1
|
Richardson JD, Guo E, Wyllie RM, Jensen P, Dawid S. The pneumococcal bacteriocin streptococcin B is produced as part of the early competence cascade and promotes intraspecies competition. mBio 2025; 16:e0299324. [PMID: 39688419 PMCID: PMC11796350 DOI: 10.1128/mbio.02993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that normally resides in the human nasopharynx. Competence-mediated bacteriocin expression by S. pneumoniae plays a major role in both the establishment and persistence of colonization on this polymicrobial surface. Over 20 distinct bacteriocin loci have been identified in pneumococcal genomes, but only a small number have been characterized phenotypically. In this work, we demonstrate that three-fourths of S. pneumoniae strains contain a highly conserved scb locus that encodes an active lactococcin 972-like bacteriocin called streptococcin B. In these backgrounds, the scbABC locus is part of the early competence cascade due to a ComE binding site in the promoter region. Streptococcin B producing strains target both members of the population that have failed to activate competence and the 25% of the population that carry a naturally occurring deletion of the ComE binding site and the functional bacteriocin gene. The ComR-type regulator found directly upstream of the scb locus in S. pneumoniae strains can activate scb expression independent of the presence of the ComE binding site but only when stimulated by a peptide that is encoded in the scb locus of Streptococcus pseudopneumoniae, a closely related bacterium that also inhabits the human nasopharynx. Given the co-regulation with competence and the phenotypic confirmation of activity, streptococcin B represents a previously unrecognized fratricide effector that gives producing strains an additional advantage over the naturally occurring deleted strains during colonization. IMPORTANCE Streptococcus pneumoniae is a common cause of pneumonia, meningitis, sinusitis, and otitis media. In order to successfully colonize humans, a prerequisite to the development of invasive disease, S. pneumoniae must compete with other bacterial inhabitants of the nasal surface for space and nutrients. Bacteriocins are small antimicrobial peptides produced by bacteria that typically target neighboring bacteria by disruption of the cell surface. S. pnuemoniae encodes a large number of potential bacteriocin, but, for most, their role in competitive interactions has not been defined. This work demonstrates that isolates that produce the bacteriocin streptococcin B have an advantage over non-producers. These observations contribute to our understanding of the competitive interactions that precede the development of S. pneumoniae disease.
Collapse
Affiliation(s)
- J. D. Richardson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryan M. Wyllie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Jensen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Suzanne Dawid
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Aggarwal SD, Lokken-Toyli KL, Weiser JN. Pneumococcal pneumonia is driven by increased bacterial turnover due to bacteriocin-mediated intra-strain competition. Commun Biol 2024; 7:1628. [PMID: 39638898 PMCID: PMC11621112 DOI: 10.1038/s42003-024-07176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Using chromosomal barcoding, we observed that >97% of the Streptococcus pneumoniae (Spn) population turns over in the lung within 2 days post-inoculation in a murine model. This marked collapse of diversity and bacterial turnover was associated with acute inflammation (severe pneumococcal pneumonia), high bacterial numbers in the lungs, bacteremia, and mortality. Intra-strain competition mediated by the blp locus, which expresses bacteriocins in a quorum-sensing-dependent manner, was required for each of these effects. Bacterial turnover from the activity of Blp-bacteriocins increased the release of the pneumococcal toxin, pneumolysin (Ply), which was sufficient to account for the lung pathology. The ability of Ply to evade complement, rather than its pore-forming activity, prevented opsonophagocytic clearance of Spn enabling its multiplication in the lung, facilitating the inflammatory response and subsequent invasion into the bloodstream. Thus, our study demonstrates how an appreciation for bacterial population dynamics during infection provides new insight into pathogenesis.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | | | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Maheshwari N, Jermiin LS, Cotroneo C, Gordon SV, Shields DC. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240491. [PMID: 39021782 PMCID: PMC11251773 DOI: 10.1098/rsos.240491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.
Collapse
Affiliation(s)
- Nikunj Maheshwari
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cotroneo
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Oh MW, Lin J, Chong SY, Lew SQ, Alam T, Lau GW. Time-resolved RNA-seq analysis to unravel the in vivo competence induction by Streptococcus pneumoniae during pneumonia-derived sepsis. Microbiol Spectr 2024; 12:e0305023. [PMID: 38305162 PMCID: PMC10913500 DOI: 10.1128/spectrum.03050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Competence development in Streptococcus pneumoniae (pneumococcus) is tightly intertwined with virulence. In addition to genes encoding genetic transformation machinery, the competence regulon also regulates the expression of allolytic factors, bacteriocins, and cytotoxins. Pneumococcal competence system has been extensively interrogated in vitro where the short transient competent state upregulates the expression of three distinct phases of "early," "late," and "delayed" genes. Recently, we have demonstrated that the pneumococcal competent state develops naturally in mouse models of pneumonia-derived sepsis. To unravel the underlying adaptive mechanisms driving the development of the competent state, we conducted a time-resolved transcriptomic analysis guided by the spatiotemporal live in vivo imaging system of competence induction during pneumonia-derived sepsis. Mouse lungs infected by the serotype 2 strain D39 expressing a competent state-specific reporter gene (D39-ssbB-luc) were subjected to RNA sequencing guided by monitoring the competence development at 0, 12, 24, and, at the moribund state, >40 hours post-infection (hpi). Transcriptomic analysis revealed that the competence-specific gene expression patterns in vivo were distinct from those under in vitro conditions. There was significant upregulation of early, late, and some delayed phase competence-specific genes as early as 12 hpi, suggesting that the pneumococcal competence regulon is important for adaptation to the lung environment. Additionally, members of the histidine triad (pht) gene family were sharply upregulated at 12 hpi followed by a steep decline throughout the rest of the infection cycle, suggesting that Pht proteins participate in the early adaptation to the lung environment. Further analysis revealed that Pht proteins execute a metal ion-dependent regulatory role in competence induction.IMPORTANCEThe induction of pneumococcal competence for genetic transformation has been extensively studied in vitro but poorly understood during lung infection. We utilized a combination of live imaging and RNA sequencing to monitor the development of a competent state during acute pneumonia. Upregulation of competence-specific genes was observed as early as 12 hour post-infection, suggesting that the pneumococcal competence regulon plays an important role in adapting pneumococcus to the stressful lung environment. Among others, we report novel finding that the pneumococcal histidine triad (pht) family of genes participates in the adaptation to the lung environment and regulates pneumococcal competence induction.
Collapse
Affiliation(s)
- Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tauqeer Alam
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
6
|
Cheng YY, Zhou Z, Papadopoulos JM, Zuke JD, Falbel TG, Anantharaman K, Burton BM, Venturelli OS. Efficient plasmid transfer via natural competence in a microbial co-culture. Mol Syst Biol 2023; 19:e11406. [PMID: 36714980 PMCID: PMC9996237 DOI: 10.15252/msb.202211406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - James M Papadopoulos
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jason D Zuke
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA.,Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
7
|
Minhas V, Domenech A, Synefiaridou D, Straume D, Brendel M, Cebrero G, Liu X, Costa C, Baldry M, Sirard JC, Perez C, Gisch N, Hammerschmidt S, Håvarstein LS, Veening JW. Competence remodels the pneumococcal cell wall exposing key surface virulence factors that mediate increased host adherence. PLoS Biol 2023; 21:e3001990. [PMID: 36716340 PMCID: PMC9910801 DOI: 10.1371/journal.pbio.3001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/09/2023] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Competence development in the human pathogen Streptococcus pneumoniae controls several features such as genetic transformation, biofilm formation, and virulence. Competent bacteria produce so-called "fratricins" such as CbpD that kill noncompetent siblings by cleaving peptidoglycan (PGN). CbpD is a choline-binding protein (CBP) that binds to phosphorylcholine residues found on wall and lipoteichoic acids (WTA and LTA) that together with PGN are major constituents of the pneumococcal cell wall. Competent pneumococci are protected against fratricide by producing the immunity protein ComM. How competence and fratricide contribute to virulence is unknown. Here, using a genome-wide CRISPRi-seq screen, we show that genes involved in teichoic acid (TA) biosynthesis are essential during competence. We demonstrate that LytR is the major enzyme mediating the final step in WTA formation, and that, together with ComM, is essential for immunity against CbpD. Importantly, we show that key virulence factors PspA and PspC become more surface-exposed at midcell during competence, in a CbpD-dependent manner. Together, our work supports a model in which activation of competence is crucial for host adherence by increased surface exposure of its various CBPs.
