1
|
Sindi AS, Stinson LF, Lai CT, Gridneva Z, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Zhou X, Payne MS, Geddes DT. Human milk lactoferrin and lysozyme concentrations vary in response to a dietary intervention. J Nutr Biochem 2025; 135:109760. [PMID: 39251146 DOI: 10.1016/j.jnutbio.2024.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
It is known that human milk (HM)1 antimicrobial protein composition varies during lactation. However, the impact of maternal diet on these antimicrobial proteins, particularly lactoferrin and lysozyme remains unknown. In addition, it is unclear whether daily, circadian, and between breast variations exist for lactoferrin and lysozyme concentrations. We investigated the impact of a low sugar, low fat, high fibre dietary intervention on HM lysozyme and lactoferrin concentrations. HM was sampled across a 3-week period; daily, at different times of day, and from both breasts to measure the level of intraindividual variation. The intervention significantly reduced maternal sugar, total fat, and saturated fat intake. HM lactoferrin concentration declined significantly over the course of the intervention however the effect size was relatively small. In addition, lactoferrin and lysozyme concentrations were variable over time, and differed significantly within and across the day but not between breasts.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, Western Australia, Australia; College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia
| | - Lisa F Stinson
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ching Tat Lai
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Zoya Gridneva
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, South Australia, Australia; Discipline of Paediatrics, The University of Adelaide, North Adelaide, South Australia, Australia; Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Mary E Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, South Australia, Australia; CSIRO, Adelaide, South Australia, Australia
| | - Xiaojie Zhou
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, Western Australia, Australia
| | - Donna T Geddes
- ABREAST Network, Perth, Western Australia, Australia; UWA Centre for Human Lactation Research and Translation, Crawley, Western Australia, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
2
|
Grossman AS, Gell DA, Wu DG, Carper DL, Hettich RL, Goodrich-Blair H. Bacterial hemophilin homologs and their specific type eleven secretor proteins have conserved roles in heme capture and are diversifying as a family. J Bacteriol 2024; 206:e0044423. [PMID: 38506530 PMCID: PMC11332152 DOI: 10.1128/jb.00444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.
Collapse
Affiliation(s)
- Alex S. Grossman
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Derek G. Wu
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Dana L. Carper
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Andima M, Boese A, Paul P, Koch M, Loretz B, Lehr CM. Targeting Intracellular Bacteria with Dual Drug-loaded Lactoferrin Nanoparticles. ACS Infect Dis 2024; 10:1696-1710. [PMID: 38577780 PMCID: PMC11091908 DOI: 10.1021/acsinfecdis.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Treatment of microbial infections is becoming daunting because of widespread antimicrobial resistance. The treatment challenge is further exacerbated by the fact that certain infectious bacteria invade and localize within host cells, protecting the bacteria from antimicrobial treatments and the host's immune response. To survive in the intracellular niche, such bacteria deploy surface receptors similar to host cell receptors to sequester iron, an essential nutrient for their virulence, from host iron-binding proteins, in particular lactoferrin and transferrin. In this context, we aimed to target lactoferrin receptors expressed by macrophages and bacteria; as such, we prepared and characterized lactoferrin nanoparticles (Lf-NPs) loaded with a dual drug combination of antimicrobial natural alkaloids, berberine or sanguinarine, with vancomycin or imipenem. We observed increased uptake of drug-loaded Lf-NPs by differentiated THP-1 cells with up to 90% proportion of fluorescent cells, which decreased to about 60% in the presence of free lactoferrin, demonstrating the targeting ability of Lf-NPs. The encapsulated antibiotic drug cocktail efficiently cleared intracellular Staphylococcus aureus (Newman strain) compared to the free drug combinations. However, the encapsulated drugs and the free drugs alike exhibited a bacteriostatic effect against the hard-to-treat Mycobacterium abscessus (smooth variant). In conclusion, the results of this study demonstrate the potential of lactoferrin nanoparticles for the targeted delivery of antibiotic drug cocktails for the treatment of intracellular bacteria.
