [PMID: 34905200 DOI: 10.1007/978-1-0716-1835-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, plant virus-based vectors have been widely applied to express heterologous proteins for genomic studies and commercial production. Among these versatile RNA viral vectors, the barley yellow striate mosaic virus (BYSMV)-based expression vector system has outstanding capability to express large and multiple heterologous proteins. Here we describe a detailed protocol for expression of heterologous proteins using BYSMV expression systems in monocot plants and insects.
Collapse
Affiliation(s)
- Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Zang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
29
|
Gu X, Liu L, Zhang H. Transgene-free Genome Editing in Plants. Front Genome Ed 2021; 3:805317. [PMID: 34927134 PMCID: PMC8678605 DOI: 10.3389/fgeed.2021.805317] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023] Open
Abstract
Genome editing is widely used across plant species to generate and study the impact of functional mutations in crop improvement. However, transgene integration in plant genomes raises important legislative concerns regarding genetically modified organisms. Several strategies have been developed to remove or prevent the integration of gene editor constructs, which can be divided into three major categories: 1) elimination of transgenic sequences via genetic segregation; 2) transient editor expression from DNA vectors; and 3) DNA-independent editor delivery, including RNA or preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs). Here, we summarize the main strategies employed to date and discuss the advantages and disadvantages of using these different tools. We hope that our work can provide important information concerning the value of alternative genome editing strategies to advance crop breeding.
Collapse
Affiliation(s)
- Xiaoyong Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huawei Zhang
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| |
Collapse
|
30
|
Jackson AO. Reflections on a Career in Plant Virology: A Chip Floating on a Stream. Annu Rev Virol 2021; 8:23-50. [PMID: 34255543 DOI: 10.1146/annurev-virology-091919-105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the time I entered college and for a few years afterward, I had very few concrete goals. Hence, my progress was more a matter of luck than planning and was somewhat analogous to a small wood chip floating down a slow stream, bumping into various objects tossed and turned hither and thither, all the while being surrounded by larger and more appealing chips. I have been extremely lucky to have been associated with numerous helpful and knowledgeable mentors, colleagues, postdocs, students, and coworkers whose advice had major impacts on my life. Therefore, throughout this article, I have attempted to acknowledge central individuals who contributed to my progress in academia and to highlight the positive bumps to my chip on the steam that affected the directions of my career.
Collapse
Affiliation(s)
- Andrew O Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
31
|
Xu Y, Fu S, Tao X, Zhou X. Rice stripe virus: Exploring Molecular Weapons in the Arsenal of a Negative-Sense RNA Virus. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:351-371. [PMID: 34077238 DOI: 10.1146/annurev-phyto-020620-113020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice stripe disease caused by Rice stripe virus (RSV) is one of the most devastating plant viruses of rice and causes enormous losses in production. RSV is transmitted from plant to plant by the small brown planthopper (Laodelphax striatellus) in a circulative-propagative manner. The recent reemergence of this pathogen in East Asia since 2000 has made RSV one of the most studied plant viruses over the past two decades. Extensive studies of RSV have resulted in substantial advances regarding fundamental aspects of the virus infection. Here, we compile and analyze recent information on RSV with a special emphasis on the strategies that RSV has adopted to establish infections. These advances include RSV replication and movement in host plants and the small brown planthopper vector, innate immunity defenses against RSV infection, epidemiology, and recent advances in the management of rice stripe disease. Understanding these issues will facilitate the design of novel antiviral therapies for management and contribute to a more detailed understanding of negative-sense virus-host interactions at the molecular level.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
32
|
A Core35S Promoter of Cauliflower Mosaic Virus Drives More Efficient Replication of Turnip Crinkle Virus. PLANTS 2021; 10:plants10081700. [PMID: 34451745 PMCID: PMC8399983 DOI: 10.3390/plants10081700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
The 35S promoter with a duplicated enhancer (frequently referred to as 2X35S) is a strong dicotyledonous plant-specific promoter commonly used in generating transgenic plants to enable high-level expression of genes of interest. It is also used to drive the initiation of RNA virus replication from viral cDNA, with the consensus understanding that high levels of viral RNA production powered by 2X35S permit a more efficient initiation of virus replication. Here, we showed that the exact opposite is true. We found that, compared to the Core35S promoter, the 2X35S promoter-driven initiation of turnip crinkle virus (TCV) infection was delayed by at least 24 h. We first compared three versions of 35S promoter, namely 2X35S, 1X35S, and Core35S, for their ability to power the expression of a non-replicating green fluorescent protein (GFP) gene, and confirmed that 2X35S and Core35S correlated with the highest and lowest GFP expression, respectively. However, when inserted upstream of TCV cDNA, 2X35S-driven replication was not detected until 72 h post-inoculation (72 hpi) in inoculated leaves. By contrast, Core35S-driven replication was detected earlier at 48 hpi. A similar delay was also observed in systemically infected leaves (six versus four days post-inoculation). Combining our results, we hypothesized that the stronger 2X35S promoter might enable a higher accumulation of a TCV protein that became a repressor of TCV replication at higher cellular concentration. Extending from these results, we propose that the Core35S (or mini35S) promoter is likely a better choice for generating infectious cDNA clones of TCV.
