1
|
Zhou F, Tajamul Mumtaz P, Dogan H, Madadjim R, Cui J, Zempleni J. Divergence of gut bacteria through the selection of genomic variants implicated in the metabolism of sugars, amino acids, and purines by small extracellular vesicles in milk. Gut Microbes 2025; 17:2449704. [PMID: 39762216 DOI: 10.1080/19490976.2025.2449704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 03/08/2025] Open
Abstract
Here, we report that small extracellular vesicles (sEVs) in milk mediate the communication between bacteria and animal kingdoms, increase the divergence of bacteria in the intestine, and alter metabolite production by bacteria. We show that bovine milk sEVs select approximately 55,000 genomic variants in 19 species of bacteria from the murine cecum ex vivo. The genomic variants are transcribed into mRNA. The selection of genomic variants by milk sEVs alters bacterial metabolism, leading to an up to 12-fold difference in the abundance of more than 1000 metabolites in bacteria cultured in milk sEV-free media compared to sEV-containing media. Evidence is particularly strong that selection of genomic variants by milk sEV changes the metabolism of sugars, amino acids, and purines which might contribute to the development of spatial learning and memory deficiencies and seizure phenotypes reported for milk sEV-depleted infants and mice. Human milk is a rich source of sEVs, whereas formula contains only trace amounts of milk sEVs. This report implicates nutritional sEVs in altered microbial metabolism beyond the mere selection of bacterial communities.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Peerzada Tajamul Mumtaz
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Haluk Dogan
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Roland Madadjim
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Qin LN, Yu YF, Ma L, Yu R. Intestinal bacteria-derived extracellular vesicles in metabolic dysfunction-associated steatotic liver disease: From mechanisms to therapeutics. Mol Cells 2025; 48:100216. [PMID: 40239896 DOI: 10.1016/j.mocell.2025.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease that affects the health of approximately one-third of the world's population. It is the primary cause of end-stage liver disease, liver malignancy, and liver transplantation, resulting in a great medical burden. No medications have yet been approved by the US Food and Drug Administration for treating MASLD without liver inflammation or scarring. Therefore, the development of specific drugs to treat MASLD remains a key task in the ongoing research objective. Extracellular vesicles (EVs) play an important role in the communication between organs, tissues, and cells. Recent studies have found that intestinal microbiota are closely related to the pathogenesis and progression of MASLD. EVs produced by bacteria (BEVs) play an indispensable role in this process. Thus, this study provides a new direction for MASLD treatment. However, the mechanism by which BEVs affect MASLD remains unclear. Therefore, this study investigated the influence and function of intestinal microbiota in MASLD. Additionally, we focus on the research progress of BEVs in recent years and explain the relationship between BEVs and MASLD from the perspectives of glucose and lipid metabolism, immune responses, and intestinal homeostasis. Finally, we summarized the potential therapeutic value of BEVs and EVs from other sources, such as adipocytes, immunocytes, stem cells, and plants.
Collapse
Affiliation(s)
- Li-Na Qin
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yun-Feng Yu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lie Ma
- Department of Reproductive Medicine, The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Rong Yu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China; College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
3
|
Lu J, Wang Y, Wu J, Duan Y, Zhang H, Du H. Linking microbial communities to rheumatoid arthritis: focus on gut, oral microbiome and their extracellular vesicles. Front Immunol 2025; 16:1503474. [PMID: 40308573 PMCID: PMC12040682 DOI: 10.3389/fimmu.2025.1503474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Rheumatoid arthritis (RA) is a severe, chronic autoimmune disease affecting approximately 1% of the global population. Research has demonstrated that microorganisms play a crucial role in the onset and progression of RA. This indicates that the disruption of immune homeostasis may originate from mucosal sites, such as the gut and oral cavity. In the intestines of patients in the preclinical stage of RA, an increased abundance of Prevotella species with a strong association to the disease was observed. In the oral cavity, infections by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can mediate the production of anti-citrullinated protein antibodies (ACPAs), potentially contributing to RA pathogenesis. Nevertheless, no single bacterial species has been consistently identified as the primary driver of RA. This review will discuss the connection between gut and oral bacteria in the development of arthritis. Additionally, it explores the role of bacterial extracellular vesicles (bEVs) in inducing inflammation and their potential pathogenic roles in RA.
Collapse
Affiliation(s)
- Jian Lu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou Mental Health Center, Suzhou, Jiangsu, China
| | - Yusi Duan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Cloeckaert A, Pletzer D, Khaiboullina S. Editorial: Reviews in microbial pathogenesis. Front Microbiol 2025; 16:1568840. [PMID: 40092043 PMCID: PMC11906437 DOI: 10.3389/fmicb.2025.1568840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| |
Collapse
|
5
|
Zhao X, Wei Y, Bu Y, Ren X, Dong Z. Review on bacterial outer membrane vesicles: structure, vesicle formation, separation and biotechnological applications. Microb Cell Fact 2025; 24:27. [PMID: 39833809 PMCID: PMC11749425 DOI: 10.1186/s12934-025-02653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Outer membrane vesicles (OMVs), shed by Gram-negative bacteria, are spherical nanostructures that play a pivotal role in bacterial communication and host-pathogen interactions. Comprising an outer membrane envelope and encapsulating a variety of bioactive molecules from their progenitor bacteria, OMVs facilitate material and informational exchange. This review delves into the recent advancements in OMV research, providing a comprehensive overview of their structure, biogenesis, and mechanisms of vesicle formation. It also explores their role in pathogenicity and the techniques for their enrichment and isolation. Furthermore, the review highlights the burgeoning applications of OMVs in the field of biomedicine, emphasizing their potential as diagnostic tools, vaccine candidates, and drug delivery vectors.
Collapse
Affiliation(s)
- Xiaofei Zhao
- Graduate School, Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yusen Wei
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yuqing Bu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaokai Ren
- Graduate School, Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhanjun Dong
- Graduate School, Hebei Medical University, Shijiazhuang, China.
- Department of Pharmacy, Hebei Key Laboratory of Clinical Pharmacy, Hebei General Hospital, Shijiazhuang, China.
| |
Collapse
|
6
|
Janga H, Schmerer N, Aznaourova M, Schulte LN. Non-coding RNA Networks in Infection. Methods Mol Biol 2025; 2883:53-77. [PMID: 39702704 DOI: 10.1007/978-1-0716-4290-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In the face of global health challenges posed by infectious diseases and the emergence of drug-resistant pathogens, the exploration of cellular non-coding RNA (ncRNA) networks has unveiled new dimensions in infection research. Particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have emerged as instrumental players in ensuring a balance between protection against hyper-inflammatory conditions and the effective elimination of pathogens. Specifically, ncRNAs, such as the miRNA miR-155 or the lncRNAs MaIL1 (macrophage interferon-regulatory lncRNA 1), and LUCAT1 (lung cancer-associated transcript 1) have been recurrently linked to infectious and inflammatory diseases. Together with other ncRNAs, discussed in this chapter, they form a complex regulatory network shaping the host response to pathogens. Additionally, some pathogens exploit these ncRNAs to establish and sustain infections, underscoring their dual roles in host protection and colonization. Despite the substantial progress made, the vast majority of ncRNA loci remains unexplored, with ongoing research likely to reveal novel ncRNA categories and expand our understanding of their roles in infections. This chapter consolidates current insights into ncRNA-mediated regulatory networks, highlighting their contributions to severe diseases and their potential as targets and biomarkers for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | - Nils Schmerer
- Institute for Lung Research, Philipps University, Marburg, Germany
| | | | - Leon N Schulte
- Institute for Lung Research, Philipps University, Marburg, Germany.
- German Center for Lung Research, Giessen, Germany.
| |
Collapse
|
7
|
Xiang S, Khan A, Yao Q, Wang D. Recent advances in bacterial outer membrane vesicles: Effects on the immune system, mechanisms and their usage for tumor treatment. J Pharm Anal 2024; 14:101049. [PMID: 39840399 PMCID: PMC11750273 DOI: 10.1016/j.jpha.2024.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 01/23/2025] Open
Abstract
Tumor treatment remains a significant medical challenge, with many traditional therapies causing notable side effects. Recent research has led to the development of immunotherapy, which offers numerous advantages. Bacteria inherently possess motility, allowing them to preferentially colonize tumors and modulate the tumor immune microenvironment, thus influencing the efficacy of immunotherapy. Bacterial outer membrane vesicles (OMVs) secreted by gram-negative bacteria are nanoscale lipid bilayer structures rich in bacterial antigens, pathogen-associated molecular patterns (PAMPs), various proteins, and vesicle structures. These features allow OMVs to stimulate immune system activation, generate immune responses, and serve as efficient drug delivery vehicles. This dual capability enhances the effectiveness of immunotherapy combined with chemotherapy or phototherapy, thereby improving anticancer drug efficacy. Current research has concentrated on engineering OMVs to enhance production yield, minimize cytotoxicity, and improve the safety and efficacy of treatments. Consequently, OMVs hold great promise for applications in tumor immunotherapy, tumor vaccine development, and drug delivery. This article provides an overview of the structural composition and immune mechanisms of OMVs, details various OMVs modification strategies, and reviews the progress in using OMVs for tumor treatment and their anti-tumor mechanisms. Additionally, it discusses the challenges faced in translating OMV-based anti-tumor therapies into clinical practice, aiming to provide a comprehensive understanding of OMVs' potential for in-depth research and clinical application.
