1
|
Zhang W, Ma Y, Xie Y, Liu X, Tan L, Zhao J, Ni Y, Wang Z, Li C, Xu B. Interaction and cross-contamination potential of prepared beef steak isolates Pseudomonas weihenstephanensis and Macrococcus caseolyticus in biofilms of dual-species. Food Microbiol 2025; 127:104685. [PMID: 39667856 DOI: 10.1016/j.fm.2024.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
This study evaluated the interactions between single or dual-species biofilms formed by dominant spoilage bacteria P. weihenstephanensis and M. caseolyticus isolated from refrigerated, spoilage prepared beef steaks at 4 °C and elucidated the interactive behavior of biofilm development in dual species. In addition, the relationship between biofilm formation capacity and cross-contamination was analyzed by simulating surface to food contact transfer. The results showed that the two species exhibited synergism as biofilms developed, which was the main mode of interaction observed. Under aerobic conditions, Pseudomonas weihenstephanensis and Macrococcus caseolyticus co-cultured for 96 h showed obvious biofilm formation ability, resulting in greater cross-contamination. Scanning electron microscopy and Confocal laser scanning microscopy showed the formation of flattened dense biofilms in the co-culture. The significant increase in Fe content and decrease in siderophore content of the dual-species biofilm as determined by ICP-MS was attributed to respiratory inhibition resulting in a decrease in the transcription of genes regulating the two-component regulatory system of Macrococcus tyrolyticus SrrAB and an increase in the expression of cytoplasmic hydrolase leading to the rupture of the release of hemoglobin to provide a source of iron for P. weihenstephanensis. The increase of heme content in the supernatant of dual-species and the results of RT-qPCR showed that the gene expression of the heme transport system of P. weihenstephanensis was significantly up-regulated and the siderophore gene expression was decreased, which further revealed that P. weihenstephanensis preferentially uses the heme uptake system to take up the iron source provided by M. caseolyticus for P. weihenstephanensis. Overall, our results provide insight into the complex dynamics of biofilms formed by P. weihenstephanensis and M. caseolyticus, emphasizing that the iron reaction pathway may be a key factor influencing the growth of P. weihenstephanensis biofilms, and that these results will provide a theoretical basis for the control of spoilage of refrigerated foods.
Collapse
Affiliation(s)
- Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Xiaoyan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China.
| |
Collapse
|
2
|
Roman-Rodriguez F, Kim J, Parker D, Boyd JM. An effective response to respiratory inhibition by a Pseudomonas aeruginosa excreted quinoline promotes Staphylococcus aureus fitness and survival in co-culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642861. [PMID: 40161799 PMCID: PMC11952440 DOI: 10.1101/2025.03.12.642861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are primary bacterial pathogens isolated from the airways of cystic fibrosis patients. P. aeruginosa produces secondary metabolites that negatively impact the fitness of S. aureus, allowing P. aeruginosa to become the most prominent bacterium when the species are co-cultured. Some of these metabolites inhibit S. aureus respiration. SrrAB is a staphylococcal two-component regulatory system (TCRS) that responds to alterations in respiratory status and helps S. aureus transition between fermentative and respiratory metabolisms. We used P. aeruginosa mutant strains and chemical genetics to demonstrate that P. aeruginosa secondary metabolites, HQNO in particular, inhibit S. aureus respiration, resulting in modified SrrAB stimulation. Metabolomic analyses found that the ratio of NAD+ to NADH increased upon prolonged culture with HQNO. Consistent with this, the activity of the Rex transcriptional regulator, which senses and responds to alterations in the NAD+ / NADH ratio, had altered activity upon HQNO treatment. The presence of SrrAB increased fitness when cultured with HQNO and increased survival when challenged with P. aeruginosa. S. aureus strains with a decreased ability to maintain redox homeostasis via fermentation had decreased fitness when challenged with HQNO and decreased survival when challenged with P. aeruginosa. These findings led to a model wherein P. aeruginosa secreted HQNO inhibits S. aureus respiration, stimulating SrrAB, which promotes fitness and survival by increasing carbon flux through fermentative pathways to maintain redox homeostasis.
Collapse
Affiliation(s)
- Franklin Roman-Rodriguez
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Ahmad M, Aduru SV, Smith RP, Zhao Z, Lopatkin AJ. The role of bacterial metabolism in antimicrobial resistance. Nat Rev Microbiol 2025:10.1038/s41579-025-01155-0. [PMID: 39979446 DOI: 10.1038/s41579-025-01155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
The relationship between bacterial metabolism and antibiotic treatment is complex. On the one hand, antibiotics leverage cell metabolism to function. On the other hand, increasing research has highlighted that the metabolic state of the cell also impacts all aspects of antibiotic biology, from drug efficacy to the evolution of antimicrobial resistance (AMR). Given that AMR is a growing threat to the current global antibiotic arsenal and ability to treat infectious diseases, understanding these relationships is key to improving both public and human health. However, quantifying the contribution of metabolism to antibiotic activity and subsequent bacterial evolution has often proven challenging. In this Review, we discuss the complex and often bidirectional relationships between metabolism and the various facets of antibiotic treatment and response. We first summarize how antibiotics leverage metabolism for their function. We then focus on the converse of this relationship by specifically delineating the unique contribution of metabolism to three distinct but related arms of antibiotic biology: antibiotic efficacy, AMR evolution and AMR mechanisms. Finally, we note the relevance of metabolism in clinical contexts and explore the future of metabolic-based strategies for personalized antimicrobial therapies. A deeper understanding of these connections is crucial for the broader scientific community to address the growing crisis of AMR and develop future effective therapeutics.
Collapse
Affiliation(s)
- Mehrose Ahmad
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Sai Varun Aduru
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Robert P Smith
- Cell Therapy Institute, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Medical Education, Kiran Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Zirui Zhao
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Allison J Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Lai HY, Lau CP, Cheung KT. Exploring urban coastal areas: Investigating the urban coastal areas as a reservoirs of antibiotic resistance Genes★. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106874. [PMID: 39642594 DOI: 10.1016/j.marenvres.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have long served as adaptive defensive mechanisms among bacteria, enabling their survival and propagation in challenging environments. The consequences of inefficient wastewater treatment have culminated the emergence of untreatable and lethal extensively drug-resistant. To understand the relationship between wastewater effluent and marine ecosystems, we conducted a study to monitor the diversity and prevalence of common ARGs in Hong Kong's urban coastal areas at different seasons. Our findings revealed that sul 1 was the most abundant resistance gene, with an average relative abundance of 4.45 × 10-2 per 16s rRNA gene copy. Moreover, temperature, dissolved oxygen, and salinity were key factors influencing seasonal variations in total ARGs abundance. The influence of environmental factors varied based on ARGs' association with Intl1, with Intl1-associated ARGs strongly correlating with temperature and dissolved oxygen. Notably, despite their abundance, sul1 and mphA exhibited similar correlations with both Intl1 and key environmental factors, suggesting these ARGs share a common dissemination mechanism. Moreover, the robust association between resistance genes and mobile genetic elements (MGE) could potentially act as a valuable indicator for assessing the efficacy of removing ARGs in wastewater treatment methods when operating under carefully optimized environmental parameters.
Collapse
Affiliation(s)
- Ho Yin Lai
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China.
| | - Carol Py Lau
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China.
| | - Ka Tik Cheung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
5
|
Song L, Schwinn LS, Barthel J, Ketter V, Lechler P, Linne U, Rastan AJ, Vogt S, Ruchholtz S, Paletta JRJ, Günther M. Implant-Derived S. aureus Isolates Drive Strain-Specific Invasion Dynamics and Bioenergetic Alterations in Osteoblasts. Antibiotics (Basel) 2025; 14:119. [PMID: 40001363 PMCID: PMC11852183 DOI: 10.3390/antibiotics14020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Implants are integral to modern orthopedic surgery. The outcomes are good, but infections remain a serious issue. Staphylococcus aureus (S. aureus), along with Staphylococcus epidermidis, are predominant pathogens responsible for implant-associated infections, as conventional antibiotic treatments often fail due to biofilm formation or the pathogens' ability to invade cells and to persist intracellularly. Objectives: This study therefore focused on interactions of S. aureus isolates from infected implants with MG63 and SaOS2 osteoblasts by investigating the adhesion, invasion, and the impact on the bioenergetics of osteoblasts. Methods and Results: We found that the ability of S. aureus to adhere to osteoblasts depends on the isolate and was not associated with a single gene or expression pattern of characteristic adhesion proteins, and further, was not correlated with invasion. However, analysis of invasion capabilities identified better invasion conditions for S. aureus isolates with the SaOS2 osteoblastic cells. Interestingly, metabolic activity of osteoblasts remained unaffected by S. aureus infection, indicating cell survival. In contrast, respiration assays revealed an altered mitochondrial bioenergetic turnover in infected cells. While basal as well as maximal respiration in MG63 osteoblasts were not influenced statistically by S. aureus infections, we found increased non-mitochondrial respiration and enhanced glycolytic activity in the osteoblasts, which was again, more pronounced in the SaOS2 osteoblastic cells. Conclusions: Our findings highlight the complexity of S. aureus-host interactions, where both the pathogen and the host cell contribute to intracellular persistence and survival, representing a major factor for therapeutic failures.
