1
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
2
|
Nichols SL, Haller C, Borodavka A, Esstman SM. Rotavirus NSP2: A Master Orchestrator of Early Viral Particle Assembly. Viruses 2024; 16:814. [PMID: 38932107 PMCID: PMC11209291 DOI: 10.3390/v16060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Rotaviruses (RVs) are 11-segmented, double-stranded (ds) RNA viruses and important causes of acute gastroenteritis in humans and other animal species. Early RV particle assembly is a multi-step process that includes the assortment, packaging and replication of the 11 genome segments in close connection with capsid morphogenesis. This process occurs inside virally induced, cytosolic, membrane-less organelles called viroplasms. While many viral and cellular proteins play roles during early RV assembly, the octameric nonstructural protein 2 (NSP2) has emerged as a master orchestrator of this key stage of the viral replication cycle. NSP2 is critical for viroplasm biogenesis as well as for the selective RNA-RNA interactions that underpin the assortment of 11 viral genome segments. Moreover, NSP2's associated enzymatic activities might serve to maintain nucleotide pools for use during viral genome replication, a process that is concurrent with early particle assembly. The goal of this review article is to summarize the available data about the structures, functions and interactions of RV NSP2 while also drawing attention to important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah L. Nichols
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| | - Cyril Haller
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Alexander Borodavka
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| | - Sarah M. Esstman
- Department of Biology, Wake Forest University, Wake Downtown, 455 Vine Street, Winston-Salem, NC 27106, USA;
| |
Collapse
|
3
|
Lu C, Li Y, Chen R, Hu X, Leng Q, Song X, Lin X, Ye J, Wang J, Li J, Yao L, Tang X, Kuang X, Zhang G, Sun M, Zhou Y, Li H. Safety, Immunogenicity, and Mechanism of a Rotavirus mRNA-LNP Vaccine in Mice. Viruses 2024; 16:211. [PMID: 38399987 PMCID: PMC10892174 DOI: 10.3390/v16020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Rotaviruses (RVs) are a major cause of diarrhea in young children worldwide. The currently available and licensed vaccines contain live attenuated RVs. Optimization of live attenuated RV vaccines or developing non-replicating RV (e.g., mRNA) vaccines is crucial for reducing the morbidity and mortality from RV infections. Herein, a nucleoside-modified mRNA vaccine encapsulated in lipid nanoparticles (LNP) and encoding the VP7 protein from the G1 type of RV was developed. The 5' untranslated region of an isolated human RV was utilized for the mRNA vaccine. After undergoing quality inspection, the VP7-mRNA vaccine was injected by subcutaneous or intramuscular routes into mice. Mice received three injections in 21 d intervals. IgG antibodies, neutralizing antibodies, cellular immunity, and gene expression from peripheral blood mononuclear cells were evaluated. Significant differences in levels of IgG antibodies were not observed in groups with adjuvant but were observed in groups without adjuvant. The vaccine without adjuvant induced the highest antibody titers after intramuscular injection. The vaccine elicited a potent antiviral immune response characterized by antiviral clusters of differentiation CD8+ T cells. VP7-mRNA induced interferon-γ secretion to mediate cellular immune responses. Chemokine-mediated signaling pathways and immune response were activated by VP7-mRNA vaccine injection. The mRNA LNP vaccine will require testing for protective efficacy, and it is an option for preventing rotavirus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhou
- Correspondence: (Y.Z.); (H.L.); Tel.: +86-13888340684 (Y.Z.); +86-13888918945 (H.L.)
| | - Hongjun Li
- Correspondence: (Y.Z.); (H.L.); Tel.: +86-13888340684 (Y.Z.); +86-13888918945 (H.L.)
| |
Collapse
|
4
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
5
|
Condezo GN, San Martín C. Maturation of Viruses. Subcell Biochem 2024; 105:503-531. [PMID: 39738956 DOI: 10.1007/978-3-031-65187-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viral genomes are transported between cells using various structural solutions such as spherical or filamentous protein cages, alone or in combination with lipid envelopes, in assemblies of varying complexity. Morphogenesis of the new infectious particles (virions) encompasses capsid assembly from individual components (proteins, and membranes when required), genome packaging, and maturation. This final step is crucial for full infectivity. During maturation, structural and physical changes prepare the viral particles for delivering their genome into cells at the right time and location. The virion must be stabilized for travel across harsh extracellular conditions, while enabling disassembly for genome exposure to replication and translation machineries. That is, maturation has to produce metastable particles. Common maturation strategies include structural reordering, controlled proteolysis, or posttranslational modifications. Here we outline the maturation process in representative members of the six realms proposed by the latest virus taxonomic classification.
