1
|
Duizer C, Salomons M, van Gogh M, Gräve S, Schaafsma FA, Stok MJ, Sijbranda M, Kumarasamy Sivasamy R, Willems RJL, de Zoete MR. Fusobacterium nucleatum upregulates the immune inhibitory receptor PD-L1 in colorectal cancer cells via the activation of ALPK1. Gut Microbes 2025; 17:2458203. [PMID: 39881579 PMCID: PMC11784648 DOI: 10.1080/19490976.2025.2458203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Fusobacterium nucleatum is a Gram-negative oncobacterium that is associated with colorectal cancer. The molecular mechanisms utilized by F. nucleatum to promote colorectal tumor development have largely focused on adhesin-mediated binding to the tumor tissue and on the pro-inflammatory capacity of F. nucleatum. However, the exact manner in which F. nucleatum promotes inflammation in the tumor microenvironment and subsequent tumor promotion remains underexplored. Here, we show that both living F. nucleatum and sterile F. nucleatum-conditioned medium promote CXCL8 release from the intestinal adenocarcinoma HT-29 cell line. We determined that the observed pro-inflammatory effect was ALPK1-dependent in both HEK293 and HT-29 cells and that the released F. nucleatum molecule had characteristics that match those of the pro-inflammatory ALPK1 ligand ADP-heptose or related heptose phosphates. In addition, we determined that not only F. nucleatum promoted an ALPK1-dependent pro-inflammatory environment but also other Fusobacterium species such as F. varium, F. necrophorum and F. gonidiaformans generated similar effects, indicating that ADP-heptose or related heptose phosphate secretion is a conserved feature of the Fusobacterium genus. By performing transcriptional analysis of ADP-heptose stimulated HT-29 cells, we found several inflammatory and cancer-related pathways to be differentially regulated, including DNA mismatch repair genes and the immune inhibitory receptor PD-L1. Finally, we show that stimulation of HT-29 cells with F. nucleatum resulted in an ALPK1-dependent upregulation of PD-L1. These results aid in our understanding of the mechanisms by which F. nucleatum can affect tumor development and therapy and pave the way for future therapeutic approaches.
Collapse
Affiliation(s)
- Coco Duizer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moniek Salomons
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Merel van Gogh
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sanne Gräve
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Freke A. Schaafsma
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike J. Stok
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Merel Sijbranda
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Agarwal P, Sampson A, Hueneman K, Choi K, Jakobsen NA, Uible E, Ishikawa C, Yeung J, Bolanos L, Zhao X, Setchell KD, Haslam DB, Galloway-Pena J, Byrd JC, Vyas P, Starczynowski DT. Microbial metabolite drives ageing-related clonal haematopoiesis via ALPK1. Nature 2025:10.1038/s41586-025-08938-8. [PMID: 40269158 DOI: 10.1038/s41586-025-08938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) involves the gradual expansion of mutant pre-leukaemic haematopoietic cells, which increases with age and confers a risk for multiple diseases, including leukaemia and immune-related conditions1. Although the absolute risk of leukaemic transformation in individuals with CHIP is very low, the strongest predictor of progression is the accumulation of mutant haematopoietic cells2. Despite the known associations between CHIP and increased all-cause mortality, our understanding of environmental and regulatory factors that underlie this process during ageing remains rudimentary. Here we show that intestinal alterations, which can occur with age, lead to systemic dissemination of a microbial metabolite that promotes pre-leukaemic cell expansion. Specifically, ADP-D-glycero-β-D-manno-heptose (ADP-heptose), a biosynthetic bi-product specific to Gram-negative bacteria3-5, is uniquely found in the circulation of older individuals and favours the expansion of pre-leukaemic cells. ADP-heptose is also associated with increased inflammation and cardiovascular risk in CHIP. Mechanistically, ADP-heptose binds to its receptor, ALPK1, triggering transcriptional reprogramming and NF-κB activation that endows pre-leukaemic cells with a competitive advantage due to excessive clonal proliferation. Collectively, we identify that the accumulation of ADP-heptose represents a direct link between ageing and expansion of rare pre-leukaemic cells, suggesting that the ADP-heptose-ALPK1 axis is a promising therapeutic target to prevent progression of CHIP to overt leukaemia and immune-related conditions.
Collapse
Affiliation(s)
- Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Uible
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Yeung
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica Galloway-Pena
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Li X, Ning L, Zhao H, Gu C, Han Y, Xu W, Si Y, Xu Y, Wang R, Ren Q. Jiawei Ermiao Granules (JWEMGs) clear persistent HR-HPV infection though improving vaginal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119342. [PMID: 39793775 DOI: 10.1016/j.jep.2025.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Ermiao Granules (JWEMGs), a traditional Chinese herbal formulation, has been widely used in China for the treatment of human papillomavirus (HPV) infections. However, the underlying mechanisms through which it exerts its antiviral effects remain poorly understood. AIM OF THE STUDY This study aimed to investigate the potential mechanisms by which JWEMGs modulate vaginal microecology and clear HPV infections, utilizing clinical trials, metagenomic sequencing, and in vitro models. MATERIALS AND METHODS Clinical indicators related to vaginal microecology, such as vaginal pH, cleanliness, Nugent score, Donders score, catalase, neuraminidase, and leukocyte esterase, were evaluated in 65 patients with high-risk HPV (HR-HPV) infection. The study examined the impact of two courses of oral JWEMGs on these clinical parameters. Additionally, metagenomic sequencing was performed on vaginal lavage samples from 33 patients to assess the alteration of the vaginal microbiome following JWEMGs treatment. Immunohistochemistry was used to detect ALPK1 expression in cervical exfoliated cells, and ELISA was employed to measure cytokine levels in vaginal lavage fluid. JWEMGs intervention was applied to HaCaT-HPV E6/E7 cells to evaluate its effects on restoring α-kinase 1 (ALPK1) expression and promoting the secretion of cytokines and chemokines. RESULTS Treatment with JWEMGs significantly improved several clinical indicators, including cleanliness, pH, Nugent score, Donders score, catalase, neuraminidase, and leukocyte esterase, in HR-HPV-infected patients. Furthermore, JWEMGs therapy led to an increased abundance of Lactobacillus species, especially Lactobacillus crispatus, and a marked reduction in Gardnerella species. JWEMGs treatment also significantly promoted ALPK1 expression in cervical exfoliated cells and augmented the secretion of key cytokines, including IL-6, IL-8, and TNF-α. In parallel, in vitro results showed that JWEMGs substantially enhanced IL-6, IL-8, TNF-α, CCL2, CCL5, and CCL7 secretion in HaCaT-HPV E6/E7 cells, which correlated with the activation of the ALPK1/NF-κB signaling pathway. CONCLUSION In conclusion, JWEMGs treatment effectively remodels the vaginal microbiota and bolsters mucosal immunity in the lower genital tract, thereby improving the vaginal microecology in HR-HPV-infected individuals. In vitro findings further demonstrated that JWEMGs promote cytokine and chemokine expression, activating the ALPK1/NF-κB pathway.
Collapse
Affiliation(s)
- Xiu Li
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Li Ning
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hongting Zhao
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chenxi Gu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yue Han
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wenwen Xu
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yu Si
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yating Xu
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ruyue Wang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Qingling Ren
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
4
|
Turcotte EA, Kim K, Eislmayr KD, Goers L, Mitchell PS, Lesser CF, Vance RE. Shigella OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636075. [PMID: 39975412 PMCID: PMC11838452 DOI: 10.1101/2025.02.01.636075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The NAIP-NLRC4 inflammasome senses pathogenic bacteria by recognizing the cytosolic presence of bacterial proteins such as flagellin and type III secretion system (T3SS) subunits. In mice, the NAIP-NLRC4 inflammasome provides robust protection against bacterial pathogens that infect intestinal epithelial cells, including the gastrointestinal pathogen Shigella flexneri. By contrast, humans are highly susceptible to Shigella, despite the ability of human NAIP-NLRC4 to robustly detect Shigella T3SS proteins. Why the NAIP-NLRC4 inflammasome protects mice but not humans against Shigella infection remains unclear. We previously found that human THP-1 cells infected with Shigella lose responsiveness to NAIP-NLRC4 stimuli, while retaining sensitivity to other inflammasome agonists. Using mT3Sf, a "minimal Shigella" system, to express individual secreted Shigella effector proteins, we found that the OspF effector specifically suppresses NAIP-NLRC4-dependent cell death during infection. OspF was previously characterized as a phosphothreonine lyase that inactivates p38 and ERK MAP kinases. We found that p38 was critical for rapid priming of NAIP-NLRC4 activity, particularly in cells with low NAIP-NLRC4 expression. Overall, our results provide a mechanism by which Shigella evades inflammasome activation in humans, and describe a new mechanism for rapid priming of the NAIP-NLRC4 inflammasome.