Collapse
Affiliation(s)
- Shuo Xiang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 Yuexiu Road, Jiaxing, Zhejiang, 314001, China
| | - Arshad Khan
- Nanomedicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Qiufang Yao
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 Yuexiu Road, Jiaxing, Zhejiang, 314001, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
8
|
Michaelis S, Gomez-Valero L, Chen T, Schmid C, Buchrieser C, Hilbi H. Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. Microbiol Mol Biol Rev 2024; 88:e0009723. [PMID: 39162424 PMCID: PMC11426016 DOI: 10.1128/mmbr.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Jiang B, Huang J. Influences of bacterial extracellular vesicles on macrophage immune functions. Front Cell Infect Microbiol 2024; 14:1411196. [PMID: 38873097 PMCID: PMC11169721 DOI: 10.3389/fcimb.2024.1411196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Bacterial extracellular vesicles (EVs) are crucial mediators of information transfer between bacteria and host cells. Macrophages, as key effector cells in the innate immune system, have garnered widespread attention for their interactions with bacterial EVs. Increasing evidence indicates that bacterial EVs can be internalized by macrophages through multiple pathways, thereby influencing their immune functions. These functions include inflammatory responses, antimicrobial activity, antigen presentation, and programmed cell death. Therefore, this review summarizes current research on the interactions between bacterial EVs and macrophages. This will aid in the deeper understanding of immune modulation mediated by pathogenic microorganisms and provide a basis for developing novel antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
10
|
Burt M, Angelidou G, Mais CN, Preußer C, Glatter T, Heimerl T, Groß R, Serrania J, Boosarpu G, Pogge von Strandmann E, Müller JA, Bange G, Becker A, Lehmann M, Jonigk D, Neubert L, Freitag H, Paczia N, Schmeck B, Jung AL. Lipid A in outer membrane vesicles shields bacteria from polymyxins. J Extracell Vesicles 2024; 13:e12447. [PMID: 38766978 PMCID: PMC11103557 DOI: 10.1002/jev2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
The continuous emergence of multidrug-resistant bacterial pathogens poses a major global healthcare challenge, with Klebsiella pneumoniae being a prominent threat. We conducted a comprehensive study on K. pneumoniae's antibiotic resistance mechanisms, focusing on outer membrane vesicles (OMVs) and polymyxin, a last-resort antibiotic. Our research demonstrates that OMVs protect bacteria from polymyxins. OMVs derived from Polymyxin B (PB)-stressed K. pneumoniae exhibited heightened protective efficacy due to increased vesiculation, compared to OMVs from unstressed Klebsiella. OMVs also shield bacteria from different bacterial families. This was validated ex vivo and in vivo using precision cut lung slices (PCLS) and Galleria mellonella. In all models, OMVs protected K. pneumoniae from PB and reduced the associated stress response on protein level. We observed significant changes in the lipid composition of OMVs upon PB treatment, affecting their binding capacity to PB. The altered binding capacity of single OMVs from PB stressed K. pneumoniae could be linked to a reduction in the lipid A amount of their released vesicles. Although the amount of lipid A per vesicle is reduced, the overall increase in the number of vesicles results in an increased protection because the sum of lipid A and therefore PB binding sites have increased. This unravels the mechanism of the altered PB protective efficacy of OMVs from PB stressed K. pneumoniae compared to control OMVs. The lipid A-dependent protective effect against PB was confirmed in vitro using artificial vesicles. Moreover, artificial vesicles successfully protected Klebsiella from PB ex vivo and in vivo. The findings indicate that OMVs act as protective shields for bacteria by binding to polymyxins, effectively serving as decoys and preventing antibiotic interaction with the cell surface. Our findings provide valuable insights into the mechanisms underlying antibiotic cross-protection and offer potential avenues for the development of novel therapeutic interventions to address the escalating threat of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Marie Burt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
| | - Georgia Angelidou
- Core Facility for Metabolomics and Small Molecules Mass SpectrometryMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Core Facility for Mass Spectrometry and ProteomicsMax Planck Institute for terrestrial MicrobiologyMarburgGermany
| | - Christopher Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Christian Preußer
- Institute for Tumor ImmunologyPhilipps‐University MarburgMarburgGermany
- Core Facility ‐ Extracellular VesiclesPhilipps‐University MarburgMarburgGermany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and ProteomicsMax Planck Institute for terrestrial MicrobiologyMarburgGermany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Gowtham Boosarpu
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
| | - Elke Pogge von Strandmann
- Institute for Tumor ImmunologyPhilipps‐University MarburgMarburgGermany
- Core Facility ‐ Extracellular VesiclesPhilipps‐University MarburgMarburgGermany
| | - Janis A. Müller
- Institute of VirologyPhilipps‐University MarburgMarburgGermany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Mareike Lehmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and ImmunityHelmholtz Zentrum MünchenGerman Center for Lung Research (DZL)MunichGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center of Lung Research (DZL)HannoverGermany
- Institute of PathologyUniversity Medical Center RWTH University of AachenAachenGermany
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center of Lung Research (DZL)HannoverGermany
- Institute of PathologyHannover Medical SchoolHannoverGermany
| | - Hinrich Freitag
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH)German Center of Lung Research (DZL)HannoverGermany
- Institute of PathologyHannover Medical SchoolHannoverGermany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecules Mass SpectrometryMax Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
- Institute for Lung Health (ILH)GiessenGermany
- Department of Medicine, Pulmonary and Critical Care MedicineUniversity Medical Center MarburgUniversities of Giessen and Marburg Lung CenterPhilipps‐University MarburgMarburgGermany
- Member of the German Center for Infectious Disease Research (DZIF)MarburgGermany
- Core Facility Flow Cytometry – Bacterial VesiclesPhilipps‐University MarburgMarburgGermany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL)Philipps‐University MarburgMarburgGermany
- Core Facility Flow Cytometry – Bacterial VesiclesPhilipps‐University MarburgMarburgGermany
| |
Collapse
|
11
|
Liu J, Kang R, Tang D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol 2024; 45:274-287. [PMID: 38494365 DOI: 10.1016/j.it.2024.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Pavkova I, Bavlovic J, Kubelkova K, Stulik J, Klimentova J. Protective potential of outer membrane vesicles derived from a virulent strain of Francisella tularensis. Front Microbiol 2024; 15:1355872. [PMID: 38533334 PMCID: PMC10963506 DOI: 10.3389/fmicb.2024.1355872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Francisella tularensis secretes tubular outer membrane vesicles (OMVs) that contain a number of immunoreactive proteins as well as virulence factors. We have reported previously that isolated Francisella OMVs enter macrophages, cumulate inside, and induce a strong pro-inflammatory response. In the current article, we present that OMVs treatment of macrophages also enhances phagocytosis of the bacteria and suppresses their intracellular replication. On the other hand, the subsequent infection with Francisella is able to revert to some extent the strong pro-inflammatory effect induced by OMVs in macrophages. Being derived from the bacterial surface, isolated OMVs may be considered a "non-viable mixture of Francisella antigens" and as such, they present a promising protective material. Immunization of mice with OMVs isolated from a virulent F. tularensis subsp. holarctica strain FSC200 prolonged the survival time but did not fully protect against the infection with a lethal dose of the parent strain. However, the sera of the immunized animals revealed unambiguous cytokine and antibody responses and proved to recognize a set of well-known Francisella immunoreactive proteins. For these reasons, Francisella OMVs present an interesting material for future protective studies.