Collapse
|
33
|
Wang Z, Chen B, Zhang T, Zhou G, Yang X. Rice Stripe Mosaic Disease: Characteristics and Control Strategies. Front Microbiol 2021; 12:715223. [PMID: 34394065 PMCID: PMC8358444 DOI: 10.3389/fmicb.2021.715223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Rice stripe mosaic disease (RSMD) is caused by the rice stripe mosaic virus (RSMV; genus Cytorhabdovirus, family Rhabdoviridae). In recent years, significant progress has been made in understanding several aspects of the disease, especially its geographical distribution, symptoms, vectors, gene functions, and control measures. Since RSMD was first detected in southern China in 2015, it has been found in more and more rice growing areas and has become one of the most important rice diseases in southern China. RSMV is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner, inducing yellow stripes, a slight distortion of leaves, increased tillers, and empty grains in rice plants. The virus has a negative-sense single-strand RNA genome of about 12.7 kb that encodes seven proteins: N, P, P3, M, G, P6, and L. Several molecular and serological tests have been developed to detect RSMV in plants and insects. The disease cycle can be described as follows: RSMV and its vector overwinter in infected plants; viruliferous R. dorsalis adults transmit the virus to spring rice and lay eggs on the infected seedlings; the next generation of R. dorsalis propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Control measures include monitoring and accurate forecasting, selecting disease-resistant varieties, improving cultivation systems, covering rice seedling nurseries with insect-proof nets, and using pesticides rationally. Inappropriate cultivation systems, pesticide overuse, and climatic conditions contribute to epidemics by affecting the development of vector insects and their population dynamics.
Collapse
Affiliation(s)
- Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
34
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
35
|
Illuminating the Plant Rhabdovirus Landscape through Metatranscriptomics Data. Viruses 2021; 13:v13071304. [PMID: 34372509 PMCID: PMC8310260 DOI: 10.3390/v13071304] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/06/2023] Open
Abstract
Rhabdoviruses infect a large number of plant species and cause significant crop diseases. They have a negative-sense, single-stranded unsegmented or bisegmented RNA genome. The number of plant-associated rhabdovirid sequences has grown in the last few years in concert with the extensive use of high-throughput sequencing platforms. Here, we report the discovery of 27 novel rhabdovirus genomes associated with 25 different host plant species and one insect, which were hidden in public databases. These viral sequences were identified through homology searches in more than 3000 plant and insect transcriptomes from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) using known plant rhabdovirus sequences as the query. The identification, assembly and curation of raw SRA reads resulted in sixteen viral genome sequences with full-length coding regions and ten partial genomes. Highlights of the obtained sequences include viruses with unique and novel genome organizations among known plant rhabdoviruses. Phylogenetic analysis showed that thirteen of the novel viruses were related to cytorhabdoviruses, one to alphanucleorhabdoviruses, five to betanucleorhabdoviruses, one to dichorhaviruses and seven to varicosaviruses. These findings resulted in the most complete phylogeny of plant rhabdoviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant viruses. Furthermore, this study provided additional evidence for the complexity and diversity of plant rhabdovirus genomes and demonstrated that analyzing SRA public data provides an invaluable tool to accelerate virus discovery, gain evolutionary insights and refine virus taxonomy.