Collapse
Affiliation(s)
- Elizabeth A Turcotte
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Kyungsub Kim
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Kevin D Eislmayr
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Lisa Goers
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Patrick S Mitchell
- Department of Microbiology, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Russell E Vance
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
- Center for Emerging and Neglected Disease, University of California, Berkeley, United States
- Cancer Research Laboratory, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| |
Collapse
|
5
|
Qiu L, Lu X, Xue W, Fu H, Deng S, Li L, Chen M, Wang Y. Ischemic stroke susceptibility associated with ALPK1 single nucleotide polymorphisms by inhibiting URAT1 in uric acid hemostasis. Gene 2025; 934:149017. [PMID: 39437898 DOI: 10.1016/j.gene.2024.149017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Ischemic stroke (IS) prevalence rising annually, the necessity of discovering non-interventional genetic influences is progressing. Single nucleotide polymorphism (SNP) plays a pivotal role in stable inheritance of disease susceptibility. Based on the relationship between Alpha- Kinase 1 (ALPK1) and traditional IS risk factors especially hyperuricemia, our study investigated the association and function of ALPK1 SNPs with IS susceptibility. METHODS A case-control study of 1539 patients and 933 controls from northeast China was conducted. Genotyping information of ALPK1 rs2074379 and rs2074388 was collected. Four types of plasmids including rs2074379/rs2074388 G/G, A/G, G/A, and A/A were transfected into 293T cells to observe ALPK1 and SLC22A12 expression. Possible ALPK1 structures of different SNPs were predicted online. RESULTS Genotype GG (OR = 1.371, CI = 1.029-1.828, P = 0.031) and GA (OR = 1.326, CI = 1.110-1.584, P = 0.002) of rs2074379 and GA of rs2074388 (OR = 1.359, CI = 1.137-1.624, P = 0.001) were found significantly susceptible to IS, with G allele on sites to be a risk allele. Rs2074379 had a multiplicative interaction with hyperuricemia (OR = 1.637, CI = 1.157-2.315, P = 0.005). Uric acid levels differed in genotypes (P < 0.001). The expression of ALPK1 (P < 0.01) and SLC22A12 in membrane urate transporter 1 (URAT1) protein (P < 0.05) functionally changed with G allele on either site. With glycine changing into aspartic acid at rs2074388, the protein secondary structure changed, but the ALPK1 protein subtype remained still. CONCLUSIONS ALPK1 rs2074379 and rs2074388 SNPs were functionally associated with IS susceptibility. The wild allele progressed IS risk probably by reducing ALPK1 expression and inhibiting URAT1 raising the uric acid level, contributing to further exploration of pathogenetic mechanisms of stroke. Chinese Clinical Trial Registration number: ChiCTR-COC-17013559.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaoqin Lu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Hefei Fu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Meilin Chen
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
6
|
Martin A, Caron S, Marcotte M, Bronnec P, Garneret E, Martel N, Maalouf G, Sève P, Saadoun D, Jamilloux Y, Henry T. IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes. iScience 2025; 28:111563. [PMID: 39868044 PMCID: PMC11758396 DOI: 10.1016/j.isci.2024.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in ALPK1 are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation). This study investigated ALPK1 responses in human mononuclear cells and demonstrates that human mononuclear cells have distinct abilities to respond to ADP-heptose. Notably, IFN-γ is required to license the ALPK1/TIFA pathway in monocytes, while it was dispensable for the responsiveness of B cells. IFN-γ induced TIFA upregulation in monocytes, and TIFA induction was sufficient to recapitulate the licensing effect of IFN-γ. IFN-γ treatment promoted the phenotypic expression of pathogenic ALPK1 mutations. The licensing effect of IFN-γ in monocytes was blocked by JAK inhibitors. These findings underscore the critical role of IFN-γ in ALPK1 function and suggest JAK inhibitors as potential therapies for ALPK1-related inflammatory conditions.
Collapse
Affiliation(s)
- Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Solène Caron
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Mélissa Marcotte
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Pauline Bronnec
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Etienne Garneret
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
| | - Nora Martel
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - Georgina Maalouf
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Department of Internal Medicine and Clinical Immunology, Sorbonne Universités, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre National de Références Maladies Auto-immunes et Systémiques Rares, INSERM, UMR S959, Immunology-Immunopathology-Immunotherapy (I3), 83 Boulevard de L’hôpital, 75013 Paris, France
| | - Pascal Sève
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - David Saadoun
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Department of Internal Medicine and Clinical Immunology, Sorbonne Universités, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre National de Références Maladies Auto-immunes et Systémiques Rares, INSERM, UMR S959, Immunology-Immunopathology-Immunotherapy (I3), 83 Boulevard de L’hôpital, 75013 Paris, France
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, 69000 Lyon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France
- CeRéMAIA: Centre National de Références Maladies Autoinflammatoires et Amylose Inflammatoire, 69000 Lyon, France
| |
Collapse
|
7
|
Holmes CL, Dailey KG, Hullahalli K, Wilcox AE, Mason S, Moricz BS, Unverdorben LV, Balazs GI, Waldor MK, Bachman MA. Patterns of Klebsiella pneumoniae bacteremic dissemination from the lung. Nat Commun 2025; 16:785. [PMID: 39824859 PMCID: PMC11742683 DOI: 10.1038/s41467-025-56095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Bacteremia, a leading cause of death, generally arises after bacteria establish infection in a particular tissue and transit to secondary sites. Studying dissemination from primary sites by solely measuring bacterial burdens does not capture the movement of individual clones. By barcoding Klebsiella pneumoniae, a leading cause of bacteremia, we track pathogen dissemination following pneumonia. Variability in organ bacterial burdens is attributable to two distinct dissemination patterns distinguished by the degree of similarity between the lung and systemic sites. In metastatic dissemination, lung bacterial clones undergo heterogeneous expansion and the dominant clones spread to secondary organs, leading to greater similarity between sites. In direct dissemination, bacterial clones exit the lungs without clonal expansion, leading to lower burdens in systemic sites and more dissimilarity from the lung. We uncover bacterial and host factors that influence the dynamics of clonal sharing and expansion. Here, our data reveal unexpected heterogeneity in Klebsiella bacteremia dynamics and define a framework for understanding within-host bacterial dissemination.
Collapse
Affiliation(s)
- Caitlyn L Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine G Dailey
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Karthik Hullahalli
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexis E Wilcox
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sophia Mason
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bridget S Moricz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lavinia V Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - George I Balazs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Michael A Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Cohen P, Snelling T. Diseases caused by altered specificity of a protein kinase for its allosteric activators. Trends Biochem Sci 2025; 50:61-70. [PMID: 39580356 DOI: 10.1016/j.tibs.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024]
Abstract
Protein kinases regulate many intracellular processes, and their dysregulation causes cancers and other diseases. This review focuses on the atypical alpha-kinase 1 (ALPK1), which is activated in mammalian cells by nucleoside diphosphate heptoses (ADP-heptose, UDP-heptose, and CDP-heptose) produced by microbial pathogens but not by mammalian cells. Mutations in human ALPK1 cause ROSAH syndrome and spiradenoma, which result from an alteration in its specificity for nucleoside diphosphate heptoses, causing aberrant activation by mammalian nucleoside diphosphate sugars without microbial infection. These may be the first diseases caused by altered specificity of an enzyme for its allosteric activators and has suggested ways in which selective drugs could be developed to treat them without compromising the innate immune system.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.
| | - Tom Snelling
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
9
|
Tang Y, Tian X, Wang M, Cui Y, She Y, Shi Z, Liu J, Mao H, Liu L, Li C, Zhang Y, Li P, Ma Y, Sun J, Du Q, Li J, Wang J, Li DF, Wu B, Shao F, Chen Y. The β-d- manno-heptoses are immune agonists across kingdoms. Science 2024; 385:678-684. [PMID: 39116220 DOI: 10.1126/science.adk7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Bacterial small molecule metabolites such as adenosine-diphosphate-d-glycero-β-d-manno-heptose (ADP-heptose) and their derivatives act as effective innate immune agonists in mammals. We show that functional nucleotide-diphosphate-heptose biosynthetic enzymes (HBEs) are distributed widely in bacteria, archaea, eukaryotes, and viruses. We identified a conserved STTR5 motif as a hallmark of heptose nucleotidyltransferases that can synthesize not only ADP-heptose but also cytidine-diphosphate (CDP)- and uridine-diphosphate (UDP)-heptose. Both CDP- and UDP-heptoses are agonists that trigger stronger alpha-protein kinase 1 (ALPK1)-dependent immune responses than ADP-heptose in human and mouse cells and mice. We also produced ADP-heptose in archaea and verified its innate immune agonist functions. Hence, the β-d-manno-heptoses are cross-kingdom, small-molecule, pathogen-associated molecular patterns that activate the ALPK1-dependent innate immune signaling cascade.
Collapse
Affiliation(s)
- Yue Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoying Tian
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yinglu Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang She
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaoxiang Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Jiaqi Liu
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Huijin Mao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lilu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyuan Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen H, Liu J, Wan X, Zhang M, Luo L, Qiu X, Yang C. Research on the Mechanism of Metaldehyde on Pomacea canaliculata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14152-14164. [PMID: 38869049 DOI: 10.1021/acs.jafc.3c06405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Golden apple snail (Pomacea canaliculata), a major alien invasive organism in China, affects food production and poses a threat to human health. Metaldehyde is a highly effective, commonly used snail killer with low toxicity. Virulence determination, tissue section, iTRAQ and RNA interference were used to systematically study the toxicity of metaldehyde on P. canaliculata. The molluscicidal activity tests showed that metaldehyde exhibits strong toxicity against P. canaliculata. Physiological and biochemical data indicate that metaldehyde can cause damage to the gills, liver, pancreas, and kidneys of snails, also reduce the oxygen consumption rate and ammonia excretion rate of golden apple snails, and cause neurological diseases. The proteome of the gill region of the golden apple snail after exposure to metaldehyde was analyzed by using iTRAQ technology. A total of 360 differential proteins were identified, and four target proteins were screened, namely, alpha-protein kinase 1 (ALPK1), cubilin (CUBN), sodium- and chloride-dependent GABA transporter 2 (GAT2), and acetylcholinesterase (AChE). RNAi was used to target the four proteins. After the ALPK1 and CUBN protein genes were interfered with by metaldehyde treatment, it was found that the mortality rate of the golden apple snail significantly increased. However, interference of GAT2 and AChE protein genes by metaldehyde led to no significant change in the mortality rates of the snails. The histopathological observation of the gill showed that the rate of cilia shedding in the gill decreased after the interference of ALPK1 and CUBN protein genes.
