1
|
Herzog MKM, Peters A, Shayya N, Cazzaniga M, Kaka Bra K, Arora T, Barthel M, Gül E, Maurer L, Kiefer P, Christen P, Endhardt K, Vorholt JA, Frankel G, Heimesaat MM, Bereswill S, Gahan CGM, Claesson MJ, Domingo-Almenara X, Hardt WD. Comparing Campylobacter jejuni to three other enteric pathogens in OligoMM 12 mice reveals pathogen-specific host and microbiota responses. Gut Microbes 2025; 17:2447832. [PMID: 39835346 DOI: 10.1080/19490976.2024.2447832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Campylobacter jejuni, non-typhoidal Salmonella spp., Listeria monocytogenes and enteropathogenic/enterohemorrhagic Escherichia coli (EPEC/EHEC) are leading causes of food-borne illness worldwide. Citrobacter rodentium has been used to model EPEC and EHEC infection in mice. The gut microbiome is well-known to affect gut colonization and host responses to many food-borne pathogens. Recent progress has established gnotobiotic mice as valuable models to study how microbiota affect the enteric infections by S. Typhimurium, C. rodentium and L. monocytogenes. However, for C. jejuni, we are still lacking a suitable gnotobiotic mouse model. Moreover, the limited comparability of data across laboratories is often negatively affected by variations between different research facilities or murine microbiotas. In this study, we applied the standardized gnotobiotic OligoMM12 microbiota mouse model and compared the infections in the same facility. We provide evidence of robust colonization and significant pathological changes in OligoMM12 mice following infection with these pathogens. Moreover, we offer insights into pathogen-specific host responses and metabolite signatures, highlighting the advantages of a standardized mouse model for direct comparisons of factors influencing the pathogenesis of major food-borne pathogens. Notably, we reveal for the first time that C. jejuni stably colonizes OligoMM12 mice, triggering inflammation. Additionally, our comparative approach successfully identifies pathogen-specific responses, including the detection of genes uniquely associated with C. jejuni infection in humans. These findings underscore the potential of the OligoMM12 model as a versatile tool for advancing our understanding of food-borne pathogen interactions.
Collapse
Affiliation(s)
- Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nizar Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Kardokh Kaka Bra
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Trisha Arora
- Omic Sciences Unit, EURECAT - Technology Centre of Catalonia, Reus, Spain
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Endhardt
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
3
|
Campbell IW, Dehinwal R, Morano AA, Dailey KG, Zingl FG, Waldor MK. A connection between Vibrio cholerae motility and inter-animal transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637895. [PMID: 39990368 PMCID: PMC11844489 DOI: 10.1101/2025.02.12.637895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Outbreaks of cholera are caused by the highly transmissive pathogen Vibrio cholerae . Here, a transposon screen revealed that inactivation of the V. cholerae motility-linked gene motV increases infant mouse intestinal colonization. Compared to wild-type V. cholerae , a Δ motV mutant, which exhibits heightened motility in the form of constitutive straight swimming, localizes to the crypts earlier in infection and over a larger area of the small intestine. Aberrant localization of the mutant was associated with an increased number of V. cholerae initiating infection, and elevated pathogen burden, diarrhea, and lethality. Moreover, the deletion of motV causes V. cholerae to transmit from infected suckling mice to naïve littermates more efficiently. Even in the absence of cholera toxin, the Δ motV mutant continues to transmit between animals, although less than in the presence of toxin, indicating that phenotypes other than cholera toxin-driven diarrhea contribute to transmission. Collectively, this work provides experimental evidence linking intra-animal bottlenecks, colonization, and disease to inter-animal transmission.
Collapse
|
4
|
Artola-Borán M, Kirsche L, Fallegger A, Leary P, Tanriover M, Goodwin T, Geiger G, Hapfelmeier S, Yousefi S, Simon HU, Arnold IC, Müller A. IgA facilitates the persistence of the mucosal pathogen Helicobacter pylori. Mucosal Immunol 2025; 18:232-247. [PMID: 39581230 DOI: 10.1016/j.mucimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
IgA antibodies have an important role in clearing mucosal pathogens. In this study, we have examined the contribution of IgA to the immune control of the gastrointestinal bacterial pathogens Helicobacter pylori and Citrobacter rodentium. Both bacteria trigger a strong local IgA response that results in bacterial IgA coating in mice and in gastritis patients. Class switching to IgA depends on Peyer's patches, T-cells, eosinophils, and eosinophil-derived TGF-β in both models. In the case of H. pylori, IgA secretion and bacterial coating also depend on a functional bacterial type IV secretion system, which drives the generation of Th17 cells and the IL-17-dependent expression of the polymeric immunoglobulin receptor PIGR. IgA-/- mice are hypercolonized with C. rodentium in all examined tissues, suffer from more severe weight loss and develop more colitis. In contrast, H. pylori is controlled more efficiently in IgA-/- mice than their WT counterparts. The effects of IgA deficiency of the offspring can be compensated by maternal IgA delivered by WT foster mothers. We attribute the improved immune control observed in IgA-/- mice to IgA-mediated protection from complement killing, as H. pylori colonization is restored to wild type levels in a composite strain lacking both IgA and the central complement component C3. IgA antibodies can thus have protective or detrimental activities depending on the infectious agent.