Collapse
Affiliation(s)
| | | | | | | | - Jana Klimentova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
13
|
Liu BD, Akbar R, Oliverio A, Thapa K, Wang X, Fan GC. BACTERIAL EXTRACELLULAR VESICLES IN THE REGULATION OF INFLAMMATORY RESPONSE AND HOST-MICROBE INTERACTIONS. Shock 2024; 61:175-188. [PMID: 37878470 PMCID: PMC10921997 DOI: 10.1097/shk.0000000000002252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Extracellular vesicles (EVs) are a new revelation in cross-kingdom communication, with increasing evidence showing the diverse roles of bacterial EVs (BEVs) in mammalian cells and host-microbe interactions. Bacterial EVs include outer membrane vesicles released by gram-negative bacteria and membrane vesicles generated from gram-positive bacteria. Recently, BEVs have drawn attention for their potential as biomarkers and therapeutic tools because they are nano-sized and can deliver bacterial cargo into host cells. Importantly, exposure to BEVs significantly affects various physiological and pathological responses in mammalian cells. Herein, we provide a comprehensive overview of the various effects of BEVs on host cells (i.e., immune cells, endothelial cells, and epithelial cells) and inflammatory/infectious diseases. First, the biogenesis and purification methods of BEVs are summarized. Next, the mechanisms and pathways identified by BEVs that stimulate either proinflammatory or anti-inflammatory responses are highlighted. In addition, we discuss the mechanisms by which BEVs regulate host-microbe interactions and their effects on the immune system. Finally, this review focuses on the contribution of BEVs to the pathogenesis of sepsis/septic shock and their therapeutic potential for the treatment of sepsis.
Collapse
Affiliation(s)
- Benjamin D. Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anna Oliverio
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kajol Thapa
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
14
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Fan M, Kiefer P, Charki P, Hedberg C, Seibel J, Vorholt JA, Hilbi H. The Legionella autoinducer LAI-1 is delivered by outer membrane vesicles to promote interbacterial and interkingdom signaling. J Biol Chem 2023; 299:105376. [PMID: 37866633 PMCID: PMC10692735 DOI: 10.1016/j.jbc.2023.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium, which replicates in amoeba but also in macrophages, and causes a life-threatening pneumonia called Legionnaires' disease. The opportunistic pathogen employs the α-hydroxy-ketone compound Legionella autoinducer-1 (LAI-1) for intraspecies and interkingdom signaling. LAI-1 is produced by the autoinducer synthase Legionella quorum sensing A (LqsA), but it is not known, how LAI-1 is released by the pathogen. Here, we use a Vibrio cholerae luminescence reporter strain and liquid chromatography-tandem mass spectrometry to detect bacteria-produced and synthetic LAI-1. Ectopic production of LqsA in Escherichia coli generated LAI-1, which partitions to outer membrane vesicles (OMVs) and increases OMV size. These E. coli OMVs trigger luminescence of the V. cholerae reporter strain and inhibit the migration of Dictyostelium discoideum amoeba. Overexpression of lqsA in L.pneumophila under the control of strong stationary phase promoters (PflaA or P6SRNA), but not under control of its endogenous promoter (PlqsA), produces LAI-1, which is detected in purified OMVs. These L. pneumophila OMVs trigger luminescence of the Vibrio reporter strain and inhibit D. discoideum migration. L. pneumophila OMVs are smaller upon overexpression of lqsA or upon addition of LAI-1 to growing bacteria, and therefore, LqsA affects OMV production. The overexpression of lqsA but not a catalytically inactive mutant promotes intracellular replication of L. pneumophila in macrophages, indicating that intracellularly produced LA1-1 modulates the interaction in favor of the pathogen. Taken together, we provide evidence that L. pneumophila LAI-1 is secreted through OMVs and promotes interbacterial communication and interactions with eukaryotic host cells.
Collapse
Affiliation(s)
- Mingzhen Fan
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Paul Charki
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Christian Hedberg
- Institute of Chemistry and Umeå Center for Microbial Research, Umeå University, Umeå, Sweden
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Xie J, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol 2023; 31:1206-1224. [PMID: 37330381 DOI: 10.1016/j.tim.2023.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
A growing body of research, especially in recent years, has shown that bacterial extracellular vesicles (bEVs) are one of the key underlying mechanisms behind the pathogenesis of various diseases like pulmonary fibrosis, sepsis, systemic bone loss, and Alzheimer's disease. Given these new insights, bEVs are proposed as an emerging vehicle that can be used as a diagnostic tool or to tackle diseases when used as a therapeutic target. To further boost the understanding of bEVs in health and disease we thoroughly discuss the contribution of bEVs in disease pathogenesis and the underlying mechanisms. In addition, we speculate on their potential as novel diagnostic biomarkers and how bEV-related mechanisms can be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Techawiwattanaboon T, Phanchamnan E, Iadsee N, Makjaroen J, Pisitkun T, Patarakul K. Proteomic profile of naturally released extracellular vesicles secreted from Leptospira interrogans serovar Pomona in response to temperature and osmotic stresses. Sci Rep 2023; 13:18601. [PMID: 37903905 PMCID: PMC10616267 DOI: 10.1038/s41598-023-45863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Bacterial extracellular vesicles (EVs) are generally formed by pinching off outer membrane leaflets while simultaneously releasing multiple active molecules into the external environment. In this study, we aimed to identify the protein cargo of leptospiral EVs released from intact leptospires grown under three different conditions: EMJH medium at 30 °C, temperature shifted to 37 °C, and physiologic osmolarity (EMJH medium with 120 mM NaCl). The naturally released EVs observed under transmission electron microscopy were spherical in shape with an approximate diameter of 80-100 nm. Quantitative proteomics and bioinformatic analysis indicated that the EVs were formed primarily from the outer membrane and the cytoplasm. The main functional COG categories of proteins carried in leptospiral EVs might be involved in cell growth, survival and adaptation, and pathogenicity. Relative to their abundance in EVs grown in EMJH medium at 30 °C, 39 and 69 proteins exhibited significant changes in response to the temperature shift and the osmotic change, respectively. During exposure to both stresses, Leptospira secreted several multifunctional proteins via EVs, while preserving certain virulence proteins within whole cells. Therefore, leptospiral EVs may serve as a decoy structure for host responses, whereas some virulence factors necessary for direct interaction with the host environment are reserved in leptospiral cells. This knowledge will be useful for understanding the pathogenesis of leptospirosis and developing as one of vaccine platforms against leptospirosis in the future.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
| | - Eakalak Phanchamnan
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nutta Iadsee
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
18
|
Wang Y, Luo X, Xiang X, Hao C, Ma D. Roles of bacterial extracellular vesicles in systemic diseases. Front Microbiol 2023; 14:1258860. [PMID: 37840728 PMCID: PMC10569430 DOI: 10.3389/fmicb.2023.1258860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Accumulating evidence suggests that in various systems, not all bidirectional microbiota-host interactions involve direct cell contact. Bacterial extracellular vesicles (BEVs) may be key participants in this interkingdom crosstalk. BEVs mediate microbiota functions by delivering effector molecules that modulate host signaling pathways, thereby facilitating host-microbe interactions. BEV production during infections by both pathogens and probiotics has been observed in various host tissues. Therefore, these vesicles released by microbiota may have the ability to drive or inhibit disease pathogenesis in different systems within the host. Here, we review the current knowledge of BEVs and particularly emphasize their interactions with the host and the pathogenesis of systemic diseases.
Collapse
Affiliation(s)
- Yanzhen Wang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhen Xiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunbo Hao
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Wang Z, Zhu D, Zhang Y, Xia F, Zhu J, Dai J, Zhuge X. Extracellular vesicles produced by avian pathogenic Escherichia coli (APEC) activate macrophage proinflammatory response and neutrophil extracellular trap (NET) formation through TLR4 signaling. Microb Cell Fact 2023; 22:177. [PMID: 37689682 PMCID: PMC10492386 DOI: 10.1186/s12934-023-02171-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) is the major pathogen causing important avian diseases in poultry. As an important subtype of extraintestinal pathogenic E. coli, APEC has zoonotic potential and is considered a foodborne pathogen. APEC extracellular vesicles (EVs) may play vital roles in the interaction of the pathogen with its host cells. However, the precise roles played by APEC EVs are still not completely clear, especially in immune cells. RESULTS In this study, we investigated the relationships between APEC EVs and immune cells. The production and characteristics of the EVs of APEC isolate CT265 were identified. Toll like receptor 4 (TLR4) triggered the cellular immune responses when it interacted with APEC EVs. APEC EVs induced a significant release of proinflammatory cytokines in THP-1 macrophages. APEC EVs induced the macrophage inflammatory response via the TLR4/MYD88/NF-κB signaling pathway, which participated in the activation of the APEC-EV-induced NLRP3 inflammasome. However, the loss of lipopolysaccharide (LPS) from APEC EVs reduced the activation of the NLRP3 inflammasome mediated by TLR4/MYD88/NF-κB signaling. Because APEC EVs activated the macrophage inflammatory response and cytokines release, we speculated that the interaction between APEC EVs and macrophages activated and promoted neutrophil migration during APEC extraintestinal infection. This study is the first to report that APEC EVs induce the formation of neutrophil extracellular traps (NETs) and chicken heterophil extracellular traps. Treatment with APEC EVs induced SAPK/JNK activation in neutrophils. The inhibition of TLR4 signaling suppressed APEC-EV-induced NET formation. However, although APEC EVs activated the immune response of macrophages and initiated NET formation, they also damaged macrophages, causing their apoptosis. The loss of LPS from APEC EVs did not prevent this process. CONCLUSION APEC-derived EVs induced inflammatory responses in macrophages and NETs in neutrophils, and that TLR4 was involved in the APEC-EV-activated inflammatory response. These findings provided a basis for the further study of APEC pathogenesis.