Collapse
Affiliation(s)
- Vikrant Minhas
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Arnau Domenech
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Dimitra Synefiaridou
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Max Brendel
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Universität Greifswald, Greifswald, Germany
| | | | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland,Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Universität Greifswald, Greifswald, Germany
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway,* E-mail: (LSH); (J-WV)
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland,* E-mail: (LSH); (J-WV)
| |
Collapse
|
8
|
Aggarwal SD, Lees JA, Jacobs NT, Bee GCW, Abruzzo AR, Weiser JN. BlpC-mediated selfish program leads to rapid loss of Streptococcus pneumoniae clonal diversity during infection. Cell Host Microbe 2023; 31:124-134.e5. [PMID: 36395758 PMCID: PMC9839470 DOI: 10.1016/j.chom.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
Successful colonization of a host requires bacterial adaptation through genetic and population changes that are incompletely defined. Using chromosomal barcoding and high-throughput sequencing, we investigate the population dynamics of Streptococcus pneumoniae during infant mouse colonization. Within 1 day post inoculation, diversity was reduced >35-fold with expansion of a single clonal lineage. This loss of diversity was not due to immune factors, microbiota, or exclusive genetic drift. Rather, bacteriocins induced by the BlpC-quorum sensing pheromone resulted in predation of kin cells. In this intra-strain competition, the subpopulation reaching a quorum likely eliminates others that have yet to activate the blp locus. Additionally, this reduced diversity restricts the number of unique clones that establish colonization during transmission between hosts. Genetic variation in the blp locus was also associated with altered transmissibility in a human population, further underscoring the importance of BlpC in clonal selection and its role as a selfish element.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - John A Lees
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W12 7TA, UK
| | - Nathan T Jacobs
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gavyn Chern Wei Bee
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Annie R Abruzzo
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
9
|
Dhaked HPS, Biswas I. Distribution of two-component signal transduction systems BlpRH and ComDE across streptococcal species. Front Microbiol 2022; 13:960994. [PMID: 36353461 PMCID: PMC9638458 DOI: 10.3389/fmicb.2022.960994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2023] Open
Abstract
Two-component signal transduction (TCS) systems are important regulatory pathways in streptococci. A typical TCS encodes a membrane-anchored sensor kinase (SK) and a cytoplasmic response regulator (RR). Approximately, 20 different types of TCSs are encoded by various streptococci. Among them, two TCSs, in particular BlpRH and ComDE, are required for bacteriocins production and competence development. The SK component of these two TCSs is highly similar and belongs to the protein kinase-10 (HPK-10) subfamily. While these two TCSs are present in streptococci, no systematic studies have been done to differentiate between these two TCSs, and the existence of these pathways in several species of the genus Streptococcus is also unknown. The lack of information about these pathways misguided researchers for decades into believing that the Streptococcus mutans BlpRH system is a ComDE system. Here, we have attempted to distinguish between the BlpRH and ComDE systems based on the location of the chromosome, genomic arrangement, and conserved residues. Using the SyntTax and NCBI databases, we investigated the presence of both TCS systems in the genome of several streptococcal species. We noticed that the NCBI database did not have proper annotations for these pathways in several species, and many of them were wrongly annotated, such as CitS or DpiB instead of BlpH. Nevertheless, our critical analyses led us to classify streptococci into two groups: class A (only the BlpRH system) and class B (both the BlpRH and ComDE systems). Most of the streptococcal groups, including bovis, pyogenic, mutans, salivarius, and suis, encode only the BlpRH system. In contrast, only in the mitis and anginosus groups were both the TCS systems present. The focus of this review is to identify and differentiate between the BlpRH and ComDE systems, and discuss these two pathways in various streptococci.
Collapse
|
10
|
Lehtinen S, Croucher NJ, Blanquart F, Fraser C. Epidemiological dynamics of bacteriocin competition and antibiotic resistance. Proc Biol Sci 2022; 289:20221197. [PMID: 36196547 PMCID: PMC9532987 DOI: 10.1098/rspb.2022.1197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriocins, toxic peptides involved in the competition between bacterial strains, are extremely diverse. Previous work on bacteriocin dynamics has highlighted the role of non-transitive 'rock-paper-scissors' competition in maintaining the coexistence of different bacteriocin profiles. The focus to date has primarily been on bacteriocin interactions at the within-host scale (i.e. within a single bacterial population). Yet in species such as Streptococcus pneumoniae, with relatively short periods of colonization and limited within-host diversity, ecological outcomes are also shaped by processes at the epidemiological (between-host) scale. Here, we first investigate bacteriocin dynamics and diversity in epidemiological models. We find that in these models, bacteriocin diversity is more readily maintained than in within-host models, and with more possible combinations of coexisting bacteriocin profiles. Indeed, maintenance of diversity in epidemiological models does not require rock-paper-scissors dynamics; it can also occur through a competition-colonization trade-off. Second, we investigate the link between bacteriocin diversity and diversity at antibiotic resistance loci. Previous work has proposed that bacterial duration of colonization modulates the fitness of antibiotic resistance. Due to their inhibitory effects, bacteriocins are a plausible candidate for playing a role in the duration of colonization episodes. We extend the epidemiological model of bacteriocin dynamics to incorporate an antibiotic resistance locus and demonstrate that bacteriocin diversity can indeed maintain the coexistence of antibiotic-sensitive and -resistant strains.
Collapse
Affiliation(s)
- Sonja Lehtinen
- Department of Environmental System Science, Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Epidemiology, Imperial College London, London, UK
| | - François Blanquart
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Infection Antimicrobials Modelling Evolution, UMR, 1137, INSERM, Université de Paris, Paris, France
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Liang Z, Wu H, Bian C, Chen H, Shen Y, Gao X, Ma J, Yao H, Wang L, Wu Z. The antimicrobial systems of Streptococcus suis promote niche competition in pig tonsils. Virulence 2022; 13:781-793. [PMID: 35481413 PMCID: PMC9067509 DOI: 10.1080/21505594.2022.2069390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Streptococcus suis can cause severe infections in pigs and humans. The tonsils of pigs are major niches for S. suis, and different serotypes of S. suis can be found in the same tonsil. Pig tonsil colonization by S. suis is believed to be an important source of infection for humans and pigs. However, how S. suis competes for a stable tonsil niche is unknown. Here, we found that S. suis strain WUSS351, isolated from a healthy pig tonsil, is virulent and multidrug-resistant. The ABC transporter system SstFEG, conferring resistance to bacitracin, was reported to confer a competitive survival advantage in vivo. In addition, strain WUSS351 has several antimicrobial systems, including a novel type VII secretion system (T7SS), lantibiotic bacteriocin, and lactococcin972-like bacteriocin Lcn351. Bacterial competition experiments demonstrated T7SS-mediated cell contact-dependent antagonism of S. suis. Antibacterial activity analysis and 16S rRNA gene sequencing of the culture-independent and culture-dependent pig tonsillar microbiome revealed that Lcn351 mainly targets S. suis, one of the core microbiomes in pig tonsils. Taken together, our results revealed the mechanism of the stable persistence of S. suis in the tonsil niche, which might have important implications for S. suis epidemiology, potentially influencing strain prevalence and disease progression.
Collapse
Affiliation(s)
- Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Chen Bian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Hao Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Yanling Shen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Xueping Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China
| |
Collapse
|
12
|
Janoušková M, Straw ML, Su YC, Riesbeck K. Gene Expression Regulation in Airway Pathogens: Importance for Otitis Media. Front Cell Infect Microbiol 2022; 12:826018. [PMID: 35252035 PMCID: PMC8895709 DOI: 10.3389/fcimb.2022.826018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by viruses or bacteria associated with the airways. Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in infection-related OM, especially in younger children. In this review, we will focus upon the multifaceted gene regulation mechanisms that are well-orchestrated in S. pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the middle ear either in experimental OM or in clinical settings. The sophisticated findings from the past 10 years on how the othopathogens govern their virulence phenotypes for survival and host adaptation via phase variation- and quorum sensing-dependent gene regulation, will be systematically discussed. Comprehensive understanding of gene expression regulation mechanisms employed by pathogens during the onset of OM may provide new insights for the design of a new generation of antimicrobial agents in the fight against bacterial pathogens while combating the serious emergence of antimicrobial resistance.