Collapse
Affiliation(s)
- Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Angela Fallegger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - Mine Tanriover
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Tanja Goodwin
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Gavin Geiger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Liu Y, Xu D, Guo S, Wang S, Ding H, Siu C, Wan F. The gut microbiota-independent virulence of noninvasive bacterial pathogen Citrobacter rodentium. PLoS Pathog 2024; 20:e1012758. [PMID: 39630719 DOI: 10.1371/journal.ppat.1012758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Attaching and effacing (A/E) bacterial pathogens consist of human pathogens enteropathogenic Escherichia coli, enterohemorrhagic E. coli and their murine equivalent Citrobacter rodentium (CR). Emerging evidence suggests that the complex pathogen-microbiota-host interactions are critical in conferring A/E pathogen infection-induced severe symptoms and lethality in immunocompromised hosts; however, the precise underlying mechanisms remain enigmatic. Here we report that CR infection causes severe colitis and mortality in interleukin 22 knockout (Il22-/-) and Rag1 knockout (Rag1-/-) mice under germ-free (GF) conditions. In a gut microbiota-independent manner, CR colonizes in GF Il22-/- and Rag1-/- animals, triggers colonic epithelial tissue damage and systemic dissemination of CR, and results in lethal infections. Pretreatment with cefoxitin, a broad-spectrum antibiotic, exacerbates CR-induced colitis and lethality in specific-pathogen-free (SPF) Il22-/- and Rag1-/- mice. Together our results reveal that CR possesses a gut microbiota-independent virulence, which is better illustrated during infections in immunocompromised hosts associated with severe outcomes.
Collapse
Affiliation(s)
- Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Songwei Guo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shuyu Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hua Ding
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Catherine Siu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
6
|
Quantitative dose-response analysis untangles host bottlenecks to enteric infection. Nat Commun 2023; 14:456. [PMID: 36709326 PMCID: PMC9884216 DOI: 10.1038/s41467-023-36162-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
Host bottlenecks prevent many infections before the onset of disease by eliminating invading pathogens. By monitoring the diversity of a barcoded population of the diarrhea causing bacterium Citrobacter rodentium during colonization of its natural host, mice, we determine the number of cells that found the infection by establishing a replicative niche. In female mice the size of the pathogen's founding population scales with dose and is controlled by a severe yet slow-acting bottleneck. Reducing stomach acid or changing host genotype modestly relaxes the bottleneck without breaking the fractional relationship between dose and founders. In contrast, disrupting the microbiota causes the founding population to no longer scale with the size of the inoculum and allows the pathogen to infect at almost any dose, indicating that the microbiota creates the dominant bottleneck. Further, in the absence of competition with the microbiota, the diversity of the pathogen population slowly contracts as the population is overtaken by bacteria having lost the critical virulence island, the locus of enterocyte effacement (LEE). Collectively, our findings reveal that the mechanisms of protection by colonization bottlenecks are reflected in and can be generally defined by the impact of dose on the pathogen's founding population.