Collapse
Affiliation(s)
- Lei Song
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Lea-Sophie Schwinn
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Juliane Barthel
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Vanessa Ketter
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Philipp Lechler
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Uwe Linne
- Faculty of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany
| | - Ardawan J. Rastan
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Sebastian Vogt
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Steffen Ruchholtz
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Jürgen R. J. Paletta
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Madeline Günther
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| |
Collapse
|
6
|
Saito M, McDonald KA, Grier AK, Meghwani H, Rangel-Moreno J, Becerril-Villanueva E, Gamboa-Dominguez A, Bruno J, Beck CA, Proctor RA, Kates SL, Schwarz EM, Muthukrishnan G. Immune Checkpoint Molecules as Biomarkers of Staphylococcus aureus Bone Infection and Clinical Outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630837. [PMID: 39803468 PMCID: PMC11722373 DOI: 10.1101/2024.12.30.630837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments don't exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3). Importantly, these proteins are upregulated in the serum and the bone marrow of S. aureus PJI patients. A multiparametric nomogram combining high serum immune checkpoint protein levels with low proinflammatory cytokine levels (IFN-γ, IL-2, TNF-α, IL-17) revealed that TIM-3 was highly predictive of adverse disease outcomes (AUC=0.89). Hence, T cell impairment in the form of immune checkpoint expression and exhaustion could be a functional biomarker for S. aureus PJI disease outcome, and blockade of checkpoint proteins could potentially improve outcomes following surgery.
Collapse
Affiliation(s)
- Motoo Saito
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Katya A. McDonald
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex K. Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Himanshu Meghwani
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Enrique Becerril-Villanueva
- Psychoimmunology laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz.” Mexico City, Mexico
| | - Armando Gamboa-Dominguez
- Deparment of Pathology, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jennifer Bruno
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
7
|
Yamazaki Y, Ito T, Nakagawa S, Sugihira T, Kurita-Tachibana C, Villaruz AE, Ishiguro K, Salcman B, Li S, Takada S, Inohara N, Kusuya Y, Shibata A, Tamai M, Aoyama R, Inoue K, Murata S, Matsushita K, Miyabe A, Taniguchi T, Igari H, Ishiwada N, Taniguchi M, Nakada TA, Matsue H, Fujimoto M, Hishiki H, Osone Y, Hamada H, Shimojo N, Suzuki T, Otto M, Núñez G, Takahashi H, Takaya A, Nakamura Y. Altered genomic methylation promotes Staphylococcus aureus persistence in hospital environment. Nat Commun 2024; 15:9619. [PMID: 39511195 PMCID: PMC11544029 DOI: 10.1038/s41467-024-54033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Staphylococcus aureus can cause outbreaks and becomes multi-drug resistant through gene mutations and acquiring resistance genes. However, why S. aureus easily adapts to hospital environments, promoting resistance and recurrent infections, remains unknown. Here we show that a specific S. aureus lineage evolved from a clone that expresses the accessory gene regulator (Agr) system to subclones that reversibly suppressed Agr and caused an outbreak in the hospital setting. S. aureus with flexible Agr regulation shows increased ability to acquire antibiotic-resistant plasmids, escape host immunity, and colonize mice. Bacteria with flexible Agr regulation shows altered cytosine genomic methylation, including the decreased 5mC methylation in transcriptional regulator genes (pcrA and rpsD), compared to strains with normal Agr expression patterns. In this work, we discover how altered genomic methylation promotes flexible Agr regulation which is associated with persistent pathogen colonization in the hospital environment.
Collapse
Affiliation(s)
- Yuriko Yamazaki
- Department of Dermatology, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, 565-0871, Osaka, Japan
- Department of Dermatology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, MI, 48109, Ann Arbor, USA
| | - Takashi Sugihira
- Department of Dermatology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan
| | - Chinami Kurita-Tachibana
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, 565-0871, Osaka, Japan
| | - Amer E Villaruz
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20852, Bethesda, USA
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Barbora Salcman
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, 565-0871, Osaka, Japan
| | - Shuo Li
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, 565-0871, Osaka, Japan
| | - Sanami Takada
- Department of Dermatology, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, MI, 48109, Ann Arbor, USA
| | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, 260-8673, Chiba, Japan
| | - Aki Shibata
- Department of Infection Control Science, Graduate School of Pharmaceutical Sciences, Chiba University, 260-8675, Chiba, Japan
| | - Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan
| | - Reika Aoyama
- Department of Dermatology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 567-0047, Osaka, Japan
| | - Shota Murata
- Division of Clinical Laboratory, Chiba University Hospital, 260-8677, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of Clinical Laboratory, Chiba University Hospital, 260-8677, Chiba, Japan
| | - Akiko Miyabe
- Division of Clinical Laboratory, Chiba University Hospital, 260-8677, Chiba, Japan
| | - Toshibumi Taniguchi
- Division of Infection Control, Chiba University Hospital, 260-8677, Chiba, Japan
| | - Hidetoshi Igari
- Division of Infection Control, Chiba University Hospital, 260-8677, Chiba, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, 260-8673, Chiba, Japan
| | - Masateru Taniguchi
- Department of Bio-Nanotechnology, The Institute of Scientific and Industrial Research, Osaka University, 565-0871, Osaka, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan
- Cutaneous Immunology, Immunology Frontier Research Center, Osaka University, 565-0871, Osaka, Japan
| | - Haruka Hishiki
- Department of Pediatrics, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
| | - Yoshiteru Osone
- Department of Pediatrics, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, 260-8670, Chiba, Japan
- Center for Preventive Medical Sciences, Chiba University, 263-8522, Chiba, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 113-8656, Tokyo, Japan
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20852, Bethesda, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, MI, 48109, Ann Arbor, USA
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 260-8673, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, 263-8522, Chiba, Japan
- Plant Molecular Science Center, Chiba University, 260-8675, Chiba, Japan
| | - Akiko Takaya
- Medical Mycology Research Center, Chiba University, 260-8673, Chiba, Japan
- Department of Infection Control Science, Graduate School of Pharmaceutical Sciences, Chiba University, 260-8675, Chiba, Japan
- Plant Molecular Science Center, Chiba University, 260-8675, Chiba, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka University, 565-0871, Osaka, Japan.
- Department of Dermatology, Osaka University Graduate School of Medicine, 565-0871, Osaka, Japan.
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, 565-0871, Osaka, Japan.
| |
Collapse
|
8
|
Fernández-García G, Valdés-Chiara P, Villazán-Gamonal P, Alonso-Fernández S, Manteca A. Essential Genes Discovery in Microorganisms by Transposon-Directed Sequencing (Tn-Seq): Experimental Approaches, Major Goals, and Future Perspectives. Int J Mol Sci 2024; 25:11298. [PMID: 39457080 PMCID: PMC11508858 DOI: 10.3390/ijms252011298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Essential genes are crucial for microbial viability, playing key roles in both the primary and secondary metabolism. Since mutations in these genes can threaten organism viability, identifying them is challenging. Conditionally essential genes are required only under specific conditions and are important for functions such as virulence, immunity, stress survival, and antibiotic resistance. Transposon-directed sequencing (Tn-Seq) has emerged as a powerful method for identifying both essential and conditionally essential genes. In this review, we explored Tn-Seq workflows, focusing on eubacterial species and some yeast species. A comparison of 14 eubacteria species revealed 133 conserved essential genes, including those involved in cell division (e.g., ftsA, ftsZ), DNA replication (e.g., dnaA, dnaE), ribosomal function, cell wall synthesis (e.g., murB, murC), and amino acid synthesis (e.g., alaS, argS). Many other essential genes lack clear orthologues across different microorganisms, making them specific to each organism studied. Conditionally essential genes were identified in 18 bacterial species grown under various conditions, but their conservation was low, reflecting dependence on specific environments and microorganisms. Advances in Tn-Seq are expected to reveal more essential genes in the near future, deepening our understanding of microbial biology and enhancing our ability to manipulate microbial growth, as well as both the primary and secondary metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Angel Manteca
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
9
|
Van Roy Z, Arumugam P, Bertrand BP, Shinde DD, Thomas VC, Kielian T. Tissue niche influences immune and metabolic profiles to Staphylococcus aureus biofilm infection. Nat Commun 2024; 15:8965. [PMID: 39420209 PMCID: PMC11487069 DOI: 10.1038/s41467-024-53353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Infection is a devastating post-surgical complication, often requiring additional procedures and prolonged antibiotic therapy. This is especially relevant for craniotomy and prosthetic joint infections (PJI), both of which are characterized by biofilm formation on the bone or implant surface, respectively, with S. aureus representing a primary cause. The local tissue microenvironment likely has profound effects on immune attributes that can influence treatment efficacy, which becomes critical to consider when developing therapeutics for biofilm infections. However, the extent to which distinct tissue niches influence immune function during biofilm development remains relatively unknown. To address this, we compare the metabolomic, transcriptomic, and functional attributes of leukocytes in mouse models of S. aureus craniotomy and PJI complemented with patient samples from both infection modalities, which reveals profound tissue niche-dependent differences in nucleic acid, amino acid, and lipid metabolism with links to immune modulation. These signatures are both spatially and temporally distinct, differing not only between infection sites but evolving over time within a single model. Collectively, this demonstrates that biofilms elicit unique immune and metabolic responses that are heavily influenced by the local tissue microenvironment, which will likely have important implications when designing therapeutic approaches targeting these infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prabakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Blake P Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhananjay D Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinai C Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Huffines JT, Kiedrowski MR. Staphylococcus aureus Phenol-Soluble Modulins Mediate Interspecies Competition with Upper Respiratory Commensal Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614779. [PMID: 39386438 PMCID: PMC11463439 DOI: 10.1101/2024.09.24.614779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
In chronic rhinosinusitis (CRS) disease, microbial dysbiosis is considered a key contributor to inflammation and pathogenicity, with increased prevalence of upper respiratory tract (URT) pathogens concomitant with decreased abundance of commensal species. Staphylococcus aureus is a common URT pathobiont associated with higher carriage rates in CRS. S. aureus secreted toxins are implicated in CRS pathogenesis, and toxins and antibodies to S. aureus secreted factors have been observed in tissue from CRS subjects. CRS disease severity is positively correlated with immune reactivity to S. aureus proteins. Prior studies have examined polymicrobial interactions between S. aureus and URT commensals, however, no studies to date have described possible methods employed by S. aureus to outcompete commensals leading to a S. aureus- dominant microbiome as seen in CRS. This study addresses this gap in knowledge by characterizing how a CRS-associated secreted toxin from S. aureus can inhibit aggregation in commensal URT species. Using a model URT commensal, Corynebacterium pseudodiphtheriticum , we identified a CRS-associated secreted protein from S. aureus , δ-toxin (Hld), that can inhibit C. pseudodiphtheriticum aggregation at biologically relevant concentrations. Furthermore, we observed recombinant δ-toxin reduces C. pseudodiphtheriticum adherence and aggregation on human nasal epithelial cells in an air-liquid interface cell culture model. These results define a novel mechanism by which S. aureus can disrupt URT commensal lifestyles of microbial competitors, contributing to the establishment of microbial dysbiosis. IMPORTANCE Microbial dysbiosis in the upper respiratory tract (URT) is associated with disease pathogenicity in chronic rhinosinusitis (CRS). There are significant links between Staphylococcus aureus and worse CRS outcomes, but no studies to date have demonstrated if S. aureus outcompetes other URT microbes through direct interactions. Here, we report that S. aureus δ-toxin, a secreted protein found in CRS patient tissue, can inhibit the ability of commensal bacteria to aggregate, adhere to, and grow in association with human nasal epithelial cells. These results suggest a potential mechanism for S. aureus to establish dominance in the URT microbiome through direct antagonism of commensals with a disease-associated toxin.