Collapse
Affiliation(s)
- Moses Andima
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo 21435, Uganda
| | - Annette Boese
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Pascal Paul
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Brigitta Loretz
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Claus-Micheal Lehr
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
4
|
Ostan NKH, Cole GB, Wang FZ, Reichheld SE, Moore G, Pan C, Yu R, Lai CCL, Sharpe S, Lee HO, Schryvers AB, Moraes TF. A secreted bacterial protein protects bacteria from cationic antimicrobial peptides by entrapment in phase-separated droplets. PNAS NEXUS 2024; 3:pgae139. [PMID: 38633880 PMCID: PMC11022072 DOI: 10.1093/pnasnexus/pgae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat Neisseria gonorrhoeae, secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs. This study focuses on a cattle pathogen, Moraxella bovis, that expresses the largest anionic domain of the LbpB homologs. We used an exhaustive biophysical approach employing circular dichroism, biolayer interferometry, cross-linking mass spectrometry, microscopy, size-exclusion chromatography with multi-angle light scattering coupled to small-angle X-ray scattering (SEC-MALS-SAXS), and NMR to understand the mechanisms of LbpB-mediated protection against CAPs. We found that the anionic domain of this LbpB displays an α-helical secondary structure but lacks a rigid tertiary fold. The addition of antimicrobial peptides derived from lactoferrin (i.e. lactoferricin) to the anionic domain of LbpB or full-length LbpB results in the formation of phase-separated droplets of LbpB together with the antimicrobial peptides. The droplets displayed a low rate of diffusion, suggesting that CAPs become trapped inside and are no longer able to kill bacteria. Our data suggest that pathogens, like M. bovis, leverage anionic intrinsically disordered domains for the broad recognition and neutralization of antimicrobials via the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Nicholas K H Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Flora Zhiqi Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sean E Reichheld
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ronghua Yu
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Simon Sharpe
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Jugert CS, Didier A, Jessberger N. Lactoferrin-based food supplements trigger toxin production of enteropathogenic Bacillus cereus. Front Microbiol 2023; 14:1284473. [PMID: 38029127 PMCID: PMC10646309 DOI: 10.3389/fmicb.2023.1284473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein exhibiting antibacterial, antiviral, antifungal, antiparasitic, antiinflammatory, antianaemic and anticarcinogenic properties. While its inhibitory effects against bacterial pathogens are well investigated, little is known about its influence on the production and/or mode of action of bacterial toxins. Thus, the present study aimed to determine the impact of food supplements based on bovine lactoferrin on Bacillus cereus enterotoxin production. First, strain-specific growth inhibition of three representative isolates was observed in minimal medium with 1 or 10 mg/mL of a lactoferrin-based food supplement, designated as product no. 1. Growth inhibition did not result from iron deficiency. In contrast to that, all three strains showed increased amounts of enterotoxin component NheB in the supernatant, which corresponded with cytotoxicity. Moreover, lactoferrin product no. 1 enhanced NheB production of further 20 out of 28 B. cereus and Bacillus thuringiensis strains. These findings again suggested a strain-specific response toward lactoferrin. Product-specific differences also became apparent comparing the influence of further six products on highly responsive strain INRA C3. Highest toxin titres were detected after exposure to products no. 7, 1 and 2, containing no ingredients except pure bovine lactoferrin. INRA C3 was also used to determine the transcriptional response toward lactoferrin exposure via RNA sequencing. As control, iron-free medium was also included, which resulted in down-regulation of eight genes, mainly involved in amino acid metabolism, and in up-regulation of 52 genes, mainly involved in iron transport, uptake and utilization. In contrast to that, 153 genes were down-regulated in the presence of lactoferrin, including genes involved in flagellar assembly, motility, chemotaxis and sporulation as well as genes encoding regulatory proteins, transporters, heat and cold shock proteins and virulence factors. Furthermore, 125 genes were up-regulated in the presence of lactoferrin, comprising genes involved in sporulation and germination, nutrient uptake, iron transport and utilization, and resistance. In summary, lactoferrin exposure of B. cereus strain-specifically triggers an extensive transcriptional response that considerably exceeds the response toward iron deficiency and, despite down-regulation of various genes belonging to the PlcR-regulon, ultimately leads to an increased level of secreted enterotoxin by a mechanism, which has yet to be elucidated.