Collapse
|
36
|
Odongo PJ, Onaga G, Ricardo O, Natsuaki KT, Alicai T, Geuten K. Insights Into Natural Genetic Resistance to Rice Yellow Mottle Virus and Implications on Breeding for Durable Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:671355. [PMID: 34267770 PMCID: PMC8276079 DOI: 10.3389/fpls.2021.671355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Rice is the main food crop for people in low- and lower-middle-income countries in Asia and sub-Saharan Africa (SSA). Since 1982, there has been a significant increase in the demand for rice in SSA, and its growing importance is reflected in the national strategic food security plans of several countries in the region. However, several abiotic and biotic factors undermine efforts to meet this demand. Rice yellow mottle virus (RYMV) caused by Solemoviridae is a major biotic factor affecting rice production and continues to be an important pathogen in SSA. To date, six pathogenic strains have been reported. RYMV infects rice plants through wounds and rice feeding vectors. Once inside the plant cells, viral genome-linked protein is required to bind to the rice translation initiation factor [eIF(iso)4G1] for a compatible interaction. The development of resistant cultivars that can interrupt this interaction is the most effective method to manage this disease. Three resistance genes are recognized to limit RYMV virulence in rice, some of which have nonsynonymous single mutations or short deletions in the core domain of eIF(iso)4G1 that impair viral host interaction. However, deployment of these resistance genes using conventional methods has proved slow and tedious. Molecular approaches are expected to be an alternative to facilitate gene introgression and/or pyramiding and rapid deployment of these resistance genes into elite cultivars. In this review, we summarize the knowledge on molecular genetics of RYMV-rice interaction, with emphasis on host plant resistance. In addition, we provide strategies for sustainable utilization of the novel resistant sources. This knowledge is expected to guide breeding programs in the development and deployment of RYMV resistant rice varieties.
Collapse
Affiliation(s)
- Patrick J. Odongo
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Geoffrey Onaga
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
- M’bé Research Station, Africa Rice Center (AfricaRice), Bouaké, Côte d’Ivoire
| | - Oliver Ricardo
- Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Keiko T. Natsuaki
- Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Titus Alicai
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Feng M, Li L, Cheng R, Yuan Y, Dong Y, Chen M, Guo R, Yao M, Xu Y, Zhou Y, Wu J, Ding XS, Zhou X, Tao X. Development of a Mini-Replicon-Based Reverse-Genetics System for Rice Stripe Tenuivirus. J Virol 2021; 95:e0058921. [PMID: 33952642 PMCID: PMC8223943 DOI: 10.1128/jvi.00589-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 01/27/2023] Open
Abstract
Negative-stranded RNA (NSR) viruses include both animal- and plant-infecting viruses that often cause serious diseases in humans and livestock and in agronomic crops. Rice stripe tenuivirus (RSV), a plant NSR virus with four negative-stranded/ambisense RNA segments, is one of the most destructive rice pathogens in many Asian countries. Due to the lack of a reliable reverse-genetics technology, molecular studies of RSV gene functions and its interaction with host plants are severely hampered. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV gene functional analysis in Nicotiana benthamiana. We first developed a mini-replicon system expressing an RSV genomic RNA3 enhanced green fluorescent protein (eGFP) reporter [MR3(-)eGFP], a nucleocapsid (NP), and a codon usage-optimized RNA-dependent RNA polymerase (RdRpopt). Using this mini-replicon system, we determined that RSV NP and RdRpopt are indispensable for the eGFP expression from MR3(-)eGFP. The expression of eGFP from MR3(-)eGFP can be significantly enhanced in the presence of four viral suppressors of RNA silencing (VSRs), NSs, and P19-HcPro-γb. In addition, NSvc4, the movement protein of RSV, facilitated eGFP trafficking between cells. We also developed an antigenomic RNA3-based replicon in N. benthamiana. However, we found that the RSV NS3 coding sequence acts as a cis element to regulate viral RNA expression. Finally, we made mini-replicons representing all four RSV genomic RNAs. This is the first mini-replicon-based reverse-genetics system for monocot-infecting tenuivirus. We believe that the mini-replicon system described here will allow studies of the RSV replication, transcription, cell-to-cell movement, and host machinery underpinning RSV infection in plants. IMPORTANCE Plant-infecting segmented negative-stranded RNA (NSR) viruses are grouped into three genera: Orthotospovirus, Tenuivirus, and Emaravirus. Reverse-genetics systems have been established for members of the genera Orthotospovirus and Emaravirus. However, there is still no reverse-genetics system available for Tenuivirus. Rice stripe virus (RSV) is a monocot-infecting tenuivirus with four negative-stranded/ambisense RNA segments. It is one of the most destructive rice pathogens and causes significant damage to the rice industry in Asian countries. Due to the lack of a reliable reverse-genetics system, molecular characterizations of RSV gene functions and the host machinery underpinning RSV infection in plants are extremely difficult. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV in Nicotiana benthamiana. This is the first mini-replicon-based reverse-genetics system for tenuivirus. We consider that this system will provide researchers a new working platform to elucidate the molecular mechanisms dictating segmented tenuivirus infections in plants.