Collapse
|
11
|
Hauserman MR, Sullivan LE, James KL, Ferraro MJ, Rice KC. Response of Staphylococcus aureus physiology and Agr quorum sensing to low-shear modeled microgravity. J Bacteriol 2024; 206:e0027224. [PMID: 39120147 PMCID: PMC11411946 DOI: 10.1128/jb.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is commonly isolated from astronauts returning from spaceflight. Previous analysis of omics data from S. aureus low Earth orbit cultures indicated significantly increased expression of the Agr quorum sensing system and its downstream targets in spaceflight samples compared to ground controls. In this current study, the rotary cell culture system (RCCS) was used to investigate the effect of low-shear modeled microgravity (LSMMG) on S. aureus physiology and Agr activity. When cultured in the same growth medium and temperature as the previous spaceflight experiment, S. aureus LSMMG cultures exhibited decreased agr expression and altered growth compared to normal gravity control cultures, which are typically oriented with oxygenation membrane on the bottom of the high aspect rotating vessel (HARV). When S. aureus was grown in an inverted gravity control orientation (oxygenation membrane on top of the HARV), reduced Agr activity was observed relative to both traditional control and LSMMG cultures, signifying that oxygen availability may affect the observed differences in Agr activity. Metabolite assays revealed increased lactate and decreased acetate excretion in both LSMMG and inverted control cultures. Secretomics analysis of LSMMG, control, and inverted control HARV culture supernatants corroborated these results, with inverted and LSMMG cultures exhibiting a decreased abundance of Agr-regulated virulence factors and an increased abundance of proteins expressed in low-oxygen conditions. Collectively, these studies suggest that the orientation of the HARV oxygenation membrane can affect S. aureus physiology and Agr quorum sensing in the RCCS, a variable that should be considered when interpreting data using this ground-based microgravity model.IMPORTANCES. aureus is commonly isolated from astronauts returning from spaceflight and from surfaces within human-inhabited closed environments such as spacecraft. Astronaut health and immune function are significantly altered in spaceflight. Therefore, elucidating the effects of microgravity on S. aureus physiology is critical for assessing its pathogenic potential during long-term human space habitation. These results also highlight the necessity of eliminating potential confounding factors when comparing simulated microgravity model data with actual spaceflight experiments.
Collapse
Affiliation(s)
- Matthew R. Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Leia E. Sullivan
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kimberly L. James
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Mariola J. Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
13
|
Volk CF, Proctor RA, Rose WE. The Complex Intracellular Lifecycle of Staphylococcus aureus Contributes to Reduced Antibiotic Efficacy and Persistent Bacteremia. Int J Mol Sci 2024; 25:6486. [PMID: 38928191 PMCID: PMC11203666 DOI: 10.3390/ijms25126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.
Collapse
Affiliation(s)
- Cecilia F. Volk
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Richard A. Proctor
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- Pharmacy Practice and Translational Research Division, School of Pharmacy, Pharmacy University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu O, Oral E. Investigating the translational value of Periprosthetic Joint Infection (PJI) models to determine the risk and severity of Staphylococcal biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591689. [PMID: 38746179 PMCID: PMC11092509 DOI: 10.1101/2024.04.29.591689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilm is crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better outcomes. Here, using in-vivo and in-vitro implant-associated infection models, we demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to effectively prevent or treat PJI.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Orhun Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| |
Collapse
|
15
|
Cordonnier C, Mandalasi M, Gigley J, Wohlfert EA, West CM, Blader IJ. The Toxoplasma oxygen-sensing protein, TgPhyA, is required for resistance to interferon gamma-mediated nutritional immunity in mice. PLoS Biol 2024; 22:e3002690. [PMID: 38857298 PMCID: PMC11192375 DOI: 10.1371/journal.pbio.3002690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
As Toxoplasma gondii disseminates through its host, the parasite must sense and adapt to its environment and scavenge nutrients. Oxygen (O2) is one such environmental factor and cytoplasmic prolyl 4-hydroxylases (PHDs) are evolutionarily conserved O2 cellular sensing proteins that regulate responses to changes in O2 availability. Toxoplasma expresses 2 PHDs. One of them, TgPHYa hydroxylates SKP1, a subunit of the SCF-E3 ubiquitin ligase complex. In vitro, TgPHYa is important for growth at low O2 levels. However, studies have yet to examine the role that TgPHYa or any other pathogen-encoded PHD plays in virulence and disease. Using a type II ME49 Toxoplasma TgPHYa knockout, we report that TgPHYa is important for Toxoplasma virulence and brain cyst formation in mice. We further find that while TgPHYa mutant parasites can establish an infection in the gut, they are unable to efficiently disseminate to peripheral tissues because the mutant parasites are unable to survive within recruited immune cells. Since this phenotype was abrogated in IFNγ knockout mice, we studied how TgPHYa mediates survival in IFNγ-treated cells. We find that TgPHYa is not required for release of parasite-encoded effectors into host cells that neutralize anti-parasitic processes induced by IFNγ. In contrast, we find that TgPHYa is required for the parasite to scavenge tryptophan, which is an amino acid whose levels are decreased after IFNγ up-regulates the tryptophan-catabolizing enzyme, indoleamine dioxygenase (IDO). We further find, relative to wild-type mice, that IDO knockout mice display increased morbidity when infected with TgPHYa knockout parasites. Together, these data identify the first parasite mechanism for evading IFNγ-induced nutritional immunity and highlight a novel role that oxygen-sensing proteins play in pathogen growth and virulence.
