1
|
Sreenivasamurthy SK, Baptista CG, West CM, Blader IJ, Dvorin JD. PfFBXO1 is essential for inner membrane complex formation in Plasmodium falciparum during both asexual and transmission stages. Commun Biol 2025; 8:190. [PMID: 39915671 PMCID: PMC11802861 DOI: 10.1038/s42003-025-07619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Plasmodium species replicate via schizogony, which involves asynchronous nuclear divisions followed by semi-synchronous segmentation and cytokinesis. Successful segmentation requires a double-membranous structure known as the inner membrane complex (IMC). Here we demonstrate that PfFBXO1 (PF3D7_0619700) is critical for both asexual segmentation and gametocyte maturation. In Toxoplasma gondii, the FBXO1 homolog, TgFBXO1, is essential for the development of the daughter cell scaffold and a component of the daughter cell IMC. We demonstrate PfFBXO1 forming a similar IMC initiation scaffold near the apical region of developing merozoites and unilaterally positioned in gametocytes of P. falciparum. While PfFBXO1 initially localizes to the apical region of dividing parasites, it displays an IMC-like localization as segmentation progresses. Similarly, PfFBXO1 localizes to the IMC region in gametocytes. Following inducible knockout of PfFBXO1, parasites undergo abnormal segmentation and karyokinesis, generating inviable daughters. PfFBXO1-deficient gametocytes are abnormally shaped and fail to fully mature. Proteomic analysis identified PfSKP1 as one of PfBXO1's stable interacting partners, while other major proteins included multiple IMC pellicle and membrane proteins. We hypothesize that PfFBXO1 is necessary for IMC biogenesis, chromosomal maintenance, vesicular transport, and ubiquitin-mediated translational regulation of proteins in both sexual and asexual stages of P. falciparum.
Collapse
Affiliation(s)
- Sreelakshmi K Sreenivasamurthy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Horjales S, Sena F, Francia ME. Ultrastructure expansion microscopy: Enlarging our perspective on apicomplexan cell division. J Microsc 2025. [PMID: 39853753 DOI: 10.1111/jmi.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Apicomplexans, a large phylum of protozoan intracellular parasites, well known for their ability to invade and proliferate within host cells, cause diseases with major health and economic impacts worldwide. These parasites are responsible for conditions such as malaria, cryptosporidiosis, and toxoplasmosis, which affect humans and other animals. Apicomplexans exhibit complex life cycles, marked by diverse modes of cell division, which are closely associated with their pathogenesis. All the unique structural and evolutionary characteristics of apicomplexan parasites, the biology underlying life stage transitions, and the singular mechanisms of cell division alongside their associated biomedical relevance have captured the attention of parasitologists of all times. Traditional light and electron microscopy have set the fundamental foundations of our understanding of these parasites, including the distinction among their modes of cell division. This has been more recently complemented by microscopy advances through the implementation of superresolution fluorescence microscopy, and variants of electron microscopy, such as cryo-EM and tomography, revealing intricate details of organelles and cell division. Ultrastructure Expansion Microscopy has emerged as a transformative, accessible approach that enhances resolution by physically expanding samples isometrically, allowing nanoscale visualisation on standard light microscopes. In this work, we review the most recent contributions of U-ExM and its recent improvements and innovations, in providing unprecedented insights into apicomplexan ultrastructure and its associated mechanisms, focusing particularly on cell division. We highlight the power of U-ExM in combination with protein-specific labelling, in aiding the visualisation of long oversighted organelles and detailed insights into the assembly of parasite-specific structures, such as the conoid in Plasmodia, and the apical-basal axis in Toxoplasma, respectively, during new parasite assembly. Altogether, the contributions of U-ExM reveal conserved and unique structural features across species while nearing super resolution. The development of these methodologies and their combination with different technologies are crucial for advancing our mechanistic understanding of apicomplexan biology, offering new perspectives that may facilitate novel therapeutic strategies against apicomplexan-caused diseases.
Collapse
Affiliation(s)
- Sofía Horjales
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Innovación y Emprendimiento, Universidad Tecnológica, Uruguay
| | - Florencia Sena
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Universidad de la República, Montevideo, Uruguay
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Unidad Académica de Parasitología y Micología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Bhaskaran M, Mudiyam V, Mouveaux T, Roger E, Gissot M. Cascading expression of ApiAP2 transcription factors controls daughter cell assembly in Toxoplasma gondii. PLoS Pathog 2024; 20:e1012810. [PMID: 39774584 PMCID: PMC11723607 DOI: 10.1371/journal.ppat.1012810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/10/2025] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Pathogenesis of Toxoplasma gondii in the intermediate host is based on the tachyzoite ability to divide rapidly to produce significant amount of daughter cells in a reduce time frame. The regulation of the cell-cycle specific expression program is therefore key to their proliferation. Transcriptional regulation has a crucial role in establishing this expression program and transcription factors regulates many aspects of tachyzoite cell cycle. We explored the role of two ApiAP2 transcription factors, TgAP2XII-9 and TgAP2III-2, during the cell cycle of the tachyzoite form. While TgAP2III-2 has only a minor impact on the tachyzoite proliferation, we show that TgAP2XII-9 regulates many aspects of the cell cycle including the proper assembly of the daughter cells inner membrane complex and temporal expression of many virulence genes. Creation of a double mutant strain for TgAP2XII-9 and TgAP2III-2 shows that TgAP2XII-9 had a prominent role during daughter cell assembly. Using transcriptomics and Cut&Tag, we demonstrate that TgAP2XII-9 mainly acts through the transcriptional control of at least 300 genes promoters. Interestingly, TgAP2XII-9 plays a crucial role repressing the expression of genes necessary for budding initiation and activating genes necessary for microneme de novo formation. We also explored the importance of the AP2 domain of TgAP2XII-9 demonstrating its critical role to exert its function. Therefore, we showed that TgAP2XII-9 is a crucial transcription factor which is key to daughter cell assembly post budding initiation.