Collapse
Affiliation(s)
- Huabao Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingxiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuanwu Wan
- The Plant Protection Station of Sichuan Agriculture and Rural Department, Chengdu 610041, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Liya Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Qiu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunping Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Zhao J, Feng Y, Liu X, Li H, Guo H, Ke J, Long X. The relationship of ALPK1, hyaluronic acid and M1 macrophage polarization in the temporomandibular joint synovitis. J Cell Mol Med 2024; 28:e18172. [PMID: 38494837 PMCID: PMC10945073 DOI: 10.1111/jcmm.18172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
M1 macrophage polarization and synovitis play an important role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Reduced molecular weight of hyaluronic acid (HA) in synovial fluid of patients with TMJOA. In addition, high molecular weight hyaluronic acid (HMW-HA) is often used clinically to treat TMJ inflammation. As a pattern recognition receptor of the cytoplasm, ALPK1 was found to be pro-inflammatory in a variety of diseases. However, the relationship of ALPK1, HA and M1 macrophage polarization in TMJ synovitis remains unclear. We aimed to investigate the role of ALPK1 and HA in macrophage polarization and TMJ synovitis and the underlying mechanisms. The results demonstrated that ALPK1 was highly upregulated in the synovial macrophages in the inflamed TMJ synovium of patients. Low molecular weight hyaluronic acid (LMW-HA) promoted the expression of ALPK1 and M1 macrophage-associated genes. Besides, rhALPK1 promoted the expression of M1 macrophage-associated factors and the nuclear translocation of PKM2. Furthermore, ALPK1 knockout mice exhibited limited infiltration of macrophages and decreased expression levels of M1 macrophage-associated genes in CFA-induced TMJ synovitis. While HMW-HA inhibited the expression of ALPK1 and M1 macrophage polarization. Our results elucidated that ALPK1 promoted TMJ synovitis by promoting nuclear PKM2-mediated M1 macrophage polarization, whereas HMW-HA inhibited the expression of ALPK1 as well as M1 macrophage polarization.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Yaping Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xin Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Huimin Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Huilin Guo
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Jin Ke
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xing Long
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
12
|
Nakamura T, Ohyama C, Sakamoto M, Toma T, Tateishi H, Matsuo M, Chirifu M, Ikemizu S, Morioka H, Fujita M, Inoue JI, Yamagata Y. TIFAB regulates the TIFA-TRAF6 signaling pathway involved in innate immunity by forming a heterodimer complex with TIFA. Proc Natl Acad Sci U S A 2024; 121:e2318794121. [PMID: 38442163 PMCID: PMC10945758 DOI: 10.1073/pnas.2318794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Nuclear factor κB (NF-κB) is activated by various inflammatory and infectious molecules and is involved in immune responses. It has been elucidated that ADP-β-D-manno-heptose (ADP-Hep), a metabolite in gram-negative bacteria, activates NF-κB through alpha-kinase 1 (ALPK1)-TIFA-TRAF6 signaling. ADP-Hep stimulates the kinase activity of ALPK1 for TIFA phosphorylation. Complex formation between phosphorylation-dependent TIFA oligomer and TRAF6 promotes the polyubiquitination of TRAF6 for NF-κB activation. TIFAB, a TIFA homolog lacking a phosphorylation site and a TRAF6 binding motif, is a negative regulator of TIFA-TRAF6 signaling and is implicated in myeloid diseases. TIFAB is indicated to regulate TIFA-TRAF6 signaling through interactions with TIFA and TRAF6; however, little is known about its biological function. We demonstrated that TIFAB forms a complex not with the TIFA dimer, an intrinsic form of TIFA involved in NF-κB activation, but with monomeric TIFA. The structural analysis of the TIFA/TIFAB complex and the biochemical and cell-based analyses showed that TIFAB forms a stable heterodimer with TIFA, inhibits TIFA dimer formation, and suppresses TIFA-TRAF6 signaling. The resultant TIFA/TIFAB complex is a "pseudo-TIFA dimer" lacking the phosphorylation site and TRAF6 binding motif in TIFAB and cannot form the orderly structure as proposed for the phosphorylated TIFA oligomer involved in NF-κB activation. This study elucidated the molecular and structural basis for the regulation of TIFA-TRAF6 signaling by TIFAB.
Collapse
Affiliation(s)
- Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Chiaki Ohyama
- School of Pharmacy, Kumamoto University, Kumamoto862-0973, Japan
| | - Madoka Sakamoto
- School of Pharmacy, Kumamoto University, Kumamoto862-0973, Japan
| | - Tsugumasa Toma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Hiroshi Tateishi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mihoko Matsuo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Hiroshi Morioka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Mikako Fujita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
| | - Jun-ichiro Inoue
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), 4-6-1 Shirokanedai, Minato-ku, Tokyo108-0071, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto862-0973, Japan
- Shokei University and Shokei University Junior College, Kumamoto862-8678, Japan
| |
Collapse
|
13
|
Li L, Wang J, Zhong X, Jiang Y, Pei G, Yang X, Zhang K, Shen S, Jin X, Sun G, Su C, Chen S, Yin H. ADP-Hep-Induced Liquid Phase Condensation of TIFA-TRAF6 Activates ALPK1/TIFA-Dependent Innate Immune Responses. RESEARCH (WASHINGTON, D.C.) 2024; 7:0315. [PMID: 38357697 PMCID: PMC10865109 DOI: 10.34133/research.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-β-D-manno-heptose (ADP-Hep) recognition. The phase separation of TIFA is primarily driven by ALPK1, the pT9-FHA domain, and the intrinsically disordered region segment. Simultaneously, TRAF6 exhibits phase separation during ADP-Hep-induced inflammation, a phenomenon observed consistently across various inflammatory signal pathways. Moreover, TRAF6 is recruited within the TIFA condensates, facilitating lysine (K) 63-linked polyubiquitin chain synthesis. The subsequent recruitment, enrichment, and activation of downstream effectors within these condensates contribute to robust inflammatory signal transduction. Utilizing a novel chemical probe (compound 22), our analysis demonstrates that the activation of the ALPK1-TIFA-TRAF6 signaling pathway in response to small molecules necessitates the phase separation of TIFA. In summary, our findings reveal TIFA as a sensor for upstream signals, initiating the LLPS of itself and downstream proteins. This process results in the formation of membraneless condensates within the ALPK1-TIFA-TRAF6 pathway, suggesting potential applications in therapeutic biotechnology development.
Collapse
Affiliation(s)
- Liping Li
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology,
Peking University, Beijing, China
| | - Xincheng Zhong
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yaoyao Jiang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Life Sciences,
Tsinghua University, Beijing, 100084, China
| | - Xikang Yang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Siqi Shen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xue Jin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaoge Sun
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Chaofei Su
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shuzhen Chen
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Guo X, Qiao G, Wang J, Yang C, Zhao M, Zhang Q, Wan Y. TIFA contributes to periodontitis in diabetic mice via activating the NF‑κB signaling pathway. Mol Med Rep 2024; 29:23. [PMID: 38099344 PMCID: PMC10784739 DOI: 10.3892/mmr.2023.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic periodontitis (DP) refers to destruction of periodontal tissue and absorption of bone tissue in diabetic patients. Tumor necrosis factor receptor‑associated factor (TRAF)‑interacting protein with forkhead‑associated domain (TIFA) as a crucial regulator of inflammation activates the NF‑κB signaling pathway to regulate cell biological behavior. However, the function and mechanism of TIFA on DP suffer from a lack of research. In the present study, TIFA was upregulated in the periodontal tissue of a DP mouse model. In addition, the expression of TIFA in RAW264.7 cells was induced by high glucose (HG) culture and increased by lipopolysaccharide (LPS) from Porphyromonas gingivalis treatment in a time‑dependent manner. Knockdown of TIFA significantly reduced the levels of inflammatory cytokines, including TNF‑α, IL‑6, IL‑1β and monocyte chemoattractant protein‑1, in HG and LPS‑induced RAW264.7 cells. The nuclear translocation of NF‑κB p65 was induced by HG and LPS and was clearly suppressed by absence of TIFA. The expression of downstream factors Nod‑like receptor family pyrin domain‑containing 3 and apoptosis‑associated speck‑like protein was inhibited by silencing TIFA. Moreover, TIFA was increased by receptor activator of NF‑κB (RANK) ligand (RANKL) in a concentration dependent manner. The expression of cathepsin K, MMP9 and nuclear factor of activated T cells cytoplasmic 1 was downregulated by depletion of TIFA. RANKL‑induced osteoclast differentiation was inhibited by silencing of TIFA. Meanwhile, the decrease of TIFA blocked activation of the NF‑κB pathway in RANKL‑treated RAW264.7 cells. In conclusion, TIFA as a promoter regulates the inflammation and osteoclast differentiation via activating the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoqian Guo
- Department of Periodontology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Ningxia Key Laboratory of Oral Disease Research, School of Stomatology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guangwei Qiao
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jingjiao Wang
- Department of Periodontology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Changyi Yang
- Department of Periodontology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Min Zhao
- Department of Periodontology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qian Zhang
- Department of Periodontology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yingbiao Wan
- Department of Prosthodontics and Oral Implantology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
15
|
Lu J, Liu X, Li X, Li H, Shi L, Xia X, He BL, Meyer TF, Li X, Sun H, Yang X. Copper regulates the host innate immune response against bacterial infection via activation of ALPK1 kinase. Proc Natl Acad Sci U S A 2024; 121:e2311630121. [PMID: 38232278 PMCID: PMC10823219 DOI: 10.1073/pnas.2311630121] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Copper is an essential trace element for the human body, and its requirement for optimistic immune functions has been recognized for decades. How copper is involved in the innate immune pathway, however, remains to be clarified. Here, we report that copper serves as a signal molecule to regulate the kinase activity of alpha-kinase 1 (ALPK1), a cytosolic pattern-recognition receptor (PRR), and therefore promotes host cell defense against bacterial infection. We show that in response to infection, host cells actively accumulate copper in the cytosol, and the accumulated cytosolic copper enhances host cell defense against evading pathogens, including intracellular and, unexpectedly, extracellular bacteria. Subsequently, we demonstrate that copper activates the innate immune pathway of host cells in an ALPK1-dependent manner. Further mechanistic studies reveal that copper binds to ALPK1 directly and is essential for the kinase activity of this cytosolic PRR. Moreover, the binding of copper to ALPK1 enhances the sensitivity of ALPK1 to the bacterial metabolite ADP-heptose and eventually prompts host cells to elicit an enhanced immune response during bacterial infection. Finally, using a zebrafish in vivo model, we show that a copper-treated host shows an increased production of proinflammatory cytokines, enhanced recruitment of phagosome cells, and promoted bacterial clearance. Our findings uncover a previously unrecognized role of copper in the modulation of host innate immune response against bacterial pathogens and advance our knowledge on the cross talk between cytosolic copper homeostasis and immune system.