Collapse
Affiliation(s)
- Zhongxing Wang
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Dongyu Zhu
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Fufang Xia
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiangkai Zhuge
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China.
| |
Collapse
|
21
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
22
|
Doré E, Boilard E. Bacterial extracellular vesicles and their interplay with the immune system. Pharmacol Ther 2023; 247:108443. [PMID: 37210006 DOI: 10.1016/j.pharmthera.2023.108443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The mammalian intestinal tract harbors trillions of microorganisms confined within this space by mucosal barriers. Despite these barriers, bacterial components may still be found elsewhere in the body, even in healthy subjects. Bacteria can release small lipid-bound particles, also named bacterial extracellular vesicles (bEV). While bacteria themselves cannot normally penetrate the mucosal defense, bEVs may infiltrate the barrier and disseminate throughout the body. The extremely diverse cargo that bEVs can carry, depending on their parent species, strain, and growth conditions, grant them an equally broad potential to interact with host cells and influence immune functions. Herein, we review the current knowledge of processes underlying the uptake of bEVs by mammalian cells, and their effect on the immune system. Furthermore, we discuss how bEVs could be targeted and manipulated for diverse therapeutic purposes.
Collapse
Affiliation(s)
- Etienne Doré
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada; Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada; Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada.
| |
Collapse
|
23
|
Bierwagen J, Wiegand M, Laakmann K, Danov O, Limburg H, Herbel SM, Heimerl T, Dorna J, Jonigk D, Preußer C, Bertrams W, Braun A, Sewald K, Schulte LN, Bauer S, Pogge von Strandmann E, Böttcher-Friebertshäuser E, Schmeck B, Jung AL. Bacterial vesicles block viral replication in macrophages via TLR4-TRIF-axis. Cell Commun Signal 2023; 21:65. [PMID: 36978183 PMCID: PMC10045439 DOI: 10.1186/s12964-023-01086-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Gram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles. To date, little is known about the interplay between alveolar macrophages and OMVs from pathogenic bacteria. The immune response to OMVs and underlying mechanisms are still elusive. Here, we investigated the response of primary human macrophages to bacterial vesicles (Legionella pneumophila, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Streptococcus pneumoniae) and observed comparable NF-κB activation across all tested vesicles. In contrast, we describe differential type I IFN signalling with prolonged STAT1 phosphorylation and strong Mx1 induction, blocking influenza A virus replication only for Klebsiella, E.coli and Salmonella OMVs. OMV-induced antiviral effects were less pronounced for endotoxin-free Clear coli OMVs and Polymyxin-treated OMVs. LPS stimulation could not mimic this antiviral status, while TRIF knockout abrogated it. Importantly, supernatant from OMV-treated macrophages induced an antiviral response in alveolar epithelial cells (AEC), suggesting OMV-induced intercellular communication. Finally, results were validated in an ex vivo infection model with primary human lung tissue. In conclusion, Klebsiella, E.coli and Salmonella OMVs induce antiviral immunity in macrophages via TLR4-TRIF-signaling to reduce viral replication in macrophages, AECs and lung tissue. These gram-negative bacteria induce antiviral immunity in the lung through OMVs, with a potential decisive and tremendous impact on bacterial and viral coinfection outcome. Video Abstract.
Collapse
Affiliation(s)
- Jeff Bierwagen
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Marie Wiegand
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Hannah Limburg
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Muriel Herbel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Jens Dorna
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Christian Preußer
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
| | - Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology and Core Facility - Extracellular Vesicles, Philipps-University Marburg, Marburg, Germany
| | | | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
24
|
Ryu S, Ni K, Wang C, Sivanantham A, Carnino JM, Ji HL, Jin Y. Bacterial Outer Membrane Vesicles Promote Lung Inflammatory Responses and Macrophage Activation via Multi-Signaling Pathways. Biomedicines 2023; 11:568. [PMID: 36831104 PMCID: PMC9953134 DOI: 10.3390/biomedicines11020568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Emerging evidence suggests that Gram-negative bacteria release bacterial outer membrane vesicles (OMVs) and that these play an important role in the pathogenesis of bacterial infection-mediated inflammatory responses and organ damage. Despite the fact that scattered reports have shown that OMVs released from Gram-negative bacteria may function via the TLR2/4-signaling pathway or induce pyroptosis in macrophages, our study reveals a more complex role of OMVs in the development of inflammatory lung responses and macrophage pro-inflammatory activation. We first confirmed that various types of Gram-negative bacteria release similar OMVs which prompt pro-inflammatory activation in both bone marrow-derived macrophages and lung alveolar macrophages. We further demonstrated that mice treated with OMVs via intratracheal instillation developed significant inflammatory lung responses. Using mouse inflammation and autoimmune arrays, we identified multiple altered cytokine/chemokines in both bone marrow-derived macrophages and alveolar macrophages, suggesting that OMVs have a broader spectrum of function compared to LPS. Using TLR4 knock-out cells, we found that OMVs exert more robust effects on activating macrophages compared to LPS. We next examined multiple signaling pathways, including not only cell surface antigens, but also intracellular receptors. Our results confirmed that bacterial OMVs trigger both surface protein-mediated signaling and intracellular signaling pathways, such as the S100-A8 protein-mediated pathway. In summary, our studies confirm that bacterial OMVs strongly induced macrophage pro-inflammatory activation and inflammatory lung responses via multi-signaling pathways. Bacterial OMVs should be viewed as a repertoire of pathogen-associated molecular patterns (PAMPs), exerting more robust effects than Gram-negative bacteria-derived LPS.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Kareemah Ni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Chenghao Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Ayyanar Sivanantham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, 11937 US Hwy 271, BMR, Lab D-11, Tyler, TX 75708, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
25
|
Jalalifar S, Morovati Khamsi H, Hosseini-Fard SR, Karampoor S, Bajelan B, Irajian G, Mirzaei R. Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes. Infect Agent Cancer 2023; 18:3. [PMID: 36658631 PMCID: PMC9850788 DOI: 10.1186/s13027-023-00480-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The role of gut microbiota and its products in human health and disease is profoundly investigated. The communication between gut microbiota and the host involves a complicated network of signaling pathways via biologically active molecules generated by intestinal microbiota. Some of these molecules could be assembled within nanoparticles known as outer membrane vesicles (OMVs). Recent studies propose that OMVs play a critical role in shaping immune responses, including homeostasis and acute inflammatory responses. Moreover, these OMVs have an immense capacity to be applied in medical research, such as OMV-based vaccines and drug delivery. This review presents a comprehensive overview of emerging knowledge about biogenesis, the role, and application of these bacterial-derived OMVs, including OMV-based vaccines, OMV adjuvants characteristics, OMV vehicles (in conjugated vaccines), cancer immunotherapy, and drug carriers and delivery systems. Moreover, we also highlight the significance of the potential role of these OMVs in diagnosis and therapy.