Collapse
Affiliation(s)
- Mingfeng Feng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Luyao Li
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Ruixiang Cheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yulong Yuan
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yongxin Dong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Minglong Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Rong Guo
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Min Yao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yi Xu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, People’s Republic of China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People’s Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
38
|
Zhang X, Sun K, Liang Y, Zhao C, Li Z. Development of RNA Polymerase III-Driven Reverse Genetics System for the Rescue of a Plant Rhabdovirus. Virol Sin 2021; 36:1252-1255. [PMID: 33939129 DOI: 10.1007/s12250-021-00390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chenglu Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China. .,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Dietzgen RG, Bejerman NE, Mei Y, Jee CLJ, Chabi-Jesus C, Freitas-Astúa J, Veras SM, Kitajima EW. Joá yellow blotch-associated virus, a new alphanucleorhabdovirus from a wild solanaceous plant in Brazil. Arch Virol 2021; 166:1615-1622. [PMID: 33774730 DOI: 10.1007/s00705-021-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
We identified a novel plant rhabdovirus infecting native joá (Solanum aculeatissimum) plants in Brazil. Infected plants showed yellow blotches on the leaves, and typical enveloped bacilliform rhabdovirus particles associated with the nucleus were seen in thin sections by electron microscopy. The virus could be graft-transmitted to healthy joá and tomato plants but was not mechanically transmissible. RT-PCR using degenerate plant rhabdovirus L gene primers yielded an amplicon from extracted total RNA, the sequence of which was similar to those of alphanucleorhabdoviruses. Based on close sequence matches, especially with the type member potato yellow dwarf virus (PYDV), we adopted a degenerate-primer-walking strategy towards both genome ends. The complete genome of joá yellow blotch-associated virus (JYBaV) is comprised of 12,965 nucleotides, is less than 75% identical to that of its closest relative PYDV, and clusters with PYDV and other alphanucleorhabdoviruses in L protein phylogenetic trees, suggesting that it should be taxonomically classified in a new species in the genus Alphanucleorhabdovirus, family Rhabdoviridae. The genome organization of JYBaV is typical of the 'PYDV-like' subgroup of alphanucleorhabdoviruses, with seven genes (N-X-P-Y-M-G-L) separated by conserved intergenic regions and flanked by partly complementary 3' leader and 5' trailer regions.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Nicolas E Bejerman
- Instituto de Patología Vegetal-Centro de Investigaciones Agropecuarias-Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), 5020, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Unidad de Fitopatología y Modelización Agrícola, Buenos Aires, Argentina
| | - Yongyu Mei
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Charmaine Lim Jing Jee
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Juliana Freitas-Astúa
- Instituto Biológico, São Paulo, 04014-900, Brazil.,Embrapa Cassava and Fruits, Cruz das Almas, BA, 44380-000, Brazil
| | - Solange M Veras
- Departamento de Ciências Fundamentais e Desenvolvimento Agrícola, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200-Coroado I, Manaus, AM, 69067-005, Brazil
| | - Elliot W Kitajima
- Departmento de Fitopatologia e Nematologia, ESALQ/USP, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
40
|
Li Z, Zhao C. Plant negative-stranded RNA virus biology and host interactions revitalized by reverse genetics. Curr Opin Virol 2021; 48:1-9. [PMID: 33774424 DOI: 10.1016/j.coviro.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the biology and pathogenesis of plant negative-stranded RNA viruses (NSVs) has lagged behind those made with positive-stranded RNA and DNA virus counterparts. This tardiness is mainly due to the lack of reverse genetics tools for NSV genome engineering for many years. The eventual establishment and application of recombinant systems with diverse plant NSVs has provided renewed momentum for investigations of these important viral pathogens. In this review, we summarize the recent advances in plant NSV reverse genetics systems, highlighting the general principles and the uniqueness of each system and emphasizing important considerations for strategy designing. We also provide a brief overview of the insights about NSV morphogenesis, movement, and virus-host interactions gained from reverse genetics-enabled studies.