Collapse
|
7
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Perruzza L, Strati F, Raneri M, Li H, Gargari G, Rezzonico-Jost T, Palatella M, Kwee I, Morone D, Seehusen F, Sonego P, Donati C, Franceschi P, Macpherson AJ, Guglielmetti S, Greiff V, Grassi F. Apyrase-mediated amplification of secretory IgA promotes intestinal homeostasis. Cell Rep 2022; 40:111112. [PMID: 35858559 DOI: 10.1016/j.celrep.2022.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Secretory immunoglobulin A (SIgA) interaction with commensal bacteria conditions microbiota composition and function. However, mechanisms regulating reciprocal control of microbiota and SIgA are not defined. Bacteria-derived adenosine triphosphate (ATP) limits T follicular helper (Tfh) cells in the Peyer's patches (PPs) via P2X7 receptor (P2X7R) and thereby SIgA generation. Here we show that hydrolysis of extracellular ATP (eATP) by apyrase results in amplification of the SIgA repertoire. The enhanced breadth of SIgA in mice colonized with apyrase-releasing Escherichia coli influences topographical distribution of bacteria and expression of genes involved in metabolic versus immune functions in the intestinal epithelium. SIgA-mediated conditioning of bacteria and enterocyte function is reflected by differences in nutrient absorption in mice colonized with apyrase-expressing bacteria. Apyrase-induced SIgA improves intestinal homeostasis and attenuates barrier impairment and susceptibility to infection by enteric pathogens in antibiotic-induced dysbiosis. Therefore, amplification of SIgA by apyrase can be leveraged to restore intestinal fitness in dysbiotic conditions.
Collapse
Affiliation(s)
- Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Francesco Strati
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Matteo Raneri
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Hai Li
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern 3010, Switzerland
| | - Giorgio Gargari
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan 20133, Italy
| | - Tanja Rezzonico-Jost
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Martina Palatella
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Ivo Kwee
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland
| | - Frauke Seehusen
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN) 38098, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN) 38098, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN) 38098, Italy
| | - Andrew J Macpherson
- Maurice Müller Laboratories, Department of Biomedical Research, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern 3010, Switzerland
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan 20133, Italy
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo 0372, Norway
| | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona 6500, Switzerland.
| |
Collapse
|
9
|
Protective and Anti-Inflammatory Effects of Protegrin-1 on Citrobacter rodentium Intestinal Infection in Mice. Int J Mol Sci 2021; 22:ijms22179494. [PMID: 34502403 PMCID: PMC8431371 DOI: 10.3390/ijms22179494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Infectious intestinal colitis, manifesting as intestinal inflammation, diarrhea, and epithelial barrier disruption, affects millions of humans worldwide and, without effective treatment, can result in death. In addition to this, the significant rise in antibiotic-resistant bacteria poses an urgent need for alternative anti-infection therapies for the treatment of intestinal disorders. Antimicrobial peptides (AMPs) are potential therapies that have broad-spectrum antimicrobial activity due to their (1) unique mode of action, (2) broad-spectrum antimicrobial activity, and (3) protective role in GI tract maintenance. Protegrin-1 (PG-1) is an AMP of pig origin that was previously shown to reduce the pathological effects of chemically induced digestive tract inflammation (colitis) and to modulate immune responses and tissue repair. This study aimed to extend these findings by investigating the protective effects of PG-1 on pathogen-induced colitis in an infection study over a 10-day experimental period. The oral administration of PG-1 reduced Citrobacter rodentium intestinal infection in mice as evidenced by reduced histopathologic change in the colon, prevention of body weight loss, milder clinical signs of disease, and more effective clearance of bacterial infection relative to challenged phosphate-buffered saline (PBS)-treated mice. Additionally, PG-1 treatment altered the expression of various inflammatory mediators during infection, which may act to resolve inflammation and re-establish intestinal homeostasis. PG-1 administered in its mature form was more effective relative to the pro-form (ProPG-1). To our knowledge, this is the first study demonstrating the protective effects of PG-1 on infectious colitis.
Collapse
|
10
|
Liang Q, Vallance BA. What's for dinner? How Citrobacter rodentium's metabolism helps it thrive in the competitive gut. Curr Opin Microbiol 2021; 63:76-82. [PMID: 34243134 DOI: 10.1016/j.mib.2021.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Enteric bacterial infections impose a significant and global health burden on society, and their threat is increasing in concert with a rise in antibiotic resistance. There is thus a great need to quickly develop new antimicrobial treatments and interest is growing in targeting pathogen nutrition and metabolism. In this review, we highlight recent research on the metabolism of Citrobacter rodentium, a murine-specific relative of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC). We focus on the mechanisms by which C. rodentium acquires nutrients as well as the distinct metabolic strategies that C. rodentium employs in varying spatiotemporal niches. We propose that identifying and targeting nutrients found essential for bacterial pathogenesis is an attractive anti-microbial approach in the new post-antibiotic era.