Collapse
Affiliation(s)
- Saba Jalalifar
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovati Khamsi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Bajelan
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Karthikeyan R, Gayathri P, Ramasamy S, Suvekbala V, Jagannadham MV, Rajendhran J. Transcriptome responses of intestinal epithelial cells induced by membrane vesicles of Listeria monocytogenes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100185. [PMID: 36942003 PMCID: PMC10023947 DOI: 10.1016/j.crmicr.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Membrane vesicles (MVs) serve as an essential virulence factor in several pathogenic bacteria. The release of MVs by Listeria monocytogenes is only recently recognized; still, the enigmatic role of MVs in pathogenesis is yet to be established. We report the transcriptome response of Caco-2 cells upon exposure to MVs and the L. monocytogenes that leads to observe the up-regulation of autophagy-related genes in the early phase of exposure to MVs. Transcription of inflammatory cytokines is to the peak at the fourth hour of exposure. An array of differentially expressed genes was associated with actin cytoskeleton rearrangement, autophagy, cell cycle arrest, and induction of oxidative stress. At a later time point, transcriptional programs are generated upon interaction with MVs to evade innate immune signals, by modulating the expression of anti-inflammatory genes. KEGG pathway analysis is palpably confirming that MVs appear principally responsible for the induction of immune signaling pathways. Besides, MVs induced the expression of cell cycle regulatory genes, likely responsible for the ability to prolong host cell survival, thus protecting the replicative niche for L. monocytogenes. Notably, we identified several non-coding RNAs (ncRNAs), possibly involved in the regulation of early manipulation of the host gene expression, essential for the persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
| | - Subbiah Ramasamy
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Vemparthan Suvekbala
- EDII-Anna Business Incubation Research Foundation, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli 620024, India
| | - Medicharla V. Jagannadham
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad 500007, India
- Corresponding authors.
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
- Corresponding authors.
| |
Collapse
|
27
|
Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol 2022; 13:1039040. [PMID: 36619996 PMCID: PMC9815515 DOI: 10.3389/fmicb.2022.1039040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-enveloped vesicles secreted by prokaryotic and eukaryotic cells, which are commonly defined as membrane vesicles (MVs) and exosomes, respectively. They play critical roles in the bacteria-bacteria and bacteria-host interactions. In infectious diseases caused by bacteria, as the first line of defense against pathogens, the macrophage polarization mode commonly determines the success or failure of the host's response to pathogen aggression. M1-type macrophages secrete pro-inflammatory factors that support microbicidal activity, while alternative M2-type macrophages secrete anti-inflammatory factors that perform an antimicrobial immune response but partially allow pathogens to replicate and survive intracellularly. Membrane vesicles (MVs) released from bacteria as a distinctive secretion system can carry various components, including bacterial effectors, nucleic acids, or lipids to modulate macrophage polarization in host-pathogen interaction. Similar to MVs, bacteria-infected macrophages can secrete exosomes containing a variety of components to manipulate the phenotypic polarization of "bystander" macrophages nearby or long distance to differentiate into type M1 or M2 to regulate the course of inflammation. Exosomes can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and regulating cellular biological behaviors. The study of the mechanisms by which EVs modulate macrophage polarization has opened new frontiers in delineating the molecular machinery involved in bacterial pathogenesis and challenges in providing new strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, China,*Correspondence: Xingxiao Zhang, ✉
| |
Collapse
|
28
|
Jiang M, Wang Z, Xia F, Wen Z, Chen R, Zhu D, Wang M, Zhuge X, Dai J. Reductions in bacterial viability stimulate the production of Extra-intestinal Pathogenic Escherichia coli (ExPEC) cytoplasm-carrying Extracellular Vesicles (EVs). PLoS Pathog 2022; 18:e1010908. [PMID: 36260637 PMCID: PMC9621596 DOI: 10.1371/journal.ppat.1010908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Extra-intestinal Pathogenic Escherichia coli (ExPEC) is defined as an extra-intestinal foodborne pathogen, and several dominant sequence types (STs) ExPEC isolates are highly virulent, with zoonotic potential. Bacteria extracellular vesicles (EVs) carry specific subsets of molecular cargo, which affect various biological processes in bacteria and host. The mechanisms of EVs formation in ExPEC remains to be elucidated. Here, the purified EVs of ExPEC strains of different STs were isolated with ultracentrifugation processes. A comparative analysis of the strain proteomes showed that cytoplasmic proteins accounted for a relatively high proportion of the proteins among ExPEC EVs. The proportion of cytoplasm-carrying vesicles in ExPEC EVs was calculated with a simple green fluorescent protein (GFP) expression method. The RecA/LexA-dependent SOS response is a critical mediator of generation of cytoplasm-carrying EVs. The SOS response activates the expression of prophage-associated endolysins, Epel1, Epel2.1, and Epel2.2, which triggered cell lysis, increasing the production of ExPEC cytoplasm-carrying EVs. The repressor LexA controlled directly the expression of these endolysins by binding to the SOS boxes in the endolysin promoter regions. Reducing bacterial viability stimulated the production of ExPEC EVs, especially cytoplasm-carrying EVs. The imbalance in cell division caused by exposure to H2O2, the deletion of ftsK genes, or t6A synthesis defects activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, and thus increasing the proportion of cytoplasm-carrying EVs in the total ExPEC EVs. Antibiotics, which decreased bacterial viability, also increase the production of ExPEC cytoplasm-carrying EVs through the SOS response. Changes in the proportion of cytoplasm-carrying EVs affected the total DNA content of ExPEC EVs. When macrophages are exposed to a higher proportion of cytoplasm-carrying vesicles, ExPEC EVs were more cytotoxic to macrophages, accompanied with more-severe mitochondrial disruption and a higher level of induced intrinsic apoptosis. In summary, we offered comprehensive insight into the proteome analysis of ExPEC EVs. This study demonstrated the novel formation mechanisms of E. coli cytoplasm-carrying EVs. Bacteria can release extracellular vesicles (EVs) into the extracellular environment. Bacterial EVs are primarily composed of protein, DNA, RNA, lipopolysaccharide (LPS), and diverse metabolite molecules. The molecular cargoes of EVs are critical for the interaction between microbes and their hosts, and affected various host biological processes. However, the mechanisms underlying the biogenesis of bacterial EVs had not been fully clarified in extra-intestinal pathogenic Escherichia coli (ExPEC). In this study, we demonstrated ExPEC EVs contained at least three types of vesicles, including outer membrane vesicles (OMVs), outer-inner membrane vesicles (OIMVs), and explosive outer membrane vesicles (EOMVs). Our results systematically identified important factors affecting the production of ExPEC cytoplasm-carrying EVs, especially EOMVs. A reduction in bacterial viability activated the RecA/LexA-dependent SOS response, inducing the expression of endolysins, which increased the production of ExPEC cytoplasm-carrying EVs. This increase in the proportion of cytoplasm-carrying EVs increased the cytotoxicity of EVs. It was noteworthy that antibiotics increased the production of ExPEC EVs, especially the numbers of cytoplasm-carrying EVs, which in turn increased EV cytotoxicity, suggesting that the treatment of infections of multidrug-resistant strains infection with antibiotics might cause greater host damage. Our study should improve the prevention and treatment of ExPEC infections.
Collapse
Affiliation(s)
- Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Rui Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Dongyu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China,* E-mail: (XZ); (JD)
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China,College of Pharmacy, China Pharmaceutical University, Nanjing, China,* E-mail: (XZ); (JD)
| |
Collapse
|
29
|
Villageliu DN, Samuelson DR. The Role of Bacterial Membrane Vesicles in Human Health and Disease. Front Microbiol 2022; 13:828704. [PMID: 35300484 PMCID: PMC8923303 DOI: 10.3389/fmicb.2022.828704] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are nanoparticles derived from the membrane components of bacteria that transport microbial derived substances. MVs are ubiquitous across a variety of terrestrial and marine environments and vary widely in their composition and function. Membrane vesicle functional diversity is staggering: MVs facilitate intercellular communication by delivering quorum signals, genetic information, and small molecules active against a variety of receptors. MVs can deliver destructive virulence factors, alter the composition of the microbiota, take part in the formation of biofilms, assist in the uptake of nutrients, and serve as a chemical waste removal system for bacteria. MVs also facilitate host-microbe interactions including communication. Released in mass, MVs overwhelm the host immune system and injure host tissues; however, there is also evidence that vesicles may take part in processes which promote host health. This review will examine the ascribed functions of MVs within the context of human health and disease.
Collapse
Affiliation(s)
| | - Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
30
|
Sahr T, Escoll P, Rusniok C, Bui S, Pehau-Arnaudet G, Lavieu G, Buchrieser C. Translocated Legionella pneumophila small RNAs mimic eukaryotic microRNAs targeting the host immune response. Nat Commun 2022; 13:762. [PMID: 35140216 PMCID: PMC8828724 DOI: 10.1038/s41467-022-28454-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that can cause a severe form of pneumonia in humans, a phenotype evolved through interactions with aquatic protozoa in the environment. Here, we show that L. pneumophila uses extracellular vesicles to translocate bacterial small RNAs (sRNAs) into host cells that act on host defence signalling pathways. The bacterial sRNA RsmY binds to the UTR of ddx58 (RIG-I encoding gene) and cRel, while tRNA-Phe binds ddx58 and irak1 collectively reducing expression of RIG-I, IRAK1 and cRel, with subsequent downregulation of IFN-β. Thus, RsmY and tRNA-Phe are bacterial trans-kingdom regulatory RNAs downregulating selected sensor and regulator proteins of the host cell innate immune response. This miRNA-like regulation of the expression of key sensors and regulators of immunity is a feature of L. pneumophila host-pathogen communication and likely represents a general mechanism employed by bacteria that interact with eukaryotic hosts.