Collapse
Affiliation(s)
- Gabriela N Condezo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Carmen San Martín
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Anderson ML, Sullivan OM, Nichols SL, Kaylor L, Kelly DF, McDonald Esstman S. Rotavirus core shell protein sites that regulate intra-particle polymerase activity. J Virol 2023; 97:e0086023. [PMID: 37830817 PMCID: PMC10617381 DOI: 10.1128/jvi.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Rotaviruses are important causes of severe gastroenteritis in young children. A characteristic feature of rotaviruses is that they copy ribonucleic acid (RNA) inside of the viral particle. In fact, the viral polymerase (VP1) only functions when it is connected to the viral inner core shell protein (VP2). Here, we employed a biochemical assay to identify which sites of VP2 are critical for regulating VP1 activity. Specifically, we engineered VP2 proteins to contain amino acid changes at structurally defined sites and assayed them for their capacity to support VP1 function in a test tube. Through this work, we were able to identify several VP2 residues that appeared to regulate the activity of the polymerase, positively and negatively. These results are important because they help explain how rotavirus synthesizes its RNA while inside of particles and they identify targets for the future rational design of drugs to prevent rotavirus disease.
Collapse
Affiliation(s)
| | - Owen M. Sullivan
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Sarah L. Nichols
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, State University, University Park, Pennsylvania, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
7
|
Asensio-Cob D, Rodríguez JM, Luque D. Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro. Viruses 2023; 15:1750. [PMID: 37632092 PMCID: PMC10458742 DOI: 10.3390/v15081750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rotaviruses (RVs) are non-enveloped multilayered dsRNA viruses that are major etiologic agents of diarrheal disease in humans and in the young in a large number of animal species. The viral particle is composed of three different protein layers that enclose the segmented dsRNA genome and the transcriptional complexes. Each layer defines a unique subparticle that is associated with a different phase of the replication cycle. Thus, while single- and double-layered particles are associated with the intracellular processes of selective packaging, genome replication, and transcription, the viral machinery necessary for entry is located in the third layer. This modular nature of its particle allows rotaviruses to control its replication cycle by the disassembly and assembly of its structural proteins. In this review, we examine the significant advances in structural, molecular, and cellular RV biology that have contributed during the last few years to illuminating the intricate details of the RV particle disassembly and assembly processes.
Collapse
Affiliation(s)
- Dunia Asensio-Cob
- Department of Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G0A4, Canada;
| | - Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit UCCT/ISCIII, 28220 Majadahonda, Spain
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Ramírez MC, Méndez K, Castelblanco-Mora A, Quijano S, Ulloa J. In Vitro Evaluation of Anti-Rotaviral Activity and Intestinal Toxicity of a Phytotherapeutic Prototype of Achyrocline bogotensis (Kunth) DC. Viruses 2022; 14:v14112394. [PMID: 36366492 PMCID: PMC9695875 DOI: 10.3390/v14112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 01/31/2023] Open
Abstract
Viruses represent the primary etiologic agents (70-80%) of acute diarrheal disease (ADD), and rotavirus (RV) is the most relevant one. Currently, four rotavirus vaccines are available. However, these vaccines do not protect against emerging viral strains or are not available in low-income countries. To date, there are no approved drugs available against rotavirus infection. In this study, we evaluated the in vitro anti-rotaviral activity and intestinal toxicity of a phytotherapeutic prototype obtained from Achyrocline bogotensis (Kunth) DC. (PPAb); medicinal plant that contains compounds that inhibit the rotavirus replication cycle. Virucidal and viral yield reduction effects exerted by the PPAb were evaluated by immunocytochemistry and flow cytometry. Furthermore, the toxic impact of the PPAb was evaluated in polarized human intestinal epithelial C2BBe1 cells in terms of cytotoxicity, loss of cytoplasmic membrane asymmetry, and DNA fragmentation by MTT and fluorometry. PPAb concentrations under 0.49 mg/mL exerted significant virucidal and viral yield reduction activities, and concentrations under 16 mg/mL neither reduced cell viability, produced DNA fragmentation, nor compromised the C2BBe1cell membrane stability after 24-h incubation. Based on these results, the evaluated phytotherapeutic prototype of Achyrocline bogotensis might be considered as a promising alternative to treat ADD caused by rotavirus.