Collapse
Affiliation(s)
- Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Pfister SP, Schären OP, Beldi L, Printz A, Notter MD, Mukherjee M, Li H, Limenitakis JP, Werren JP, Tandon D, Cuenca M, Hagemann S, Uster SS, Terrazos MA, Gomez de Agüero M, Schürch CM, Coelho FM, Curtiss R, Slack E, Balmer ML, Hapfelmeier S. Uncoupling of invasive bacterial mucosal immunogenicity from pathogenicity. Nat Commun 2020; 11:1978. [PMID: 32332737 PMCID: PMC7181798 DOI: 10.1038/s41467-020-15891-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
There is the notion that infection with a virulent intestinal pathogen induces generally stronger mucosal adaptive immunity than the exposure to an avirulent strain. Whether the associated mucosal inflammation is important or redundant for effective induction of immunity is, however, still unclear. Here we use a model of auxotrophic Salmonella infection in germ-free mice to show that live bacterial virulence factor-driven immunogenicity can be uncoupled from inflammatory pathogenicity. Although live auxotrophic Salmonella no longer causes inflammation, its mucosal virulence factors remain the main drivers of protective mucosal immunity; virulence factor-deficient, like killed, bacteria show reduced efficacy. Assessing the involvement of innate pathogen sensing mechanisms, we show MYD88/TRIF, Caspase-1/Caspase-11 inflammasome, and NOD1/NOD2 nodosome signaling to be individually redundant. In colonized animals we show that microbiota metabolite cross-feeding may recover intestinal luminal colonization but not pathogenicity. Consequent immunoglobulin A immunity and microbial niche competition synergistically protect against Salmonella wild-type infection.
Collapse
Affiliation(s)
- Simona P Pfister
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andrea Printz
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matheus D Notter
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Mohana Mukherjee
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Hai Li
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Julien P Limenitakis
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Joel P Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Disha Tandon
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School GCB, University of Bern, Bern, Switzerland
| | - Miguelangel Cuenca
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stefanie Hagemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephanie S Uster
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Miguel A Terrazos
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Maurice Müller Laboratories (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin (UVCM) Inselspital, Bern, Switzerland
| | - Christian M Schürch
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fernanda M Coelho
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Roy Curtiss
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emma Slack
- Institute for Food, Nutrition and Health, D-HEST, ETH Zürich, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
12
|
Twin-Arginine Translocation System Is Involved in Citrobacter rodentium Fitness in the Intestinal Tract. Infect Immun 2020; 88:IAI.00892-19. [PMID: 31818958 DOI: 10.1128/iai.00892-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
The twin-arginine translocation (Tat) system is involved in not only a wide array of cellular processes but also pathogenesis in many bacterial pathogens; thus, this system is expected to become a novel therapeutic target to treat infections. To the best of our knowledge, involvement of the Tat system has not been reported in the gut infection caused by Citrobacter rodentium Here, we studied the role of Tat in C. rodentium gut infection, which resembles human infection with enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). A C. rodentium Tat loss-of-function mutant displayed prolonged gut colonization, which was explained by reduced inflammatory responses and, particularly, neutrophil infiltration. Further, the Tat mutant had colonization defects upon coinfection with the wild-type strain of C. rodentium The Tat mutant also became hypersensitive to bile acids, and an increase in fecal bile acids fostered C. rodentium clearance from the gut lumen. Finally, we show that the chain form of C. rodentium cells, induced by a Tat-dependent cell division defect, exhibits impaired resistance to bile acids. Our findings indicate that the Tat system is involved in gut colonization by C. rodentium, which is associated with neutrophil infiltration and resistance to bile acids. Interventions that target the Tat system, as well as luminal bile acids, might thus be promising therapeutic strategies to treat human EHEC and EPEC infections.