Collapse
Affiliation(s)
- Tobias Sahr
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Sheryl Bui
- Université de Paris, INSERM ERL U1316, UMR 7057/CNRS, Paris, France
| | - Gérard Pehau-Arnaudet
- Unité de Technologie et Service BioImagerie Ultrastructurale and CNRS UMR 3528, Paris, France
| | - Gregory Lavieu
- Université de Paris, INSERM ERL U1316, UMR 7057/CNRS, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France.
| |
Collapse
|
31
|
Pavkova I, Klimentova J, Bavlovic J, Horcickova L, Kubelkova K, Vlcak E, Raabova H, Filimonenko V, Ballek O, Stulik J. Francisella tularensis Outer Membrane Vesicles Participate in the Early Phase of Interaction With Macrophages. Front Microbiol 2021; 12:748706. [PMID: 34721352 PMCID: PMC8554293 DOI: 10.3389/fmicb.2021.748706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis is known to release unusually shaped tubular outer membrane vesicles (OMV) containing a number of previously identified virulence factors and immunomodulatory proteins. In this study, we present that OMV isolated from the F. tularensis subsp. holarctica strain FSC200 enter readily into primary bone marrow-derived macrophages (BMDM) and seem to reside in structures resembling late endosomes in the later intervals. The isolated OMV enter BMDM generally via macropinocytosis and clathrin-dependent endocytosis, with a minor role played by lipid raft-dependent endocytosis. OMVs proved to be non-toxic and had no negative impact on the viability of BMDM. Unlike the parent bacterium itself, isolated OMV induced massive and dose-dependent proinflammatory responses in BMDM. Using transmission electron microscopy, we also evaluated OMV release from the bacterial surface during several stages of the interaction of Francisella with BMDM. During adherence and the early phase of the uptake of bacteria, we observed numerous tubular OMV-like protrusions bulging from the bacteria in close proximity to the macrophage plasma membrane. This suggests a possible role of OMV in the entry of bacteria into host cells. On the contrary, the OMV release from the bacterial surface during its cytosolic phase was negligible. We propose that OMV play some role in the extracellular phase of the interaction of Francisella with the host and that they are involved in the entry mechanism of the bacteria into macrophages.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jana Klimentova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jan Bavlovic
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Lenka Horcickova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Erik Vlcak
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Raabova
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vlada Filimonenko
- Electron Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.,Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
32
|
Tiku V, Tan MW. Host immunity and cellular responses to bacterial outer membrane vesicles. Trends Immunol 2021; 42:1024-1036. [PMID: 34635395 DOI: 10.1016/j.it.2021.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023]
Abstract
All Gram-negative bacteria produce outer membrane vesicles (OMVs) which are minute spherical structures emanating from the bacterial outer membrane. OMVs are primarily enriched in lipopolysaccharide (LPS) and phospholipids, as well as outer membrane and periplasmic proteins. Recent research has provided convincing evidence for their role in multiple aspects of bacterial physiology and their interaction with vertebrate host cells. OMVs play vital roles in bacterial colonization, delivery of virulence factors, and disease pathogenesis. Here, we discuss the interactions of OMVs with mammalian host cells with a focus on how bacteria use OMVs to modulate host immune responses that eventually enable bacteria to evade host immunity.
Collapse
Affiliation(s)
- Varnesh Tiku
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
33
|
Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev 2021; 176:113811. [PMID: 34022269 DOI: 10.1016/j.addr.2021.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.
Collapse
|
34
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
35
|
Ahmed AAQ, Qi F, Zheng R, Xiao L, Abdalla AME, Mao L, Bakadia BM, Liu L, Atta OM, Li X, Shi Z, Yang G. The impact of ExHp-CD (outer membrane vesicles) released from Helicobacter pylori SS1 on macrophage RAW 264.7 cells and their immunogenic potential. Life Sci 2021; 279:119644. [PMID: 34048813 DOI: 10.1016/j.lfs.2021.119644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Bacterial-derived extracellular vesicles could play a major role in attenuating and treating diseases. They play a major anti-infection role by modulating immune responses against pathogens and preventing infection by inhibiting pathogen localization and proliferation. In this study, outer membrane vesicles (ExHp-CD) released by Helicobacter pylori SS1 (H. pylori) and total antigens isolated from H. pylori SS1 (AgHp) were evaluated for their immunogenic potential and their effect on macrophage RAW 264.7 cells. Results demonstrated that both ExHp-CD and AgHp induced T helper 2 (Th2) immune response, which was reported to be important in immune protection against H. pylori infections. Both ExHp-CD and AgHp produced high levels of IL-10 and IL-4, while no significant levels of IL-12 p70 or IFN-γ were detected. However, ExHp-CD showed a better effect on macrophage RAW 264.7 cells compared to AgHp. Macrophage RAW 264.7 cells stimulated with 5, and 10 μg/mL of ExHp-CD showed an increased ratio of CD206 (M2 phenotype marker) and a decreased ratio of CD86 (M1 phenotype marker). Moreover, results suggested that the immunogenic effect that ExHp-CD possesses was attributed to their cargo of Epimerase_2 domain-containing protein (Epi_2D), Probable malate:quinone oxidoreductase (Pro_mqo), and Probable cytosol aminopeptidase (Pro_ca). Results demonstrated that ExHp-CD possesses an immunological activity to induce Th2 immune response against H. pylori infection with results comparable to AgHp. However, ExHp-CD showed higher efficacy regarding safety, biocompatibility, lack of toxicity, and hemocompatibility. Thus, it could serve as an immunogenic candidate with more desired characteristics.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ahmed M E Abdalla
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum 1660/11111, Sudan
| | - Lin Mao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Omar Mohammad Atta
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
36
|
Dhital S, Deo P, Stuart I, Naderer T. Bacterial outer membrane vesicles and host cell death signaling. Trends Microbiol 2021; 29:1106-1116. [PMID: 34001418 DOI: 10.1016/j.tim.2021.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
The programmed cell death pathways of pyroptosis and apoptosis protect mammals from infections. The activation of host cell death signaling depends on cell surface and cytosolic receptors that bind bacterial molecules or sense their activity. The formation of cytosolic protein complexes, such as the inflammasome and apoptosome, activates caspases, pore-forming proteins, and inflammatory cytokines. These pathways respond to bacteria and their released membrane vesicles. Outer membrane vesicles (OMVs) that emerge from the outer membrane of Gram-negative bacteria deliver a range of bacterial molecules, including lipids, proteins, polysaccharides and nucleic acids to host cells. Recent findings describe how OMV-associated molecules activate pyroptosis, apoptosis, and other inflammatory pathways. We discuss here how OMV-associated molecules are sensed by the immune system and how this contributes to infections and inflammatory diseases.
Collapse
Affiliation(s)
- Subhash Dhital
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Pankaj Deo
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|
37
|
Ñahui Palomino RA, Vanpouille C, Costantini PE, Margolis L. Microbiota-host communications: Bacterial extracellular vesicles as a common language. PLoS Pathog 2021; 17:e1009508. [PMID: 33984071 PMCID: PMC8118305 DOI: 10.1371/journal.ppat.1009508] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Both gram-negative and gram-positive bacteria release extracellular vesicles (EVs) that contain components from their mother cells. Bacterial EVs are similar in size to mammalian-derived EVs and are thought to mediate bacteria–host communications by transporting diverse bioactive molecules including proteins, nucleic acids, lipids, and metabolites. Bacterial EVs have been implicated in bacteria–bacteria and bacteria–host interactions, promoting health or causing various pathologies. Although the science of bacterial EVs is less developed than that of eukaryotic EVs, the number of studies on bacterial EVs is continuously increasing. This review highlights the current state of knowledge in the rapidly evolving field of bacterial EV science, focusing on their discovery, isolation, biogenesis, and more specifically on their role in microbiota–host communications. Knowledge of these mechanisms may be translated into new therapeutics and diagnostics based on bacterial EVs.