Collapse
Affiliation(s)
- María-Camila Ramírez
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 43-82, Bogotá D.C. 110231, Colombia
| | - Kelly Méndez
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 43-82, Bogotá D.C. 110231, Colombia
| | - Alicia Castelblanco-Mora
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 43-82, Bogotá D.C. 110231, Colombia
| | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 43-82, Bogotá D.C. 110231, Colombia
| | - Juan Ulloa
- Laboratorio de Virología, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 43-82, Bogotá D.C. 110231, Colombia
- Correspondence: ; Tel.: +57-601-3208320 (ext. 4029)
| |
Collapse
|
9
|
Omatola CA, Olaniran AO. Rotaviruses: From Pathogenesis to Disease Control-A Critical Review. Viruses 2022; 14:875. [PMID: 35632617 PMCID: PMC9143449 DOI: 10.3390/v14050875] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.
Collapse
Affiliation(s)
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
10
|
Caddy S, Papa G, Borodavka A, Desselberger U. Rotavirus research: 2014-2020. Virus Res 2021; 304:198499. [PMID: 34224769 DOI: 10.1016/j.virusres.2021.198499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/09/2023]
Abstract
Rotaviruses are major causes of acute gastroenteritis in infants and young children worldwide and also cause disease in the young of many other mammalian and of avian species. During the recent 5-6 years rotavirus research has benefitted in a major way from the establishment of plasmid only-based reverse genetics systems, the creation of human and other mammalian intestinal enteroids, and from the wide application of structural biology (cryo-electron microscopy, cryo-EM tomography) and complementary biophysical approaches. All of these have permitted to gain new insights into structure-function relationships of rotaviruses and their interactions with the host. This review follows different stages of the viral replication cycle and summarizes highlights of structure-function studies of rotavirus-encoded proteins (both structural and non-structural), molecular mechanisms of viral replication including involvement of cellular proteins and lipids, the spectrum of viral genomic and antigenic diversity, progress in understanding of innate and acquired immune responses, and further developments of prevention of rotavirus-associated disease.
Collapse
Affiliation(s)
- Sarah Caddy
- Cambridge Institute for Therapeutic Immunology and Infectious Disease Jeffery Cheah Biomedical Centre, Cambridge, CB2 0AW, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Alexander Borodavka
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
11
|
Hoxie I, Dennehy JJ. Rotavirus A Genome Segments Show Distinct Segregation and Codon Usage Patterns. Viruses 2021; 13:v13081460. [PMID: 34452326 PMCID: PMC8402926 DOI: 10.3390/v13081460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Reassortment of the Rotavirus A (RVA) 11-segment dsRNA genome may generate new genome constellations that allow RVA to expand its host range or evade immune responses. Reassortment may also produce phylogenetic incongruities and weakly linked evolutionary histories across the 11 segments, obscuring reassortment-specific epistasis and changes in substitution rates. To determine the co-segregation patterns of RVA segments, we generated time-scaled phylogenetic trees for each of the 11 segments of 789 complete RVA genomes isolated from mammalian hosts and compared the segments’ geodesic distances. We found that segments 4 (VP4) and 9 (VP7) occupied significantly different tree spaces from each other and from the rest of the genome. By contrast, segments 10 and 11 (NSP4 and NSP5/6) occupied nearly indistinguishable tree spaces, suggesting strong co-segregation. Host-species barriers appeared to vary by segment, with segment 9 (VP7) presenting the weakest association with host species. Bayesian Skyride plots were generated for each segment to compare relative genetic diversity among segments over time. All segments showed a dramatic decrease in diversity around 2007 coinciding with the introduction of RVA vaccines. To assess selection pressures, codon adaptation indices and relative codon deoptimization indices were calculated with respect to different host genomes. Codon usage varied by segment with segment 11 (NSP5) exhibiting significantly higher adaptation to host genomes. Furthermore, RVA codon usage patterns appeared optimized for expression in humans and birds relative to the other hosts examined, suggesting that translational efficiency is not a barrier in RVA zoonosis.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