Collapse
Affiliation(s)
- Clara-Sophie Jugert
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Ostrówka M, Duda-Madej A, Pietluch F, Mackiewicz P, Gagat P. Testing Antimicrobial Properties of Human Lactoferrin-Derived Fragments. Int J Mol Sci 2023; 24:10529. [PMID: 37445717 DOI: 10.3390/ijms241310529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Lactoferrin, an iron-binding glycoprotein, plays a significant role in the innate immune system, with antibacterial, antivirial, antifungal, anticancer, antioxidant and immunomodulatory functions reported. It is worth emphasizing that not only the whole protein but also its derived fragments possess antimicrobial peptide (AMP) activity. Using AmpGram, a top-performing AMP classifier, we generated three novel human lactoferrin (hLF) fragments: hLF 397-412, hLF 448-464 and hLF 668-683, predicted with high probability as AMPs. For comparative studies, we included hLF 1-11, previously confirmed to kill some bacteria. With the four peptides, we treated three Gram-negative and three Gram-positive bacterial strains. Our results indicate that none of the three new lactoferrin fragments have antimicrobial properties for the bacteria tested, but hLF 1-11 was lethal against Pseudomonas aeruginosa. The addition of serine protease inhibitors with the hLF fragments did not enhance their activity, except for hLF 1-11 against P. aeruginosa, which MIC dropped from 128 to 64 µg/mL. Furthermore, we investigated the impact of EDTA with/without serine protease inhibitors and the hLF peptides on selected bacteria. We stress the importance of reporting non-AMP sequences for the development of next-generation AMP prediction models, which suffer from the lack of experimentally validated negative dataset for training and benchmarking.
Collapse
Affiliation(s)
- Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| |
Collapse
|
7
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
8
|
FU J, YANG L, TAN D, LIU L. Iron transport mechanism of lactoferrin and its application in food processing. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Liu YANG
- Shenyang Agricultural University, China
| | | | - Ling LIU
- Shenyang Agricultural University, China
| |
Collapse
|
9
|
Li C, Liu X, Huang Z, Zhai Y, Li H, Wu J. Lactoferrin Alleviates Lipopolysaccharide-Induced Infantile Intestinal Immune Barrier Damage by Regulating an ELAVL1-Related Signaling Pathway. Int J Mol Sci 2022; 23:13719. [PMID: 36430202 PMCID: PMC9696789 DOI: 10.3390/ijms232213719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
As the most important intestinal mucosal barrier of the main body, the innate immune barrier in intestinal tract plays especially pivotal roles in the overall health conditions of infants and young children; therefore, how to strengthen the innate immune barrier is pivotal. A variety of bioactivities of lactoferrin (LF) has been widely proved, including alleviating enteritis and inhibiting colon cancer; however, the effects of LF on intestinal immune barrier in infants and young children are still unclear, and the specific mechanism on how LF inhibits infantile enteritis by regulating immune signaling pathways is unrevealed. In the present study, we firstly performed pharmacokinetic analyses of LF in mice intestinal tissues, stomach tissues and blood, through different administration methods, to confirm the metabolic method of LF in mammals. Then we constructed in Vitro and in Vivo infantile intestinal immune barrier damage models utilizing lipopolysaccharide (LPS), and evaluated the effects of LF in alleviating LPS-induced intestinal immune barrier damage. Next, the related immune molecular mechanism on how LF exerted protective effects was investigated, through RNA-seq analyses of the mouse primary intestinal epithelial cells, and the specific genes were analyzed and screened out. Finally, the genes and their related immune pathway were validated in mRNA and protein levels; the portions of special immune cells (CD4+ T cells and CD8+ T cells) were also detected to further support our experimental results. Pharmacokinetic analyses demonstrated that the integrity of LF could reach mice stomach and intestine after oral gavage within 12 h, and the proper administration of LF should be the oral route. LF was proven to down-regulate the expression levels of inflammatory cytokines in both the primary intestinal epithelial cells and mice blood, especially LF without iron (Apo-LF), indicating LF alleviated infantile intestinal immune barrier damage induced by LPS. And through RNA-seq analyses of the mouse primary intestinal epithelial cells treated with LPS and LF, embryonic lethal abnormal vision Drosophila 1 (ELAVL1) was selected as one of the key genes, then the ELAVL1/PI3K/NF-κB pathway regulated by LF was verified to participate in the protection of infantile intestinal immune barrier damage in our study. Additionally, the ratio of blood CD4+/CD8+ T cells was significantly higher in the LF-treated mice than in the control mice, indicating that LF distinctly reinforced the overall immunity of infantile mice, further validating the strengthening bioactivity of LF on infantile intestinal immune barrier. In summary, LF was proven to alleviate LPS-induced intestinal immune barrier damage in young mice through regulating ELAVL1-related immune signaling pathways, which would expand current knowledge of the functions of bioactive proteins in foods within different research layers, as well as benefit preclinical and clinical researches in a long run.