Collapse
|
13
|
Valente C, Cruz AR, Henriques AO, Sá-Leão R. Intra-Species Interactions in Streptococcus pneumoniae Biofilms. Front Cell Infect Microbiol 2022; 11:803286. [PMID: 35071049 PMCID: PMC8767070 DOI: 10.3389/fcimb.2021.803286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a human pathogen responsible for high morbidity and mortality worldwide. Disease is incidental and is preceded by asymptomatic nasopharyngeal colonization in the form of biofilms. Simultaneous colonization by multiple pneumococcal strains is frequent but remains poorly characterized. Previous studies, using mostly laboratory strains, showed that pneumococcal strains can reciprocally affect each other's colonization ability. Here, we aimed at developing a strategy to investigate pneumococcal intra-species interactions occurring in biofilms. A 72h abiotic biofilm model mimicking long-term colonization was applied to study eight pneumococcal strains encompassing 6 capsular types and 7 multilocus sequence types. Strains were labeled with GFP or RFP, generating two fluorescent variants for each. Intra-species interactions were evaluated in dual-strain biofilms (1:1 ratio) using flow cytometry. Confocal microscopy was used to image representative biofilms. Twenty-eight dual-strain combinations were tested. Interactions of commensalism, competition, amensalism and neutralism were identified. The outcome of an interaction was independent of the capsular and sequence type of the strains involved. Confocal imaging of biofilms confirmed the positive, negative and neutral effects that pneumococci can exert on each other. In conclusion, we developed an experimental approach that successfully discriminates pneumococcal strains growing in mixed biofilms, which enables the identification of intra-species interactions. Several types of interactions occur among pneumococci. These observations are a starting point to study the mechanisms underlying those interactions.
Collapse
Affiliation(s)
- Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana R Cruz
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
14
|
Vogel V, Bauer R, Mauerer S, Schiffelholz N, Haupt C, Seibold GM, Fändrich M, Walther P, Spellerberg B. Angicin, a novel bacteriocin of Streptococcus anginosus. Sci Rep 2021; 11:24377. [PMID: 34934110 PMCID: PMC8692603 DOI: 10.1038/s41598-021-03797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
As a conserved defense mechanism, many bacteria produce antimicrobial peptides, called bacteriocins, which provide a colonization advantage in a multispecies environment. Here the first bacteriocin of Streptococcus anginosus, designated Angicin, is described. S. anginosus is commonly described as a commensal, however it also possesses a high pathogenic potential. Therefore, understanding factors contributing to its host colonization and persistence are important. A radial diffusion assay was used to identify S. anginosus BSU 1211 as a potent bacteriocin producer. By genetic mutagenesis the background of bacteriocin production and the bacteriocin gene itself were identified. Synthetic Angicin shows high activity against closely related streptococci, listeria and vancomycin resistant enterococci. It has a fast mechanism of action and causes a membrane disruption in target cells. Angicin, present in cell free supernatant, is insensitive to changes in temperature from - 70 to 90 °C and pH values from 2 to 10, suggesting that it represents an interesting compound for potential applications in food preservation or clinical settings.
Collapse
Affiliation(s)
- Verena Vogel
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
15
|
Vidal JE, Wier MN, A. Angulo-Zamudio U, McDevitt E, Jop Vidal AG, Alibayov B, Scasny A, Wong SM, Akerley BJ, McDaniel LS. Prophylactic Inhibition of Colonization by Streptococcus pneumoniae with the Secondary Bile Acid Metabolite Deoxycholic Acid. Infect Immun 2021; 89:e0046321. [PMID: 34543118 PMCID: PMC8594607 DOI: 10.1128/iai.00463-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.
Collapse
Affiliation(s)
- Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Meagan N. Wier
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Erin McDevitt
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sandy M. Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Brian J. Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
16
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
17
|
Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol 2021; 19:726-739. [PMID: 34075213 DOI: 10.1038/s41579-021-00569-w] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 02/05/2023]
Abstract
The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.
Collapse
Affiliation(s)
- Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.,Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Vogel V, Spellerberg B. Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens 2021; 10:pathogens10070867. [PMID: 34358017 PMCID: PMC8308785 DOI: 10.3390/pathogens10070867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Beta-hemolytic streptococci cause a variety of infectious diseases associated with high morbidity and mortality. A key factor for successful infection is host colonization, which can be difficult in a multispecies environment. Secreting bacteriocins can be beneficial during this process. Bacteriocins are small, ribosomally produced, antimicrobial peptides produced by bacteria to inhibit the growth of other, typically closely related, bacteria. In this systematic review, bacteriocin production and regulation of beta-hemolytic streptococci was surveyed. While Streptococcus pyogenes produces eight different bacteriocins (Streptococcin A-FF22/A-M49, Streptin, Salivaricin A, SpbMN, Blp1, Blp2, Streptococcin A-M57), only one bacteriocin of Streptococcus agalactiae (Agalacticin = Nisin P) and one of Streptococcus dysgalactiae subsp. equisimilis (Dysgalacticin) has been described. Expression of class I bacteriocins is regulated by a two-component system, typically with autoinduction by the bacteriocin itself. In contrast, a separate quorum sensing system regulates expression of class II bacteriocins. Both identified class III bacteriocins are plasmid-encoded and regulation has not been elucidated.
Collapse
|
19
|
Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nat Commun 2021; 12:3457. [PMID: 34103505 PMCID: PMC8187645 DOI: 10.1038/s41467-021-23685-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low relatedness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with activation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context.
Collapse
|
20
|
García-Curiel L, Del Rocío López-Cuellar M, Rodríguez-Hernández AI, Chavarría-Hernández N. Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World J Microbiol Biotechnol 2021; 37:15. [PMID: 33394178 DOI: 10.1007/s11274-020-02973-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
Microorganisms have developed quorum sensing (QS) systems to detect small signaling molecules that help to control access to additional nutrients and space in highly competitive polymicrobial niches. Many bacterial processes are QS-regulated; two examples are the highly related traits of the natural genetic competence state and the production of antimicrobial peptides such as bacteriocins. The Streptococcus genus is widely studied for its competence and for its ability to produce bacteriocins, as these antimicrobial peptides have significant potential in the treatment of infections caused by multiple-resistant pathogens, a severe public health issue. The transduction of a two-component system controls competence in streptococci: (1) ComD/E, which controls the competence in the Mitis and Anginosus groups, and (2) ComR/S, which performs the same function in the Bovis, Mutans, Salivarius, and Pyogenic groups. The cell-to-cell communication required for bacteriocin production in the Streptococcus groups is controlled mainly by a paralog of the ComD/E system. The relationships between pheromone signals and induction pathways are related to the bacteriocin production systems. In this review, we discuss the recent advances in the understanding of signaling and the induction of bacteriocin biosynthesis by QS regulation in streptococci. This information could aid in the design of better methods for the development and production of these antimicrobial peptides. It could also contribute to the analysis and emerging applications of bacteriocins in terms of their safety, quality, and human health benefits.
Collapse
Affiliation(s)
- Laura García-Curiel
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México.
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| |
Collapse
|
21
|
The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. J Bacteriol 2020; 203:JB.00348-20. [PMID: 32839175 DOI: 10.1128/jb.00348-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria respond to changes in environmental conditions through adaptation to external cues. Frequently, bacteria employ nucleotide signaling molecules to mediate a specific, rapid response. Cyclic di-AMP (c-di-AMP) was recently discovered to be a bacterial second messenger that is essential for viability in many species. In this review, we highlight recent work that has described the roles of c-di-AMP in bacterial responses to various stress conditions. These studies show that depending on the lifestyle and environmental niche of the bacterial species, the c-di-AMP signaling network results in diverse outcomes, such as regulating osmolyte transport, controlling plant attachment, or providing a checkpoint for spore formation. c-di-AMP achieves this signaling specificity through expression of different classes of synthesis and catabolic enzymes as well as receptor proteins and RNAs, which will be summarized.