Collapse
Affiliation(s)
- Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Chenglu Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Zhang X, Sun K, Liang Y, Wang S, Wu K, Li Z. Development of Rice Stripe Tenuivirus Minireplicon Reverse Genetics Systems Suitable for Analyses of Viral Replication and Intercellular Movement. Front Microbiol 2021; 12:655256. [PMID: 33833749 PMCID: PMC8021733 DOI: 10.3389/fmicb.2021.655256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Rice stripe virus (RSV), a tenuivirus with four negative-sense/ambisense genome segments, is one of the most devastating viral pathogens affecting rice production in many Asian countries. Despite extensive research, our understanding of RSV infection cycles and pathogenesis has been severely impaired by the lack of reverse genetics tools. In this study, we have engineered RSV minireplicon (MR)/minigenome cassettes with reporter genes substituted for the viral open reading frames in the negative-sense RNA1 or the ambisense RNA2-4 segments. After delivery to Nicotiana benthamiana leaves via agroinfiltration, MR reporter gene expression was detected only when the codon-optimized large viral RNA polymerase protein (L) was coexpressed with the nucleocapsid (N) protein. MR activity was also critically dependent on the coexpressed viral suppressors of RNA silencing, but ectopic expression of the RSV-encoded NS3 silencing suppressor drastically decreased reporter gene expression. We also developed intercellular movement-competent MR systems with the movement protein expressed either in cis from an RNA4-based MR or in trans from a binary plasmid. Finally, we generated multicomponent replicon systems by expressing the N and L proteins directly from complementary-sense RNA1 and RNA3 derivatives, which enhanced reporter gene expression, permitted autonomous replication and intercellular movement, and reduced the number of plasmids required for delivery. In summary, this work enables reverse genetics analyses of RSV replication, transcription, and cell-to-cell movement and provides a platform for engineering more complex recombinant systems.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kaili Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Pasin F. Oligonucleotide abundance biases aid design of a type IIS synthetic genomics framework with plant virome capacity. Biotechnol J 2021; 16:e2000354. [PMID: 33410597 DOI: 10.1002/biot.202000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Synthetic genomics-driven dematerialization of genetic resources facilitates flexible hypothesis testing and rapid product development. Biological sequences have compositional biases, which, I reasoned, could be exploited for engineering of enhanced synthetic genomics systems. In proof-of-concept assays reported herein, the abundance of random oligonucleotides in viral genomic components was analyzed and used for the rational design of a synthetic genomics framework with plant virome capacity (SynViP). Type IIS endonucleases with low abundance in the plant virome, as well as Golden Gate and No See'm principles were combined with DNA chemical synthesis for seamless viral clone assembly by one-step digestion-ligation. The framework described does not require subcloning steps, is insensitive to insert terminal sequences, and was used with linear and circular DNA molecules. Based on a digital template, DNA fragments were chemically synthesized and assembled by one-step cloning to yield a scar-free infectious clone of a plant virus suitable for Agrobacterium-mediated delivery. SynViP allowed rescue of a genuine virus without biological material, and has the potential to greatly accelerate biological characterization and engineering of plant viruses as well as derived biotechnological tools. Finally, computational identification of compositional biases in biological sequences might become a common standard to aid scalable biosystems design and engineering.
Collapse
Affiliation(s)
- Fabio Pasin
- School of Science, University of Padova, Padova, Italy.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
43
|
Zhang S, Huang A, Zhou X, Li Z, Dietzgen RG, Zhou C, Cao M. Natural Defect of a Plant Rhabdovirus Glycoprotein Gene: A Case Study of Virus-Plant Coevolution. PHYTOPATHOLOGY 2021; 111:227-236. [PMID: 32648524 DOI: 10.1094/phyto-05-20-0191-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven isolates of a putative cytorhabdovirus (family Rhabdoviridae, order Mononegavirales) designated as citrus-associated rhabdovirus (CiaRV) were identified in citrus, passion fruit, and paper bush from the same geographical area in China. CiaRV, bean-associated cytorhabdovirus (Brazil), and papaya virus E (Ecuador) should be taxonomically classified in the species Papaya cytorhabdovirus. Due to natural mutations, the glycoprotein (G) and P4 genes were impaired in citrus-infecting isolates of CiaRV, resulting in an atypical rhabdovirus genome organization of 3' leader-N-P-P3-M-L-5' trailer. The P3 protein of CiaRV shared a common origin with begomoviral movement proteins (family Geminiviridae). Secondary structure analysis and trans-complementation of movement-deficient tomato mosaic virus and potato virus X mutants by CiaRV P3 supported its function in viral cell-to-cell trafficking. The wide geographical dispersal of CiaRV and related viruses suggests an efficient transmission mechanism, as well as an underlying risk to global agriculture. Both the natural phenomenon and experimental analyses demonstrated presence of the "degraded" type of CiaRV in citrus, in parallel to "undegraded" types in other host plant species. This case study shows a plant virus losing the function of an important but nonessential gene, likely due to host shift and adaption, which deepened our understanding of course of natural viral diversification.