Collapse
Affiliation(s)
- Charlotte Cordonnier
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Msano Mandalasi
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Elizabeth A. Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
16
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, DuMont AL, Zwack EE, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. eLife 2024; 12:RP89098. [PMID: 38687677 PMCID: PMC11060713 DOI: 10.7554/elife.89098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andrew I Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Ashley L DuMont
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Erin E Zwack
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Robert J Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - Theodora K Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of MedicineNew YorkUnited States
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
| | - Andreas F Haag
- School of Medicine, University of St AndrewsSt AndrewsUnited Kingdom
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Gregory A Wasserman
- Department of Surgery, Northwell Health Lenox Hill HospitalNew YorkUnited States
| | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, University of PittsburghPittsburghUnited States
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Carla R Nowosad
- Department of Pathology, NYU Grossman School of MedicineNew YorkUnited States
| | - Desmond S Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers UniversityCamdenUnited States
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
- Microbial Computational Genomic Core Lab, NYU Grossman School of MedicineNew YorkUnited States
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen UniversityXiamenChina
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers UniversityNew YprkUnited States
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers UniversityNewarkUnited States
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of MedicineNew YorkUnited States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of MedicineNew YorkUnited States
- Antimicrobial-Resistant Pathogens Program, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
17
|
Baker CL, Seo KS, Park N, Rutter JK, Thornton JA, Pruett SB, Park JY. L-arginine supplementation abrogates hypoxia-induced virulence of Staphylococcus aureus in a murine diabetic pressure wound model. mSphere 2024; 9:e0077423. [PMID: 38426801 PMCID: PMC10964415 DOI: 10.1128/msphere.00774-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are the most common complications of diabetes resulting from hyperglycemia leading to ischemic hypoxic tissue and nerve damage. Staphylococcus aureus is the most frequently isolated bacteria from DFUs and causes severe necrotic infections leading to amputations with a poor 5-year survival rate. However, very little is known about the mechanisms by which S. aureus dominantly colonizes and causes severe disease in DFUs. Herein, we utilized a pressure wound model in diabetic TALLYHO/JngJ mice to reproduce ischemic hypoxic tissue damage seen in DFUs and demonstrated that anaerobic fermentative growth of S. aureus significantly increased the virulence and the severity of disease by activating two-component regulatory systems leading to expression of virulence factors. Our in vitro studies showed that supplementation of nitrate as a terminal electron acceptor promotes anaerobic respiration and suppresses the expression of S. aureus virulence factors through inactivation of two-component regulatory systems, suggesting potential therapeutic benefits by promoting anaerobic nitrate respiration. Our in vivo studies revealed that dietary supplementation of L-arginine (L-Arg) significantly attenuated the severity of disease caused by S. aureus in the pressure wound model by providing nitrate. Collectively, these findings highlight the importance of anaerobic fermentative growth in S. aureus pathogenesis and the potential of dietary L-Arg supplementation as a therapeutic to prevent severe S. aureus infection in DFUs.IMPORTANCES. aureus is the most common cause of infection in DFUs, often resulting in lower-extremity amputation with a distressingly poor 5-year survival rate. Treatment for S. aureus infections has largely remained unchanged for decades and involves tissue debridement with antibiotic therapy. With high levels of conservative treatment failure, recurrence of ulcers, and antibiotic resistance, a new approach is necessary to prevent lower-extremity amputations. Nutritional aspects of DFU treatment have largely been overlooked as there has been contradictory clinical trial evidence, but very few in vitro and in vivo modelings of nutritional treatment studies have been performed. Here we demonstrate that dietary supplementation of L-Arg in a diabetic mouse model significantly reduced duration and severity of disease caused by S. aureus. These findings suggest that L-Arg supplementation could be useful as a potential preventive measure against severe S. aureus infections in DFUs.
Collapse
Affiliation(s)
- Carol L. Baker
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Nogi Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jaime K. Rutter
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Justin A. Thornton
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Joo Youn Park
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
18
|
Horn CM, Arumugam P, Van Roy Z, Heim CE, Fallet RW, Bertrand BP, Shinde D, Thomas VC, Romanova SG, Bronich TK, Hartman CW, Garvin KL, Kielian T. Granulocytic myeloid-derived suppressor cell activity during biofilm infection is regulated by a glycolysis/HIF1a axis. J Clin Invest 2024; 134:e174051. [PMID: 38421730 PMCID: PMC11014666 DOI: 10.1172/jci174051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA-Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Svetlana G. Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA
| | - Tatiana K. Bronich
- Department of Pharmacy, Northeastern University, Boston, Massachusetts, USA
| | - Curtis W. Hartman
- Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, Nebraska, USA
| | - Kevin L. Garvin
- Department of Orthopaedic Surgery and Rehabilitation, UNMC, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology and
| |
Collapse
|
19
|
Podkowik M, Perault AI, Putzel G, Pountain A, Kim J, Dumont A, Zwack E, Ulrich RJ, Karagounis TK, Zhou C, Haag AF, Shenderovich J, Wasserman GA, Kwon J, Chen J, Richardson AR, Weiser JN, Nowosad CR, Lun DS, Parker D, Pironti A, Zhao X, Drlica K, Yanai I, Torres VJ, Shopsin B. Quorum-sensing agr system of Staphylococcus aureus primes gene expression for protection from lethal oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544038. [PMID: 37333372 PMCID: PMC10274873 DOI: 10.1101/2023.06.08.544038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.
Collapse
Affiliation(s)
- Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andrew I. Perault
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Pountain
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Ashley Dumont
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodora K. Karagounis
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Ronald O. Perelman Department of Dermatology; NYU Grossman School of Medicine, New York, NY, USA
| | - Chunyi Zhou
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
| | - Andreas F. Haag
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Julia Shenderovich
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Junbeom Kwon
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Carla R. Nowosad
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Desmond S. Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Microbial Computational Genomic Core Lab, NYU Grossman School of Medicine, New York, NY, USA
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian Province, China
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Itai Yanai
- Institute for Systems Genetics; NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Campbell MJ, Beenken KE, Ramirez AM, Smeltzer MS. The major role of sarA in limiting Staphylococcus aureus extracellular protease production in vitro is correlated with decreased virulence in diverse clinical isolates in osteomyelitis. Virulence 2023; 14:2175496. [PMID: 36748843 PMCID: PMC9928472 DOI: 10.1080/21505594.2023.2175496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated that MgrA, SarA, SarR, SarS, SarZ, and Rot bind at least three of the four promoters associated with genes encoding primary extracellular proteases in Staphylococcus aureus (Aur, ScpA, SspA/SspB, SplA-F). We also showed that mutation of sarA results in a greater increase in protease production, and decrease in biofilm formation, than mutation of the loci encoding any of these other proteins. However, these conclusions were based on in vitro studies. Thus, the goal of the experiments reported here was to determine the relative impact of the regulatory loci encoding these proteins in vivo. To this end, we compared the virulence of mgrA, sarA, sarR, sarS, sarZ, and rot mutants in a murine osteomyelitis model. Mutants were generated in the methicillin-resistant USA300 strain LAC and the methicillin-sensitive USA200 strain UAMS-1, which was isolated directly from the bone of an osteomyelitis patient during surgical debridement. Mutation of mgrA and rot limited virulence to a statistically significant extent in UAMS-1, but not in LAC, while the sarA mutant exhibited reduced virulence in both strains. The reduced virulence of the sarA mutant was correlated with reduced cytotoxicity for osteoblasts and osteoclasts, reduced biofilm formation, and reduced sensitivity to the antimicrobial peptide indolicidin, all of which were directly attributable to increased protease production in both LAC and UAMS-1. These results illustrate the importance of considering diverse clinical isolates when evaluating the impact of regulatory mutations on virulence and demonstrate the significance of SarA in limiting protease production in vivo in S. aureus.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aura M. Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
21
|
Brandwein JN, Sculthorpe TS, Ridder MJ, Bose JL, Rice KC. Factors impacting the regulation of nos gene expression in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0168823. [PMID: 37747881 PMCID: PMC10580903 DOI: 10.1128/spectrum.01688-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 09/27/2023] Open
Abstract
Staphylococcus aureus nitric oxide synthase (saNOS) contributes to oxidative stress resistance, antibiotic tolerance, virulence, and modulation of aerobic and nitrate-based cellular respiration. Despite its involvement in these essential processes, the genetic regulation of nos expression has not been well characterized. 5' rapid amplification of cDNA ends on nos RNA isolated from S. aureus UAMS-1 (USA200 strain) and AH1263 (USA300 strain) revealed that the nos transcriptional start site mapped to an adenine nucleotide in the predicted Shine-Dalgarno site located 11 bp upstream of the nos ATG start codon, suggesting that the nos transcript may have a leaderless organization or may be subject to processing. The SrrAB two-component system (TCS) was previously identified as a positive regulator of nos RNA levels, and experiments using a β-galactosidase reporter plasmid confirmed that SrrAB is a positive regulator of nos promoter activity. In addition, the quorum-sensing system Agr was identified as a negative regulator of low-oxygen nos expression in UAMS-1, with activity epistatic to SrrAB. Involvement of Agr was strain dependent, as nos expression remained unchanged in an AH1263 agr mutant, which has higher Agr activity compared to UAMS-1. Furthermore, nos promoter activity and RNA levels were significantly stronger in AH1263 relative to UAMS-1 during late-exponential low-oxygen growth, when nos expression is maximal. Global regulators Rex and MgrA were also implicated as negative regulators of low-oxygen nos promoter activity in UAMS-1. Collectively, these results provide new insight into factors that control nos expression.IMPORTANCEBacterial nitric oxide synthase (bNOS) has recently emerged in several species as a key player in resistance to stresses commonly encountered during infection. Although Staphylococcus aureus (sa)NOS has been suggested to be a promising drug target in S. aureus, an obstacle to this in practice is the existence of mammalian NOS, whose oxygenase domain is like bacterial NOS. Increased understanding of the nos regulatory network in S. aureus could allow targeting of saNOS through its regulators, bypassing the issue of also inhibiting mammalian NOS. Furthermore, the observed strain-dependent differences in S. aureus nos regulation presented in this study reinforce the importance of studying bacterial NOS regulation and function at both the strain and species levels.