Collapse
Affiliation(s)
- Jing Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xue Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xinghua Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences-The University of Hong Kong Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Liwa Shi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Xin Xia
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Bai-liang He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin10117, Germany
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrecht’s University of Kiel, University Hospital Schleswig Holstein, Kiel24105, Germany
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Chinese Academy of Sciences-The University of Hong Kong Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinming Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai519000, China
| |
Collapse
|
16
|
Senczuk G, Macrì M, Di Civita M, Mastrangelo S, Del Rosario Fresno M, Capote J, Pilla F, Delgado JV, Amills M, Martínez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genet Sel Evol 2024; 56:2. [PMID: 38172652 PMCID: PMC10763158 DOI: 10.1186/s12711-023-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. RESULTS The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. CONCLUSIONS This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Martina Macrì
- Animal Breeding Consulting S.L., 14014, Córdoba, Spain
- Universidad de Córdoba, 14071, Córdoba, Spain
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | | | - Juan Capote
- Instituto Canario de Investigaciones Científicas, 38260, Tenerife, Spain
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | | | - Marcel Amills
- CRAG, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | |
Collapse
|
17
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
18
|
Neuper T, Frauenlob T, Dang HH, Krenn PW, Posselt G, Regl C, Fortelny N, Schäpertöns V, Unger MS, Üblagger G, Neureiter D, Mühlbacher I, Weitzendorfer M, Singhartinger F, Emmanuel K, Huber CG, Wessler S, Aberger F, Horejs-Hoeck J. ADP-heptose attenuates Helicobacter pylori-induced dendritic cell activation. Gut Microbes 2024; 16:2402543. [PMID: 39288239 PMCID: PMC11409497 DOI: 10.1080/19490976.2024.2402543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Sophisticated immune evasion strategies enable Helicobacter pylori (H. pylori) to colonize the gastric mucosa of approximately half of the world's population. Persistent infection and the resulting chronic inflammation are a major cause of gastric cancer. To understand the intricate interplay between H. pylori and host immunity, spatial profiling was used to monitor immune cells in H. pylori infected gastric tissue. Dendritic cell (DC) and T cell phenotypes were further investigated in gastric organoid/immune cell co-cultures and mechanistic insights were acquired by proteomics of human DCs. Here, we show that ADP-heptose, a bacterial metabolite originally reported to act as a bona fide PAMP, reduces H. pylori-induced DC maturation and subsequent T cell responses. Mechanistically, we report that H. pylori uptake and subsequent DC activation by an ADP-heptose deficient H. pylori strain depends on TLR2. Moreover, ADP-heptose attenuates full-fledged activation of primary human DCs in the context of H. pylori infection by impairing type I IFN signaling. This study reveals that ADP-heptose mitigates host immunity during H. pylori infection.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Tobias Frauenlob
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Veronika Schäpertöns
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Michael S Unger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Gunda Üblagger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, Austria
- Institute of Pathology, Uniklinikum Salzburg, Salzburg, Austria
| | - Iris Mühlbacher
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Michael Weitzendorfer
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Franz Singhartinger
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Klaus Emmanuel
- Cancer Cluster Salzburg, Salzburg, Austria
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
19
|
Martin-Gallausiaux C, Salesse L, Garcia-Weber D, Marinelli L, Beguet-Crespel F, Brochard V, Le Gléau C, Jamet A, Doré J, Blottière HM, Arrieumerlou C, Lapaque N. Fusobacterium nucleatum promotes inflammatory and anti-apoptotic responses in colorectal cancer cells via ADP-heptose release and ALPK1/TIFA axis activation. Gut Microbes 2024; 16:2295384. [PMID: 38126163 PMCID: PMC10761154 DOI: 10.1080/19490976.2023.2295384] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.
Collapse
Affiliation(s)
| | - Laurène Salesse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Ludovica Marinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Brochard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Camille Le Gléau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Jamet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
20
|
Zhang S, Wang Q, Ye J, Fan Q, Lin X, Gou Z, Azzam MM, Wang Y, Jiang S. Transcriptome and proteome profile of jejunum in chickens challenged with Salmonella Typhimurium revealed the effects of dietary bilberry anthocyanin on immune function. Front Microbiol 2023; 14:1266977. [PMID: 38053560 PMCID: PMC10694457 DOI: 10.3389/fmicb.2023.1266977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The present study investigated the effects of bilberry anthocyanin (BA) on immune function when alleviating Salmonella Typhimurium (S. Typhimurium) infection in chickens. Methods A total of 180 newly hatched yellow-feathered male chicks were assigned to three groups (CON, SI, and SI + BA). Birds in CON and SI were fed a basal diet, and those in SI + BA were supplemented with 100 mg/kg BA for 18 days. Birds in SI and SI + BA received 0.5 ml suspension of S. Typhimurium (2 × 109 CFU/ml) by oral gavage at 14 and 16 days of age, and those in CON received equal volumes of sterile PBS. Results At day 18, (1) dietary BA alleviated weight loss of chickens caused by S. Typhimurium infection (P < 0.01). (2) Supplementation with BA reduced the relative weight of the bursa of Fabricius (P < 0.01) and jejunal villus height (P < 0.05) and increased the number of goblet cells (P < 0.01) and the expression of MUC2 (P < 0.05) in jejunal mucosa, compared with birds in SI. (3) Supplementation with BA decreased (P < 0.05) the concentration of immunoglobulins and cytokines in plasma (IgA, IL-1β, IL-8, and IFN-β) and jejunal mucosa (IgG, IgM, sIgA, IL-1β, IL-6, IL-8, TNF-α, IFN-β, and IFN-γ) of S. Typhimurium-infected chickens. (4) BA regulated a variety of biological processes, especially the defense response to bacteria and humoral immune response, and suppressed cytokine-cytokine receptor interaction and intestinal immune network for IgA production pathways by downregulating 6 immune-related proteins. Conclusion In summary, the impaired growth performance and disruption of jejunal morphology caused by S. Typhimurium were alleviated by dietary BA by affecting the expression of immune-related genes and proteins, and signaling pathways are related to immune response associated with immune cytokine receptors and production in jejunum.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qin Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jinling Ye
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Mahmoud M. Azzam
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Lou S, Wang J, Chen J, Xie H, Chen H, Zhou B, Zhang B, Hou J, Jiang DK. The Role of ALPK1 in Inhibiting Hepatitis B Virus Replication Facilitates the Identification of ALPK1 P660L Variant for Predicting Response to Pegylated Interferon α Therapy. J Infect Dis 2023; 228:694-703. [PMID: 36932045 DOI: 10.1093/infdis/jiad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Alpha kinase 1 (ALPK1) agonist has recently been reported to demonstrate anti-hepatitis B virus (HBV) efficacy via activating NF-κB signaling, which is crucial for maximizing interferon (IFN) responses. Here, we investigated the impact of ALPK1 on HBV replication and explored ALPK1 variants for predicting the response to pegylated IFN-α (PegIFN-α) treatment. METHODS The potential anti-HBV effect of ALPK1 was evaluated in HBV-integrated and HBV-infected hepatoma cells. The potentially functional genetic variants of ALPK1 were screened out, and their correlations with PegIFN-α treatment response were assessed in 945 hepatitis B e antigen (HBeAg)-positive patients with chronic hepatitis B (CHB). RESULTS We revealed that ALPK1 inhibited HBV replication in hepatocytes via activating the JAK-STAT pathway. ALPK1 overexpression improved the anti-HBV effect of IFN-α in cell models. A missense variant, rs35389530 (P660L), of ALPK1 was strongly associated with combined response (CR; namely, HBeAg seroconversion and HBV DNA level <3.3log10 IU/mL) to PegIFN-α treatment in patients with CHB (P = 2.12 × 10-6). Moreover, a polygenic score integrating ALPK1_rs35389530 and 2 additional genetic variants was further significantly associated with CR (Ptrend = 9.28 × 10-7), hepatitis B surface antigen (HBsAg) level (Ptrend = .0002), and HBsAg loss (Ptrend = .025). CONCLUSIONS The anti-HBV effects of ALPK1 through activating JAK-STAT pathway provides a new perspective for CHB therapy. ALPK1_rs35389530 and polygenic score are potential biomarkers to predict PegIFN-α treatment response and may be used for optimizing CHB treatment.
Collapse
Affiliation(s)
- Shuang Lou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jialin Wang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
22
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Faass L, Hauke M, Stein SC, Josenhans C. Innate activation of human neutrophils and neutrophil-like cells by the pro-inflammatory bacterial metabolite ADP-heptose and Helicobacter pylori. Int J Med Microbiol 2023; 313:151585. [PMID: 37399704 DOI: 10.1016/j.ijmm.2023.151585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Lipopolysaccharide inner core heptose metabolites, including ADP-heptose, play a substantial role in the activation of cell-autonomous innate immune responses in eukaryotic cells, via the ALPK1-TIFA signaling pathway, as demonstrated for various pathogenic bacteria. The important role of LPS heptose metabolites during Helicobacter pylori infection of the human gastric niche has been demonstrated for gastric epithelial cells and macrophages, while the role of heptose metabolites on human neutrophils has not been investigated. In this study, we aimed to gain a better understanding of the activation potential of bacterial heptose metabolites for human neutrophil cells. To do so, we used pure ADP-heptose and, as a bacterial model, H. pylori, which can transport heptose metabolites into the human host cell via the Cag Type 4 Secretion System (CagT4SS). Main questions were how bacterial heptose metabolites impact on the pro-inflammatory activation, alone and in the bacterial context, and how they influence maturation of human neutrophils. Results of the present study demonstrated that neutrophils respond with high sensitivity to pure heptose metabolites, and that global regulation networks and neutrophil maturation are influenced by heptose exposure. Furthermore, activation of human neutrophils by live H. pylori is strongly impacted by the presence of LPS heptose metabolites and the functionality of its CagT4SS. Similar activities were determined in cell culture neutrophils of different maturation states and in human primary neutrophils. In conclusion, we demonstrated that specific heptose metabolites or bacteria producing heptoses exhibit a strong activity on cell-autonomous innate responses of human neutrophils.