Collapse
Affiliation(s)
- Maanasa Bhaskaran
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Venkat Mudiyam
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Thomas Mouveaux
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Emmanuel Roger
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Gissot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
4
|
Khelifa AS, Bhaskaran M, Boissavy T, Mouveaux T, Silva TA, Chhuon C, Attias M, Guerrera IC, De Souza W, Dauvillee D, Roger E, Gissot M. PP1 phosphatase controls both daughter cell formation and amylopectin levels in Toxoplasma gondii. PLoS Biol 2024; 22:e3002791. [PMID: 39255306 DOI: 10.1371/journal.pbio.3002791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Virulence of apicomplexan parasites is based on their ability to divide rapidly to produce significant biomass. The regulation of their cell cycle is therefore key to their pathogenesis. Phosphorylation is a crucial posttranslational modification that regulates many aspects of the eukaryotic cell cycle. The phosphatase PP1 is known to play a major role in the phosphorylation balance in eukaryotes. We explored the role of TgPP1 during the cell cycle of the tachyzoite form of the apicomplexan parasite Toxoplasma gondii. Using a conditional mutant strain, we show that TgPP1 regulates many aspects of the cell cycle including the proper assembly of the daughter cells' inner membrane complex (IMC), the segregation of organelles, and nuclear division. Unexpectedly, depletion of TgPP1 also results in the accumulation of amylopectin, a storage polysaccharide that is usually found in the latent bradyzoite form of the parasite. Using transcriptomics and phospho-proteomics, we show that TgPP1 mainly acts through posttranslational mechanisms by dephosphorylating target proteins including IMC proteins. TgPP1 also dephosphorylates a protein bearing a starch-binding domain. Mutagenesis analysis reveals that the targeted phospho-sites are linked to the ability of the parasite to regulate amylopectin steady-state levels. Therefore, we show that TgPP1 has pleiotropic roles during the tachyzoite cell cycle regulation, but also regulates amylopectin accumulation.
Collapse
Affiliation(s)
- Asma Sarah Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Maanasa Bhaskaran
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Tom Boissavy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Thomas Mouveaux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Tatiana Araujo Silva
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS, UMS3633, Paris, France
| | - Marcia Attias
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS, UMS3633, Paris, France
| | - Wanderley De Souza
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Dauvillee
- UGSF-Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576, Lille, France
| | - Emmanuel Roger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
5
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Lou J, Rezvani Y, Arriojas A, Wu Y, Shankar N, Degras D, Keroack CD, Duraisingh MT, Zarringhalam K, Gubbels MJ. Single cell expression and chromatin accessibility of the Toxoplasma gondii lytic cycle identifies AP2XII-8 as an essential ribosome regulon driver. Nat Commun 2024; 15:7419. [PMID: 39198388 PMCID: PMC11358496 DOI: 10.1038/s41467-024-51011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Sequential lytic cycles driven by cascading transcriptional waves underlie pathogenesis in the apicomplexan parasite Toxoplasma gondii. This parasite's unique division by internal budding, short cell cycle, and jumbled up classically defined cell cycle stages have restrained in-depth transcriptional program analysis. Here, unbiased transcriptome and chromatin accessibility maps throughout the lytic cell cycle are established at the single-cell level. Correlated pseudo-timeline assemblies of expression and chromatin profiles maps transcriptional versus chromatin level transition points promoting the cell division cycle. Sequential clustering analysis identifies functionally related gene groups promoting cell cycle progression. Promoter DNA motif mapping reveals patterns of combinatorial regulation. Pseudo-time trajectory analysis reveals transcriptional bursts at different cell cycle points. The dominant burst in G1 is driven largely by transcription factor AP2XII-8, which engages a conserved DNA motif, and promotes the expression of 44 ribosomal proteins encoding regulon. Overall, the study provides integrated, multi-level insights into apicomplexan transcriptional regulation.
Collapse
Affiliation(s)
- Jingjing Lou
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Argenis Arriojas
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Yihan Wu
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Nachiket Shankar
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - David Degras
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA
| | - Caroline D Keroack
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA.
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA.
| | | |
Collapse
|
7
|
Hawkins LM, Wang C, Chaput D, Batra M, Marsilia C, Awshah D, Suvorova ES. The Crk4-Cyc4 complex regulates G 2/M transition in Toxoplasma gondii. EMBO J 2024; 43:2094-2126. [PMID: 38600241 PMCID: PMC11148040 DOI: 10.1038/s44318-024-00095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.
Collapse
Affiliation(s)
- Lauren M Hawkins
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chengqi Wang
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, FL, 33612, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Clem Marsilia
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Danya Awshah
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Elena S Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression. PLoS Pathog 2024; 20:e1012269. [PMID: 38814984 PMCID: PMC11166348 DOI: 10.1371/journal.ppat.1012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
9
|
Yang C, Doud EH, Sampson E, Arrizabalaga G. The protein phosphatase PPKL is a key regulator of daughter parasite development in Toxoplasma gondii. mBio 2023; 14:e0225423. [PMID: 37877735 PMCID: PMC10746186 DOI: 10.1128/mbio.02254-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Toxoplasma gondii can cause severe disease in immunocompromised or immunosuppressed patients and during congenital infections. Treating toxoplasmosis presents enormous challenges since the parasite shares many biological processes with its mammalian hosts, which results in significant side effects with current therapies. Consequently, proteins that are essential and unique to the parasite represent favorable targets for drug development. Interestingly, Toxoplasma, like other members of the phylum Apicomplexa, has numerous plant-like proteins, many of which play crucial roles and do not have equivalents in the mammalian host. In this study, we found that the plant-like protein phosphatase PPKL appears to be a key regulator of daughter parasite development. With the depletion of PPKL, the parasite shows severe defects in forming daughter parasites. This study provides novel insights into the understanding of parasite division and offers a new potential target for the development of antiparasitic drugs.