Collapse
Affiliation(s)
- Jessica N. Brandwein
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tiffany S. Sculthorpe
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Miranda J. Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L. Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kelly C. Rice
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Wang J, Sheng Z, Liu Y, Chen X, Wang S, Yang H. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against Staphylococcus aureus. Front Pharmacol 2023; 14:1178177. [PMID: 37654613 PMCID: PMC10466393 DOI: 10.3389/fphar.2023.1178177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Staphylococcus aureus is a zoonotic opportunistic pathogen that represents a significant threat to public health. Previous studies have shown that tannic acid (TA) has an inhibitory effect on a variety of bacteria. In this study, the proteome and transcriptome of S. aureus were analyzed to comprehensively assess changes in genes and proteins induced by TA. Initial observations of morphological changes revealed that TA damaged the integrity of the cell membrane. Next, proteomic and genetic analyses showed that exposure to TA altered the expression levels of 651 differentially expressed proteins (DEPs, 283 upregulated and 368 downregulated) and 503 differentially expressed genes (DEGs, 191 upregulated and 312 downregulated). Analysis of the identified DEPs and DEGs suggested that TA damages the integrity of the cell envelope by decreasing the expression and protein abundance of enzymes involved in the synthesis of peptidoglycans, teichoic acids and fatty acids, such as murB, murQ, murG, fmhX and tagA. After treatment with TA, the assembly of ribosomes in S. aureus was severely impaired by significant reductions in available ribosome components, and thus protein synthesis was hindered. The levels of genes and proteins associated with amino acids and purine synthesis were remarkably decreased, which further reduced bacterial viability. In addition, ABC transporters, which are involved in amino acid and ion transport, were also badly affected. Our results reveal the molecular mechanisms underlying the effects of TA on S. aureus and provide a theoretical basis for the application of TA as an antibacterial chemotherapeutic agent.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Zhicun Sheng
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Yunying Liu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
- Zhongchong Sino Biotech Taizhou Co., Ltd., Taizhou, Jiangsu Province, China
| | - Xiaolan Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Shuaibing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Haifeng Yang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| |
Collapse
|
23
|
Kim J, Kim GL, Norambuena J, Boyd JM, Parker D. Impact of the pentose phosphate pathway on metabolism and pathogenesis of Staphylococcus aureus. PLoS Pathog 2023; 19:e1011531. [PMID: 37440594 PMCID: PMC10368262 DOI: 10.1371/journal.ppat.1011531] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that leads to significant disease through multiple routes of infection. We recently published a transposon sequencing (Tn-seq) screen in a mouse acute pneumonia model and identified a hypothetical gene (SAUSA300_1902, pgl) with similarity to a lactonase of Escherichia coli involved in the pentose phosphate pathway (PPP) that was conditionally essential. Limited studies have investigated the role of the PPP in physiology and pathogenesis of S. aureus. We show here that mutation of pgl significantly impacts ATP levels and respiration. RNA-seq analysis of the pgl mutant and parent strains identified compensatory changes in gene expression for glucose and gluconate as well as reductions in the pyrimidine biosynthesis locus. These differences were also evident through unbiased metabolomics studies and 13C labeling experiments that showed mutation of pgl led to reductions in pyrimidine metabolism including decreases in ribose-5P, UMP and GMP. These nucleotide reductions impacted the amount of extracellular DNA in biofilms and reduced biofilm formation. Mutation also limited the capacity of the strain to resist oxidant damage induced by hydrogen peroxide and paraquat and subsequent intracellular survival inside macrophages. Changes in wall teichoic acid impacted susceptibility to hydrogen peroxide. We demonstrated the importance of these changes on virulence in three different models of infection, covering respiratory, skin and septicemia, demonstrating the need for proper PPP function in all models. This work demonstrates the multifaceted role metabolism can play in multiple aspects of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
24
|
Feng SY, Hauck Y, Morgene F, Mohammedi R, Mirouze N. The complex regulation of competence in Staphylococcus aureus under microaerobic conditions. Commun Biol 2023; 6:512. [PMID: 37173437 PMCID: PMC10182052 DOI: 10.1038/s42003-023-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
To perform natural transformation, one of the three main Horizontal Gene Transfer mechanisms, bacteria need to enter a physiological differentiated state called genetic competence. Interestingly, new bacteria displaying such aptitude are often discovered, and one of the latest is the human pathogen Staphylococcus aureus.Here, we show an optimized protocol, based on planktonic cells cultures, leading to a large percentage of the population activating the development of competence and a significant improvement of S. aureus natural transformation efficiencies. Taking advantage of these conditions, we perform transcriptomics analyses to characterize the regulon of each central competence regulator. SigH and ComK1 are both found essential for activating natural transformation genes but also important for activation or repression of peripheral functions. Even though ComK2 is not found important for the control of transformation genes, its regulon shows an important overlap with that of SigH and ComK1. Finally, we propose that microaerobic conditions, sensed by the SrrAB two-component system, are key to activate competence in S. aureus.
Collapse
Affiliation(s)
- Shi Yuan Feng
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Yolande Hauck
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Fedy Morgene
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Roza Mohammedi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Nicolas Mirouze
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France.
| |
Collapse
|
25
|
Sipprell SE, Johnson MB, Leach W, Suptela SR, Marriott I. Staphylococcus aureus Infection Induces the Production of the Neutrophil Chemoattractants CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by Murine Osteoblasts. Infect Immun 2023; 91:e0001423. [PMID: 36880752 PMCID: PMC10112169 DOI: 10.1128/iai.00014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.
Collapse
Affiliation(s)
- Sophie E. Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
26
|
Butrico CE, Klopfenstein N, Green ER, Johnson JR, Peck SH, Ibberson CB, Serezani CH, Cassat JE. Hyperglycemia Increases Severity of Staphylococcus aureus Osteomyelitis and Influences Bacterial Genes Required for Survival in Bone. Infect Immun 2023; 91:e0052922. [PMID: 36877063 PMCID: PMC10112148 DOI: 10.1128/iai.00529-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Hyperglycemia, or elevated blood glucose, renders individuals more prone to developing severe Staphylococcus aureus infections. S. aureus is the most common etiological agent of musculoskeletal infection, which is a common manifestation of disease in hyperglycemic patients. However, the mechanisms by which S. aureus causes severe musculoskeletal infection during hyperglycemia are incompletely characterized. To examine the influence of hyperglycemia on S. aureus virulence during invasive infection, we used a murine model of osteomyelitis and induced hyperglycemia with streptozotocin. We discovered that hyperglycemic mice exhibited increased bacterial burdens in bone and enhanced dissemination compared to control mice. Furthermore, infected hyperglycemic mice sustained increased bone destruction relative to euglycemic controls, suggesting that hyperglycemia exacerbates infection-associated bone loss. To identify genes contributing to S. aureus pathogenesis during osteomyelitis in hyperglycemic animals relative to euglycemic controls, we used transposon sequencing (TnSeq). We identified 71 genes uniquely essential for S. aureus survival in osteomyelitis in hyperglycemic mice and another 61 mutants with compromised fitness. Among the genes essential for S. aureus survival in hyperglycemic mice was the gene encoding superoxide dismutase A (sodA), one of two S. aureus superoxide dismutases involved in detoxifying reactive oxygen species (ROS). We determined that a sodA mutant exhibits attenuated survival in vitro in high glucose and in vivo during osteomyelitis in hyperglycemic mice. SodA therefore plays an important role during growth in high glucose and promotes S. aureus survival in bone. Collectively, these studies demonstrate that hyperglycemia increases the severity of osteomyelitis and identify genes contributing to S. aureus survival during hyperglycemic infection.
Collapse
Affiliation(s)
- Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nathan Klopfenstein
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erin R. Green
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Nashville VA Medical Center, Department of Veterans Affairs, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Carolyn B. Ibberson
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, Oklahoma, USA
| | - C. Henrique Serezani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun 2023; 15:499-515. [PMID: 37011602 PMCID: PMC10315156 DOI: 10.1159/000530385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) biofilm is the major cause of failure of implant infection treatment that results in heavy social and economic burden on individuals, families, and communities. Planktonic S. aureus attaches to medical implant surfaces where it proliferates and is wrapped by extracellular polymeric substances, forming a solid and complex biofilm. This provides a stable environment for bacterial growth, infection maintenance, and diffusion and protects the bacteria from antimicrobial agents and the immune system of the host. Macrophages are an important component of the innate immune system and resist pathogen invasion and infection through phagocytosis, antigen presentation, and cytokine secretion. The persistence, spread, or clearance of infection is determined by interplay between macrophages and S. aureus in the implant infection microenvironment. In this review, we discuss the interactions between S. aureus biofilm and macrophages, including the effects of biofilm-related bacteria on the macrophage immune response, roles of myeloid-derived suppressor cells during biofilm infection, regulation of immune cell metabolic patterns by the biofilm environment, and immune evasion strategies adopted by the biofilm against macrophages. Finally, we summarize the current methods that support macrophage-mediated removal of biofilms and emphasize the importance of considering multi-dimensions and factors related to implant-associated infection such as immunity, metabolism, the host, and the pathogen when developing new treatments.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31:571-585. [PMID: 36709096 DOI: 10.1016/j.tim.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Present address: Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| |
Collapse
|
29
|
Antibiotics Limit Adaptation of Drug-Resistant Staphylococcus aureus to Hypoxia. Antimicrob Agents Chemother 2022; 66:e0092622. [PMID: 36409116 PMCID: PMC9765076 DOI: 10.1128/aac.00926-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial pathogens are confronted with a range of challenges at the site of infection, including exposure to antibiotic treatment and harsh physiological conditions, that can alter the fitness benefits and costs of acquiring antibiotic resistance. Here, we develop an experimental system to recapitulate resistance gene acquisition by Staphylococcus aureus and test how the subsequent evolution of the resistant bacterium is modulated by antibiotic treatment and oxygen levels, both of which are known to vary extensively at sites of infection. We show that acquiring tetracycline resistance was costly, reducing competitive growth against the isogenic strain without the resistance gene in the absence of the antibiotic, for S. aureus under hypoxic but not normoxic conditions. Treatment with tetracycline or doxycycline drove the emergence of enhanced resistance through mutations in an RluD-like protein-encoding gene and duplications of tetL, encoding the acquired tetracycline-specific efflux pump. In contrast, evolutionary adaptation by S. aureus to hypoxic conditions, which evolved in the absence of antibiotics through mutations affecting gyrB, was impeded by antibiotic treatment. Together, these data suggest that the horizontal acquisition of a new resistance mechanism is merely a starting point for the emergence of high-level resistance under antibiotic selection but that antibiotic treatment constrains pathogen adaptation to other important environmental selective forces such as hypoxia, which in turn could limit the survival of these highly resistant but poorly adapted genotypes after antibiotic treatment is ended.