Collapse
Affiliation(s)
- Larissa Faass
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Martina Hauke
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Saskia C Stein
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany; DZIF Partner Site Munich, Germany.
| |
Collapse
|
24
|
Hauke M, Metz F, Rapp J, Faass L, Bats SH, Radziej S, Link H, Eisenreich W, Josenhans C. Helicobacter pylori Modulates Heptose Metabolite Biosynthesis and Heptose-Dependent Innate Immune Host Cell Activation by Multiple Mechanisms. Microbiol Spectr 2023; 11:e0313222. [PMID: 37129481 PMCID: PMC10269868 DOI: 10.1128/spectrum.03132-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Heptose metabolites including ADP-d-glycero-β-d-manno-heptose (ADP-heptose) are involved in bacterial lipopolysaccharide and cell envelope biosynthesis. Recently, heptoses were also identified to have potent proinflammatory activity on human cells as novel microbe-associated molecular patterns. The gastric pathogenic bacterium Helicobacter pylori produces heptose metabolites, which it transports into human cells through its Cag type 4 secretion system. Using H. pylori as a model, we have addressed the question of how proinflammatory ADP-heptose biosynthesis can be regulated by bacteria. We have characterized the interstrain variability and regulation of heptose biosynthesis genes and the modulation of heptose metabolite production by H. pylori, which impact cell-autonomous proinflammatory human cell activation. HldE, a central enzyme of heptose metabolite biosynthesis, showed strong sequence variability between strains and was also variably expressed between strains. Amounts of gene transcripts in the hldE gene cluster displayed intrastrain and interstrain differences, were modulated by host cell contact and the presence of the cag pathogenicity island, and were affected by carbon starvation regulator A (CsrA). We reconstituted four steps of the H. pylori lipopolysaccharide (LPS) heptose biosynthetic pathway in vitro using recombinant purified GmhA, HldE, and GmhB proteins. On the basis of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry, the structures of major reaction products were identified as β-d-ADP-heptose and β-heptose-1-monophosphate. A proinflammatory heptose-monophosphate variant was also identified for the first time as a novel cell-active product in H. pylori bacteria. Separate purified HldE subdomains and variant HldE allowed us to uncover additional strain variation in generating heptose metabolites. IMPORTANCE Bacterial heptose metabolites, intermediates of lipopolysaccharide (LPS) biosynthesis, are novel microbe-associated molecular patterns (MAMPs) that activate proinflammatory signaling. In the gastric pathogen Helicobacter pylori, heptoses are transferred into host cells by the Cag type IV secretion system, which is also involved in carcinogenesis. Little is known about how H. pylori, which is highly strain variable, regulates heptose biosynthesis and downstream host cell activation. We report here that the regulation of proinflammatory heptose production by H. pylori is strain specific. Heptose gene cluster activity is modulated by the presence of an active cag pathogenicity island (cagPAI), contact with human cells, and the carbon starvation regulator A. Reconstitution with purified biosynthesis enzymes and purified bacterial lysates allowed us to biochemically characterize heptose pathway products, identifying a heptose-monophosphate variant as a novel proinflammatory metabolite. These findings emphasize that the bacteria use heptose biosynthesis to fine-tune inflammation and also highlight opportunities to mine the heptose biosynthesis pathway as a potential therapeutic target against infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Felix Metz
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Johanna Rapp
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Larissa Faass
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Simon H. Bats
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| | - Sandra Radziej
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Hannes Link
- Bacterial Metabolomics, CMFI, University Tübingen, Tübingen, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center–Structural Membrane Biochemistry, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians University Munich, München, Germany
| |
Collapse
|
25
|
Sidor K, Skirecki T. A Bittersweet Kiss of Gram-Negative Bacteria: The Role of ADP-Heptose in the Pathogenesis of Infection. Microorganisms 2023; 11:1316. [PMID: 37317291 DOI: 10.3390/microorganisms11051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the global crisis caused by the dramatic rise of drug resistance among Gram-negative bacteria, there is an urgent need for a thorough understanding of the pathogenesis of infections of such an etiology. In light of the limited availability of new antibiotics, therapies aimed at host-pathogen interactions emerge as potential treatment modalities. Thus, understanding the mechanism of pathogen recognition by the host and immune evasion appear to be the key scientific issues. Until recently, lipopolysaccharide (LPS) was recognized as a major pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria. However, recently, ADP-L-glycero-β-D-manno-heptose (ADP-heptose), an intermediate carbohydrate metabolite of the LPS biosynthesis pathway, was discovered to activate the hosts' innate immunity. Therefore, ADP-heptose is regarded as a novel PAMP of Gram-negative bacteria that is recognized by the cytosolic alpha kinase-1 (ALPK1) protein. The conservative nature of this molecule makes it an intriguing player in host-pathogen interactions, especially in the context of changes in LPS structure or even in its loss by certain resistant pathogens. Here, we present the ADP-heptose metabolism, outline the mechanisms of its recognition and the activation of its immunity, and summarize the role of ADP-heptose in the pathogenesis of infection. Finally, we hypothesize about the routes of the entry of this sugar into cytosol and point to emerging questions that require further research.
Collapse
Affiliation(s)
- Karolina Sidor
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
26
|
Brown MA, Morgan SB, Donachie GE, Horton KL, Pavord ID, Arancibia-Cárcamo CV, Hinks TSC. Epithelial immune activation and intracellular invasion by non-typeable Haemophilus influenzae. Front Cell Infect Microbiol 2023; 13:1141798. [PMID: 37180449 PMCID: PMC10167379 DOI: 10.3389/fcimb.2023.1141798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Type-2 low asthma affects 30-50% of people with severe asthma and includes a phenotype characterized by sputum neutrophilia and resistance to corticosteroids. Airways inflammation in type-2 low asthma or COPD is potentially driven by persistent bacterial colonization of the lower airways by bacteria such as non-encapsulated Haemophilus influenzae (NTHi). Although pathogenic in the lower airways, NTHi is a commensal of the upper airways. It is not known to what extent these strains can invade airway epithelial cells, persist intracellularly and activate epithelial cell production of proinflammatory cytokines, and how this differs between the upper and lower airways. We studied NTHi infection of primary human bronchial epithelial cells (PBECs), primary nasal epithelial cells (NECs) and epithelial cell lines from upper and lower airways. NTHi strains differed in propensity for intracellular and paracellular invasion. We found NTHi was internalized within PBECs at 6 h, but live intracellular infection did not persist at 24 h. Confocal microscopy and flow cytometry showed NTHi infected secretory, ciliated and basal PBECs. Infection of PBECs led to induction of CXCL8, interleukin (IL)-1β, IL-6 and TNF. The magnitude of cytokine induction was independent of the degree of intracellular invasion, either by differing strains or by cytochalasin D inhibition of endocytosis, with the exception of the inflammasome-induced mediator IL-1β. NTHi-induced activation of TLR2/4, NOD1/2 and NLR inflammasome pathways was significantly stronger in NECs than in PBECs. These data suggest that NTHi is internalized transiently by airway epithelial cells and has capacity to drive inflammation in airway epithelial cells.
Collapse
Affiliation(s)
- Mary A. Brown
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gillian E. Donachie
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katie L. Horton
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Ian D. Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
García-Weber D, Dangeard AS, Teixeira V, Hauke M, Carreaux A, Josenhans C, Arrieumerlou C. In vitro kinase assay reveals ADP-heptose-dependent ALPK1 autophosphorylation and altered kinase activity of disease-associated ALPK1 mutants. Sci Rep 2023; 13:6278. [PMID: 37072480 PMCID: PMC10113258 DOI: 10.1038/s41598-023-33459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Alpha-protein kinase 1 (ALPK1) is a pathogen recognition receptor that detects ADP-heptose (ADPH), a lipopolysaccharide biosynthesis intermediate, recently described as a pathogen-associated molecular pattern in Gram-negative bacteria. ADPH binding to ALPK1 activates its kinase domain and triggers TIFA phosphorylation on threonine 9. This leads to the assembly of large TIFA oligomers called TIFAsomes, activation of NF-κB and pro-inflammatory gene expression. Furthermore, mutations in ALPK1 are associated with inflammatory syndromes and cancers. While this kinase is of increasing medical interest, its activity in infectious or non-infectious diseases remains poorly characterized. Here, we use a non-radioactive ALPK1 in vitro kinase assay based on the use of ATPγS and protein thiophosphorylation. We confirm that ALPK1 phosphorylates TIFA T9 and show that T2, T12 and T19 are also weakly phosphorylated by ALPK1. Interestingly, we find that ALPK1 itself is phosphorylated in response to ADPH recognition during Shigella flexneri and Helicobacter pylori infection and that disease-associated ALPK1 mutants exhibit altered kinase activity. In particular, T237M and V1092A mutations associated with ROSAH syndrome and spiradenoma/spiradenocarcinoma respectively, exhibit enhanced ADPH-induced kinase activity and constitutive assembly of TIFAsomes. Altogether, this study provides new insights into the ADPH sensing pathway and disease-associated ALPK1 mutants.
Collapse
Affiliation(s)
- Diego García-Weber
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | | | - Veronica Teixeira
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Martina Hauke
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | - Alexis Carreaux
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014, Paris, France
| | - Christine Josenhans
- Max von Pettenkofer Institute, Ludwig Maximilians Universität München, Pettenkoferstrasse 9a, 80336, Munich, Germany
| | | |
Collapse
|
28
|
Sokolova O, Maubach G, Naumann M. Helicobacter pylori regulates TIFA turnover in gastric epithelial cells. Eur J Cell Biol 2023; 102:151307. [PMID: 36965415 DOI: 10.1016/j.ejcb.2023.151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogen Helicobacter pylori induces a strong inflammatory response in gastric mucosa manifested by the recruitment of neutrophils and macrophages to the places of infection, and by changes in epithelial integrity and function. At the molecular level, this innate immune response is essentially dependent on the activation of NF-κB transcription factors regulating the expression of chemotactic factors, e.g., IL-8. Recently, it has been demonstrated that the NF-κB signaling pathway is triggered by the bacterial heptose metabolites, which activate the host ALPK1-TIFA axis. TIFA has been suggested to promote oligomerization and activity of the E3 ubiquitin ligase TRAF6, which further stimulates TAK1-IKK signaling. Here, we demonstrate that ALPK1-dependent TIFA activation in H. pylori-infected gastric epithelial cells is followed in time by a decline in TIFA levels, and that this process is impeded by inhibitors of the proteasomal and lysosomal degradation. According to our data, TRAF2, TRAF6, TAK1 or NEMO are not required for TIFA degradation. Additionally, H. pylori promotes the interaction of TIFA with free polyubiquitin as well as with optineurin, TAX1BP1 and LAMP1, which are known protein adaptors involved in intracellular trafficking to lysosomes.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany.
| | - Gunter Maubach
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
29
|
Innate immune activation and modulatory factors of Helicobacter pylori towards phagocytic and nonphagocytic cells. Curr Opin Immunol 2023; 82:102301. [PMID: 36933362 DOI: 10.1016/j.coi.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Helicobacter pylori is an intriguing obligate host-associated human pathogen with a specific host interaction biology, which has been shaped by thousands of years of host-pathogen coevolution. Molecular mechanisms of interaction of H. pylori with the local immune cells in the human system are less well defined than epithelial cell interactions, although various myeloid cells, including neutrophils and other phagocytes, are locally present or attracted to the sites of infection and interact with H. pylori. We have recently addressed the question of novel bacterial innate immune stimuli, including bacterial cell envelope metabolites, that can activate and modulate cell responses via the H. pylori Cag type IV secretion system. This review article gives an overview of what is currently known about the interaction modes and mechanisms of H. pylori with diverse human cell types, with a focus on bacterial metabolites and cells of the myeloid lineage including phagocytic and antigen-presenting cells.