Collapse
Affiliation(s)
- Chaonan Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Xinkui Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihong Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yiyan Zhai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100085, China
| | - Jiarui Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
10
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Pino A, Mazza T, Matthews MAH, Castellana S, Caggia C, Randazzo CL, Gelbfish GA. Antimicrobial activity of bovine lactoferrin against Gardnerella species clinical isolates. Front Microbiol 2022; 13:1000822. [PMID: 36419418 PMCID: PMC9678186 DOI: 10.3389/fmicb.2022.1000822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 05/15/2025] Open
Abstract
Gardnerella species play a key role in the development and recurrence of Bacterial Vaginosis (BV), a common imbalance of the vaginal microbiota. Because of the high rates of BV recurrence reported after treatment with standard of care antibiotics, as well as the emergence of antibiotic-resistant BV, the development of alternative treatment approaches is needed. Bovine lactoferrin, a well studied iron-binding glycoprotein with selective antimicrobial activity, may ameliorate vaginal dysbiosis either alone or in combination with antibiotics. The present study evaluated the antimicrobial resistance/susceptibility profile of seventy-one presumptive G. vaginalis clinical isolates to metronidazole and clindamycin. In addition, the in vitro antimicrobial activity of Metrodora Therapeutics bovine Lactoferrin (MTbLF) against the tested clinical isolates, both alone and in combination with metronidazole and clindamycin, was in depth evaluated using defined-iron culture conditions. All 71 presumptive G. vaginalis clinical isolates exhibited resistance to metronidazole, with MIC values greater than 256 μg/ml. Different susceptibility profiles were detected for clindamycin. In detail, the vast majority of the tested strains (45%), exhibiting MIC lower than 2 μg/ml, were considered sensitive; 18 strains (25%) with MIC higher or equal to 8 μg/ml, were classified as resistant, whereas the remaining 21 (30%) were classified as intermediate. MTbLF was tested in culture medium at different concentrations (32, 16, 8, 4, 2, 1, and 0.5 mg/ml) showing ability to inhibit the growth of the tested presumptive G. vaginalis clinical isolates, including those metronidazole-resistant, in a dose-dependent and not in a strain-dependent manner. MTbLF, at concentrations ranging from 32 to 8 mg/ml, exerted a statistically different antimicrobial activity compared with lower concentrations (4, 2, 1, and 0.5 mg/ml). A synergistic effect between MTbLF (8 and 4 mg/ml) and clindamycin was revealed for all the tested strains. When tested in the absence of other sources of iron, MTbLF did not support the growth of the tested presumptive G. vaginalis clinical isolates. Bovine lactoferrin may be a potential candidate to treat Gardnerella species infection.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna s.r.l., Spin-off of University of Catania, Catania, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Stefano Castellana
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna s.r.l., Spin-off of University of Catania, Catania, Italy
| | - Cinzia L. Randazzo
- Department of Agricultural, Food and Environment, University of Catania, Catania, Italy
- ProBioEtna s.r.l., Spin-off of University of Catania, Catania, Italy
| | - Gary A. Gelbfish
- Metrodora Therapeutics LLC, Brooklyn, NY, United States
- Department of Surgery, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Sawale M, Ozadali F, Valentine CJ, Benyathiar P, Drolia R, Mishra DK. Impact of bovine lactoferrin fortification on pathogenic organisms to attenuate the risk of infection for infants. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Wu Z, Shao J, Zheng J, Liu B, Li Z, Shen N. A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war. Chin Med J (Engl) 2022; 135:1917-1926. [PMID: 35830263 PMCID: PMC9746790 DOI: 10.1097/cm9.0000000000002233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Collapse
Affiliation(s)
- Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Beibei Liu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
- Center for Infectious Diseases, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
14
|