Collapse
|
30
|
Spoto M, Riera Puma JP, Fleming E, Guan C, Ondouah Nzutchi Y, Kim D, Oh J. Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility. mBio 2022; 13:e0263222. [PMID: 36409086 PMCID: PMC9765180 DOI: 10.1128/mbio.02632-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous human commensal skin bacterium that is also one of the most prevalent nosocomial pathogens. The genetic factors underlying this remarkable lifestyle plasticity are incompletely understood, mainly due to the difficulties of genetic manipulation, precluding high-throughput functional profiling of this species. To probe the versatility of S. epidermidis to survive across a diversity of environmental conditions, we developed a large-scale CRISPR interference (CRISPRi) screen complemented by transcriptional profiling (RNA sequencing) across 24 diverse conditions and piloted a droplet-based CRISPRi approach to enhance throughput and sensitivity. We identified putative essential genes, importantly revealing amino acid metabolism as crucial to survival across diverse environments, and demonstrated the importance of trace metal uptake for survival under multiple stress conditions. We identified pathways significantly enriched and repressed across our range of stress and nutrient-limited conditions, demonstrating the considerable plasticity of S. epidermidis in responding to environmental stressors. Additionally, we postulate a mechanism by which nitrogen metabolism is linked to lifestyle versatility in response to hyperosmotic challenges, such as those encountered on human skin. Finally, we examined the survival of S. epidermidis under acid stress and hypothesize a role for cell wall modification as a vital component of the survival response under acidic conditions. Taken together, this study integrates large-scale CRISPRi and transcriptomics data across multiple environments to provide insights into a keystone member of the human skin microbiome. Our results additionally provide a valuable benchmarking analysis for CRISPRi screens and are a rich resource for other staphylococcal researchers. IMPORTANCE Staphylococcus epidermidis is a bacteria that broadly inhabits healthy human skin, yet it is also a common cause of skin infections and bloodstream infections associated with implanted medical devices. Because human skin has many different types of S. epidermidis, each containing different genes, our goal is to determine how these different genes allow S. epidermidis to switch from healthy growth in the skin to being an infectious pathogen. Understanding this switch is critical to developing new strategies to prevent and treat S. epidermidis infections.
Collapse
Affiliation(s)
- Michelle Spoto
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- The University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Elizabeth Fleming
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | | - Dean Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| |
Collapse
|
31
|
In Silico Genome-Scale Analysis of Molecular Mechanisms Contributing to the Development of a Persistent Infection with Methicillin-Resistant Staphylococcus aureus (MRSA) ST239. Int J Mol Sci 2022; 23:ijms232416086. [PMID: 36555727 PMCID: PMC9781258 DOI: 10.3390/ijms232416086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing frequency of isolation of methicillin-resistant Staphylococcus aureus (MRSA) limits the chances for the effective antibacterial therapy of staphylococcal diseases and results in the development of persistent infection such as bacteremia and osteomyelitis. The aim of this study was to identify features of the MRSAST239 0943-1505-2016 (SA943) genome that contribute to the formation of both acute and chronic musculoskeletal infections. The analysis was performed using comparative genomics data of the dominant epidemic S. aureus lineages, namely ST1, ST8, ST30, ST36, and ST239. The SA943 genome encodes proteins that provide resistance to the host's immune system, suppress immunological memory, and form biofilms. The molecular mechanisms of adaptation responsible for the development of persistent infection were as follows: amino acid substitution in PBP2 and PBP2a, providing resistance to ceftaroline; loss of a large part of prophage DNA and restoration of the nucleotide sequence of beta-hemolysin, that greatly facilitates the escape of phagocytosed bacteria from the phagosome and formation of biofilms; dysfunction of the AgrA system due to the presence of psm-mec and several amino acid substitutions in the AgrC; partial deletion of the nucleotide sequence in genomic island vSAβ resulting in the loss of two proteases of Spl-operon; and deletion of SD repeats in the SdrE amino acid sequence.
Collapse
|
32
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Role of Staphylococcus aureus Formate Metabolism during Prosthetic Joint Infection. Infect Immun 2022; 90:e0042822. [PMID: 36286525 PMCID: PMC9670962 DOI: 10.1128/iai.00428-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are bacterial communities characterized by antibiotic tolerance.
Staphylococcus aureus
is a leading cause of biofilm infections on medical devices, including prosthetic joints, which represent a significant health care burden. The major leukocyte infiltrate associated with
S. aureus
prosthetic joint infection (PJI) is granulocytic myeloid-derived suppressor cells (G-MDSCs), which produce IL-10 to promote biofilm persistence by inhibiting monocyte and macrophage proinflammatory activity.
Collapse
|
34
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
35
|
Ranava D, Scheidler CM, Pfanzelt M, Fiedler M, Sieber SA, Schneider S, Yap MNF. Bidirectional sequestration between a bacterial hibernation factor and a glutamate metabolizing protein. Proc Natl Acad Sci U S A 2022; 119:e2207257119. [PMID: 36122228 PMCID: PMC9522360 DOI: 10.1073/pnas.2207257119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial hibernating 100S ribosomes (the 70S dimers) are excluded from translation and are protected from ribonucleolytic degradation, thereby promoting long-term viability and increased regrowth. No extraribosomal target of any hibernation factor has been reported. Here, we discovered a previously unrecognized binding partner (YwlG) of hibernation-promoting factor (HPF) in the human pathogen Staphylococcus aureus. YwlG is an uncharacterized virulence factor in S. aureus. We show that the HPF-YwlG interaction is direct, independent of ribosome binding, and functionally linked to cold adaptation and glucose metabolism. Consistent with the distant resemblance of YwlG to the hexameric structures of nicotinamide adenine dinucleotide (NAD)-specific glutamate dehydrogenases (GDHs), YwlG overexpression can compensate for a loss of cellular GDH activity. The reduced abundance of 100S complexes and the suppression of YwlG-dependent GDH activity provide evidence for a two-way sequestration between YwlG and HPF. These findings reveal an unexpected layer of regulation linking the biogenesis of 100S ribosomes to glutamate metabolism.