Collapse
|
30
|
Li X, Chen Y, Lin M, Wang J, Wang N, Chen Z, Chen S. A novel miRNA, Cse-miR-33, functions as an immune regulator by targeting CsTRAF6 in Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108606. [PMID: 36758656 DOI: 10.1016/j.fsi.2023.108606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The tumor necrosis factor receptor-associated factor 6 (TRAF6) can act as a fundamental adaptor protein in a chain reaction of signal transduction and cascade events to finish off immune defenses. However, immunomodulatory research on TRAF6 gene is still limited in fish. In this study, a novel miRNA, Cse-miR-33 was identified from the whole genome of Chinese tongue sole (Cynoglossus semilaevis). After separate infections with three different Vibrio strains (V. harveyi, V. anguillarum, V. parahemolyticus) and one virus (nervous necrosis virus, NNV), the expressions of CsTRAF6 and Cse-miR-33 displayed significant time-dependent changes in immune related tissues and the trends were opposite in general. Through target gene prediction and dual luciferase reporter assay, Cse-miR-33 was proven to regulate CsTRAF6 by combining with 3'-UTR sequence of the gene. The results of qRT-PCR and western blotting (WB) analyses showed that Cse-miR-33 blocked the translation of CsTRAF6 protein at post-transcriptional level, rather than degrading the target mRNA. Further experiment indicated that Cse-miR-33 inhibitor largely reduced the death rate of Chinese tongue sole caused by V. harveyi and NNV. The expressions of CsTRAF6-associated immune genes (such as CsIL-1R, CsMYD88, CsIRAK1, CsTNFα, CsIL6 and CsIL8) were also significantly changed in response to Cse-miR-33 agomir and inhibitor. The study suggested that Cse-miR-33 affected the immune response via targeting CsTRAF6 in C. semilaevis, which would provide us deep insights into miRNA-mediated regulatory network and help improve the immunity in fish.
Collapse
Affiliation(s)
- Xihong Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Mengjiao Lin
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 200000, China
| | - Jing Wang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 200000, China
| | - Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Zhangfan Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
31
|
Long noncoding RNA TARL promotes antibacterial activity and prevents bacterial escape in Miichthys miiuy through suppression of TAK1 downregulation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2254-6. [PMID: 36738431 DOI: 10.1007/s11427-022-2254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023]
Abstract
Noncoding RNA (ncRNA) is an important regulatory factor that plays a major role in innate immunity. However, most studies on ncRNA have focused on mammals, resulting in a knowledge gap on ncRNA in lower vertebrates such as teleost fish. In this study, we identified a new long noncoding RNA (lncRNA), termed TAK1-related lncRNA (TARL), which can play a positive role in the antibacterial immunity of Miichthys miiuy to Vibrio anguillarum and V. harveyi. We also found a novel microRNA miR-2188-3p that could target TAK1 and inhibit the host antibacterial response and promote bacterial escape. We further found that the antibacterial effect inhibited by miR-2188-3p could be reversed with TARL. Moreover, V. anguillarum and V. harveyi are the two most susceptible Gram-negative pathogens of aquaculture fish, and the economic losses caused by these two bacteria are immeasurable every year. This study is the first to report on the ability of lncRNA to prevent the escape of V. anguillarum and V. harveyi in fish through the competing endogenous RNA (ceRNA) mechanism. Our results not only elucidate the ceRNA mechanism of the lncRNA in antibacterial immune responses but also provide new insights into the impact of lncRNA on host immunity and bacterial escape.
Collapse
|
32
|
Liu X, Zhao J, Jiang H, Guo H, Li Y, Li H, Feng Y, Ke J, Long X. ALPK1 Accelerates the Pathogenesis of Osteoarthritis by Activating NLRP3 Signaling. J Bone Miner Res 2022; 37:1973-1985. [PMID: 36053817 DOI: 10.1002/jbmr.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/08/2022]
Abstract
Alpha-kinase 1 (ALPK1), a member of the alpha-kinase family, has been shown to be involved in mediating inflammatory responses and is strongly associated with gout; however, its modulatory role in osteoarthritis (OA) remains unclear. Here, we uncovered elevation of ALPK1 in degraded cartilage of destabilized medial meniscus (DMM) and collagenase-induced osteoarthritis (CIOA), two different mouse OA models induced by mechanical stress or synovitis. Intraarticular administration of recombinant human ALPK1 (rhALPK1) in vivo exacerbated OA pathogenesis in both DMM and CIOA mice, whereas ALPK1 knockout reversed this process. In vitro study demonstrated that ALPK1 aggravates metabolic disturbances in chondrocytes by enhancing the production of NOD-like receptor protein 3 (NLRP3), an inflammasome sensors driving interlukin-1β (IL-1β)-mediated inflammatory conditions. Furthermore, the selective inhibition of nuclear factor-κB (NF-κB) or NLRP3 indicates that NLRP3 is a downstream signaling governed by NF-κB in ALPK1-activated chondrocytes. Collectively, these results establish ALPK1 as a novel catabolic regulator of OA pathogenesis, and targeting this signaling may be a promising treatment strategy for OA. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Henghua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huilin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yingjie Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Martin-Gallausiaux C, Garcia-Weber D, Lashermes A, Larraufie P, Marinelli L, Teixeira V, Rolland A, Béguet-Crespel F, Brochard V, Quatremare T, Jamet A, Doré J, Gray-Owen SD, Blottière HM, Arrieumerlou C, Lapaque N. Akkermansia muciniphila upregulates genes involved in maintaining the intestinal barrier function via ADP-heptose-dependent activation of the ALPK1/TIFA pathway. Gut Microbes 2022; 14:2110639. [PMID: 36036242 PMCID: PMC9427033 DOI: 10.1080/19490976.2022.2110639] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The commensal bacteria that make up the gut microbiota impact the health of their host on multiple levels. In particular, the interactions taking place between the microbe-associated molecule patterns (MAMPs) and pattern recognition receptors (PRRs), expressed by intestinal epithelial cells (IECs), are crucial for maintaining intestinal homeostasis. While numerous studies showed that TLRs and NLRs are involved in the control of gut homeostasis by commensal bacteria, the role of additional innate immune receptors remains unclear. Here, we seek for novel MAMP-PRR interactions involved in the beneficial effect of the commensal bacterium Akkermansia muciniphila on intestinal homeostasis. We show that A. muciniphila strongly activates NF-κB in IECs by releasing one or more potent activating metabolites into the microenvironment. By using drugs, chemical and gene-editing tools, we found that the released metabolite(s) enter(s) epithelial cells and activate(s) NF-κB via an ALPK1, TIFA and TRAF6-dependent pathway. Furthermore, we show that the released molecule has the biological characteristics of the ALPK1 ligand ADP-heptose. Finally, we show that A. muciniphila induces the expression of the MUC2, BIRC3 and TNFAIP3 genes involved in the maintenance of the intestinal barrier function and that this process is dependent on TIFA. Altogether, our data strongly suggest that the commensal A. muciniphila promotes intestinal homeostasis by activating the ALPK1/TIFA/TRAF6 axis, an innate immune pathway exclusively described so far in the context of Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - Amandine Lashermes
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Larraufie
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovica Marinelli
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Veronica Teixeira
- INSERM, Institut Cochin, Université de Paris Cité, CNRS, Paris, France
| | - Alice Rolland
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Vincent Brochard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Timothé Quatremare
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Jamet
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Joël Doré
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hervé M. Blottière
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France,CONTACT Nicolas Lapaque INRAE-MICALIS UMR1319, Bat 442, Domaine de Vilvert78350Jouy-en-Josas, France
| |
Collapse
|
34
|
Demeter A, Jacomin AC, Gul L, Lister A, Lipscombe J, Invernizzi R, Branchu P, Macaulay I, Nezis IP, Kingsley RA, Korcsmaros T, Hautefort I. Computational prediction and experimental validation of Salmonella Typhimurium SopE-mediated fine-tuning of autophagy in intestinal epithelial cells. Front Cell Infect Microbiol 2022; 12:834895. [PMID: 36061866 PMCID: PMC9428466 DOI: 10.3389/fcimb.2022.834895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Macroautophagy is a ubiquitous homeostasis and health-promoting recycling process of eukaryotic cells, targeting misfolded proteins, damaged organelles and intracellular infectious agents. Some intracellular pathogens such as Salmonella enterica serovar Typhimurium hijack this process during pathogenesis. Here we investigate potential protein-protein interactions between host transcription factors and secreted effector proteins of Salmonella and their effect on host gene transcription. A systems-level analysis identified Salmonella effector proteins that had the potential to affect core autophagy gene regulation. The effect of a SPI-1 effector protein, SopE, that was predicted to interact with regulatory proteins of the autophagy process, was investigated to validate our approach. We then confirmed experimentally that SopE can directly bind to SP1, a host transcription factor, which modulates the expression of the autophagy gene MAP1LC3B. We also revealed that SopE might have a double role in the modulation of autophagy: Following initial increase of MAP1LC3B transcription triggered by Salmonella infection, subsequent decrease in MAP1LC3B transcription at 6h post-infection was SopE-dependent. SopE also played a role in modulation of the autophagy flux machinery, in particular MAP1LC3B and p62 autophagy proteins, depending on the level of autophagy already taking place. Upon typical infection of epithelial cells, the autophagic flux is increased. However, when autophagy was chemically induced prior to infection, SopE dampened the autophagic flux. The same was also observed when most of the intracellular Salmonella cells were not associated with the SCV (strain lacking sifA) regardless of the autophagy induction status before infection. We demonstrated how regulatory network analysis can be used to better characterise the impact of pathogenic effector proteins, in this case, Salmonella. This study complements previous work in which we had demonstrated that specific pathogen effectors can affect the autophagy process through direct interaction with autophagy proteins. Here we show that effector proteins can also influence the upstream regulation of the process. Such interdisciplinary studies can increase our understanding of the infection process and point out targets important in intestinal epithelial cell defense.