- Correspondence:
| | - John J. Dennehy
- Biology Department, The Graduate Center, The City University of New York, New York, NY 10016, USA;
- Biology Department, Queens College, The City University of New York, Flushing, New York, NY 11367, USA
| |
Collapse
|
12
|
Papa G, Borodavka A, Desselberger U. Viroplasms: Assembly and Functions of Rotavirus Replication Factories. Viruses 2021; 13:1349. [PMID: 34372555 PMCID: PMC8310052 DOI: 10.3390/v13071349] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Viroplasms are cytoplasmic, membraneless structures assembled in rotavirus (RV)-infected cells, which are intricately involved in viral replication. Two virus-encoded, non-structural proteins, NSP2 and NSP5, are the main drivers of viroplasm formation. The structures (as far as is known) and functions of these proteins are described. Recent studies using plasmid-only-based reverse genetics have significantly contributed to elucidation of the crucial roles of these proteins in RV replication. Thus, it has been recognized that viroplasms resemble liquid-like protein-RNA condensates that may be formed via liquid-liquid phase separation (LLPS) of NSP2 and NSP5 at the early stages of infection. Interactions between the RNA chaperone NSP2 and the multivalent, intrinsically disordered protein NSP5 result in their condensation (protein droplet formation), which plays a central role in viroplasm assembly. These droplets may provide a unique molecular environment for the establishment of inter-molecular contacts between the RV (+)ssRNA transcripts, followed by their assortment and equimolar packaging. Future efforts to improve our understanding of RV replication and genome assortment in viroplasms should focus on their complex molecular composition, which changes dynamically throughout the RV replication cycle, to support distinct stages of virion assembly.
Collapse
Affiliation(s)
- Guido Papa
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | | | - Ulrich Desselberger
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
13
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
14
|
Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: From viruses to cancer epigenetic machinery. Cell Biol Int 2020; 45:708-719. [PMID: 33325125 DOI: 10.1002/cbin.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/13/2020] [Indexed: 11/08/2022]
Abstract
Processing bodies (PBs) are 100-300 nm cytoplasmic messenger ribonucleoprotein particle (mRNP) granules that regulate eukaryotic gene expression. These cytoplasmic compartments harbor messenger RNAs (mRNAs) and several proteins involved in mRNA decay, microRNA silencing, nonsense-mediated mRNA decay, and splicing. Though membrane-less, PB structures are maintained by RNA-protein and protein-protein interactions. PB proteins have intrinsically disordered regions and low complexity domains, which account for its liquid to liquid phase separation. In addition to being dynamic and actively involved in the exchange of materials with other mRNPs and organelles, they undergo changes on various cellular cues and environmental stresses, including viral infections. Interestingly, several PB proteins are individually implicated in cancer development, and no study has addressed the effects on PB dynamics after epigenetic modifications of cancer-associated PB genes. In the current review, we summarize modulations undergone by P bodies or P body components upon viral infections. Furthermore, we discuss the selective and widely investigated PB proteins that undergo methylation changes in cancer and their potential as biomarkers.