Collapse
Affiliation(s)
- David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Martin Pfanzelt
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Michaela Fiedler
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair of Organic Chemistry III, Center for Functional Protein Assemblies (CPA), Technische Universität München, 80333 Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Mee-Ngan F. Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Ford CA, Hurford IM, Fulbright LE, Curry JM, Peek CT, Spoonmore TJ, Cruz Victorio V, Johnson JR, Peck SH, Cassat JE. Loss of Vhl alters trabecular bone loss during S. aureus osteomyelitis in a cell-specific manner. Front Cell Infect Microbiol 2022; 12:985467. [PMID: 36204648 PMCID: PMC9530664 DOI: 10.3389/fcimb.2022.985467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023] Open
Abstract
Osteomyelitis, or bone infection, is a major complication of accidental trauma or surgical procedures involving the musculoskeletal system. Staphylococcus aureus is the most frequently isolated pathogen in osteomyelitis and triggers significant bone loss. Hypoxia-inducible factor (HIF) signaling has been implicated in antibacterial immune responses as well as bone development and repair. In this study, the impact of bone cell HIF signaling on antibacterial responses and pathologic changes in bone architecture was explored using genetic models with knockout of either Hif1a or a negative regulator of HIF-1α, Vhl. Deletion of Hif1a in osteoblast-lineage cells via Osx-Cre (Hif1aΔOB ) had no impact on bacterial clearance or pathologic changes in bone architecture in a model of post-traumatic osteomyelitis. Knockout of Vhl in osteoblast-lineage cells via Osx-Cre (VhlΔOB ) caused expected increases in trabecular bone volume per total volume (BV/TV) at baseline and, intriguingly, did not exhibit an infection-mediated decline in trabecular BV/TV, unlike control mice. Despite this phenotype, bacterial burdens were not affected by loss of Vhl. In vitro studies demonstrated that transcriptional regulation of the osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) and its inhibitor osteoprotegerin (OPG) is altered in osteoblast-lineage cells with knockout of Vhl. After observing no impact on bacterial clearance with osteoblast-lineage conditional knockouts, a LysM-Cre model was used to generate Hif1aΔMyeloid and VhlΔMyeloid mouse models to explore the impact of myeloid cell HIF signaling. In both Hif1aΔMyeloid and VhlΔMyeloid models, bacterial clearance was not impacted. Moreover, minimal impacts on bone architecture were observed. Thus, skeletal HIF signaling was not found to impact bacterial clearance in our mouse model of post-traumatic osteomyelitis, but Vhl deletion in the osteoblast lineage was found to limit infection-mediated trabecular bone loss, possibly via altered regulation of RANKL-OPG gene transcription.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ian M. Hurford
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher T. Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Thomas J. Spoonmore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Virginia Cruz Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Cassat
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
37
|
Aristotelous AC. Biofilm neutrophils interactions under hypoxia: A mathematical modeling study. Math Biosci 2022; 352:108893. [PMID: 36029807 DOI: 10.1016/j.mbs.2022.108893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Neutrophils are important to the defense of the host against bacterial infection. Pathogens and the immune system cells create via respiration, a hypoxic environment in infected regions. Hypoxic conditions affect both the neutrophil's ability to eradicate the infection and also change the behavior of the bacterial-pathogens by eliciting the production of various virulence factors, the creation of bacterial biofilm and the initialization of anaerobic metabolism. In this work interactions of bacterial biofilm and neutrophils are studied in a domain where oxygen is diffusing into the environment and is being consumed by biofilm. Within a hypoxic environment, bacteria grow anaerobically and secrete higher levels of toxin that diffuses and lyses neutrophils. A mathematical model explicitly representing the biofilm volume fraction, oxygen, and diffusive virulence factors (toxin) as well as killing of bacteria by neutrophils is developed and studied first in 1D and then in 2D. Stability analysis and numerical simulations showing the effects of oxygen and toxin concentration on neutrophil-bacteria interactions are presented to identify different possible scenarios that can lead to elimination of the infection or its persistence as a chronic infection. Specifically, when bacteria are allowed to utilize anaerobic breathing and or to produce toxin, their fitness is enhanced against neutrophils attacks. A possible insight on how virulent bacterial colonies can synergistically resist neutrophils and survive is presented.
Collapse
Affiliation(s)
- Andreas C Aristotelous
- Department of Mathematics, Buchtel College of Arts and Sciences, The University of Akron, Akron, OH, 44325-4002, USA.
| |
Collapse
|
38
|
Zhang J, Hu L, Zhang H, He Z. Cyclic
di‐GMP
triggers the hypoxic adaptation of
Mycobacterium bovis
through a metabolic switching regulator
ArgR. Environ Microbiol 2022; 24:4382-4400. [DOI: 10.1111/1462-2920.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jiaxun Zhang
- College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and Technology Guangxi University Nanning 530004 China
| | - Hua Zhang
- College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Zheng‐Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and Technology Guangxi University Nanning 530004 China
| |
Collapse
|
39
|
Silva BC, Aguilar AP, Dutra L, Moon KM, Sébastien A, Foster LJ, Mendes TAO, de Oliveira Barros Ribon A. Proteomic Profiles of Staphylococcus aureus Strains Associated with Subclinical Bovine Mastitis. Curr Microbiol 2022; 79:101. [PMID: 35150342 DOI: 10.1007/s00284-022-02796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is the main pathogen associated with bovine mastitis, an intramammary inflammation that leads to significant economic losses in dairy herds. Efforts have been made to identify the bacterial determinants important to the infective process but most of the studies are focused on surface and secreted proteins. Considering that virulence is affected by metabolism, in this study we contrasted the proteome of strains of S. aureus causing persistent subclinical (Sau302 and Sau340) and clinical bovine mastitis (RF122). Protein expressions from cytosolic fractions of bacteria grown under conditions mimicking the mastitic mammary glands are reported. A total of 342 proteins was identified, 52 of which were differentially expressed. Among those down-regulated in the subclinical strains were the two-component sensor histidine kinase SaeS and PurH, both involved in bacterial virulence. The ribosome hibernation promotion factor and the 50S ribosomal protein L13 were up-regulated suggesting that Sau302 and Sau340 modulate protein translation, a condition that may contribute to bacterial survival under stressful conditions. TRAP, a regulator possibly involved in pathogenesis, was expressed only in RF122 while proteins from the Isd system, involved in heme acquisition, were exclusive to Sau302 and Sau340. In summary, the metabolic differences suggest a reduced virulence of the strains causing subclinical mastitis which may contribute to the persistent infection seen in the animals.
Collapse
Affiliation(s)
- Bruno Campos Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Ananda Pereira Aguilar
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Luana Dutra
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Alexandra Sébastien
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Tiago Antônio Oliveira Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36.570-900, Brazil
| | | |
Collapse
|
40
|
Targeting the ATP synthase in bacterial and fungal pathogens – beyond Mycobacterium tuberculosis. J Glob Antimicrob Resist 2022; 29:29-41. [DOI: 10.1016/j.jgar.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
|
41
|
Goncheva MI, Chin D, Heinrichs DE. Nucleotide biosynthesis: the base of bacterial pathogenesis. Trends Microbiol 2022; 30:793-804. [PMID: 35074276 DOI: 10.1016/j.tim.2021.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
Most free-living organisms require the synthesis and/or acquisition of purines and pyrimidines, which form the basis of nucleotides, to survive. In most bacteria, the nucleotides are synthesized de novo and the products are used in many cell functions, including DNA replication, energy storage, and as signaling molecules. Due to their central role in the metabolism of bacteria, both nucleotide biosynthesis pathways have strong links with the virulence of opportunistic and bona fide bacterial pathogens. Recent findings have established a new, shared link in the control of nucleotide biosynthesis and the production of virulence factors. Furthermore, targeting of these pathways forms the basis of interspecies competition and can provide an open source for new antimicrobial compounds. Here, we highlight the contribution of nucleotide biosynthesis to bacterial pathogenesis in a plethora of different diseases and speculate on how they can be targeted by intervention strategies.
Collapse
Affiliation(s)
- Mariya I Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Denny Chin
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
42
|
Investigation of Virulence Genes of Staphylococcus aureus Isolated from Sterile Body Fluid Samples and Their Correlation with Clinical Symptoms and Outcomes. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2021:5354747. [PMID: 34987680 PMCID: PMC8720599 DOI: 10.1155/2021/5354747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is the major pathogen causing nosocomial human infections and produces a variety of virulence factors that contribute to its ability to colonize and cause diseases. This study was conducted to investigate the virulence genes in S. aureus isolated from sterile body fluid samples and their correlation with clinical symptoms and outcomes. The VITEK 2® Compact system was used to perform biochemical identification and antimicrobial susceptibility tests on 33 S. aureus isolates. Virulence genes were amplified using multiplex PCR. The virulence gene patterns were analyzed by systematic cluster analysis. The frequency of methicillin-resistant S. aureus was 45.45%, and 17 virulence genes were identified. Genes encoding hemolysins showed high frequencies. The frequencies of hla, hlb, hld, and hlgB were 93.94% and that of the luk-F/S-PV was 21.21%. Except for the frequency of splB (51.52%), the remaining genes encoding invasive proteases showed frequencies greater than 81.82%. Among the patients, 100.00% had undergone invasive medical procedures and 24.00% had been treated with more than three types of antibiotic drugs. Invasive medical procedures are the main causes of infection. Resistance to antibiotic drugs and the status of carrying virulence genes were highly related to clinical symptoms and outcomes.
Collapse
|
43
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
44
|
Eichelberger KR, Cassat JE. Metabolic Adaptations During Staphylococcus aureus and Candida albicans Co-Infection. Front Immunol 2021; 12:797550. [PMID: 34956233 PMCID: PMC8692374 DOI: 10.3389/fimmu.2021.797550] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Successful pathogens require metabolic flexibility to adapt to diverse host niches. The presence of co-infecting or commensal microorganisms at a given infection site can further influence the metabolic processes required for a pathogen to cause disease. The Gram-positive bacterium Staphylococcus aureus and the polymorphic fungus Candida albicans are microorganisms that asymptomatically colonize healthy individuals but can also cause superficial infections or severe invasive disease. Due to many shared host niches, S. aureus and C. albicans are frequently co-isolated from mixed fungal-bacterial infections. S. aureus and C. albicans co-infection alters microbial metabolism relative to infection with either organism alone. Metabolic changes during co-infection regulate virulence, such as enhancing toxin production in S. aureus or contributing to morphogenesis and cell wall remodeling in C. albicans. C. albicans and S. aureus also form polymicrobial biofilms, which have greater biomass and reduced susceptibility to antimicrobials relative to mono-microbial biofilms. The S. aureus and C. albicans metabolic programs induced during co-infection impact interactions with host immune cells, resulting in greater microbial survival and immune evasion. Conversely, innate immune cell sensing of S. aureus and C. albicans triggers metabolic changes in the host cells that result in an altered immune response to secondary infections. In this review article, we discuss the metabolic programs that govern host-pathogen interactions during S. aureus and C. albicans co-infection. Understanding C. albicans-S. aureus interactions may highlight more general principles of how polymicrobial interactions, particularly fungal-bacterial interactions, shape the outcome of infectious disease. We focus on how co-infection alters microbial metabolism to enhance virulence and how infection-induced changes to host cell metabolism can impact a secondary infection.