Collapse
Affiliation(s)
- Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emily Sampson
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. Toxoplasma gondii F-Box Protein L2 Silences Feline-Restricted Genes Necessary for Sexual Commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572150. [PMID: 38187549 PMCID: PMC10769283 DOI: 10.1101/2023.12.18.572150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages requires substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct nuclear sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNA seq data show that TgFBXL2 conditional depletion induces the expression of genes necessary for sexual commitment. We suggest that TgFBXL2 is a latent guardian of sexual stage development in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of sexual development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| |
Collapse
|
11
|
Liang QL, Nie LB, Elsheikha HM, Li TT, Sun LX, Zhang ZW, Wang M, Fu BQ, Zhu XQ, Wang JL. The Toxoplasma protein phosphatase 6 catalytic subunit (TgPP6C) is essential for cell cycle progression and virulence. PLoS Pathog 2023; 19:e1011831. [PMID: 38091362 PMCID: PMC10752510 DOI: 10.1371/journal.ppat.1011831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/27/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.
Collapse
Affiliation(s)
- Qin-Li Liang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lan-Bi Nie
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
12
|
Zarringhalam K, Ye S, Lou J, Rezvani Y, Gubbels MJ. Cell cycle-regulated ApiAP2s and parasite development: the Toxoplasma paradigm. Curr Opin Microbiol 2023; 76:102383. [PMID: 37898053 PMCID: PMC10840917 DOI: 10.1016/j.mib.2023.102383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 10/30/2023]
Abstract
The cell division cycle of T. gondii is driven by cyclically expressed ApiAP2 transcription factors (AP2s) that promote gene sets (regulons) associated with specific biological functions. AP2s drive other AP2s, thereby propelling the progressive gene expression waves defining the lytic cycle. AP2s can act as dimers by themselves, in combination with other AP2s (constitutive or cyclical) or in complexes with epigenetic factors. Exit from the cell cycle into either the extracellular state or differentiation into bradyzoites results in major changes in gene expression. Surprisingly, both transitions lead to expression of a shared set of unique AP2s that suggest a shared stress response that, governed by the specific conditions, leads to different outcomes.
Collapse
Affiliation(s)
- Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA; Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA.
| | - Sida Ye
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA; Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | - Jingjing Lou
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yasaman Rezvani
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, USA; Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, USA
| | | |
Collapse
|
13
|
Zhou BH, Ding HY, Yang JY, Chai J, Guo HW, Tian EJ. Diclazuril-induced expression of CDK-related kinase 2 in the second-generation merozoites of Eimeria tenella. Mol Biochem Parasitol 2023; 255:111575. [PMID: 37302489 DOI: 10.1016/j.molbiopara.2023.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Diclazuril is a classic anticoccidial drug. The key molecules of diclazuril in anticoccidial action allows target screening for the development of anticoccidial drugs. Cyclin-dependent kinases (CDK) are prominent target proteins in apicomplexan parasites. In this study, a diclazuril anticoccidiosis animal model was established, and the transcription and translation levels of the CDK-related kinase 2 of Eimeria tenella (EtCRK2) were detected. mRNA and protein expression levels of EtCRK2 decreased in the infected/diclazuril group compared with those in the infected/control group. In addition, immunofluorescence analysis showed that EtCRK2 was localised in the cytoplasm of the merozoites. The fluorescence intensity of EtCRK2 in the infected/diclazuril group was significantly weaker than that in the infected/control group. The anticoccidial drug diclazuril against E.tenella affects the expression pattern of EtCRK2 molecule, and EtCRK2 is a potential target for new drug development.
Collapse
Affiliation(s)
- Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China.
| | - Hai-Yan Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jing-Yun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| | - Jun Chai
- School of information technology and urban construction, Luoyang Vocational and Technical College, Keji Avenue 6, Yibin District, Luoyang 471934, Henan, People's Republic of China
| | - Hong-Wei Guo
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Longzi Hubei Road 6, Zhengzhou 450046, Henan, People's Republic of China
| | - Er-Jie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luolong District, Luoyang 471023, Henan, People's Republic of China
| |
Collapse
|
14
|
Yang C, Doud EH, Sampson E, Arrizabalaga G. The protein phosphatase PPKL is a key regulator of daughter parasite development in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544803. [PMID: 37398039 PMCID: PMC10312731 DOI: 10.1101/2023.06.13.544803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Apicomplexan parasites, including Toxoplasma gondii, encode many plant-like proteins, which play significant roles and present attractive targets for drug development. In this study, we have characterized the plant-like protein phosphatase PPKL, which is unique to the parasite and absent in its mammalian host. We have shown that its localization changes as the parasite divides. In non-dividing parasites, it is present in the cytoplasm, nucleus, and preconoidal region. As the parasite begins division, PPKL is enriched in the preconoidal region and the cortical cytoskeleton of the nascent parasites. Later in the division, PPKL is present in the basal complex ring. Conditional knockdown of PPKL showed that it is essential for parasite propagation. Moreover, parasites lacking PPKL exhibit uncoupling of division, with normal DNA duplication but severe defects in forming daughter parasites. While PPKL depletion does not impair the duplication of centrosomes, it affects the rigidity and arrangement of the cortical microtubules. Both Co-Immunoprecipitation and proximity labeling identified the kinase DYRK1 as a potential functional partner of PPKL. Complete knockout of DYRK1 phenocopies lack of PPKL, strongly suggesting a functional relationship between these two signaling proteins. Global phosphoproteomics analysis revealed a significant increase in phosphorylation of the microtubule-associated proteins SPM1 in PPKL-depleted parasites, suggesting PPKL regulates the cortical microtubules by mediating the phosphorylation state of SPM1. More importantly, the phosphorylation of cell cycle-associated kinase Crk1, a known regulator of daughter cell assembly, is altered in PPKL-depleted parasites. Thus, we propose that PPKL regulates daughter parasite development by influencing the Crk1-dependent signaling pathway.