Collapse
Affiliation(s)
- Amanda Demeter
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Department of Genetics, Eotvos Lorand University, Budapest, Hungary
| | | | - Lejla Gul
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ashleigh Lister
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - James Lipscombe
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Rachele Invernizzi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Priscilla Branchu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- *Correspondence: Tamas Korcsmaros,
| | | |
Collapse
|
35
|
Holmes CL, Smith SN, Gurczynski SJ, Severin GB, Unverdorben LV, Vornhagen J, Mobley HLT, Bachman MA. The ADP-Heptose Biosynthesis Enzyme GmhB is a Conserved Gram-Negative Bacteremia Fitness Factor. Infect Immun 2022; 90:e0022422. [PMID: 35762751 PMCID: PMC9302095 DOI: 10.1128/iai.00224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.
Collapse
Affiliation(s)
- Caitlyn L. Holmes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stephen J. Gurczynski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Geoffrey B. Severin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lavinia V. Unverdorben
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jay Vornhagen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Neuper T, Frauenlob T, Posselt G, Horejs-Hoeck J. Beyond the gastric epithelium - the paradox of Helicobacter pylori-induced immune responses. Curr Opin Immunol 2022; 76:102208. [PMID: 35569416 DOI: 10.1016/j.coi.2022.102208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Chronic infections are typically characterized by an ineffective immune response to the inducing pathogen. While failing to clear the infectious microbe, the provoked inflammatory processes may cause severe tissue damage culminating in functional impairment of the affected organ. The human pathogen Helicobacter pylori is a uniquely successful Gram-negative microorganism inhabiting the gastric mucosa in approximately 50% of the world's population. This bacterial species has evolved spectacular means of evading immune surveillance and influencing host immunity, leading to a fragile equilibrium between proinflammatory and anti-inflammatory signals, the breakdown of which can have serious consequences for the host, including gastric ulceration and cancer. This review highlights novel insights into this delicate interaction between host and pathogen from an immunological perspective.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences and Medical Biology, University of Salzburg, Austria
| | - Tobias Frauenlob
- Department of Biosciences and Medical Biology, University of Salzburg, Austria; Cancer Cluster Salzburg (CCS), Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, University of Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, Austria; Cancer Cluster Salzburg (CCS), Austria.
| |
Collapse
|
37
|
Shen W, Du W, Li Y, Huang Y, Jiang X, Yang C, Tang J, Liu H, Luo N, Zhang X, Zhang Z. TIFA promotes CRC cell proliferation via RSK- and PRAS40- dependent manner. Cancer Sci 2022; 113:3018-3031. [PMID: 35635239 PMCID: PMC9459298 DOI: 10.1111/cas.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have reported that TIFA plays different roles in various tumor types. However, the function of TIFA in colorectal cancer (CRC) remains unclear. Here, we showed that the expression of TIFA was markedly increased in CRC versus normal tissue, and positively correlated with CRC TNM stages. In agreement, we found that the CRC cell lines show increased TIFA expression levels versus normal control. The knockdown of TIFA inhibited cell proliferation but had no effect on cell apoptosis in vitro or in vivo. Moreover, the ectopic expression of TIFA enhanced cell proliferation ability in vitro and in vivo. In contrast, the expression of mutant TIFA (T9A, oligomerization site mutation; D6, TRAF6 binding site deletion) abolished TIFA‐mediated cell proliferation enhancement. Exploration of the underlying mechanism revealed that the protein synthesis‐associated kinase RSK and PRAS40 activation were responsible for TIFA‐mediated CRC progression. In summary, these findings suggest that TIFA plays a role in mediating CRC progression. This could provide a promising target for CRC therapy.
Collapse
Affiliation(s)
- Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Wenfei Du
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Yanping Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of, Jining Medical University, Jining Medical University, Jining, 272067, China
| | - Xinyu Jiang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Jiaping Tang
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Liu
- Surgery Teaching and Research Section, Clinical Medical School, Jining Medical University, Jining, 272067, China
| | - Na Luo
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China
| | - Zhixin Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining 272067, Shandong, China.,Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029, China
| |
Collapse
|
38
|
Zhang Y, Zhang L, Zheng S, Li M, Xu C, Jia D, Qi Y, Hou T, Wang L, Wang B, Li A, Chen S, Si J, Zhuo W. Fusobacterium nucleatum promotes colorectal cancer cells adhesion to endothelial cells and facilitates extravasation and metastasis by inducing ALPK1/NF-κB/ICAM1 axis. Gut Microbes 2022; 14:2038852. [PMID: 35220887 PMCID: PMC8890384 DOI: 10.1080/19490976.2022.2038852] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Metastasis is the leading cause of death for colorectal cancer (CRC) patients, and the spreading tumor cells adhesion to endothelial cells is a critical step for extravasation and further distant metastasis. Previous studies have documented the important roles of gut microbiota-host interactions in the CRC malignancy, and Fusobacterium nucleatum (F. nucleatum) was reported to increase proliferation and invasive activities of CRC cells. However, the potential functions and underlying mechanisms of F. nucleatum in the interactions between CRC cells and endothelial cells and subsequent extravasation remain unclear. Here, we uncovered that F. nucleatum enhanced the adhesion of CRC cells to endothelial cells, promoted extravasation and metastasis by inducing ICAM1 expression. Mechanistically, we identified that F. nucleatum induced a new pattern recognition receptor ALPK1 to activate NF-κB pathway, resulting in the upregulation of ICAM1. Interestingly, the abundance of F. nucleatum in tumor tissues of CRC patients was positively associated with the expression levels of ALPK1 and ICAM1. Moreover, high expression of ALPK1 or ICAM1 was significantly associated with a shorter overall survival time of CRC patients. This study provides a new insight into the role of gut microbiota in engaging into the distant metastasis of CRC cells.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lu Zhang
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Sheng Zheng
- Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjie Li
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Dingjiacheng Jia
- Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Boya Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aiqing Li
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Shujie Chen Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Jianmin Si Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,CONTACT Wei Zhuo Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310058, Zhejiang, China
| |
Collapse
|
39
|
Helicobacter pylori Pathogen-Associated Molecular Patterns: Friends or Foes? Int J Mol Sci 2022; 23:ijms23073531. [PMID: 35408892 PMCID: PMC8998707 DOI: 10.3390/ijms23073531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Microbial infections are sensed by the host immune system by recognizing signature molecules called Pathogen-Associated Molecular Patterns—PAMPs. The binding of these biomolecules to innate immune receptors, called Pattern Recognition Receptors (PRRs), alerts the host cell, activating microbicidal and pro-inflammatory responses. The outcome of the inflammatory cascade depends on the subtle balance between the bacterial burn and the host immune response. The role of PRRs is to promote the clearance of the pathogen and to limit the infection by bumping inflammatory response. However, many bacteria, including Helicobacter pylori, evolved to escape PRRs’ recognition through different camouflages in their molecular pattern. This review examines all the different types of H. pylori PAMPs, their roles during the infection, and the mechanisms they evolved to escape the host recognition.
Collapse
|
40
|
Mani S, Aiyegoro OA, Adeleke MA. Association between host genetics of sheep and the rumen microbial composition. Trop Anim Health Prod 2022; 54:109. [PMID: 35192073 DOI: 10.1007/s11250-022-03057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
A synergy between the rumen microbiota and the host genetics has created a symbiotic relationship, beneficial to the host's health. In this study, the association between the host genetics and rumen microbiome of Damara and Meatmaster sheep was investigated. The composition of rumen microbiota was estimated through the analysis of the V3-V4 region of the 16S rRNA gene, while the sheep blood DNA was genotyped with Illumina OvineSNP50 BeadChip and the genome-wide association (GWA) was analyzed. Sixty significant SNPs dispersed in 21 regions across the Ovis aries genome were found to be associated with the relative abundance of seven genera: Acinetobacter, Bacillus, Clostridium, Flavobacterium, Prevotella, Pseudomonas, and Streptobacillus. A total of eighty-four candidate genes were identified, and their functional annotations were mainly associated with immunity responses and function, metabolism, and signal transduction. Our results propose that those candidate genes identified in the study may be modulating the composition of rumen microbiota and further indicating the significance of comprehending the interactions between the host and rumen microbiota to gain better insight into the health of sheep.
Collapse
Affiliation(s)
- Sinalo Mani
- GI Microbiology and Biotechnology Unit, Agricultural Research Council- Animal Production, Private Bag X02, Irene, 0062, South Africa.,Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000, South Africa
| | - Olayinka Ayobami Aiyegoro
- GI Microbiology and Biotechnology Unit, Agricultural Research Council- Animal Production, Private Bag X02, Irene, 0062, South Africa. .,Research Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2520, South Africa.
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
41
|
A20 undermines alternative NF-κB activity and expression of anti-apoptotic genes in Helicobacter pylori infection. Cell Mol Life Sci 2022; 79:102. [PMID: 35089437 PMCID: PMC8799570 DOI: 10.1007/s00018-022-04139-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022]
Abstract
A hallmark of infection by the pathogen Helicobacter pylori, which colonizes the human gastric epithelium, is the simultaneous activation of the classical and alternative nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, underlying inflammation and cell survival. Here, we report that the classical NF-κB target gene product A20 contributes to the negative regulation of alternative NF-κB signaling in gastric epithelial cells infected by H. pylori. Mechanistically, the de novo synthesized A20 protein interacts with tumor necrosis factor receptor-associated factor-interacting protein with forkhead-associated domain (TIFA) and thereby interferes with the association of TIFA with the NIK regulatory complex. We also show that alternative NF-κB activity contributes to the up-regulation of anti-apoptotic genes, such as baculoviral IAP repeat containing 2 (BIRC2), BIRC3 and B-cell lymphoma 2-related protein A1 (BCL2A1) in gastric epithelial cells. Furthermore, the observed over-expression of RelB in human gastric biopsies with type B gastritis and RelB-dependent suppression of apoptotic cell death emphasize an important role of the alternative NF-κB pathway in H. pylori infection.