Liu YL, Ding R, Jia XM, Huang JJ, Yu S, Chan HT, Li W, Mao LL, Zhang L, Zhang XY, Wu W, Ni AP, Xu YC. Correlation of Moraxella catarrhalis macrolide susceptibility with the ability to adhere and invade human respiratory epithelial cells. Emerg Microbes Infect 2022; 11:2055-2068. [PMID: 35904140 PMCID: PMC9448378 DOI: 10.1080/22221751.2022.2108341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, the prevalence of macrolide-resistant Moraxella catarrhalis has been reported, especially among Chinese children. The fitness cost of resistance is reported to render the resistant bacteria less virulent. To investigate the correlation between macrolide susceptibility of M. catarrhalis and pathogenicity, the whole genome of 70 M. catarrhalis isolates belonging to four clonal complexes with different macrolide susceptibilities was sequenced. The gene products were annotated with the Gene Ontology terms. Based on 46 extracted essential virulence genes, 19 representative isolates were selected to infect type II alveolar cells (A549 cells). The ability of these isolates to adhere and invade human epithelial cells and to produce cytokines was comparatively analysed. Furthermore, mice were infected with a pair of M. catarrhalis isolates with different pathogenic behaviours and macrolide susceptibilities to examine pulmonary clearance, histological findings, and the production of cytokines. The percentages of annotations for binding, metabolic process, cellular process, and cell were non-significantly different between the macrolide-resistant and macrolide-susceptible groups. The presence of uspA2, uspA2H, pilO, lbpB, lex1, modM, mboIA, and mboIB significantly differed among the four clonal complexes and macrolide susceptibility groups. Furthermore, compared with those in macrolide-susceptible isolates, the adhesion ability was stronger (P = 0.0019) and the invasion ability was weaker (P < 0.0001) in the macrolide-resistant isolates. Mouse experiments revealed that pulmonary macrophages elicit immune responses against M. catarrhalis infection by significantly upregulating the Csf2, Il4, Il13, Il1b, Il6, Tnf, and Il18. Therefore, M. catarrhalis populations exhibited diverse pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Ya-Li Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Rui Ding
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Xin-Miao Jia
- Medical Research Center, State Key laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Jing-Jing Huang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Shuying Yu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Wei Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Lei-Li Mao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Xin-Yao Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Wei Wu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - An-Ping Ni
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107)
| | - Ying-Chun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China (Li Zhang, Employee ID: 10107).,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| |
Collapse
|
15
|
Jiménez-Barrios P, Jaén-Cano CM, Malumbres R, Cilveti-Vidaurreta F, Bellanco-Sevilla A, Miralles B, Recio I, Martínez-Sanz M. Thermal stability of bovine lactoferrin prepared by cation exchange chromatography and its blends with authorized additives for infant formulas. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Yadav R, Govindan S, Daczkowski C, Mesecar A, Chakravarthy S, Noinaj N. Structural insight into the dual function of LbpB in mediating Neisserial pathogenesis. eLife 2021; 10:71683. [PMID: 34751649 PMCID: PMC8577839 DOI: 10.7554/elife.71683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Lactoferrin-binding protein B (LbpB) is a lipoprotein present on the surface of Neisseria that has been postulated to serve dual functions during pathogenesis in both iron acquisition from lactoferrin (Lf), and in providing protection against the cationic antimicrobial peptide lactoferricin (Lfcn). While previous studies support a dual role for LbpB, exactly how these ligands interact with LbpB has remained unknown. Here, we present the structures of LbpB from N. meningitidis and N. gonorrhoeae in complex with human holo-Lf, forming a 1:1 complex and confirmed by size-exclusion chromatography small-angle X-ray scattering. LbpB consists of N- and C-lobes with the N-lobe interacting extensively with the C-lobe of Lf. Our structures provide insight into LbpB’s preference towards holo-Lf, and our mutagenesis and binding studies show that Lf and Lfcn bind independently. Our studies provide the molecular details for how LbpB serves to capture and preserve Lf in an iron-bound state for delivery to the membrane transporter LbpA for iron piracy, and as an antimicrobial peptide sink to evade host immune defenses.