Collapse
|
22
|
Abstract
Prophages are nearly ubiquitous in bacterial species. These integrated phage elements have previously been implicated in horizontal gene transfer (HGT) largely through their ability to carry out transduction (generalized or specialized). Here, we show that prophage-encoded viral particles promote neighbor predation leading to enhanced HGT by natural transformation in the waterborne pathogen Vibrio cholerae. Our findings contribute to a comprehensive understanding of the dynamic forces involved in prophage maintenance which ultimately drive the evolution of naturally competent bacteria in their natural environment. Natural transformation is a broadly conserved mechanism of horizontal gene transfer (HGT) in bacteria that can shape their evolution through the acquisition of genes that promote virulence, antibiotic resistance, and other traits. Recent work has established that neighbor predation via type VI secretion systems, bacteriocins, and virulent phages plays an important role in promoting HGT. Here, we demonstrate that in chitin estuary microcosms, Vibrio cholerae K139 lysogens exhibit prophage-dependent neighbor predation of nonlysogens to enhance HGT. Through predation of nonlysogens, K139 lysogens also have a fitness advantage under these microcosm conditions. The ecological strategy revealed by our work provides a better understanding of the evolutionary mechanisms used by bacteria to adapt in their natural setting and contributes to our understanding of the selective pressures that may drive prophage maintenance in bacterial genomes. IMPORTANCE Prophages are nearly ubiquitous in bacterial species. These integrated phage elements have previously been implicated in horizontal gene transfer (HGT) largely through their ability to carry out transduction (generalized or specialized). Here, we show that prophage-encoded viral particles promote neighbor predation leading to enhanced HGT by natural transformation in the waterborne pathogen Vibrio cholerae. Our findings contribute to a comprehensive understanding of the dynamic forces involved in prophage maintenance which ultimately drive the evolution of naturally competent bacteria in their natural environment.
Collapse
|
23
|
Abstract
Gram-positive bacteria employ an array of secreted peptides to control population-level behaviors in response to environmental cues. We review mechanistic and functional features of secreted peptides produced by the human pathogen Streptococcus pneumoniae. We discuss sequence features, mechanisms of transport, and receptors for 3 major categories of small peptides: the double-glycine peptides, the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP)-binding peptides, and the lanthionine-containing peptides. We highlight the impact of factors that contribute to carriage and pathogenesis, specifically genetic diversity, microbial competition, biofilm development, and environmental adaptation. A recent expansion in pneumococcal peptide studies reveals a complex network of interacting signaling systems where multiple peptides are integrated into the same signaling pathway, allowing multiple points of entry into the pathway and extending information content in new directions. In addition, since peptides are present in the extracellular milieu, there are opportunities for crosstalk, quorum sensing (QS), as well as intra- and interstrain and species interactions. Knowledge on the manner that population-level behaviors contribute to disease provides an avenue for the design and development of anti-infective strategies.
Collapse
|
24
|
Molecular dissection of pheromone selectivity in the competence signaling system ComRS of streptococci. Proc Natl Acad Sci U S A 2020; 117:7745-7754. [PMID: 32198205 DOI: 10.1073/pnas.1916085117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Competence allows bacteria to internalize exogenous DNA fragments for the acquisition of new phenotypes such as antibiotic resistance or virulence traits. In most streptococci, competence is regulated by ComRS signaling, a system based on the mature ComS pheromone (XIP), which is internalized to activate the (R)RNPP-type ComR sensor by triggering dimerization and DNA binding. Cross-talk analyses demonstrated major differences of selectivity between ComRS systems and raised questions concerning the mechanism of pheromone-sensor recognition and coevolution. Here, we decipher the molecular determinants of selectivity of the closely related ComRS systems from Streptococcus thermophilus and Streptococcus vestibularis Despite high similarity, we show that the divergence in ComR-XIP interaction does not allow reciprocal activation. We perform the structural analysis of the ComRS system from S. vestibularis. Comparison with its ortholog from S. thermophilus reveals an activation mechanism based on a toggle switch involving the recruitment of a key loop by the XIP C terminus. Together with a broad mutational analysis, we identify essential residues directly involved in peptide binding. Notably, we generate a ComR mutant that displays a fully reversed selectivity toward the heterologous pheromone with only five point mutations, as well as other ComR variants featuring XIP bispecificity and/or neofunctionalization for hybrid XIP peptides. We also reveal that a single XIP mutation relaxes the strictness of ComR activation, suggesting fast adaptability of molecular communication phenotypes. Overall, this study is paving the way toward the rational design or directed evolution of artificial ComRS systems for a range of biotechnological and biomedical applications.
Collapse
|
25
|
Banerji R, Kanojiya P, Saroj SD. Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Crit Rev Microbiol 2020; 46:136-146. [DOI: 10.1080/1040841x.2020.1735991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
26
|
Wang CY, Medlin JS, Nguyen DR, Disbennett WM, Dawid S. Molecular Determinants of Substrate Selectivity of a Pneumococcal Rgg-Regulated Peptidase-Containing ABC Transporter. mBio 2020; 11:e02502-19. [PMID: 32047125 PMCID: PMC7018657 DOI: 10.1128/mbio.02502-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/31/2023] Open
Abstract
Peptidase-containing ABC transporters (PCATs) are a widely distributed family of transporters which secrete double-glycine (GG) peptides. In the opportunistic pathogen Streptococcus pneumoniae (pneumococcus), the PCATs ComAB and BlpAB have been shown to secrete quorum-sensing pheromones and bacteriocins related to the competence and pneumocin pathways. Here, we describe another pneumococcal PCAT, RtgAB, encoded by the rtg locus and found intact in 17% of strains. The Rgg/SHP-like quorum-sensing system RtgR/S, which uses a peptide pheromone with a distinctive Trp-X-Trp motif, regulates expression of the rtg locus and provides a competitive fitness advantage in a mouse model of nasopharyngeal colonization. RtgAB secretes a set of coregulated rtg GG peptides. ComAB and BlpAB, which share a substrate pool, do not secrete the rtg GG peptides. Similarly, RtgAB does not efficiently secrete ComAB/BlpAB substrates. We examined the molecular determinants of substrate selectivity between ComAB, BlpAB, and RtgAB and found that the GG peptide signal sequences contain all the information necessary to direct secretion through specific transporters. Secretion through ComAB and BlpAB depends largely on the identity of four conserved hydrophobic signal sequence residues previously implicated in substrate recognition by PCATs. In contrast, a motif situated at the N-terminal end of the signal sequence, found only in rtg GG peptides, directs secretion through RtgAB. These findings illustrate the complexity in predicting substrate-PCAT pairings by demonstrating specificity that is not dictated solely by signal sequence residues previously implicated in substrate recognition.IMPORTANCE The export of peptides from the cell is a fundamental process carried out by all bacteria. One method of bacterial peptide export relies on a family of transporters called peptidase-containing ABC transporters (PCATs). PCATs export so-called GG peptides which carry out diverse functions, including cell-to-cell communication and interbacterial competition. In this work, we describe a PCAT-encoding genetic locus, rtg, in the pathogen Streptococcus pneumoniae (pneumococcus). The rtg locus is linked to increased competitive fitness advantage in a mouse model of nasopharyngeal colonization. We also describe how the rtg PCAT preferentially secretes a set of coregulated GG peptides but not GG peptides secreted by other pneumococcal PCATs. These findings illuminate a relatively understudied part of PCAT biology: how these transporters discriminate between different subsets of GG peptides. Ultimately, expanding our knowledge of PCATs will advance our understanding of the many microbial processes dependent on these transporters.