Collapse
Affiliation(s)
- Sunmathy Kanakamani
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Padmanaban S Suresh
- Department of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| |
Collapse
|
15
|
Kaelber JT, Jiang W, Weaver SC, Auguste AJ, Chiu W. Arrangement of the Polymerase Complexes inside a Nine-Segmented dsRNA Virus. Structure 2020; 28:604-612.e3. [PMID: 32049031 PMCID: PMC7289189 DOI: 10.1016/j.str.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022]
Abstract
Members of the family Reoviridae package several copies of the viral polymerase complex into their capsid to carry out replication and transcription within viral particles. Classical single-particle reconstruction encounters difficulties resolving structures such as the intraparticle polymerase complex because refinement can converge to an incorrect map and because the map could depict a nonrepresentative subset of particles or an average of heterogeneous particles. Using the nine-segmented Fako virus, we tested hypotheses for the arrangement and number of polymerase complexes within the virion by measuring how well each hypothesis describes the set of cryoelectron microscopy images of individual viral particles. We find that the polymerase complex in Fako virus binds at ten possible sites despite having only nine genome segments. A single asymmetric configuration describes the arrangement of these complexes in both virions and genome-free capsids. Similarities between the arrangements of Reoviridae with 9, 10, and 11 segments indicate the generalizability of this architecture.
Collapse
Affiliation(s)
- Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Entomology, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
MicroRNA-7 Inhibits Rotavirus Replication by Targeting Viral NSP5 In Vivo and In Vitro. Viruses 2020; 12:v12020209. [PMID: 32069901 PMCID: PMC7077326 DOI: 10.3390/v12020209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Rotavirus (RV) is the major causes of severe diarrhea in infants and young children under five years of age. There are no effective drugs for the treatment of rotavirus in addition to preventive live attenuated vaccine. Recent evidence demonstrates that microRNAs (miRNAs) can affect RNA virus replication. However, the antiviral effect of miRNAs during rotavirus replication are largely unknown. Here, we determined that miR-7 is upregulated during RV replication and that it targets the RV NSP5 (Nonstructural protein 5). Results suggested that miR-7 affected viroplasm formation and inhibited RV replication by down-regulating RV NSP5 expression. Up-regulation of miR-7 expression is a common regulation method of different G-type RV-infected host cells. Then, we further revealed the antiviral effect of miR-7 in diarrhea suckling mice model. MiR-7 is able to inhibit rotavirus replication in vitro and in vivo. These data provide that understanding the role of cellular miR-7 during rotaviral replication may help in the identification of novel therapeutic small RNA molecule drug for anti-rotavirus.
Collapse
|
17
|
Li W, Feng J, Li J, Li J, Wang Z, Khalique A, Yang M, Ni X, Zeng D, Zhang D, Jing B, Luo Q, Pan K. Surface Display of Antigen Protein VP8* of Porcine Rotavirus on Bacillus Subtilis Spores Using CotB as a Fusion Partner. Molecules 2019; 24:molecules24203793. [PMID: 31652492 PMCID: PMC6833084 DOI: 10.3390/molecules24203793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine rotavirus is a major cause of acute viral gastroenteritis in suckling piglets, and vaccination is considered to be an effective measure to control these infections. The development of a live mucosal vaccine using Bacillus subtilis spores as an antigen delivery vehicle is a convenient and attractive vaccination strategy against porcine rotavirus. In this study, a shuttle vector was constructed for the spore surface display of the spike protein VP8* from porcine rotavirus (the genotype was G5P[7]). A successful display of the CotB-VP8* fusion protein on the spore surface was confirmed by Western blot and immunofluorescence microscopy analysis. The capacity for immune response generated after immunization with the recombinant strain was evaluated in a mouse model. The intestinal fecal IgA and serum IgG were detected by enzyme-linked-immunosorbent serologic assay (ELISA). Importantly, recombinant strain spores could elicit strong specific mucosal and humoral immune responses. These encouraging results suggest that recombinant B. subtilis BV could provide a strategy for a potential novel application approach to the development of a new and safe mucosal subunit vaccine against porcine rotavirus.
Collapse
Affiliation(s)
- Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jie Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu 611100, China.
| | - Zhenhua Wang
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu 611100, China.
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Miao Yang
- Technology Centre of Chengdu Custom, Chengdu 611100, China.