Collapse
Affiliation(s)
- Ravi Yadav
- Purdue University Interdisciplinary Life Sciences Program, West Lafayette, United States.,Department of Biological Sciences,Purdue University, West Lafayette, United States
| | - Srinivas Govindan
- Weldon School of BiomedicalEngineering, Purdue University, West Lafayette, United States
| | - Courtney Daczkowski
- Department of Biochemistry, Purdue University, West Lafayette, United States
| | - Andrew Mesecar
- Department of Biological Sciences,Purdue University, West Lafayette, United States.,Department of Biochemistry, Purdue University, West Lafayette, United States
| | | | - Nicholas Noinaj
- Department of Biological Sciences,Purdue University, West Lafayette, United States.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, United States
| |
Collapse
|
17
|
Chan C, Ng D, Schryvers AB. The Role of the Moraxella catarrhalis CopB Protein in Facilitating Iron Acquisition From Human Transferrin and Lactoferrin. Front Microbiol 2021; 12:714815. [PMID: 34630348 PMCID: PMC8497027 DOI: 10.3389/fmicb.2021.714815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative bacterium that is responsible for a substantial proportion of upper respiratory infections in children and lower respiratory infections in the elderly. Moraxella catarrhalis resides exclusively on the mucosal surfaces of the upper respiratory tract of humans and is capable of directly acquiring iron for growth from the host glycoproteins human transferrin (hTf) and human lactoferrin (hLf). The iron-bound form of these glycoproteins is initially captured by the surface lipoproteins Tf or Lf binding protein B (TbpB or LbpB) and delivered to the integral outer membrane TonB-dependent transport (TBDT) proteins, Tf binding protein A (TbpA) or Lf binding protein A (LbpA). The extraction of iron involves conformational changes in Lf and Tf to facilitate iron removal followed by its transport across the outer membrane by a well characterized process for TBDTs. Surprisingly the disruption of the gene encoding another TBDT, CopB, results in a reduction in the ability to grow on human Tf or Lf. The possibility that this could have been due to an artifact of mutant construction that resulted in the inhibition of TonB-mediated process was eliminated by a complete deletion of the CopB gene. A systematic evaluation of the impact on growth under various conditions by deletions of the genes encoding TbpA, LbpA, and CopB as well as mutations of the iron liganding residues and TonB box region of CopB was implemented. The results indicate that although CopB is capable of effectively acquiring iron from the growth medium, it does not directly acquire iron from Tf or Lf. We propose that the indirect effect on iron transport from Tf and Lf by CopB could possibly be explained by the association of TBDTs at gaps in the peptidoglycan layer that may enhance the efficiency of the process. This concept is supported by previous studies demonstrating an indirect effect on growth of Tf and Lf by deletion of the peptidoglycan binding outer membrane lipoprotein RmpM in Neisseria that also reduced the formation of larger complexes of TBDTs.
Collapse
Affiliation(s)
- Clement Chan
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dixon Ng
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
The milk-derived lactoferrin inhibits V-ATPase activity by targeting its V1 domain. Int J Biol Macromol 2021; 186:54-70. [PMID: 34237360 DOI: 10.1016/j.ijbiomac.2021.06.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
Lactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase. Lf-driven V-ATPase inhibition leads to cytosolic acidification, ultimately causing cell death of cancer and fungal cells. Given that a detailed elucidation of how Lf and V-ATPase interact is still missing, herein we aimed to fill this gap by employing a five-stage computational approach. Molecular dynamics simulations of both proteins were performed to obtain a robust sampling of their conformational landscape, followed by clustering, which allowed retrieving representative structures, to then perform protein-protein docking. Subsequently, molecular dynamics simulations of the docked complexes and free binding energy calculations were carried out to evaluate the dynamic binding process and build a final ranking based on the binding affinities. Detailed atomist analysis of the top ranked complexes clearly indicates that Lf binds to the V1 cytosolic domain of V-ATPase. Particularly, our data suggest that Lf binds to the interfaces between A/B subunits, where the ATP hydrolysis occurs, thus inhibiting this process. The free energy decomposition analysis further identified key binding residues that will certainly aid in the rational design of follow-up experimental studies, hence bridging computational and experimental biochemistry.