Collapse
Affiliation(s)
- Charles Y Wang
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer S Medlin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Don R Nguyen
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Suzanne Dawid
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Zarrella TM, Yang J, Metzger DW, Bai G. Bacterial Second Messenger Cyclic di-AMP Modulates the Competence State in Streptococcus pneumoniae. J Bacteriol 2020; 202:e00691-19. [PMID: 31767779 PMCID: PMC6989799 DOI: 10.1128/jb.00691-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a naturally competent organism that causes diseases such as pneumonia, otitis media, and bacteremia. The essential bacterial second messenger cyclic di-AMP (c-di-AMP) is an emerging player in the stress responses of many pathogens. In S. pneumoniae, c-di-AMP is produced by a diadenylate cyclase, CdaA, and cleaved by phosphodiesterases Pde1 and Pde2. c-di-AMP binds a transporter of K+ (Trk) family protein, CabP, which subsequently halts K+ uptake via the transporter TrkH. Recently, it was reported that Pde1 and Pde2 are essential for pneumococcal virulence in mouse models of disease. To elucidate c-di-AMP-mediated transcription that may lead to changes in pathogenesis, we compared the transcriptomes of wild-type (WT) and Δpde1 Δpde2 strains by transcriptome sequencing (RNA-Seq) analysis. Notably, we found that many competence-associated genes are significantly upregulated in the Δpde1 Δpde2 strain compared to the WT. These genes play a role in DNA uptake, recombination, and autolysis. Competence is induced by a quorum-sensing mechanism initiated by the secreted factor competence-stimulating peptide (CSP). Surprisingly, the Δpde1 Δpde2 strain exhibited reduced transformation efficiency compared to WT bacteria, which was c-di-AMP dependent. Transformation efficiency was also directly related to the [K+] in the medium, suggesting a link between c-di-AMP function and the pneumococcal competence state. We found that a strain that possesses a V76G variation in CdaA produced less c-di-AMP and was highly susceptible to CSP. Deletion of cabP and trkH restored the growth of these bacteria in medium with CSP. Overall, our study demonstrates a novel role for c-di-AMP in the competence program of S. pneumoniaeIMPORTANCE Genetic competence in bacteria leads to horizontal gene transfer, which can ultimately affect antibiotic resistance, adaptation to stress conditions, and virulence. While the mechanisms of pneumococcal competence signaling cascades have been well characterized, the molecular mechanism behind competence regulation is not fully understood. The bacterial second messenger c-di-AMP has previously been shown to play a role in bacterial physiology and pathogenesis. In this study, we provide compelling evidence for the interplay between c-di-AMP and the pneumococcal competence state. These findings not only attribute a new biological function to this dinucleotide as a regulator of competence, transformation, and survival under stress conditions in pneumococci but also provide new insights into how pneumococcal competence is modulated.
Collapse
Affiliation(s)
- Tiffany M Zarrella
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Jun Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
28
|
Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology. J Biol Chem 2020; 295:34-54. [PMID: 31784450 PMCID: PMC6952617 DOI: 10.1074/jbc.rev119.006545] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ribosomally synthesized and posttranslationally modified peptides (RiPPs), also called ribosomal peptide natural products (RPNPs), form a growing superfamily of natural products that are produced by many different organisms and particularly by bacteria. They are derived from precursor polypeptides whose modification by various dedicated enzymes helps to establish a vast array of chemical motifs. RiPPs have attracted much interest as a source of potential therapeutic agents, and in particular as alternatives to conventional antibiotics to address the bacterial resistance crisis. However, their ecological roles in nature are poorly understood and explored. The present review describes major RiPP actors in competition within microbial communities, the main ecological and physiological functions currently evidenced for RiPPs, and the microbial ecosystems that are the sites for these functions. We envision that the study of RiPPs may lead to discoveries of new biological functions and highlight that a better knowledge of how bacterial RiPPs mediate inter-/intraspecies and interkingdom interactions will hold promise for devising alternative strategies in antibiotic development.
Collapse
Affiliation(s)
- Yanyan Li
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), CNRS, CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
29
|
Sánchez Ramón S, Manzanares M, Candelas G. MUCOSAL anti-infections vaccines: Beyond conventional vaccines. REUMATOLOGIA CLINICA 2020; 16:49-55. [PMID: 30527360 DOI: 10.1016/j.reuma.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
Abstract
An urgent search is currently underway for alternatives to antibiotics to prevent infections, due to the accelerated evolution and increase in antibiotic resistance. This problem is more serious for patients with recurrent infections, since they have to use many cycles of antibiotics per year, so the risk for antibiotic resistance is higher and can be life-threatening. In recent years, the use of prophylactic vaccines via the mucosal route for these patients with recurrent infections has been demonstrated as a potentially beneficial and safe alternative to prevent infections. The new knowledge about mucosal immunity and trained immunity, a form of innate immunity memory that can enhance the response to different infectious threads, has made it easier to extend its use. The application of the new concepts of trained immunity may explain the simultaneous pro-tolerogenic and boosting effect or effects of these drugs on diverse immune cells for different infections. In this review, we describe the immunomodulatory mechanisms of mucosal polybacterial vaccines and their connection with trained immunity and its utility in the prevention of recurrent infections in immunosuppressed patients.
Collapse
Affiliation(s)
| | - Mario Manzanares
- Servicio de Inmunología, Hospital Clínico San Carlos, Madrid, España
| | - Gloria Candelas
- Servicio de Reumatología, Hospital Clínico San Carlos, Madrid, España.
| |
Collapse
|
30
|
Domenech A, Slager J, Veening JW. Antibiotic-Induced Cell Chaining Triggers Pneumococcal Competence by Reshaping Quorum Sensing to Autocrine-Like Signaling. Cell Rep 2019; 25:2390-2400.e3. [PMID: 30485808 PMCID: PMC6289044 DOI: 10.1016/j.celrep.2018.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/22/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae can acquire antibiotic resistance by activation of competence and subsequent DNA uptake. Here, we demonstrate that aztreonam (ATM) and clavulanic acid (CLA) promote competence. We show that both compounds induce cell chain formation by targeting the d,d-carboxypeptidase PBP3. In support of the hypothesis that chain formation promotes competence, we demonstrate that an autolysin mutant (ΔlytB) is hypercompetent. Since competence is initiated by the binding of a small extracellular peptide (CSP) to a membrane-anchored receptor (ComD), we wondered whether chain formation alters CSP diffusion kinetics. Indeed, ATM or CLA presence affects competence synchronization by shifting from global to local quorum sensing, as CSP is primarily retained to chained cells, rather than shared in a common pool. Importantly, autocrine-like signaling prolongs the time window in which the population is able to take up DNA. Together, these insights demonstrate the versatility of quorum sensing and highlight the importance of an accurate antibiotic prescription. Identification of a mechanism by which antibiotics induce competence in S. pneumoniae Antibiotics targeting penicillin-binding protein 3 promote chain formation Cell chains retain, rather than diffuse, the quorum-sensing peptide CSP Chaining populations feature a longer competence and transformation time window
Collapse
Affiliation(s)
- Arnau Domenech
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
31
|
Abstract
Transformation is a widespread mechanism of horizontal gene transfer in bacteria. DNA uptake to the periplasmic compartment requires a DNA-uptake pilus and the DNA-binding protein ComEA. In the gram-negative bacteria, DNA is first pulled toward the outer membrane by retraction of the pilus and then taken up by binding to periplasmic ComEA, acting as a Brownian ratchet to prevent backward diffusion. A similar mechanism probably operates in the gram-positive bacteria as well, but these systems have been less well characterized. Transport, defined as movement of a single strand of transforming DNA to the cytosol, requires the channel protein ComEC. Although less is understood about this process, it may be driven by proton symport. In this review we also describe various phenomena that are coordinated with the expression of competence for transformation, such as fratricide, the kin-discriminatory killing of neighboring cells, and competence-mediated growth arrest.
Collapse
Affiliation(s)
- David Dubnau
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA;
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Harnessing the Potential of Killers and Altruists within the Microbial Community: A Possible Alternative to Antibiotic Therapy? Antibiotics (Basel) 2019; 8:antibiotics8040230. [PMID: 31766366 PMCID: PMC6963621 DOI: 10.3390/antibiotics8040230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022] Open
Abstract
In the context of a post-antibiotic era, the phenomenon of microbial allolysis, which is defined as the partial killing of bacterial population induced by other cells of the same species, may take on greater significance. This phenomenon was revealed in some bacterial species such as Streptococcus pneumoniae and Bacillus subtilis, and has been suspected to occur in some other species or genera, such as enterococci. The mechanisms of this phenomenon, as well as its role in the life of microbial populations still form part of ongoing research. Herein, we describe recent developments in allolysis in the context of its practical benefits as a form of cell death that may give rise to developing new strategies for manipulating the life and death of bacterial communities. We highlight how such findings may be viewed with importance and potential within the fields of medicine, biotechnology, and pharmacology.