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
18
|
In Vitro Double-Stranded RNA Synthesis by Rotavirus Polymerase Mutants with Lesions at Core Shell Contact Sites. J Virol 2019; 93:JVI.01049-19. [PMID: 31341048 DOI: 10.1128/jvi.01049-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022] Open
Abstract
The rotavirus polymerase VP1 mediates all stages of viral RNA synthesis within the confines of subviral particles and while associated with the core shell protein VP2. Transcription (positive-strand RNA [+RNA] synthesis) by VP1 occurs within double-layered particles (DLPs), while genome replication (double-stranded RNA [dsRNA] synthesis) by VP1 occurs within assembly intermediates. VP2 is critical for VP1 enzymatic activity; yet, the mechanism by which the core shell protein triggers polymerase function remains poorly understood. Structural analyses of transcriptionally competent DLPs show that VP1 is located beneath the VP2 core shell and sits slightly off-center from each of the icosahedral 5-fold axes. In this position, the polymerase is contacted by the core shell at 5 distinct surface-exposed sites, comprising VP1 residues 264 to 267, 547 to 550, 614 to 620, 968 to 980, and 1022 to 1025. Here, we sought to test the functional significance of these VP2 contact sites on VP1 with regard to polymerase activity. We engineered 19 recombinant VP1 (rVP1) proteins that contained single- or multipoint alanine mutations within each individual contact site and assayed them for the capacity to synthesize dsRNA in vitro in the presence of rVP2. Three rVP1 mutants (E265A/L267A, R614A, and D971A/S978A/I980A) exhibited diminished in vitro dsRNA synthesis. Despite their loss-of-function phenotypes, the mutants did not show major structural changes in silico, and they maintained their overall capacity to bind rVP2 in vitro via their nonmutated contact sites. These results move us toward a mechanistic understanding of rotavirus replication and identify precise VP2-binding sites on the polymerase surface that are critical for its enzymatic activation.IMPORTANCE Rotaviruses are important pathogens that cause severe gastroenteritis in the young of many animals. The viral polymerase VP1 mediates all stages of viral RNA synthesis, and it requires the core shell protein VP2 for its enzymatic activity. Yet, there are several gaps in knowledge about how VP2 engages and activates VP1. Here, we probed the functional significance of 5 distinct VP2 contact sites on VP1 that were revealed through previous structural studies. Specifically, we engineered alanine amino acid substitutions within each of the 5 VP1 regions and assayed the mutant polymerases for the capacity to synthesize RNA in the presence of VP2 in a test tube. Our results identified residues within 3 of the VP2 contact sites that are critical for robust polymerase activity. These results are important because they enhance the understanding of a key step of the rotavirus replication cycle.
Collapse
|
19
|
Ren L, Ding S, Song Y, Li B, Ramanathan M, Co J, Amieva MR, Khavari PA, Greenberg HB. Profiling of rotavirus 3'UTR-binding proteins reveals the ATP synthase subunit ATP5B as a host factor that supports late-stage virus replication. J Biol Chem 2019; 294:5993-6006. [PMID: 30770472 DOI: 10.1074/jbc.ra118.006004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/09/2019] [Indexed: 12/22/2022] Open
Abstract
Genome replication and virion assembly of segmented RNA viruses are highly coordinated events, tightly regulated by sequence and structural elements in the UTRs of viral RNA. This process is poorly defined and likely requires the participation of host proteins in concert with viral proteins. In this study, we employed a proteomics-based approach, named RNA-protein interaction detection (RaPID), to comprehensively screen for host proteins that bind to a conserved motif within the rotavirus (RV) 3' terminus. Using this assay, we identified ATP5B, a core subunit of the mitochondrial ATP synthase, as having high affinity to the RV 3'UTR consensus sequences. During RV infection, ATP5B bound to the RV 3'UTR and co-localized with viral RNA and viroplasm. Functionally, siRNA-mediated genetic depletion of ATP5B or other ATP synthase subunits such as ATP5A1 and ATP5O reduced the production of infectious viral progeny without significant alteration of intracellular viral RNA levels or RNA translation. Chemical inhibition of ATP synthase diminished RV yield in both conventional cell culture and in human intestinal enteroids, indicating that ATP5B positively regulates late-stage RV maturation in primary intestinal epithelial cells. Collectively, our results shed light on the role of host proteins in RV genome assembly and particle formation and identify ATP5B as a novel pro-RV RNA-binding protein, contributing to our understanding of how host ATP synthases may galvanize virus growth and pathogenesis.