Collapse
Affiliation(s)
- Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emily Sampson
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
O’Shaughnessy WJ, Hu X, Henriquez SA, Reese ML. Toxoplasma ERK7 protects the apical complex from premature degradation. J Cell Biol 2023; 222:e202209098. [PMID: 37027006 PMCID: PMC10083718 DOI: 10.1083/jcb.202209098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/01/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Accurate cellular replication balances the biogenesis and turnover of complex structures. In the apicomplexan parasite Toxoplasma gondii, daughter cells form within an intact mother cell, creating additional challenges to ensuring fidelity of division. The apical complex is critical to parasite infectivity and consists of apical secretory organelles and specialized cytoskeletal structures. We previously identified the kinase ERK7 as required for maturation of the apical complex in Toxoplasma. Here, we define the Toxoplasma ERK7 interactome, including a putative E3 ligase, CSAR1. Genetic disruption of CSAR1 fully suppresses loss of the apical complex upon ERK7 knockdown. Furthermore, we show that CSAR1 is normally responsible for turnover of maternal cytoskeleton during cytokinesis, and that its aberrant function is driven by mislocalization from the parasite residual body to the apical complex. These data identify a protein homeostasis pathway critical for Toxoplasma replication and fitness and suggest an unappreciated role for the parasite residual body in compartmentalizing processes that threaten the fidelity of parasite development.
Collapse
Affiliation(s)
| | - Xiaoyu Hu
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Ana Henriquez
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
16
|
Yang J, Yang X, Liu A, Li Y, Niu Z, Lyu C, Liang X, Xia N, Cui J, Li M, Wu P, Peng C, Shen B. The beta subunit of AMP-activated protein kinase is critical for cell cycle progression and parasite development in Toxoplasma gondii. Cell Mol Life Sci 2022; 79:532. [PMID: 36205781 PMCID: PMC11802946 DOI: 10.1007/s00018-022-04556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/03/2022]
Abstract
Toxoplasma gondii is a widespread eukaryotic pathogen that causes life-threatening diseases in humans and diverse animals. It has a complex life cycle with multiple developmental stages, which are timely adjusted according to growth conditions. But the regulatory mechanisms are largely unknown. Here we show that the AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in eukaryotes, plays crucial roles in controlling the cell cycle progression and bradyzoite development in Toxoplasma. Deleting the β regulatory subunit of AMPK in the type II strain ME49 caused massive DNA damage and increased spontaneous conversion to bradyzoites (parasites at chronic infection stage), leading to severe growth arrest and reduced virulence of the parasites. Under alkaline stress, all Δampkβ mutants converted to a bradyzoite-like state but the cell division pattern was significantly impaired, resulting in compromised parasite viability. Moreover, we found that phosphorylation of the catalytic subunit AMPKα was greatly increased in alkaline stressed parasites, whereas AMPKβ deletion mutants failed to do so. Phosphoproteomics found that many proteins with predicted roles in cell cycle and cell division regulation were differentially phosphorylated after AMPKβ deletion, under both normal and alkaline stress conditions. Together, these results suggest that the parasite AMPK has critical roles in safeguarding cell cycle progression, and guiding the proper exist of the cell cycle to form mature bradyzoites when the parasites are stressed. Consistent with this model, growth of parasites was not significantly altered when AMPKβ was deleted in a strain that was naturally reluctant to bradyzoite development.
Collapse
Affiliation(s)
- Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Anqi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yaqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ningbo Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jianmin Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Mingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
- Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, 430070, Hubei Province, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
17
|
Brusini L, Dos Santos Pacheco N, Tromer EC, Soldati-Favre D, Brochet M. Composition and organization of kinetochores show plasticity in apicomplexan chromosome segregation. J Cell Biol 2022; 221:213421. [PMID: 36006241 PMCID: PMC9418836 DOI: 10.1083/jcb.202111084] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Kinetochores are multiprotein assemblies directing mitotic spindle attachment and chromosome segregation. In apicomplexan parasites, most known kinetochore components and associated regulators are apparently missing, suggesting a minimal structure with limited control over chromosome segregation. In this study, we use interactomics combined with deep homology searches to identify 13 previously unknown components of kinetochores in Apicomplexa. Apicomplexan kinetochores are highly divergent in sequence and composition from animal and fungal models. The nanoscale organization includes at least four discrete compartments, each displaying different biochemical interactions, subkinetochore localizations and evolutionary rates across the phylum. We reveal alignment of kinetochores at the metaphase plate in both Plasmodium berghei and Toxoplasma gondii, suggestive of a conserved "hold signal" that prevents precocious entry into anaphase. Finally, we show unexpected plasticity in kinetochore composition and segregation between apicomplexan lifecycle stages, suggestive of diverse requirements to maintain fidelity of chromosome segregation across parasite modes of division.