Collapse
Affiliation(s)
- Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Aijun Huang
- National Navel Orange Research Center, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Xin Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
44
|
Ma X, Li Z. Significantly Improved Recovery of Recombinant Sonchus Yellow Net Rhabdovirus by Expressing the Negative-Strand Genomic RNA. Viruses 2020; 12:v12121459. [PMID: 33348798 PMCID: PMC7766655 DOI: 10.3390/v12121459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Generation of recombinant negative-stranded RNA viruses (NSVs) from plasmids involves in vivo reconstitution of biologically active nucleocapsids and faces a unique antisense problem where the negative-sense viral genomic RNAs can hybridize to viral messenger RNAs. To overcome this problem, a positive-sense RNA approach has been devised through expression of viral antigenomic (ag)RNA and core proteins for assembly of antigenomic nucleocapsids. Although this detour strategy works for many NSVs, the process is still inefficient. Using Sonchus yellow net rhabdovirus (SYNV) as a model; here, we develop a negative-sense genomic RNA-based approach that increased rescue efficiency by two orders of magnitude compared to the conventional agRNA approach. The system relied on suppression of double-stranded RNA induced antiviral responses by co-expression of plant viruses-encoded RNA silencing suppressors or animal viruses-encoded double-stranded RNA antagonists. With the improved approach, we were able to recover a highly attenuated SYNV mutant with a deletion in the matrix protein gene which otherwise could not be rescued via the agRNA approach. Reverse genetics analyses of the generated mutant virus provided insights into SYNV virion assembly and morphogenesis. This approach may potentially be applicable to other NSVs of plants or animals.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-8898-2387
| |
Collapse
|
45
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
46
|
Liu H, Zhang B. Virus-Based CRISPR/Cas9 Genome Editing in Plants. Trends Genet 2020; 36:810-813. [DOI: 10.1016/j.tig.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
|
47
|
Verchot J, Herath V, Urrutia CD, Gayral M, Lyle K, Shires MK, Ong K, Byrne D. Development of a Reverse Genetic System for Studying Rose Rosette Virus in Whole Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1209-1221. [PMID: 32815767 DOI: 10.1094/mpmi-04-20-0094-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rose rosette virus (RRV) is a negative-sense RNA virus with a seven-segmented genome that is enclosed by a double membrane. We constructed an unconventional minireplicon system encoding the antigenomic (ag)RNA1 (encoding the viral RNA-dependent RNA polymerase [RdRp]), agRNA3 (encoding the nucleocapsid protein [N]), and a modified agRNA5 containing the coding sequence for the iLOV protein in place of the P5 open reading frame (R5-iLOV). iLOV expression from the R5-iLOV template was amplified by activities of the RdRp and N proteins in Nicotiana benthamiana leaves. A mutation was introduced into the RdRp catalytic domain and iLOV expression was eliminated, indicating RNA1-encoded polymerase activity drives iLOV expression from the R5-iLOV template. Fluorescence from the replicon was highest at 3 days postinoculation (dpi) and declined at 7 and 13 dpi. Addition of the tomato bushy stunt virus (TBSV) P19 silencing-suppressor protein prolonged expression until 7 dpi. A full-length infectious clone system was constructed of seven binary plasmids encoding each of the seven genome segments. Agro-delivery of constructs encoding RRV RNAs 1 through 4 or RNAs 1 through 7 to N. benthamiana plants produced systemic infection. Finally, agro-delivery of the full-length RRV infectious clone including all segments produced systemic infection within 60 dpi. This advance opens new opportunities for studying RRV infection biology.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Venura Herath
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, 20400, Sri Lanka
| | - Cesar D Urrutia
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Mathieu Gayral
- Texas A&M Agrilife Center in Dallas, 17360 Coit Rd, Dallas, TX, U.S.A
| | - Kelsey Lyle
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX, U.S.A
| | - Madalyn K Shires
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - Kevin Ong
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, U.S.A
| | - David Byrne
- Department of Horticulture Sciences, Texas A&M University, College Station, TX, U.S.A
| |
Collapse
|
48
|