Collapse
Affiliation(s)
- Lili Ren
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Siyuan Ding
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304.
| | - Yanhua Song
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Li
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Muthukumar Ramanathan
- the Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Julia Co
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
| | - Paul A Khavari
- the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Harry B Greenberg
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304.
| |
Collapse
|
20
|
Group A Rotavirus VP1 Polymerase and VP2 Core Shell Proteins: Intergenotypic Sequence Variation and In Vitro Functional Compatibility. J Virol 2019; 93:JVI.01642-18. [PMID: 30355692 DOI: 10.1128/jvi.01642-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023] Open
Abstract
Group A rotaviruses (RVAs) are classified according to a nucleotide sequence-based system that assigns a genotype to each of the 11 double-stranded RNA (dsRNA) genome segments. For the segment encoding the VP1 polymerase, 22 genotypes (R1 to R22) are defined with an 83% nucleotide identity cutoff value. For the segment encoding the VP2 core shell protein, which is a functional VP1-binding partner, 20 genotypes (C1 to C20) are defined with an 84% nucleotide identity cutoff value. However, the extent to which the VP1 and VP2 proteins encoded by these genotypes differ in their sequences or interactions has not been described. Here, we sought to (i) delineate the relationships and sites of variation for VP1 and VP2 proteins belonging to the known RVA genotypes and (ii) correlate intergenotypic sequence diversity with functional VP1-VP2 interaction(s) during dsRNA synthesis. Using bioinformatic approaches, we revealed which VP1 and VP2 genotypes encode divergent proteins and identified the positional locations of amino acid changes in the context of known structural domains/subdomains. We then employed an in vitro dsRNA synthesis assay to test whether genotype R1, R2, R4, and R7 VP1 polymerases could be enzymatically activated by genotype C1, C2, C4, C5, and C7 VP2 core shell proteins. Genotype combinations that were incompatible informed the rational design and in vitro testing of chimeric mutant VP1 and VP2 proteins. The results of this study connect VP1 and VP2 nucleotide-level diversity to protein-level diversity for the first time, and they provide new insights into regions/residues critical for VP1-VP2 interaction(s) during viral genome replication.IMPORTANCE Group A rotaviruses (RVAs) are widespread in nature, infecting numerous mammalian and avian hosts and causing severe gastroenteritis in human children. RVAs are classified using a system that assigns a genotype to each viral gene according to its nucleotide sequence. To date, 22 genotypes have been described for the gene encoding the viral polymerase (VP1), and 20 genotypes have been described for the gene encoding the core shell protein (VP2). Here, we analyzed if/how the VP1 and VP2 proteins encoded by the known RVA genotypes differ from each other in their sequences. We also used a biochemical approach to test whether the intergenotypic sequence differences influenced how VP1 and VP2 functionally engage each other to mediate RNA synthesis in a test tube. This work is important because it increases our understanding of RVA protein-level diversity and raises new ideas about the VP1-VP2 binding interface(s) that is important for viral replication.
Collapse
|
21
|
Borodavka A, Desselberger U, Patton JT. Genome packaging in multi-segmented dsRNA viruses: distinct mechanisms with similar outcomes. Curr Opin Virol 2018; 33:106-112. [PMID: 30145433 PMCID: PMC6289821 DOI: 10.1016/j.coviro.2018.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Segmented double-stranded (ds)RNA viruses share remarkable similarities in their replication strategy and capsid structure. During virus replication, positive-sense single-stranded (+)RNAs are packaged into procapsids, where they serve as templates for dsRNA synthesis, forming progeny particles containing a complete equimolar set of genome segments. How the +RNAs are recognized and stoichiometrically packaged remains uncertain. Whereas bacteriophages of the Cystoviridae family rely on specific RNA-protein interactions to select appropriate +RNAs for packaging, viruses of the Reoviridae instead rely on specific inter-molecular interactions between +RNAs that guide multi-segmented genome assembly. While these families use distinct mechanisms to direct +RNA packaging, both yield progeny particles with a complete set of genomic dsRNAs.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ulrich Desselberger
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
22
|
Kondakova OA, Nikitin NA, Trifonova EA, Atabekov JG, Karpova OV. Rotavirus Vaccines: New Strategies and Approaches. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0096392517040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|