Collapse
|
19
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
20
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Ostan NKH, Moraes TF, Schryvers AB. Lactoferrin receptors in Gram-negative bacteria: an evolutionary perspective. Biochem Cell Biol 2021; 99:102-108. [PMID: 33464172 DOI: 10.1139/bcb-2020-0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this short review, we outline the major events that led to the development of iron acquisition systems in Gram-negative bacteria and mammals since the beginning of life on earth. Naturally, the interaction between these organisms led to the development of a wonderfully complex set of protein systems used for competition over a once prevalent (but no longer) biocatalytic cofactor. These events led to the appearance of the lactoferrin gene, which has since been exploited into adopting countless new functions, including the provision of highly bactericidal degradation products. In parallel to lactoferrin's evolution, evolving bacterial receptors have countered the bactericidal properties of this innate immunity protein.
Collapse
Affiliation(s)
- Nicholas K H Ostan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Cole GB, Bateman TJ, Moraes TF. The surface lipoproteins of gram-negative bacteria: Protectors and foragers in harsh environments. J Biol Chem 2021; 296:100147. [PMID: 33277359 PMCID: PMC7857515 DOI: 10.1074/jbc.rev120.008745] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022] Open
Abstract
Gram-negative pathogens are enveloped by an outer membrane that serves as a double-edged sword: On the one hand, it provides a layer of protection for the bacterium from environmental insults, including other bacteria and the host immune system. On the other hand, it restricts movement of vital nutrients into the cell and provides a plethora of antigens that can be detected by host immune systems. One strategy used to overcome these limitations is the decoration of the outer surface of gram-negative bacteria with proteins tethered to the outer membrane through a lipid anchor. These surface lipoproteins (SLPs) fulfill critical roles in immune evasion and nutrient acquisition, but as more bacterial genomes are sequenced, we are beginning to discover their prevalence and their different roles and mechanisms and importantly how we can exploit them as antimicrobial targets. This review will focus on representative SLPs that gram-negative bacteria use to overcome host innate immunity, specifically the areas of nutritional immunity and complement system evasion. We elaborate on the structures of some notable SLPs required for binding target molecules in hosts and how this information can be used alongside bioinformatics to understand mechanisms of binding and in the discovery of new SLPs. This information provides a foundation for the development of therapeutics and the design of vaccine antigens.
Collapse
Affiliation(s)
- Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Li HY, Li P, Yang HG, Yao QQ, Huang SN, Wang JQ, Zheng N. Investigation and comparison of the protective activities of three functional proteins-lactoferrin, α-lactalbumin, and β-lactoglobulin-in cerebral ischemia reperfusion injury. J Dairy Sci 2020; 103:4895-4906. [PMID: 32229112 DOI: 10.3168/jds.2019-17725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023]
Abstract
The objective of this study was to evaluate the protection conferred by lactoferrin, α-lactalbumin, and β-lactoglobulin in cerebral ischemia reperfusion (I/R) injury. Rat pheochromocytoma (PC12) cells were used to construct an oxygen and glucose deprivation model in vitro, and ICR mice underwent carotid artery "ligation-relaxation" to construct a cerebral I/R injury model in vivo. The levels of toll-like receptor 4 (TLR4) and downstream factors including nuclear factor-κB, tumor necrosis factor-α, and IL-1β were measured. Metabonomics detection and data mining were conducted to identify the specific metabolic sponsor of the 3 proteins. The results showed that lactoferrin, α-lactalbumin, and β-lactoglobulin protected neurons from cerebral I/R injury by increasing the level of bopindolol and subsequently inhibiting the TLR4-related pathway to different degrees; β-lactoglobulin had the strongest activity of the 3 proteins. In summary, this study is the first to investigate and compare the protective effects of lactoferrin, α-lactalbumin, and β-lactoglobulin in a cerebral stroke model. The results implicate TLR4 as a novel target of the 3 bioactive proteins to prevent cerebral I/R injury.