Collapse
Affiliation(s)
- Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Correspondence to Lorenzo Brusini:
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Mathieu Brochet:
| |
Collapse
|
18
|
Naumov AV, Wang C, Chaput D, Ting LM, Alvarez CA, Keller T, Ramadan A, White MW, Kim K, Suvorova ES. Restriction Checkpoint Controls Bradyzoite Development in Toxoplasma gondii. Microbiol Spectr 2022; 10:e0070222. [PMID: 35652638 PMCID: PMC9241953 DOI: 10.1128/spectrum.00702-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Human toxoplasmosis is a life-threatening disease caused by the apicomplexan parasite Toxoplasma gondii. Rapid replication of the tachyzoite is associated with symptomatic disease, while suppressed division of the bradyzoite is responsible for chronic disease. Here, we identified the T. gondii cell cycle mechanism, the G1 restriction checkpoint (R-point), that operates the switch between parasite growth and differentiation. Apicomplexans lack conventional R-point regulators, suggesting adaptation of alternative factors. We showed that Cdk-related G1 kinase TgCrk2 forms alternative complexes with atypical cyclins (TgCycP1, TgCycP2, and TgCyc5) in the rapidly dividing developmentally incompetent RH and slower dividing developmentally competent ME49 tachyzoites and bradyzoites. Examination of cyclins verified the correlation of cyclin expression with growth dependence and development capacity of RH and ME49 strains. We demonstrated that rapidly dividing RH tachyzoites were dependent on TgCycP1 expression, which interfered with bradyzoite differentiation. Using the conditional knockdown model, we established that TgCycP2 regulated G1 duration in the developmentally competent ME49 tachyzoites but not in the developmentally incompetent RH tachyzoites. We tested the functions of TgCycP2 and TgCyc5 in alkaline induced and spontaneous bradyzoite differentiation (rat embryonic brain cells) models. Based on functional and global gene expression analyses, we determined that TgCycP2 also regulated bradyzoite replication, while signal-induced TgCyc5 was critical for efficient tissue cyst maturation. In conclusion, we identified the central machinery of the T. gondii restriction checkpoint comprised of TgCrk2 kinase and three atypical T. gondii cyclins and demonstrated the independent roles of TgCycP1, TgCycP2, and TgCyc5 in parasite growth and development. IMPORTANCE Toxoplasma gondii is a virulent and abundant human pathogen that puts millions of silently infected people at risk of reactivation of the chronic disease. Encysted bradyzoites formed during the chronic stage are resistant to current therapies. Therefore, insights into the mechanism of tissue cyst formation and reactivation are major areas of investigation. The fact that rapidly dividing parasites differentiate poorly strongly suggests that there is a threshold of replication rate that must be crossed to be considered for differentiation. We discovered a cell cycle mechanism that controls the T. gondii growth-rest switch involved in the conversion of dividing tachyzoites into largely quiescent bradyzoites. This switch operates the T. gondii restriction checkpoint using a set of atypical and parasite-specific regulators. Importantly, the novel T. gondii R-point network was not present in the parasite's human and animal hosts, offering a wealth of new and parasite-specific drug targets to explore in the future.
Collapse
Affiliation(s)
- Anatoli V. Naumov
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Li-Min Ting
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Carmelo A. Alvarez
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thomas Keller
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Ahmed Ramadan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael W. White
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
19
|
Smith TA, Lopez-Perez GS, Herneisen AL, Shortt E, Lourido S. Screening the Toxoplasma kinome with high-throughput tagging identifies a regulator of invasion and egress. Nat Microbiol 2022; 7:868-881. [PMID: 35484233 PMCID: PMC9167752 DOI: 10.1038/s41564-022-01104-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Protein kinases regulate fundamental aspects of eukaryotic cell biology, making them attractive chemotherapeutic targets in parasites like Plasmodium spp. and Toxoplasma gondii. To systematically examine the parasite kinome, we developed a high-throughput tagging (HiT) strategy to endogenously label protein kinases with an auxin-inducible degron and fluorophore. Hundreds of tagging vectors were assembled from synthetic sequences in a single reaction and used to generate pools of mutants to determine localization and function. Examining 1,160 arrayed clones, we assigned 40 protein localizations and associated 15 kinases with distinct defects. The fitness of tagged alleles was also measured by pooled screening, distinguishing delayed from acute phenotypes. A previously unstudied kinase, associated with a delayed phenotype, was shown to be a regulator of invasion and egress. We named the kinase Store Potentiating/Activating Regulatory Kinase (SPARK), based on its impact on intracellular Ca2+ stores. Despite homology to mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1), SPARK lacks a lipid-binding domain, suggesting a rewiring of the pathway in parasites. HiT screening extends genome-wide approaches into complex cellular phenotypes, providing a scalable and versatile platform to dissect parasite biology.
Collapse
Affiliation(s)
- Tyler A Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Alice L Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
20
|
A potent HDAC inhibitor blocks Toxoplasma gondii tachyzoite growth and profoundly disrupts parasite gene expression. Int J Antimicrob Agents 2022; 59:106526. [PMID: 35041939 DOI: 10.1016/j.ijantimicag.2022.106526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/22/2021] [Accepted: 01/08/2022] [Indexed: 11/23/2022]
Abstract
Toxoplasmosis is a major health issue worldwide especially for immune-deficient individuals and the offspring of newly infected mothers. It is caused by a unicellular intracellular parasite called Toxoplasma gondii. Although the drugs commonly used to treat toxoplasmosis are efficient, they present serious side effects and adverse events are common. Therefore, there is a need for the discovery of new compounds with potent anti-T. gondii activity. We have tested compounds designed to target enzymes that are involved in the epigenetic regulation of gene expression. Among the most active compounds, we identified an HDAC inhibitor that shows an IC50 of around 30 nM with a selectivity index of more than 100. MC1742 is active at inhibiting the growth of the parasite in vitro but also at preventing the consequences of the acute disease in vivo. This compound induces hyper-acetylation of histones while acetylated tubulin level remains unchanged. After MC1742 treatment, the parasite expression profile is profoundly changed with the activation of genes preferentially expressed in the sexual stages that are normally repressed at the tachyzoite stage. These findings suggest that this compound disturbs the T. gondii gene expression program, inducing parasite death.