Gao Q, Yan T, Zhang ZJ, Liu SY, Fang XD, Gao DM, Yang YZ, Xu WY, Qiao JH, Cao Q, Ding ZH, Wang Y, Yu J, Wang XB. Casein Kinase 1 Regulates Cytorhabdovirus Replication and Transcription by Phosphorylating a Phosphoprotein Serine-Rich Motif. THE PLANT CELL 2020; 32:2878-2897. [PMID: 32641349 PMCID: PMC7474278 DOI: 10.1105/tpc.20.00369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 05/04/2023]
Abstract
Casein kinase 1 (CK1) family members are conserved Ser/Thr protein kinases that regulate important developmental processes in all eukaryotic organisms. However, the functions of CK1 in plant immunity remain largely unknown. Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, infects cereal crops and is obligately transmitted by the small brown planthopper (SBPH; Laodelphax striatellus). The BYSMV phosphoprotein (P) exists as two forms with different mobilities corresponding to 42 kD (P42) and 44 kD (P44) in SDS-PAGE gels. Mass spectrometric analyses revealed a highly phosphorylated serine-rich (SR) motif at the C-terminal intrinsically disordered region of the P protein. The Ala-substitution mutant (PS5A) in the SR motif stimulated virus replication, whereas the phosphorylation-mimic mutant (PS5D) facilitated virus transcription. Furthermore, PS5A and PS5D associated preferentially with nucleocapsid protein-RNA templates and the large polymerase protein to provide optimal replication and transcription complexes, respectively. Biochemistry assays demonstrated that plant and insect CK1 protein kinases could phosphorylate the SR motif and induce conformational changes from P42 to P44. Moreover, overexpression of CK1 or a dominant-negative mutant impaired the balance between P42 and P44, thereby compromising virus infections. Our results demonstrate that BYSMV recruits the conserved CK1 kinases to achieve its cross-kingdom infection in host plants and insect vectors.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Teng Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Song-Yu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong-Min Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Zhou Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
49
|
Affiliation(s)
- Savithramma P Dinesh-Kumar
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- The Genome Center, University of California, Davis, Davis, CA, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA.
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN, USA.
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
50
|
Ma X, Zhang X, Liu H, Li Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. NATURE PLANTS 2020; 6:773-779. [PMID: 32601419 DOI: 10.1038/s41477-020-0704-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
Genome-editing technologies using CRISPR-Cas nucleases have revolutionized plant science and hold enormous promise in crop improvement. Conventional transgene-mediated CRISPR-Cas reagent delivery methods may be associated with unanticipated genome changes or damage1,2, with prolonged breeding cycles involving foreign DNA segregation and with regulatory restrictions regarding transgenesis3. Therefore, DNA-free delivery has been developed by transfecting preassembled CRISPR-Cas9 ribonucleoproteins into protoplasts4 or in vitro fertilized zygotes5. However, technical difficulties in regeneration from these wall-less cells make impractical a general adaption of these approaches to most crop species. Alternatively, CRISPR-Cas ribonucleoproteins or RNA transcripts have been biolistically bombarded into immature embryo cells or calli to yield highly specific genome editing, albeit at low frequency6-9. Here we report the engineering of a plant negative-strand RNA virus-based vector for DNA-free in planta delivery of the entire CRISPR-Cas9 cassette to achieve single, multiplex mutagenesis and chromosome deletions at high frequency in a model allotetraploid tobacco host. Over 90% of plants regenerated from virus-infected tissues without selection contained targeted mutations, among which up to 57% carried tetra-allelic, inheritable mutations. The viral vector remained stable even after mechanical transmission, and can readily be eliminated from mutated plants during regeneration or after seed setting. Despite high on-target activities, off-target effects, if any, are minimal. Our study provides a convenient, highly efficient and cost-effective approach for CRISPR-Cas9 gene editing in plants through virus infection.
Collapse
Affiliation(s)
- Xiaonan Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huimin Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|