Collapse
|
13
|
Woodward SE, Krekhno Z, Finlay BB. Here, there, and everywhere: How pathogenicEscherichia colisense and respond to gastrointestinal biogeography. Cell Microbiol 2019; 21:e13107. [DOI: 10.1111/cmi.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - Zakhar Krekhno
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - B. Brett Finlay
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
- Department of Biochemistry and Molecular BiologyUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
14
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Singh V, Wang Y, Vijay-Kumar M. PAD4-dependent NETs generation are indispensable for intestinal clearance of Citrobacter rodentium. Mucosal Immunol 2019; 12:761-771. [PMID: 30710097 PMCID: PMC6519124 DOI: 10.1038/s41385-019-0139-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Peptidyl arginine deiminase-4 (PAD4) is indispensable for generation of neutrophil extracellular traps (NETs), which can provide antimicrobial effects during host innate immune response; however, the role of PAD4 against gastrointestinal infection is largely unknown. Herein, we challenged PAD4-deficient (Pad4-/-) mice and wild-type (WT) littermates with Citrobacter rodentium (CR), and investigated bacteria clearance and gut pathology. Luminal colonization of CR in Pad4-/- mice peaked between 11-14 days post-infection, whereas WT mice suppressed the infection by 14 days. We demonstrated that Pad4-/- mice were unable to form NETs, whereas WT mice showed increased NETs formation in the colon during infection. Pad4-/- mice showed aggravated CR-associated inflammation as indicated by elevated systemic and colonic pro-inflammatory markers. Histological analysis revealed that transmissible colonic hyperplasia, goblet cell depletion, and apoptotic cell death were more pronounced in the colon of CR-infected Pad4-/- mice. Treating WT mice with deoxyribonuclease I, which can disrupt NETs generation, recapitulated the exacerbated CR infection and gut pathology associated with the loss of PAD4. Administration of the PAD4 inhibitor, Cl-amidine also aggravated CR infection, but to a lesser extent. Taken together, our findings highlight the importance of PAD4 in the mucosal clearance of CR and in resolving gut-associated inflammation.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, The Pennsylvania State University, University Park, Philadelphia, PA, 16802, USA
| | - Xia Xiao
- Division of Nephrology, MGH, Harvard Medical School, Boston, MA, 02114, USA
| | - Rachel M Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Vishal Singh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Yanming Wang
- College of Life Sciences & Medicine, Henan University, Kaifeng, 475004, China
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
15
|
Ramirez VT, Godinez DR, Brust-Mascher I, Nonnecke EB, Castillo PA, Gardner MB, Tu D, Sladek JA, Miller EN, Lebrilla CB, Bevins CL, Gareau MG, Reardon C. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. PLoS Pathog 2019; 15:e1007719. [PMID: 30973939 PMCID: PMC6478367 DOI: 10.1371/journal.ppat.1007719] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/23/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses.
Collapse
Affiliation(s)
- Valerie T. Ramirez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Dayn R. Godinez
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Ingrid Brust-Mascher
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Eric B. Nonnecke
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Patricia A. Castillo
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Mariana Barboza Gardner
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Diane Tu
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Jessica A. Sladek
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Elaine N. Miller
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, UC Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology & Immunology, UC Davis School of Medicine, UC Davis, Davis, California, United States of America
| | - Melanie G. Gareau
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, United States of America
| |
Collapse
|
16
|
Cooperative Metabolic Adaptations in the Host Can Favor Asymptomatic Infection and Select for Attenuated Virulence in an Enteric Pathogen. Cell 2018; 175:146-158.e15. [PMID: 30100182 DOI: 10.1016/j.cell.2018.07.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/09/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022]
Abstract
Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.
Collapse
|
17
|
Runte CS, Jain U, Getz LJ, Secord S, Kuwae A, Abe A, LeBlanc JJ, Stadnyk AW, Kaper JB, Hansen AM, Thomas NA. Tandem tyrosine phosphosites in the Enteropathogenic Escherichia coli chaperone CesT are required for differential type III effector translocation and virulence. Mol Microbiol 2018; 108:536-550. [PMID: 29509331 DOI: 10.1111/mmi.13948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) use a type 3 secretion system (T3SS) for injection of effectors into host cells and intestinal colonization. Here, we demonstrate that the multicargo chaperone CesT has two strictly conserved tyrosine phosphosites, Y152 and Y153 that regulate differential effector secretion in EPEC. Conservative substitution of both tyrosine residues to phenylalanine strongly attenuated EPEC type 3 effector injection into host cells, and limited Tir effector mediated intimate adherence during infection. EPEC expressing a CesT Y152F variant were deficient for NleA effector expression and exhibited significantly reduced translocation of NleA into host cells during infection. Other effectors were observed to be dependent on CesT Y152 for maximal translocation efficiency. Unexpectedly, EPEC expressing a CesT Y153F variant exhibited significantly enhanced effector translocation of many CesT-interacting effectors, further implicating phosphosites Y152 and Y153 in CesT functionality. A mouse infection model of intestinal disease using Citrobacter rodentium revealed that CesT tyrosine substitution variants displayed delayed colonization and were more rapidly cleared from the intestine. These data demonstrate genetically separable functions for tandem tyrosine phosphosites within CesT. Therefore, CesT via its C-terminal tyrosine phosphosites, has relevant roles beyond typical type III secretion chaperones that interact and stabilize effector proteins.
Collapse
Affiliation(s)
- Cameron S Runte
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Umang Jain
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Landon J Getz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sabrina Secord
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Jason J LeBlanc
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine, Division of Infectious Diseases, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|