Collapse
|
21
|
Abstract
Toxoplasma gondii is a parasitic protist infecting a wide group of warm-blooded animals, ranging from birds to humans. While this infection is usually asymptomatic in healthy individuals, it can also lead to severe ocular or neurological outcomes in immunocompromised individuals or in developing fetuses. This obligate intracellular parasite has the ability to infect a considerable range of nucleated cells and can propagate in the intermediate host. Yet, under the pressure of the immune system it transforms into an encysted persistent form residing primarily in the brain and muscle tissues. Encysted parasites, which are resistant to current medication, may reactivate and give rise to an acute infection. The clinical outcome of toxoplasmosis depends on a complex balance between the host immune response and parasite virulence factors. Susceptibility to the disease is thus determined by both parasite strains and host species. Recent advances on our understanding of host cell-parasite interactions and parasite virulence have brought new insights into the pathophysiology of T. gondii infection and are summarized here.
Collapse
|
22
|
Tomasina R, González FC, Francia ME. Structural and Functional Insights into the Microtubule Organizing Centers of Toxoplasma gondii and Plasmodium spp. Microorganisms 2021; 9:2503. [PMID: 34946106 PMCID: PMC8705618 DOI: 10.3390/microorganisms9122503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Microtubule organizing centers (MTOCs) perform critical cellular tasks by nucleating, stabilizing, and anchoring microtubule's minus ends. These capacities impact tremendously a wide array of cellular functions ranging from ascribing cell shape to orchestrating cell division and generating motile structures, among others. The phylum Apicomplexa comprises over 6000 single-celled obligate intracellular parasitic species. Many of the apicomplexan are well known pathogens such as Toxoplasma gondii and the Plasmodium species, causative agents of toxoplasmosis and malaria, respectively. Microtubule organization in these parasites is critical for organizing the cortical cytoskeleton, enabling host cell penetration and the positioning of large organelles, driving cell division and directing the formation of flagella in sexual life stages. Apicomplexans are a prime example of MTOC diversity displaying multiple functional and structural MTOCs combinations within a single species. This diversity can only be fully understood in light of each organism's specific MT nucleation requirements and their evolutionary history. Insight into apicomplexan MTOCs had traditionally been limited to classical ultrastructural work by transmission electron microscopy. However, in the past few years, a large body of molecular insight has emerged. In this work we describe the latest insights into nuclear MTOC biology in two major human and animal disease causing Apicomplexans: Toxoplasma gondii and Plasmodium spp.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabiana C. González
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
23
|
Ward H, Kim K. Editorial overview. Curr Opin Microbiol 2021; 58:vi-ix. [PMID: 33328088 DOI: 10.1016/j.mib.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Honorine Ward
- Departments of Medicine and Public Health and Community Medicine, Tufts University School of Medicine, United States; Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, United States
| | - Kami Kim
- Division of Infectious Diseases and International Medicine at the Morsani College of Medicine, University of South Florida, United States
| |
Collapse
|
24
|
Gaji RY, Sharp AK, Brown AM. Protein kinases in Toxoplasma gondii. Int J Parasitol 2021; 51:415-429. [PMID: 33581139 PMCID: PMC11065138 DOI: 10.1016/j.ijpara.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is an obligatory intracellular pathogen that causes life threatening illness in immunodeficient individuals, miscarriage in pregnant woman, and blindness in newborn children. Similar to any other eukaryotic cell, protein kinases play critical and essential roles in the Toxoplasma life cycle. Accordingly, many studies have focused on identifying and defining the mechanism of function of these signalling proteins with a long-term goal to develop anti-Toxoplasma therapeutics. In this review, we briefly discuss classification and key components of the catalytic domain which are critical for functioning of kinases, with a focus on domains, families, and groups of kinases within Toxoplasma. More importantly, this article provides a comprehensive, current overview of research on kinase groups in Toxoplasma including the established eukaryotic AGC, CAMK, CK1, CMGC, STE, TKL families and the apicomplexan-specific FIKK, ROPK and WNG family of kinases. This work provides an overview and discusses current knowledge on Toxoplasma kinases including their localization, function, signalling network and role in acute and chronic pathogenesis, with a view towards the future in probing kinases as viable drug targets.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda K Sharp
- Interdisciplinary Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; University Libraries, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
25
|
Gubbels MJ, Coppens I, Zarringhalam K, Duraisingh MT, Engelberg K. The Modular Circuitry of Apicomplexan Cell Division Plasticity. Front Cell Infect Microbiol 2021; 11:670049. [PMID: 33912479 PMCID: PMC8072463 DOI: 10.3389/fcimb.2021.670049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
The close-knit group of apicomplexan parasites displays a wide variety of cell division modes, which differ between parasites as well as between different life stages within a single parasite species. The beginning and endpoint of the asexual replication cycles is a 'zoite' harboring the defining apical organelles required for host cell invasion. However, the number of zoites produced per division round varies dramatically and can unfold in several different ways. This plasticity of the cell division cycle originates from a combination of hard-wired developmental programs modulated by environmental triggers. Although the environmental triggers and sensors differ between species and developmental stages, widely conserved secondary messengers mediate the signal transduction pathways. These environmental and genetic input integrate in division-mode specific chromosome organization and chromatin modifications that set the stage for each division mode. Cell cycle progression is conveyed by a smorgasbord of positively and negatively acting transcription factors, often acting in concert with epigenetic reader complexes, that can vary dramatically between species as well as division modes. A unique set of cell cycle regulators with spatially distinct localization patterns insert discrete check points which permit individual control and can uncouple general cell cycle progression from nuclear amplification. Clusters of expressed genes are grouped into four functional modules seen in all division modes: 1. mother cytoskeleton disassembly; 2. DNA replication and segregation (D&S); 3. karyokinesis; 4. zoite assembly. A plug-and-play strategy results in the variety of extant division modes. The timing of mother cytoskeleton disassembly is hard-wired at the species level for asexual division modes: it is either the first step, or it is the last step. In the former scenario zoite assembly occurs at the plasma membrane (external budding), and in the latter scenario zoites are assembled in the cytoplasm (internal budding). The number of times each other module is repeated can vary regardless of this first decision, and defines the modes of cell division: schizogony, binary fission, endodyogeny, endopolygeny.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, United States