Collapse
|
33
|
Dual RNA-seq in Streptococcus pneumoniae Infection Reveals Compartmentalized Neutrophil Responses in Lung and Pleural Space. mSystems 2019; 4:4/4/e00216-19. [PMID: 31409659 PMCID: PMC6697439 DOI: 10.1128/msystems.00216-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space. Streptococcus pneumoniae is the dominant cause of community-acquired pneumonia worldwide. Invasion of the pleural space is common and results in increased mortality. We set out to determine the bacterial and host factors that influence invasion of the pleural space. In a murine model of pneumococcal infection, we isolated neutrophil-dominated samples of bronchoalveolar and pleural fluid containing bacteria 48 hours after infection. Using dual RNA sequencing (RNA-seq), we characterized bacterial and host transcripts that were differentially regulated between these compartments and bacteria in broth and resting neutrophils, respectively. Pleural and lung samples showed upregulation of genes involved in the positive regulation of neutrophil extravasation but downregulation of genes mediating bacterial killing. Compared to the lung samples, cells within the pleural space showed marked upregulation of many genes induced by type I interferons, which are cytokines implicated in preventing bacterial transmigration across epithelial barriers. Differences in the bacterial transcripts between the infected samples and bacteria grown in broth showed the upregulation of genes in the bacteriocin locus, the pneumococcal surface adhesin PsaA, and the glycopeptide resistance gene vanZ; the gene encoding the ClpP protease was downregulated in infection. One hundred sixty-nine intergenic putative small bacterial RNAs were also identified, of which 43 (25.4%) small RNAs had been previously described. Forty-two of the small RNAs were upregulated in pleura compared to broth, including many previously identified as being important in virulence. Our results have identified key host and bacterial responses to invasion of the pleural space that can be potentially exploited to develop alternative antimicrobial strategies for the prevention and treatment of pneumococcal pleural disease. IMPORTANCE The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space.
Collapse
|
34
|
Refining the Pneumococcal Competence Regulon by RNA Sequencing. J Bacteriol 2019; 201:JB.00780-18. [PMID: 30885934 PMCID: PMC6560143 DOI: 10.1128/jb.00780-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen responsible for over a million deaths every year. Although both vaccination programs and antibiotic therapies have been effective in prevention and treatment of pneumococcal infections, respectively, the sustainability of these solutions is uncertain. The pneumococcal genome is highly flexible, leading to vaccine escape and antibiotic resistance. This flexibility is predominantly facilitated by competence, a state allowing the cell to take up and integrate exogenous DNA. Thus, it is essential to obtain a detailed overview of gene expression during competence. This is stressed by the fact that administration of several classes of antibiotics can lead to competence. Previous studies on the competence regulon were performed with microarray technology and were limited to an incomplete set of known genes. Using RNA sequencing combined with an up-to-date genome annotation, we provide an updated overview of competence-regulated genes. Competence for genetic transformation allows the opportunistic human pathogen Streptococcus pneumoniae to take up exogenous DNA for incorporation into its own genome. This ability may account for the extraordinary genomic plasticity of this bacterium, leading to antigenic variation, vaccine escape, and the spread of antibiotic resistance. The competence system has been thoroughly studied, and its regulation is well understood. Additionally, over the last decade, several stress factors have been shown to trigger the competent state, leading to the activation of several stress response regulons. The arrival of next-generation sequencing techniques allowed us to update the competence regulon, the latest report on which still depended on DNA microarray technology. Enabled by the availability of an up-to-date genome annotation, including transcript boundaries, we assayed time-dependent expression of all annotated features in response to competence induction, were able to identify the affected promoters, and produced a more complete overview of the various regulons activated during the competence state. We show that 4% of all annotated genes are under direct control of competence regulators ComE and ComX, while the expression of a total of up to 17% of all genes is affected, either directly or indirectly. Among the affected genes are various small RNAs with an as-yet-unknown function. Besides the ComE and ComX regulons, we were also able to refine the CiaR, VraR (LiaR), and BlpR regulons, underlining the strength of combining transcriptome sequencing (RNA-seq) with a well-annotated genome. IMPORTANCEStreptococcus pneumoniae is an opportunistic human pathogen responsible for over a million deaths every year. Although both vaccination programs and antibiotic therapies have been effective in prevention and treatment of pneumococcal infections, respectively, the sustainability of these solutions is uncertain. The pneumococcal genome is highly flexible, leading to vaccine escape and antibiotic resistance. This flexibility is predominantly facilitated by competence, a state allowing the cell to take up and integrate exogenous DNA. Thus, it is essential to obtain a detailed overview of gene expression during competence. This is stressed by the fact that administration of several classes of antibiotics can lead to competence. Previous studies on the competence regulon were performed with microarray technology and were limited to an incomplete set of known genes. Using RNA sequencing combined with an up-to-date genome annotation, we provide an updated overview of competence-regulated genes.
Collapse
|
35
|
Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J, Coenye T, Hols P. Circuitry Rewiring Directly Couples Competence to Predation in the Gut Dweller Streptococcus salivarius. Cell Rep 2019; 22:1627-1638. [PMID: 29444418 DOI: 10.1016/j.celrep.2018.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Small distortions in transcriptional networks might lead to drastic phenotypical changes, especially in cellular developmental programs such as competence for natural transformation. Here, we report a pervasive circuitry rewiring for competence and predation interplay in commensal streptococci. Canonically, in streptococci paradigms such as Streptococcus pneumoniae and Streptococcus mutans, the pheromone-based two-component system BlpRH is a central node that orchestrates the production of antimicrobial compounds (bacteriocins) and incorporates signal from the competence activation cascade. However, the human commensal Streptococcus salivarius does not contain a functional BlpRH pair, while the competence signaling system ComRS directly couples bacteriocin production and competence commitment. This network shortcut might underlie an optimal adaptation against microbial competitors and explain the high prevalence of S. salivarius in the human digestive tract. Moreover, the broad spectrum of bacteriocin activity against pathogenic bacteria showcases the commensal and genetically tractable S. salivarius species as a user-friendly model for competence and bacterial predation.
Collapse
Affiliation(s)
- Johann Mignolet
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Laetitia Fontaine
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Pascal Hols
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
36
|
Wang X, Cai J, Shang N, Zhu L, Shao N, Dong X, Tong H. The carbon catabolite repressor CcpA mediates optimal competence development in Streptococcus oligofermentans through post-transcriptional regulation. Mol Microbiol 2019; 112:552-568. [PMID: 31074889 DOI: 10.1111/mmi.14274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
Natural transformation increases the genetic diversity of bacteria, but is costly and must be strictly controlled. We previously found that deletion of ccpA, a key regulator of carbon catabolite repression (CCR), reduced transformation efficiency of Streptococcus oligofermentans, the current work further investigated the regulatory mechanisms of CcpA. The competence operon comCDE is subjected to basal and autoregulatory transcription. A luciferase reporter detected a transcriptional readthrough (TRT) from the upstream tRNAArg into the comCDE operon, which was induced by L -arginine. Insertion of the Escherichia coli T1T2 terminator downstream of tRNAArg abolished TRT, and reduced the basal comCDE transcription by 77% and also the transformation efficiency. Deletion of ccpA increased tRNAArg TRT and tRNAArg -comCDE polycistronic transcript by twofold. An in vitro transcription assay determined that CcpA promoted the transcription termination of tRNAArg TRT, and RNA EMSA and SPR assays detected equal binding affinity of CcpA to both the RNA and DNA of tRNAArg . These results indicate that CcpA controls the basal comCDE transcription by post-transcriptional actions. Overexpression of comDE or its phospho-mimicking mutant comDED58E reduced transformation efficiency, indicating that excessive ComE impairs competence development. CCR-regulated competence was further confirmed by higher tRNAArg TRT but lower transformation efficiency in galactose than in glucose.