Collapse
Affiliation(s)
- Kara R. Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Kara R. Eichelberger, ; James E. Cassat,
| | - James E. Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Kara R. Eichelberger, ; James E. Cassat,
| |
Collapse
|
45
|
Alkam D, Wongsurawat T, Nookaew I, Richardson AR, Ussery D, Smeltzer MS, Jenjaroenpun P. Is amplification bias consequential in transposon sequencing (TnSeq) assays? A case study with a Staphylococcus aureus TnSeq library subjected to PCR-based and amplification-free enrichment methods. Microb Genom 2021; 7:000655. [PMID: 34596508 PMCID: PMC8627206 DOI: 10.1099/mgen.0.000655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As transposon sequencing (TnSeq) assays have become prolific in the microbiology field, it is of interest to scrutinize their potential drawbacks. TnSeq data consist of millions of nucleotide sequence reads that are generated by PCR amplification of transposon-genomic junctions. Reads mapping to the junctions are enumerated thus providing information on the number of transposon insertion mutations in each individual gene. Here we explore the possibility that PCR amplification of transposon insertions in a TnSeq library skews the results by introducing bias into the detection and/or enumeration of insertions. We compared the detection and frequency of mapped insertions when altering the number of PCR cycles, and when including a nested PCR, in the enrichment step. Additionally, we present nCATRAs - a novel, amplification-free TnSeq method where the insertions are enriched via CRISPR/Cas9-targeted transposon cleavage and subsequent Oxford Nanopore MinION sequencing. nCATRAs achieved 54 and 23% enrichment of the transposons and transposon-genomic junctions, respectively, over background genomic DNA. These PCR-based and PCR-free experiments demonstrate that, overall, PCR amplification does not significantly bias the results of TnSeq insofar as insertions in the majority of genes represented in our library were similarly detected regardless of PCR cycle number and whether or not PCR amplification was employed. However, the detection of a small subset of genes which had been previously described as essential is sensitive to the number of PCR cycles. We conclude that PCR-based enrichment of transposon insertions in a TnSeq assay is reliable, but researchers interested in profiling putative essential genes should carefully weigh the number of amplification cycles employed in their library preparation protocols. In addition, nCATRAs is comparable to traditional PCR-based methods (Kendall's correlation=0.896-0.897) although the latter remain superior owing to their accessibility and high sequencing depth.
Collapse
Affiliation(s)
- Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,*Correspondence: Piroon Jenjaroenpun,
| |
Collapse
|
46
|
Roper PM, Eichelberger KR, Cox L, O’Connor L, Shao C, Ford CA, Fritz SA, Cassat JE, Veis DJ. Contemporary Clinical Isolates of Staphylococcus aureus from Pediatric Osteomyelitis Patients Display Unique Characteristics in a Mouse Model of Hematogenous Osteomyelitis. Infect Immun 2021; 89:e0018021. [PMID: 34097469 PMCID: PMC8445171 DOI: 10.1128/iai.00180-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
Osteomyelitis can result from the direct inoculation of pathogens into bone during injury or surgery or from spread via the bloodstream, a condition called hematogenous osteomyelitis (HOM). HOM disproportionally affects children, and more than half of cases are caused by Staphylococcus aureus. Laboratory models of osteomyelitis mostly utilize direct injection of bacteria into the bone or implantation of foreign material and therefore do not directly interrogate the pathogenesis of pediatric hematogenous osteomyelitis. In this study, we inoculated mice intravenously and characterized the resultant musculoskeletal infections using two strains isolated from adults (USA300-LAC and NRS384) and five new methicillin-resistant S. aureus isolates from pediatric osteomyelitis patients. All strains were capable of creating stable infections over 5 weeks, although the incidence varied. Micro-computed tomography (microCT) analysis demonstrated decreases in the trabecular bone volume fraction but little effect on bone cortices. Histological assessment revealed differences in the precise focus of musculoskeletal infection, with various mixtures of bone-centered osteomyelitis and joint-centered septic arthritis. Whole-genome sequencing of three new isolates demonstrated distinct strains, two within the USA300 lineage and one USA100 isolate. Interestingly, this USA100 isolate showed a distinct predilection for septic arthritis compared to the other isolates tested, including NRS384 and LAC, which more frequently led to osteomyelitis or mixed bone and joint infections. Collectively, these data outline the feasibility of using pediatric osteomyelitis clinical isolates to study the pathogenesis of HOM in murine models and lay the groundwork for future studies investigating strain-dependent differences in musculoskeletal infection.
Collapse
Affiliation(s)
- Philip M. Roper
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kara R. Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Linda Cox
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Luke O’Connor
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christine Shao
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Stephanie A. Fritz
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Deborah J. Veis
- Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Shriners Hospitals for Children, Saint Louis, Missouri, USA
| |
Collapse
|
47
|
Abstract
Staphylococcus aureus is a Gram-positive bacterium that is capable of infecting and inducing tissue pathology in nearly every organ system. The pathogenesis of staphylococcal infection is dictated, in part, through the production of toxins that induce cellular death through receptor-dependent and -independent mechanisms, thereby contributing to tissue injury. One common manifestation of invasive staphylococcal infection is osteomyelitis, or infection of bone. Osteomyelitis triggers extreme bone loss, in part, through production of secreted toxins. Cytotoxicity assays, therefore, can be instrumental in elucidating how S. aureus triggers bone loss, and such assays are rapidly adaptable to study of tissue damage across multiple cell types and organ systems. Additionally, in conjunction with proteomic approaches, cytotoxicity studies may help identify toxins capable of inducing host cell death. Here, a protocol is described for the isolation and stimulation of primary osteoblasts with S. aureus supernatants for rapid detection of cytotoxicity. This assay provides an excellent in vitro system to better understand how staphylococcal secreted toxins impact skeletal cell biology to induce changes in bone homeostasis.
Collapse
|
48
|
Price EE, Román-Rodríguez F, Boyd JM. Bacterial approaches to sensing and responding to respiration and respiration metabolites. Mol Microbiol 2021; 116:1009-1021. [PMID: 34387370 DOI: 10.1111/mmi.14795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Bacterial respiration of diverse substrates is a primary contributor to the diversity of life. Respiration also drives alterations in the geosphere and tethers ecological nodes together. It provides organisms with a means to dissipate reductants and generate potential energy in the form of an electrochemical gradient. Mechanisms have evolved to sense flux through respiratory pathways and sense the altered concentrations of respiration substrates or byproducts. These genetic regulatory systems promote efficient utilization of respiration substrates, as well as fine tune metabolism to promote cellular fitness and negate the accumulation of toxic byproducts. Many bacteria can respire one or more chemicals, and these regulatory systems promote the prioritization of high energy metabolites. Herein we focus on regulatory paradigms and discuss systems that sense the concentrations of respiration substrates and flux through respiratory pathways. This is a broad field of study, and therefore we focus on key fundamental and recent developments and highlight specific systems that capture the diversity of sensing mechanisms.
Collapse
Affiliation(s)
- Erin E Price
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Franklin Román-Rodríguez
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry & Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
49
|
Five major two components systems of Staphylococcus aureus for adaptation in diverse hostile environment. Microb Pathog 2021; 159:105119. [PMID: 34339796 DOI: 10.1016/j.micpath.2021.105119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is an eminent and opportunistic human pathogen that can colonize in the intestines, skin tissue and perineal regions of the host and cause severe infectious diseases. The presence of complex regulatory network and existence of virulent gene expression along with tuning metabolism enables the S. aureus to adopt the diversity of environments. Two component system (TCS) is a widely distributed mechanism in S. aureus that permit it for changing gene expression profile in response of environment stimuli. TCS usually consist of transmembrane histidine kinase (HK) and cytosolic response regulator. S. aureus contains totally 16 conserved pairs of two component systems, involving in different signaling mechanisms. There is a connection among these regulatory circuits and they can easily have effect on each other's expression. This review has discussed five major types of TCS in S. aureus and covers the recent knowledge of their virulence gene expression. We can get more understanding towards staphylococcal pathogenicity by getting insights about gene regulatory pathways via TCS, which can further provide implications in vaccine formation and new ways for drug design to combat serious infections caused by S. aureus in humans.
Collapse
|
50
|
Rai A, Khairnar K. Overview of the risks of Staphylococcus aureus infections and their control by bacteriophages and bacteriophage-encoded products. Braz J Microbiol 2021; 52:2031-2042. [PMID: 34251609 DOI: 10.1007/s42770-021-00566-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the leading cause of secondary infections in hospitals and a challenging pathogen in food industries. Decades after it was first reported, β-lactam-resistant S. aureus remains a subject of intense research owing to the ever-increasing issue of drug resistance. S. aureus bacteriophages (phages) or their encoded products are considered an alternative to antibiotics as they have been shown to be effective in treating some S. aureus-associated infections. In this review, we present a concise collection of the literature on the pathogenic potential of S. aureus and examine the prospects of using S. aureus phages and their encoded products as antimicrobials.
Collapse
Affiliation(s)
- Akanksha Rai
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|