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
26
|
Hawkins LM, Naumov AV, Batra M, Wang C, Chaput D, Suvorova ES. Novel CRK-Cyclin Complex Controls Spindle Assembly Checkpoint in Toxoplasma Endodyogeny. mBio 2021; 13:e0356121. [PMID: 35130726 PMCID: PMC8822342 DOI: 10.1128/mbio.03561-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Opportunistic parasites of the Apicomplexa phylum use a variety of division modes built on two types of cell cycles that incorporate two distinctive mechanisms of mitosis: uncoupled from and coupled to parasite budding. Parasites have evolved novel factors to regulate such unique replication mechanisms that are poorly understood. Here, we have combined genetics, quantitative fluorescence microscopy, and global proteomics approaches to examine endodyogeny in Toxoplasma gondii dividing by mitosis coupled to cytokinesis. In the current study, we focus on the steps controlled by the recently described atypical Cdk-related kinase T. gondii Crk6 (TgCrk6). While inspecting protein complexes, we found that this previously orphaned TgCrk6 kinase interacts with a parasite-specific atypical cyclin, TgCyc1. We built conditional expression models and examined primary cell cycle defects caused by the lack of TgCrk6 or TgCyc1. Quantitative microscopy assays revealed that tachyzoites deficient in either TgCrk6 or the cyclin partner TgCyc1 exhibit identical mitotic defects, suggesting cooperative action of the complex components. Further examination of the mitotic structures indicated that the TgCrk6/TgCyc1 complex regulates metaphase. This novel finding confirms a functional spindle assembly checkpoint (SAC) in T. gondii. Measuring global changes in protein expression and phosphorylation, we found evidence that canonical activities of the Toxoplasma SAC are intertwined with parasite-specific tasks. Analysis of phosphorylation motifs suggests that Toxoplasma metaphase is regulated by CDK, mitogen-activated kinase (MAPK), and Aurora kinases, while the TgCrk6/TgCyc1 complex specifically controls the centromere-associated network. IMPORTANCE The rate of Toxoplasma tachyzoite division directly correlates with the severity of the disease, toxoplasmosis, which affects humans and animals. Thus, a better understanding of the tachyzoite cell cycle would offer much-needed efficient tools to control the acute stage of infection. Although tachyzoites divide by binary division, the cell cycle architecture and regulation differ significantly from the conventional binary fission of their host cells. Unlike the unidirectional conventional cell cycle, the Toxoplasma budding cycle is braided and is regulated by multiple essential Cdk-related kinases (Crks) that emerged in the place of missing conventional cell cycle regulators. How these novel Crks control apicomplexan cell cycles is largely unknown. Here, we have discovered a novel parasite-specific complex, TgCrk6/TgCyc1, that orchestrates a major mitotic event, the spindle assembly checkpoint. We demonstrated that tachyzoites incorporated parasite-specific tasks in the canonical checkpoint functions.
Collapse
Affiliation(s)
- Lauren M. Hawkins
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anatoli V. Naumov
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mrinalini Batra
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Changqi Wang
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Dale Chaput
- Proteomics Core, College of Arts and Sciences, University of South Florida, Tampa, Florida, USA
| | - Elena S. Suvorova
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
27
|
Identification and Molecular Dissection of IMC32, a Conserved Toxoplasma Inner Membrane Complex Protein That Is Essential for Parasite Replication. mBio 2021; 12:mBio.03622-20. [PMID: 33593973 PMCID: PMC8545131 DOI: 10.1128/mbio.03622-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inner membrane complex (IMC) is a unique organelle of apicomplexan parasites that plays critical roles in parasite motility, host cell invasion, and replication. Despite the common functions of the organelle, relatively few IMC proteins are conserved across the phylum and the precise roles of many IMC components remain to be characterized. Here, we identify a novel component of the Toxoplasma gondii IMC (IMC32) that localizes to the body portion of the IMC and is recruited to developing daughter buds early during endodyogeny. IMC32 is essential for parasite survival, as its conditional depletion results in a complete collapse of the IMC that is lethal to the parasite. We demonstrate that localization of IMC32 is dependent on both an N-terminal palmitoylation site and a series of C-terminal coiled-coil domains. Using deletion analyses and functional complementation, we show that two conserved regions within the C-terminal coiled-coil domains play critical roles in protein function during replication. Together, this work reveals an essential component of parasite replication that provides a novel target for therapeutic intervention of T. gondii and related apicomplexan parasites.IMPORTANCE The IMC is an important organelle that apicomplexan parasites use to maintain their intracellular lifestyle. While many IMC proteins have been identified, only a few central players that are essential for internal budding have been described and even fewer are conserved across the phylum. Here, we identify IMC32, a novel component of the Toxoplasma gondii IMC that localizes to very early daughter buds, indicating a role in the early stages of parasite replication. We then demonstrate that IMC32 is essential for parasite survival and pinpoint conserved regions within the protein that are important for membrane association and daughter cell formation. As IMC32 is unique to these parasites and not present in their mammalian hosts, it serves as a new target for the development of drugs that exclusively affect these important intracellular pathogens.