Collapse
Affiliation(s)
- Rogers A. Ñahui Palomino
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christophe Vanpouille
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paolo E. Costantini
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Leonid Margolis
- Section on Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zhao L, Ye Y, Gu L, Jian Z, Stary CM, Xiong X. Extracellular vesicle-derived miRNA as a novel regulatory system for bi-directional communication in gut-brain-microbiota axis. J Transl Med 2021; 19:202. [PMID: 33975607 PMCID: PMC8111782 DOI: 10.1186/s12967-021-02861-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
The gut-brain-microbiota axis (GBMAx) coordinates bidirectional communication between the gut and brain, and is increasingly recognized as playing a central role in physiology and disease. MicroRNAs are important intracellular components secreted by extracellular vesicles (EVs), which act as vital mediators of intercellular and interspecies communication. This review will present current advances in EV-derived microRNAs and their potential functional link with GBMAx. We propose that EV-derived microRNAs comprise a novel regulatory system for GBMAx, and a potential novel therapeutic target for modifying GBMAx in clinical therapy.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
39
|
Behrens F, Funk-Hilsdorf TC, Kuebler WM, Simmons S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int J Mol Sci 2021; 22:3858. [PMID: 33917862 PMCID: PMC8068278 DOI: 10.3390/ijms22083858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Teresa C. Funk-Hilsdorf
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, ON M5B 1X1, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Szandor Simmons
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| |
Collapse
|
40
|
Gilmore WJ, Johnston EL, Zavan L, Bitto NJ, Kaparakis-Liaskos M. Immunomodulatory roles and novel applications of bacterial membrane vesicles. Mol Immunol 2021; 134:72-85. [PMID: 33725501 DOI: 10.1016/j.molimm.2021.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Bacteria release extracellular vesicles (EVs) known as bacterial membrane vesicles (BMVs) during their normal growth. Gram-negative bacteria produce BMVs termed outer membrane vesicles (OMVs) that are composed of a range of biological cargo and facilitate numerous bacterial functions, including promoting pathogenesis and mediating disease in the host. By contrast, less is understood about BMVs produced by Gram-positive bacteria, which are referred to as membrane vesicles (MVs), however their contribution to mediating bacterial pathogenesis has recently become evident. In this review, we summarise the mechanisms whereby BMVs released by Gram-negative and Gram-positive bacteria are produced, in addition to discussing their key functions in promoting bacterial survival, mediating pathogenesis and modulating host immune responses. Furthermore, we discuss the mechanisms whereby BMVs produced by both commensal and pathogenic organisms can enter host cells and interact with innate immune receptors, in addition to how they modulate host innate and adaptive immunity to promote immunotolerance or drive the onset and progression of disease. Finally, we highlight current and emerging applications of BMVs in vaccine design, biotechnology and cancer therapeutics.
Collapse
Affiliation(s)
- William J Gilmore
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ella L Johnston
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lauren Zavan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J Bitto
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia; Research Centre for Extracellular Vesicles, School of Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
41
|
Cao S, Chen Y, Yan Y, Zhu S, Tan Y, Wang T, Song Y, Deng H, Yang R, Du Z. Secretome and Comparative Proteomics of Yersinia pestis Identify Two Novel E3 Ubiquitin Ligases That Contribute to Plague Virulence. Mol Cell Proteomics 2021; 20:100066. [PMID: 33631294 PMCID: PMC7994543 DOI: 10.1016/j.mcpro.2021.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Plague is a zoonotic disease that primarily infects rodents via fleabite. Transmission from flea to host niches requires rapid adaption of Yersinia pestis to the outer environments to establish infection. Here, quantitative proteome and secretome analyses of Y. pestis grown under conditions mimicking the two typical niches, i.e., the mammalian host (Mh) and the flea vector (Fv), were performed to understand the adaption strategies of this deadly pathogen. A secretome of Y. pestis containing 308 proteins has been identified using TMT-labeling mass spectrometry analysis. Although some proteins are known to be secreted, such as the type III secretion substrates, PsaA and F1 antigen, most of them were found to be secretory proteins for the first time. Comparative proteomic analysis showed that membrane proteins, chaperonins and stress response proteins are significantly upregulated under the Mh condition, among which the previously uncharacterized proteins YP_3416∼YP_3418 are remarkable because they cannot only be secreted but also translocated into HeLa cells by Y. pestis. We further demonstrated that the purified YP_3416 and YP_3418 exhibited E3 ubiquitin ligase activity in in vitro ubiquitination assay and yp_3416∼3418 deletion mutant of Y. pestis showed significant virulence attenuation in mice. Taken together, our results represent the first Y. pestis secretome, which will promote the better understanding of Y. pestis pathogenesis, as well as the development of new strategies for treatment and prevention of plague.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
42
|
Ta A, Vanaja SK. Inflammasome activation and evasion by bacterial pathogens. Curr Opin Immunol 2021; 68:125-133. [PMID: 33338767 PMCID: PMC7925435 DOI: 10.1016/j.coi.2020.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/25/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022]
Abstract
Innate immune system plays an essential role in combating infectious diseases by recognizing invading pathogens and activating host defense response. Inflammasomes complexes are a central component of the cytosolic innate immune surveillance and are vital in host defense against bacterial pathogens. Bacterial products or pathogen-induced modifications in the intracellular environment are sensed by the inflammasome receptors that form complexes that serve as a platform for caspase-1-dependent or caspase-11-dependent induction of pyroptosis and secretion of cytokines, IL-1β and IL-18. However, several pathogenic bacteria have developed strategies to evade inflammasome activation. This review highlights the recent advances in the mechanism of inflammasome activation by bacterial pathogens and some of the bacterial evasion strategies of inflammasome activation.
Collapse
Affiliation(s)
- Atri Ta
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|
43
|
Abstract
The release of extracellular vesicles (EVs) is a process conserved across the three domains of life. Amongst prokaryotes, EVs produced by Gram-negative bacteria, termed outer membrane vesicles (OMVs), were identified more than 50 years ago and a wealth of literature exists regarding their biogenesis, composition and functions. OMVs have been implicated in benefiting numerous metabolic functions of their parent bacterium. Additionally, OMVs produced by pathogenic bacteria have been reported to contribute to pathology within the disease setting. By contrast, the release of EVs from Gram-positive bacteria, known as membrane vesicles (MVs), has only been widely accepted within the last decade. As such, there is a significant disproportion in knowledge regarding MVs compared to OMVs. Here we provide an overview of the literature regarding bacterial membrane vesicles (BMVs) produced by pathogenic and commensal bacteria. We highlight the mechanisms of BMV biogenesis and their roles in assisting bacterial survival, in addition to discussing their functions in promoting disease pathologies and their potential use as novel therapeutic strategies.