Collapse
Affiliation(s)
- Xinhui Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jun Cai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Nan Shang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Lin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Nana Shao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Huichun Tong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
37
|
Wholey WY, Abu-Khdeir M, Yu EA, Siddiqui S, Esimai O, Dawid S. Characterization of the Competitive Pneumocin Peptides of Streptococcus pneumoniae. Front Cell Infect Microbiol 2019; 9:55. [PMID: 30915281 PMCID: PMC6422914 DOI: 10.3389/fcimb.2019.00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
In the polymicrobial environment of the human nasopharynx, Streptococcus pneumoniae (pneumococcus) competes with other members of the microbial community for limited nutrients in part by secreting small peptide bacteriocins called pneumocins. Pneumocin production is controlled by a quorum sensing system encoded by the blp locus. Although the locus is found in all pneumococci, there is significant variability in the repertoire of pneumocins and associated immunity proteins encoded in the Bacteriocin Immunity Region (BIR) and in the presence or absence of a functional Blp transporter. Strains without an active Blp transporter are inactive in plate overlay assays and rely on a homologous transporter that is only produced during brief periods of competence to stimulate the blp locus and secrete pneumocins. The variability of the locus suggests that selective pressure is influencing the content to promote the optimal competitive environment. Much of the variability in the blp locus has been described at the genome level; the phenotypic activity attributable to the various BIR genes has not been fully described. To examine the role of the predicted pneumocin peptides in competition, 454 isolates were screened for competence independent blp pheromone secretion using plate assays. Active strains were characterized for inhibition, BIR content, BlpC pherotype and serotype. Deletion analysis on inhibitory strains demonstrated that BlpI and BlpJ peptides function as a two-peptide bacteriocin and that BlpIJ immunity is encoded by the co-transcribed blpU4/5 genes. BlpIJ secretion promotes inhibitory activity against the majority of pneumococcal isolates when expressed in a Blp transporter intact background. Intermediate levels of competition in biofilms were noted when BlpIJ containing strains carried the non-functional Blp transporter. Based on genome data, the combination of BlpIJ in a Blp transporter intact strain is surprisingly rare, despite clear advantages during colonization and biofilm growth. In contrast, we show that the blpK/pncF operon encoding the single-peptide pneumocin BlpK and its immunity protein is found in the majority of isolates. Unlike, BlpIJ and BlpK were shown to promote a limited spectrum of inhibition due in part to immunity that is independent of activation of the blp locus.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maha Abu-Khdeir
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Emily A Yu
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Saher Siddiqui
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ogenna Esimai
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Suzanne Dawid
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
38
|
Shen P, Lees JA, Bee GCW, Brown SP, Weiser JN. Pneumococcal quorum sensing drives an asymmetric owner-intruder competitive strategy during carriage via the competence regulon. Nat Microbiol 2018; 4:198-208. [PMID: 30546100 DOI: 10.1038/s41564-018-0314-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022]
Abstract
Competition among microorganisms is a key determinant of successful host colonization and persistence. For Streptococcus pneumoniae, lower than predicted rates of co-colonizing strains suggest a competitive advantage for resident bacteria over newcomers. In light of evolutionary theory, we hypothesized that S. pneumoniae use owner-intruder asymmetries to settle contests, leading to the disproportionate success of the initial resident 'owner', regardless of the genetic identity of the 'intruder'. We investigated the determinants of within-host competitive success utilizing S. pneumoniae colonization of the upper respiratory tract of infant mice. Within 6 h, colonization by the resident inhibited colonization by an isogenic challenger. The competitive advantage of the resident was dependent on quorum sensing via the competence (Com) regulon and downstream choline binding protein D (CbpD) and on the competence-induced bacteriocins A and B (CibAB) implicated in fratricide. CbpD and CibAB are highly conserved across pneumococcal lineages, indicating evolutionary advantages for asymmetric competitive strategies within the species. Mathematical modelling supported a significant role for quorum sensing via the Com regulon in competition, even for strains with different competitive advantages. Our study suggests that asymmetric owner-intruder competitive strategies do not require complex cognition and are used by a major human pathogen to determine 'ownership' of human hosts.
Collapse
Affiliation(s)
- Pamela Shen
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - John A Lees
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
39
|
García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science 2018; 361:361/6408/eaat2456. [PMID: 30237322 DOI: 10.1126/science.aat2456] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Antagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts. These systems play key roles in ecosystem defense, pathogen invasion, spatial segregation, and diversity but also confer indirect gains to the aggressor from products released by killed cells. Investigations into antagonistic bacterial interactions are important for our understanding of how the microbiota establish within hosts, influence health and disease, and offer insights into potential translational applications.
Collapse
Affiliation(s)
- Leonor García-Bayona
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Function of BriC peptide in the pneumococcal competence and virulence portfolio. PLoS Pathog 2018; 14:e1007328. [PMID: 30308062 PMCID: PMC6181422 DOI: 10.1371/journal.ppat.1007328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that causes otitis media, sinusitis, pneumonia, meningitis and sepsis. The progression to this pathogenic lifestyle is preceded by asymptomatic colonization of the nasopharynx. This colonization is associated with biofilm formation; the competence pathway influences the structure and stability of biofilms. However, the molecules that link the competence pathway to biofilm formation are unknown. Here, we describe a new competence-induced gene, called briC, and demonstrate that its product promotes biofilm development and stimulates colonization in a murine model. We show that expression of briC is induced by the master regulator of competence, ComE. Whereas briC does not substantially influence early biofilm development on abiotic surfaces, it significantly impacts later stages of biofilm development. Specifically, briC expression leads to increases in biofilm biomass and thickness at 72h. Consistent with the role of biofilms in colonization, briC promotes nasopharyngeal colonization in the murine model. The function of BriC appears to be conserved across pneumococci, as comparative genomics reveal that briC is widespread across isolates. Surprisingly, many isolates, including strains from clinically important PMEN1 and PMEN14 lineages, which are widely associated with colonization, encode a long briC promoter. This long form captures an instance of genomic plasticity and functions as a competence-independent expression enhancer that may serve as a precocious point of entry into this otherwise competence-regulated pathway. Moreover, overexpression of briC by the long promoter fully rescues the comE-deletion induced biofilm defect in vitro, and partially in vivo. These findings indicate that BriC may bypass the influence of competence in biofilm development and that such a pathway may be active in a subset of pneumococcal lineages. In conclusion, BriC is a part of the complex molecular network that connects signaling of the competence pathway to biofilm development and colonization. Pneumococcal biofilms occur in chronic otitis media, chronic rhinosinusitis, and nasopharyngeal colonization. These biofilms are an important component of pneumococcal epidemiology, particularly in influencing transmission, maintenance of asymptomatic colonization, and development of disease. The transcriptional program initiated via signaling of the competence pathway is critical for productive biofilm formation and is a strong contributor of pneumococcal infection and adaptation. In this study, we have identified BriC, a previously uncharacterized peptide that serves as a bridge between the competence pathway and biofilm development. We show that briC is induced by ComE, the master regulator of competence, and promotes biofilm development. Moreover, our studies in the murine model demonstrate that BriC is a novel colonization enhancer. Our studies of briC regulation capture an instance of genomic plasticity, where natural variation in the briC promoter sequence reveals the existence of an additional competence-independent regulatory unit. This natural variation may be able to modify the extent to which competence contributes to biofilm development and to nasopharyngeal colonization across different pneumococcal lineages. In summary, this study introduces a colonization factor and reveals a molecular link between competence and biofilm development.
Collapse
|
41
|
Hertzog BB, Kaufman Y, Biswas D, Ravins M, Ambalavanan P, Wiener R, Angeli V, Chen SL, Hanski E. A Sub-population of Group A Streptococcus Elicits a Population-wide Production of Bacteriocins to Establish Dominance in the Host. Cell Host Microbe 2018; 23:312-323.e6. [PMID: 29544095 DOI: 10.1016/j.chom.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/26/2017] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Bacteria use quorum sensing (QS) to regulate gene expression. We identified a group A Streptococcus (GAS) strain possessing the QS system sil, which produces functional bacteriocins, through a sequential signaling pathway integrating host and bacterial signals. Host cells infected by GAS release asparagine (ASN), which is sensed by the bacteria to alter its gene expression and rate of proliferation. We show that upon ASN sensing, GAS upregulates expression of the QS autoinducer peptide SilCR. Initial SilCR expression activates the autoinduction cycle for further SilCR production. The autoinduction process propagates throughout the GAS population, resulting in bacteriocin production. Subcutaneous co-injection of mice with a bacteriocin-producing strain and the globally disseminated M1T1 GAS clone results in M1T1 killing within soft tissue. Thus, by sensing host signals, a fraction of a bacterial population can trigger an autoinduction mechanism mediated by QS, which acts on the entire bacterial community to outcompete other bacteria within the infection.