Collapse
|
42
|
Maubach G, Vieth M, Boccellato F, Naumann M. Helicobacter pylori-induced NF-κB: trailblazer for gastric pathophysiology. Trends Mol Med 2022; 28:210-222. [PMID: 35012886 DOI: 10.1016/j.molmed.2021.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
NF-κB signaling pathways, induced by a variety of triggers, play a key role in regulating the expression of genes involved in the immune response and cellular responses to stress. The human pathogen Helicobacter pylori induces classical and alternative NF-κB signaling pathways via its effector ADP-L-glycero-β-D-manno-heptose (ADP-heptose). We review H. pylori- and NF-κB-dependent alterations in cellular processes and associated maladaptation leading to deleterious gastric pathophysiology that have implications for the diagnosis and treatment of gastric diseases. Therapeutic options for gastric cancer (GC) include clinically relevant small molecule inhibitors of NF-κB and epigenetic therapy approaches. In this context, gastric organoid biobanks originated from patient material, represent a valuable platform for translational applications to predict patient responses to chemotherapy, with a view to personalized medicine.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich Alexander University, Erlangen-Nuremberg, 95445 Bayreuth, Germany
| | - Francesco Boccellato
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OX37DQ Oxford, UK
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
43
|
Herod A, Ryu J, Rohde J. Lambda Red Recombineering in Shigella flexneri. Methods Mol Biol 2022; 2523:9-21. [PMID: 35759188 DOI: 10.1007/978-1-0716-2449-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shigellosis remains a major cause of severe diarrheal disease and death throughout the world. Vaccine development against shigellosis has been hampered by an incomplete understanding of the molecular mechanisms by which Shigella spp. causes disease and difficulties in manipulating Shigella spp. genomes. While homologous recombination protocols for the construction of precise gene deletions exist, construction of mutants in S. flexneri has not become commonplace. We describe the steps for construction of gene deletions using λ-red recombination using tools that we have developed in our laboratory.
Collapse
Affiliation(s)
- Adrian Herod
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, Canada
| | - Julie Ryu
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, Canada
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, Canada.
| |
Collapse
|
44
|
Abstract
Shigellosis causes most diarrheal deaths worldwide, particularly affecting children. Shigella invades and replicates in the epithelium of the large intestine, eliciting inflammation and tissue destruction. To understand how Shigella rewires macrophages prior to epithelium invasion, we performed genome-wide and focused secondary CRISPR knockout and CRISPR interference (CRISPRi) screens in Shigella flexneri-infected human monocytic THP-1 cells. Knockdown of the Toll-like receptor 1/2 signaling pathway significantly reduced proinflammatory cytokine and chemokine production, enhanced host cell survival, and controlled intracellular pathogen growth. Knockdown of the enzymatic component of the mitochondrial pyruvate dehydrogenase complex enhanced THP-1 cell survival. Small-molecule inhibitors blocking key components of these pathways had similar effects; these were validated with human monocyte-derived macrophages, which closely mimic the in vivo physiological state of macrophages postinfection. High-throughput CRISPR screens can elucidate how S. flexneri triggers inflammation and redirects host pyruvate catabolism for energy acquisition before killing macrophages, pointing to new shigellosis therapies.
Collapse
|
45
|
Ding F, Luo X, Tu Y, Duan X, Liu J, Jia L, Zheng P. Alpk1 Sensitizes Pancreatic Beta Cells to Cytokine-Induced Apoptosis via Upregulating TNF-α Signaling Pathway. Front Immunol 2021; 12:705751. [PMID: 34621265 PMCID: PMC8490819 DOI: 10.3389/fimmu.2021.705751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic beta cell failure is the hallmark of type 1 diabetes (T1D). Recent studies have suggested that pathogen recognizing receptors (PRRs) are involved in the survival, proliferation and function of pancreatic beta cells. So far, little is known about the role of alpha-protein kinase 1 (ALPK1), a newly identified cytosolic PRR specific for ADP-β-D-manno-heptose (ADP-heptose), in beta cell survival. In current study we aimed to fill the knowledge gap by investigating the role of Alpk1 in the apoptosis of MIN6 cells, a murine pancreatic beta cell line. We found that the expression of Alpk1 was significantly elevated in MIN6 cells exposed to pro-inflammatory cytokines, but not to streptozotocin, low-dose or high-dose glucose. Activation of Alpk1 by ADP heptose alone was insufficient to induce beta cell apoptosis. However, it significantly exacerbated cytokine-induced apoptosis in MIN6 cells. Mechanistic investigations showed that Alpk1 activation was potent to further induce the expression of tumor necrosis factor (TNF)-α and Fas after cytokine stimulation, possibly due to enhanced activation of the TIFA/TAK1/NF-κB signaling axis. Treatment of GLP-1 receptor agonist decreased the expression of TNF-α and Fas and improved the survival of beta cells exposed to pro-inflammatory cytokines and ADP heptose. In summary, our data suggest that Alpk1 sensitizes beta cells to cytokine-induced apoptosis by potentiating TNF-α signaling pathway, which may provide novel insight into beta cell failure and T1D development.
Collapse
Affiliation(s)
- Fei Ding
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xi Luo
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yiting Tu
- Department of Neurology, Shenzhen Samii International Medical Center (The Fourth People's Hospital of Shenzhen), Shenzhen, China
| | - Xianlan Duan
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jia Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lijing Jia
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
46
|
Rostamzadeh Mahdabi E, Esmailizadeh A, Ayatollahi Mehrgardi A, Asadi Fozi M. A genome-wide scan to identify signatures of selection in two Iranian indigenous chicken ecotypes. Genet Sel Evol 2021; 53:72. [PMID: 34503452 PMCID: PMC8428137 DOI: 10.1186/s12711-021-00664-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Various regions of the chicken genome have been under natural and artificial selection for thousands of years. The substantial diversity that exits among chickens from different geographic regions provides an excellent opportunity to investigate the genomic regions under selection which, in turn, will increase our knowledge about the mechanisms that underlie chicken diversity and adaptation. Several statistics have been developed to detect genomic regions that are under selection. In this study, we applied approaches based on differences in allele or haplotype frequencies (FST and hapFLK, respectively) between populations, differences in long stretches of consecutive homozygous sequences (ROH), and differences in allele frequencies within populations (composite likelihood ratio (CLR)) to identify inter- and intra-populations traces of selection in two Iranian indigenous chicken ecotypes, the Lari fighting chicken and the Khazak or creeper (short-leg) chicken. Results Using whole-genome resequencing data of 32 individuals from the two chicken ecotypes, approximately 11.9 million single nucleotide polymorphisms (SNPs) were detected and used in genomic analyses after quality processing. Examination of the distribution of ROH in the two populations indicated short to long ROH, ranging from 0.3 to 5.4 Mb. We found 90 genes that were detected by at least two of the four applied methods. Gene annotation of the detected putative regions under selection revealed candidate genes associated with growth (DCN, MEOX2 and CACNB1), reproduction (ESR1 and CALCR), disease resistance (S1PR1, ALPK1 and MHC-B), behavior pattern (AGMO, GNAO1 and PSEN1), and morphological traits (IHH and NHEJ1). Conclusions Our findings show that these two phenotypically different indigenous chicken populations have been under selection for reproduction, immune, behavioral, and morphology traits. The results illustrate that selection can play an important role in shaping signatures of differentiation across the genomic landscape of two chicken populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00664-9.
Collapse
Affiliation(s)
- Elaheh Rostamzadeh Mahdabi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, 22 Bahman Blvd, Kerman, Iran.
| |
Collapse
|
47
|
The ALPK1 pathway drives the inflammatory response to Campylobacter jejuni in human intestinal epithelial cells. PLoS Pathog 2021; 17:e1009787. [PMID: 34339468 PMCID: PMC8360561 DOI: 10.1371/journal.ppat.1009787] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/12/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Campylobacter jejuni is a major cause of foodborne disease in humans. After infection, C. jejuni rapidly colonizes the mucus layer of the small and large intestine and induces a potent pro-inflammatory response characterized by the production of a large repertoire of cytokines, chemokines, and innate effector molecules, resulting in (bloody) diarrhea. The virulence mechanisms by which C. jejuni causes this intestinal response are still largely unknown. Here we show that C. jejuni releases a potent pro-inflammatory compound into its environment, which activates an NF-κB-mediated pro-inflammatory response including the induction of CXCL8, CXCL2, TNFAIP2 and PTGS2. This response was dependent on a functional ALPK1 receptor and independent of Toll-like Receptor and Nod-like Receptor signaling. Chemical characterization, inactivation of the heptose-biosynthesis pathway by the deletion of the hldE gene and in vitro engineering identified the released factor as the LOS-intermediate ADP-heptose and/or related heptose phosphates. During C. jejuni infection of intestinal cells, the ALPK1-NF-κB axis was potently activated by released heptose metabolites without the need for a type III or type IV injection machinery. Our results classify ADP-heptose and/or related heptose phosphates as a major virulence factor of C. jejuni that may play an important role during Campylobacter infection in humans.
Collapse
|
48
|
Coletta S, Battaggia G, Della Bella C, Furlani M, Hauke M, Faass L, D'Elios MM, Josenhans C, de Bernard M. ADP-heptose enables Helicobacter pylori to exploit macrophages as a survival niche by suppressing antigen-presenting HLA-II expression. FEBS Lett 2021; 595:2160-2168. [PMID: 34216493 DOI: 10.1002/1873-3468.14156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
The persistence of Helicobacter pylori in the human gastric mucosa implies that the immune response fails to clear the infection. We found that H. pylori compromises the antigen presentation ability of macrophages, because of the decline of the presenting molecules HLA-II. Here, we reveal that the main bacterial factor responsible for this effect is ADP-heptose, an intermediate metabolite in the biosynthetic pathway of lipopolysaccharide (LPS) that elicits a pro-inflammatory response in gastric epithelial cells. In macrophages, it upregulates the expression of miR146b which, in turn, would downmodulate CIITA, the master regulator for HLA-II genes. Hence, H. pylori, utilizing ADP-heptose, exploits a specific arm of macrophage response to establish its survival niche in the face of the immune defense elicited in the gastric mucosa.
Collapse
Affiliation(s)
- Sara Coletta
- Department of Biology, University of Padova, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Martina Hauke
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, LMU Munich, Germany
| | - Larissa Faass
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, LMU Munich, Germany
| | - Mario M D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Christine Josenhans
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, LMU Munich, Germany
| | | |
Collapse
|
49
|
Maubach G, Lim MCC, Sokolova O, Backert S, Meyer TF, Naumann M. TIFA has dual functions in Helicobacter pylori-induced classical and alternative NF-κB pathways. EMBO Rep 2021; 22:e52878. [PMID: 34328245 PMCID: PMC8419686 DOI: 10.15252/embr.202152878] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor‐kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor‐associated factor (TRAF)‐interacting protein with forkhead‐associated domain (TIFA) was previously suggested to trigger classical NF‐κB activation, but its role in alternative NF‐κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFβ‐activated kinase 1 (TAK1), leading to the activation of classical NF‐κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF‐κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF‐κB signaling in H. pylori‐infected gastric epithelial cells.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michelle C C Lim
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein, Kiel, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
50
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|