Collapse
Affiliation(s)
- William J Gilmore
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Natalie J Bitto
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maria Kaparakis-Liaskos
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
Gosens R, Hiemstra PS, Adcock IM, Bracke KR, Dickson RP, Hansbro PM, Krauss-Etschmann S, Smits HH, Stassen FRM, Bartel S. Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. Eur Respir J 2020; 56:13993003.02320-2019. [PMID: 32430415 PMCID: PMC7439216 DOI: 10.1183/13993003.02320-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are highly prevalent worldwide and will continue to rise in the foreseeable future. Despite intensive efforts over recent decades, the development of novel and effective therapeutic approaches has been slow. However, there is new and increasing evidence that communities of micro-organisms in our body, the human microbiome, are crucially involved in the development and progression of chronic respiratory diseases. Understanding the detailed mechanisms underlying this cross-talk between host and microbiota is critical for development of microbiome- or host-targeted therapeutics and prevention strategies. Here we review and discuss the most recent knowledge on the continuous reciprocal interaction between the host and microbes in health and respiratory disease. Furthermore, we highlight promising developments in microbiome-based therapies and discuss the need to employ more holistic approaches of restoring both the pulmonary niche and the microbial community. The reciprocal interaction between microbes and host in the lung is increasingly recognised as an important determinant of health. The complexity of this cross-talk needs to be taken into account when studying diseases and developing future new therapies.https://bit.ly/2VKYUfT
Collapse
Affiliation(s)
- Reinoud Gosens
- University of Groningen, Dept of Molecular Pharmacology, GRIAC Research Institute, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ken R Bracke
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute for Experimental Medicine, Christian-Albrechts-Universitaet zu Kiel, Kiel, Germany
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank R M Stassen
- Dept of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany .,University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
45
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
46
|
Karthikeyan R, Gayathri P, Gunasekaran P, Jagannadham MV, Rajendhran J. Functional analysis of membrane vesicles of Listeria monocytogenes suggests a possible role in virulence and physiological stress response. Microb Pathog 2020; 142:104076. [PMID: 32084577 DOI: 10.1016/j.micpath.2020.104076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/01/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
Membrane vesicles (MVs) are naturally secreted by many pathogenic organisms and have various functions that include the release of microbial virulence factors that contributes to pathogenesis. However, very little is known regarding the function of Gram-positive bacteria membrane vesicles. Here, we investigated the functional role of membrane vesicles of Listeria monocytogenes. We found that L. monocytogenes secreted MVs are spherical and diameter size around 192.3 nm. Here, we investigated the role of L. monocytogenes membrane vesicles in interbacterial communication to cope with antibiotic stress. We found that MVs are protecting the bacteria against the antibiotics trimethoprim and streptomycin. These MVs enabled streptomycin-susceptible L. monocytogenes 1143 to survive in the presence of streptomycin. The zeta potential, dynamic light scattering (DLS) and 1-Nphenylnapthylamine (NPN)-uptake assay reveals that MVs protect the bacterium from active antibiotics by different strategies. Exposure to environmental stressors was shown to increase the level of MV production in L. monocytogenes. The biological activity of MV-associated listeriolysin O, internalin B, and phosphatidylinositol-specific phospholipase C (PI-PLC) was investigated using epithelial cell cytotoxicity. The reduced cytotoxicity was observed in Δhly MVs on Caco-2 cells suggesting that MVs are biologically active. It is shown that a potent toxin LLO contributes to the MV mediated pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad, 500007, India
| | | | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
47
|
Abd El Maksoud AI, Elebeedy D, Abass NH, Awad AM, Nasr GM, Roshdy T, Khalil H. Methylomic Changes of Autophagy-Related Genes by Legionella Effector Lpg2936 in Infected Macrophages. Front Cell Dev Biol 2020; 7:390. [PMID: 32064256 PMCID: PMC6999459 DOI: 10.3389/fcell.2019.00390] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a Gram-negative bacterium that infects the human respiratory tract causing Legionnaires' disease, a severe form of pneumonia. Recently, rising evidence indicated the ability of Legionella to regulate host defense via its type 4 secretion system including hundreds of effectors that promote intracellular bacterial replication. The host defense against such invaders includes autophagic machinery that is responsible for degradation events of invading pathogens and recycling of cell components. The interplay between host autophagy and Legionella infection has been reported, indicating the role of bacterial effectors in the regulation of autophagy during intracellular replication. Here, we investigated the potential impact of Legionella effector Lpg2936 in the regulation of host autophagy and its role in bacterial replication using mice-derived macrophages and human lung epithelial cells (A549 cells). First, monitoring of autophagic flux following infection revealed a marked reduction of Atg7 and LC3B expression profile and low accumulation levels of autophagy-related LC3-I, LC3-II, and the Atg12-Atg5 protein complex. A novel methyladenine alteration was observed due to irreversible changes of GATC motif to G(6 mA) TC in the promoter region of Atg7 and LC3B indicated by cleaved genomic-DNA using the N6 methyladenine-sensitive restriction enzyme DpnI. Interestingly, RNA interference (RNAi) of Lpg2936 in infected macrophages showed dramatic inhibition of bacterial replication by restoring the expression of autophagy-related proteins. This is accompanied by low production levels of bacterial-associated pro-inflammatory cytokines. Furthermore, a constructed Lpg2936 segment in the GFP expression vector was translocated in the host nucleus and successfully induced methyladenine changes in Atg7 and LC3B promoter region and subsequently regulated autophagy in A549 cells independent of infection. Finally, treatment with methylation inhibitors 5-AZA and (2)-Epigallocatechin-3-gallate (EGCG) was able to restore autophagy-related gene expression and to disrupt bacterial replication in infected macrophages. This cumulative evidence indicates the methylation effect of Legionella effector Lpg2936 on the host autophagy-related molecules Atg7 and LC3B and subsequent reduction in the expression levels of autophagy effectors during intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Dalia Elebeedy
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City, Egypt
| | - Nasser H. Abass
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ahmed M. Awad
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Ghada M. Nasr
- Molecular Diagnostics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
48
|
Heim VJ, Stafford CA, Nachbur U. NOD Signaling and Cell Death. Front Cell Dev Biol 2019; 7:208. [PMID: 31632962 PMCID: PMC6783575 DOI: 10.3389/fcell.2019.00208] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023] Open
Abstract
Innate immune signaling and programmed cell death are intimately linked, and many signaling pathways can regulate and induce both, transcription of inflammatory mediators or autonomous cell death. The best-characterized examples for these dual outcomes are members of the TNF superfamily, the inflammasome receptors, and the toll-like receptors. Signaling via the intracellular peptidoglycan receptors NOD1 and NOD2, however, does not appear to follow this trend, despite involving signaling proteins, or proteins with domains that are linked to programmed cell death, such as RIP kinases, inhibitors of apoptosis (IAP) proteins or the CARD domains on NOD1/2. To better understand the connections between NOD signaling and cell death induction, we here review the latest findings on the molecular regulation of signaling downstream of the NOD receptors and explore the links between this immune signaling pathway and the regulation of cell death.
Collapse
Affiliation(s)
- Valentin J Heim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Che A Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
49
|
Karthikeyan R, Gayathri P, Gunasekaran P, Jagannadham MV, Rajendhran J. Comprehensive proteomic analysis and pathogenic role of membrane vesicles of Listeria monocytogenes serotype 4b reveals proteins associated with virulence and their possible interaction with host. Int J Med Microbiol 2019; 309:199-212. [PMID: 30962079 DOI: 10.1016/j.ijmm.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Membrane vesicles (MVs) are produced by various Gram positive and Gram negative pathogenic bacteria and play an important role in virulence. In this study, the membrane vesicles (MVs) of L. monocytogenes were isolated from the culture supernatant. High-resolution electron microscopy and dynamic light scattering analysis revealed that L. monocytogenes MVs are spherical with a diameter of 200 to 300 nm in size. Further, comprehensive proteomic analyses of MVs and whole cells of L. monocytogenes were performed using LC/MS/MS. A total of 1355 and 312 proteins were identified in the L. monocytogenes cells and MVs, respectively. We identified that 296 proteins are found in both whole cells, and MV proteome and 16 proteins were identified only in the MVs. Also, we have identified the virulence factors such as listeriolysin O (LLO), internalin B (InlB), autolysin, p60, NLP/P60 family protein, UPF0356 protein, and PLC-A in MVs. Computational prediction of host-MV interactions revealed a total of 1841 possible interactions with the host involving 99 MV proteins and 1513 host proteins. We elucidated the possible pathway that mediates internalization of L. monocytogenes MV to host cells and the subsequent pathogenesis mechanisms. The in vitro infection assays showed that the purified MVs could induce cytotoxicity in Caco-2 cells. Using endocytosis inhibitors, we demonstrated that MVs are internalized via actin-mediated endocytosis. These results suggest that L. monocytogenes MVs can interact with host cell and contribute to the pathogenesis of L. monocytogenes during infection.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad, 500007, India
| | | | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
50
|
Legionella pneumophila infection-mediated regulation of RICTOR via miR-218 in U937 macrophage cells. Biochem Biophys Res Commun 2019; 508:608-613. [PMID: 30509489 DOI: 10.1016/j.bbrc.2018.11.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Inhalation of aerosolized Legionella pneumophila, a Gram-negative bacterium, can cause severe pneumonia. During infection, L. pneumophila replicates intracellularly in macrophages. The involvement of host microRNAs (miRNAs) in L. pneumophila infection is not fully understood. METHODS The human macrophage-like cell line U937 was infected with L. pneumophila. The levels of miRNA and messenger RNA (mRNA) were measured using reverse transcriptase polymerase chain reaction. Release of lactate dehydrogenase was used to evaluate cytotoxicity. The expression of RICTOR and related proteins was examined by western blotting of cell lysates. RESULTS L. pneumophila infection upregulated the expression of miR-218 and the host genes SLIT2 and SLIT3 in U937 cells. The expression of RICTOR, a component of the mechanistic target of rapamycin complex 2 (mTORC2), decreased during L. pneumophila infection. RICTOR protein expression was inhibited by the overexpression of miR-218, whereas knockdown of miR-218 restored the downregulation of RICTOR by L. pneumophila. L. pneumophila infection induced the expression of the proinflammatory cytokines IL-6 and TNF-alpha, which was modulated by knockdown of miR-218 or RICTOR. CONCLUSIONS Our study revealed the involvement of miR-218 in regulating the inflammatory response of macrophages against L. pneumophila infection. These findings suggest potential novel roles for miR-218 and RICTOR as therapeutic targets of L. pneumophila infection.
Collapse
|