Collapse
Affiliation(s)
- Hui-Ying Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Peng Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huai-Gu Yang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qian-Qian Yao
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Sheng-Nan Huang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jia-Qi Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| | - Nan Zheng
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| |
Collapse
|
24
|
Czosnykowska-Łukacka M, Orczyk-Pawiłowicz M, Broers B, Królak-Olejnik B. Lactoferrin in Human Milk of Prolonged Lactation. Nutrients 2019; 11:nu11102350. [PMID: 31581741 PMCID: PMC6835443 DOI: 10.3390/nu11102350] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023] Open
Abstract
Among the immunologically important bioactive factors present in human milk, lactoferrin (Lf) has emerged as a key player with wide-ranging features that directly and indirectly protect the neonate against infection caused by a variety of pathogens. The concentration of Lf in human milk is lactation-stage related; colostrum contains more than 5 g/L, which then significantly decreases to 2–3 g/L in mature milk. The milk of mothers who are breastfeeding for more than one year is of a standard value, containing macronutrients in a composition similar to that of human milk at later stages. The aim of this study was to evaluate lactoferrin concentration in prolonged lactation from the first to the 48th month postpartum. Lactating women (n = 120) up to 48 months postpartum were recruited to the study. The mean value of lactoferrin concentration was the lowest in the group of 1–12 months of lactation (3.39 ± 1.43 g/L), significantly increasing in the 13–18 months group (5.55 ± 4.00 g/L; p < 0.006), and remaining at a comparable level in the groups of 19–24 month and over 24 months (5.02 ± 2.97 and 4.90 ± 3.18 g/L, respectively). The concentration of lactoferrin in mother’s milk also showed a positive correlation with protein concentration over lactation from the first to the 48th month (r = 0.3374; p = 0.0002). Our results demonstrate the high immunology potential of human milk during prolonged lactation and that Lf concentration is close to the Lf concentration in colostrum. Evidence of stable or rising immunoprotein levels during prolonged lactation provides an argument for foregoing weaning; however, breastfeeding must be combined with solid foods meet the new requirements of a rapidly growing six-month or older baby.
Collapse
Affiliation(s)
| | - Magdalena Orczyk-Pawiłowicz
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wrocław, Poland.
| | - Barbara Broers
- Neonatology Department, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Barbara Królak-Olejnik
- Neonatology Department, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| |
Collapse
|
25
|
Chan C, Andisi VF, Ng D, Ostan N, Yunker WK, Schryvers AB. Are lactoferrin receptors in Gram-negative bacteria viable vaccine targets? Biometals 2018; 31:381-398. [PMID: 29767396 DOI: 10.1007/s10534-018-0105-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/28/2018] [Indexed: 10/16/2022]
Abstract
A number of important Gram-negative pathogens that reside exclusively in the upper respiratory or genitourinary tract of their mammalian host rely on surface receptors that specifically bind host transferrin and lactoferrin as a source of iron for growth. The transferrin receptors have been targeted for vaccine development due to their critical role in acquiring iron during invasive infection and for survival on the mucosal surface. In this study, we focus on the lactoferrin receptors, determining their prevalence in pathogenic bacteria and comparing their prevalence in commensal Neisseria to other surface antigens targeted for vaccines; addressing the issue of a reservoir for vaccine escape and impact of vaccination on the microbiome. Since the selective release of the surface lipoprotein lactoferrin binding protein B by the NalP protease in Neisseria meningitidis argues against its utility as a vaccine target, we evaluated the release of outer membrane vesicles, and transferrin and lactoferrin binding in N. meningitidis and Moraxella catarrhalis. The results indicate that the presence of NalP reduces the binding of transferrin and lactoferrin by cells and native outer membrane vesicles, suggesting that NalP may impact all lipoprotein targets, thus this should not exclude lactoferrin binding protein B as a target.
Collapse
Affiliation(s)
- Clement Chan
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vahid F Andisi
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dixon Ng
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nick Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Warren K Yunker
- Department of Surgery, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
26
|
Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2017; 59:580-596. [DOI: 10.1080/10408398.2017.1381583] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bo Wang
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Yakindra Prasad Timilsena
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| | - Ewan Blanch
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Benu Adhikari
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| |
Collapse
|
27
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|