Collapse
Affiliation(s)
- Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Yael Kaufman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Debabrata Biswas
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Poornima Ambalavanan
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Veronique Angeli
- Department of Microbiology and Immunology, National University of Singapore; LSI Immunology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and Infectious Diseases Group, Genome Institute of Singapore, Singapore 119074, Singapore
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel; NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore.
| |
Collapse
|
42
|
Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int J Med Microbiol 2018; 308:722-737. [DOI: 10.1016/j.ijmm.2017.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
|
43
|
Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME JOURNAL 2018; 12:2363-2375. [PMID: 29899510 DOI: 10.1038/s41396-018-0178-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 11/08/2022]
Abstract
Quorum sensing (QS), where bacteria secrete and respond to chemical signals to coordinate population-wide behaviors, has revealed that bacteria are highly social. Here, we investigate how diversity in QS signals and receptors can modify social interactions controlled by the QS system regulating bacteriocin secretion in Streptococcus pneumoniae, encoded by the blp operon (bacteriocin-like peptide). Analysis of 4096 pneumococcal genomes detected nine blp QS signals (BlpC) and five QS receptor groups (BlpH). Imperfect concordance between signals and receptors suggested widespread social interactions between cells, specifically eavesdropping (where cells respond to signals that they do not produce) and crosstalk (where cells produce signals that non-clones detect). This was confirmed in vitro by measuring the response of reporter strains containing six different blp QS receptors to cognate and non-cognate peptides. Assays between pneumococcal colonies grown adjacent to one another provided further evidence that crosstalk and eavesdropping occur at endogenous levels of signal secretion. Finally, simulations of QS strains producing bacteriocins revealed that eavesdropping can be evolutionarily beneficial even when the affinity for non-cognate signals is very weak. Our results highlight that social interactions can mediate intraspecific competition among bacteria and reveal that competitive interactions can be modified by polymorphic QS systems.
Collapse
|
44
|
ABC transporter content diversity in Streptococcus pneumoniae impacts competence regulation and bacteriocin production. Proc Natl Acad Sci U S A 2018; 115:E5776-E5785. [PMID: 29866828 PMCID: PMC6016807 DOI: 10.1073/pnas.1804668115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) participates in horizontal gene transfer through genetic competence and produces antimicrobial peptides called “bacteriocins.” Here, we show that the competence and bacteriocin-related ABC transporters ComAB and BlpAB share the same substrate pool, resulting in bidirectional crosstalk between competence and bacteriocin regulation. We also clarify the role of each transporter in bacteriocin secretion and show that, based on their transporter content, pneumococcal strains can be separated into a majority opportunist group that uses bacteriocins only to support competence and a minority aggressor group that uses bacteriocins in broader contexts. Our findings will impact how bacteriocin regulation and production is modeled in the many other bacterial species that use ComAB/BlpAB-type transporters. The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) uses natural genetic competence to increase its adaptability through horizontal gene transfer. One method of acquiring DNA is through predation of neighboring strains with antimicrobial peptides called “bacteriocins.” Competence and production of the major family of pneumococcal bacteriocins, pneumocins, are regulated by the quorum-sensing systems com and blp, respectively. In the classical paradigm, the ABC transporters ComAB and BlpAB each secretes its own system’s signaling pheromone and in the case of BlpAB also secretes the pneumocins. While ComAB is found in all pneumococci, only 25% of strains encode an intact version of BlpAB [BlpAB(+)] while the rest do not [BlpAB(−)]. Contrary to the classical paradigm, it was previously shown that BlpAB(−) strains can activate blp through ComAB-mediated secretion of the blp pheromone during brief periods of competence. To better understand the full extent of com-blp crosstalk, we examined the contribution of each transporter to competence development and pneumocin secretion. We found that BlpAB(+) strains have a greater capacity for competence activation through BlpAB-mediated secretion of the com pheromone. Similarly, we show that ComAB and BlpAB are promiscuous and both can secrete pneumocins. Consequently, differences in pneumocin secretion between BlpAB(+) and BlpAB(−) strains derive from the regulation and kinetics of transporter expression rather than substrate specificity. We speculate that BlpAB(−) strains (opportunists) use pneumocins mainly in a narrowly tailored role for DNA acquisition and defense during competence while BlpAB(+) strains (aggressors) expand their use for the general inhibition of rival strains.
Collapse
|
45
|
Drider D, Bendali F, Naghmouchi K, Chikindas ML. Bacteriocins: Not Only Antibacterial Agents. Probiotics Antimicrob Proteins 2018; 8:177-182. [PMID: 27481236 DOI: 10.1007/s12602-016-9223-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This commentary was aimed at shedding light on the multifunction of bacteriocins mainly those produced by lactic acid bacteria. These antibacterial agents were first used to improve food safety and quality. With the increasing antibiotic resistance concern worldwide, they have been considered as viable agents to replace or potentiate the fading abilities of conventional antibiotics to control human pathogens. Bacteriocins were also shown to have potential as antiviral agents, plant protection agents, and anticancer agents. Bacteriocins were reported to be involved in shaping bacterial communities through inter- and intra-specific interactions, conferring therefore to producing strains a probiotic added value. Furthermore, bacteriocins recently were shown as molecules with a fundamental impact on the resilience and virulence of some pathogens.
Collapse
Affiliation(s)
- Djamel Drider
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, 59000, Lille, France.
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaïa, Algeria
| | - Karim Naghmouchi
- Laboratoire des Microorganismes et Biomolécules Actives (LMBA), Faculté des Sciences de Tunis, Université El-Manar II 2092 El-Manar-II, Tunis, Tunisia
| | - Michael L Chikindas
- School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08901, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| |
Collapse
|
46
|
A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia. mBio 2018; 9:mBio.00561-18. [PMID: 29764945 PMCID: PMC5954218 DOI: 10.1128/mbio.00561-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2Tet and S4Str in a bioreactor simulating the human nasopharynx led to the generation of SpnTet/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5 × 10−4 while peaking after 8 h at a rF of 1.1 × 10−3. Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2Tet/Str) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4Str and S19FTmp) were incubated together, leading to S19FStr/Tmp but at a rF 3 orders of magnitude lower (4.9 × 10−6). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient. Pneumococcal transformation in the human nasopharynx may lead to the acquisition of antibiotic resistance genes or genes encoding new capsular variants. Antibiotics and vaccines are currently putting pressure on a number of strains, leading to an increase in antibiotic resistance and serotype replacement. These pneumococcal strains are also acquiring virulence traits from vaccine types via transformation. In this study, we recapitulated multiple-strain colonization with strains carrying a resistance marker and selected for those acquiring resistance to two or three antibiotics, such as would occur in the human nasopharynx. Strains acquiring dual and triple resistance originated from one progenitor, demonstrating that transformation was unidirectional. Unidirectional transformation was the result of inhibition of transformation of donor strains. Unidirectional transformation has implications for the understanding of acquisition patterns of resistance determinants or capsule-switching events.
Collapse
|
47
|
Wang CY, Dawid S. Mobilization of Bacteriocins during Competence in Streptococci. Trends Microbiol 2018; 26:389-391. [PMID: 29588109 DOI: 10.1016/j.tim.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Many streptococci have evolved the ability for natural genetic competence. Recent studies have uncovered regulatory links between competence and the production of antimicrobial peptides called bacteriocins in multiple streptococcal species. This reveals a broadly distributed strategy among streptococci to exploit bacteriocin-mediated killing during competence for adaptive gain.
Collapse
|
48
|
Ambur OH, Engelstädter J, Johnsen PJ, Miller EL, Rozen DE. Steady at the wheel: conservative sex and the benefits of bacterial transformation. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0528. [PMID: 27619692 PMCID: PMC5031613 DOI: 10.1098/rstb.2015.0528] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes. This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, 1478 Oslo, Norway
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pål J Johnsen
- Faculty of Health Sciences, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eric L Miller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Daniel E Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
49
|
Abstract
Bacteria can overcome environmental challenges by killing nearby bacteria and incorporating their DNA.
Collapse
|
50
|
Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat Commun 2017; 8:854. [PMID: 29021534 PMCID: PMC5636887 DOI: 10.1038/s41467-017-00903-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae becomes competent for genetic transformation when exposed to an autoinducer peptide known as competence-stimulating peptide (CSP). This peptide was originally described as a quorum-sensing signal, enabling individual cells to regulate competence in response to population density. However, recent studies suggest that CSP may instead serve as a probe for sensing environmental cues, such as antibiotic stress or environmental diffusion. Here, we show that competence induction can be simultaneously influenced by cell density, external pH, antibiotic-induced stress, and cell history. Our experimental data is explained by a mathematical model where the environment and cell history modify the rate at which cells produce or sense CSP. Taken together, model and experiments indicate that autoinducer concentration can function as an indicator of cell density across environmental conditions, while also incorporating information on environmental factors or cell history, allowing cells to integrate cues such as antibiotic stress into their quorum-sensing response. This unifying perspective may apply to other debated quorum-sensing systems. Peptide CSP regulates natural competence in pneumococci and has been proposed as a quorum-sensing signal or a probe for sensing environmental cues. Here, the authors show that CSP levels can indeed act as an indicator of cell density and also incorporate information on environmental factors or cell history.
Collapse
|