Collapse
|
28
|
TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii. Nat Commun 2021; 12:116. [PMID: 33414462 PMCID: PMC7791101 DOI: 10.1038/s41467-020-20216-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
Apicomplexan parasites have evolved efficient and distinctive strategies for intracellular replication where the timing of emergence of the daughter cells (budding) is a decisive element. However, the molecular mechanisms that provide the proper timing of parasite budding remain unknown. Using Toxoplasma gondii as a model Apicomplexan, we identified a master regulator that controls the timing of the budding process. We show that an ApiAP2 transcription factor, TgAP2IX-5, controls cell cycle events downstream of centrosome duplication. TgAP2IX-5 binds to the promoter of hundreds of genes and controls the activation of the budding-specific cell cycle expression program. TgAP2IX-5 regulates the expression of specific transcription factors that are necessary for the completion of the budding cycle. Moreover, TgAP2IX-5 acts as a limiting factor that ensures that asexual proliferation continues by promoting the inhibition of the differentiation pathway. Therefore, TgAP2IX-5 is a master regulator that controls both cell cycle and developmental pathways. The control of the proper timing of emergence of apicomplexan parasite daughter cells during replication is crucial for their proliferation. Here, Khelifa et al. identify a key transcriptional regulator in the model Apicomplexa Toxoplasma gondii, which regulates the expression of transcription factors necessary for completion of the budding cycle.
Collapse
|
29
|
Wang C, Hu D, Tang X, Song X, Wang S, Zhang S, Duan C, Sun P, Suo J, Ma H, Suo X, Liu X. Internal daughter formation of Toxoplasma gondii tachyzoites is coordinated by transcription factor TgAP2IX-5. Cell Microbiol 2020; 23:e13291. [PMID: 33217129 DOI: 10.1111/cmi.13291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii rapidly propagates through endodyogeny of tachyzoites, a process in which daughter parasites divide within the cell of the mother parasite. Recent studies have revealed that transcription factors with AP2-domain participate in the process of cell division in T. gondii. However, the concise regulation of the division cycles by AP2 proteins is poorly understood. In this study, we evaluated the effect of the transcription factor TgAP2IX-5 on the daughter cell formation in T. gondii. TgAP2IX-5 is a nuclear protein and is highly expressed during the S phase of the cell cycle of tachyzoites. TgAP2IX-5-disrupted strain showed a severe defect in replication and completely blocked lytic parasite growth. Following 3-indoleacetic acid treatment or without treatment of AP2IX-5-AID-3HA tagged strain for 30 min, 1 and 2 hr, the differentially expressed genes were 8, 54 and 202, respectively. Among these genes, the significantly downregulated ones were AP2 proteins, inner membrane complex (IMC) proteins and SAG-related proteins. Interestingly, loss of TgAP2IX-5 leads to a defect in internal daughter IMC formation and abnormalities in the morphology of organelles during cell division. Together, our study suggests that TgAP2IX-5 is crucial in regulating IMC formation of daughter cells in T. gondii.
Collapse
Affiliation(s)
- Chaoyue Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dandan Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingju Song
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Si Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhui Duan
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pei Sun
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huiming Ma
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Phylogenetic analysis of cell-cycle regulatory proteins within the Symbiodiniaceae. Sci Rep 2020; 10:20473. [PMID: 33235281 PMCID: PMC7686383 DOI: 10.1038/s41598-020-76621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
In oligotrophic waters, cnidarian hosts rely on symbiosis with their photosynthetic dinoflagellate partners (family Symbiodiniaceae) to obtain the nutrients they need to grow, reproduce and survive. For this symbiosis to persist, the host must regulate the growth and proliferation of its symbionts. One of the proposed regulatory mechanisms is arrest of the symbiont cell cycle in the G1 phase, though the cellular mechanisms involved remain unknown. Cell-cycle progression in eukaryotes is controlled by the conserved family of cyclin-dependent kinases (CDKs) and their partner cyclins. We identified CDKs and cyclins in different Symbiodiniaceae species and examined their relationship to homologs in other eukaryotes. Cyclin proteins related to eumetazoan cell-cycle-related cyclins A, B, D, G/I and Y, and transcriptional cyclin L, were identified in the Symbiodiniaceae, alongside several alveolate-specific cyclin A/B proteins, and proteins related to protist P/U-type cyclins and apicomplexan cyclins. The largest expansion of Symbiodiniaceae cyclins was in the P/U-type cyclin groups. Proteins related to eumetazoan cell-cycle-related CDKs (CDK1) were identified as well as transcription-related CDKs. The largest expansion of CDK groups was, however, in alveolate-specific groups which comprised 11 distinct CDK groups (CDKA-J) with CDKB being the most widely distributed CDK protein. As a result of its phylogenetic position, conservation across Symbiodiniaceae species, and the presence of the canonical CDK motif, CDKB emerged as a likely candidate for a Saccharomyces cerevisiae Cdc28/Pho85-like homolog in Symbiodiniaceae. Similar to cyclins, two CDK-groups found in Symbiodiniaceae species were solely associated with apicomplexan taxa. A comparison of Breviolum minutum CDK and cyclin gene expression between free-living and symbiotic states showed that several alveolate-specific CDKs and two P/U-type cyclins exhibited altered expression in hospite, suggesting that symbiosis influences the cell cycle of symbionts on a molecular level. These results highlight the divergence of Symbiodiniaceae cell-cycle proteins across species. These results have important implications for host control of the symbiont cell cycle in novel cnidarian–dinoflagellate symbioses.
Collapse
|
31
|
Abstract
Mitogen-activated protein kinases (MAPKs) are a conserved family of protein kinases that regulate signal transduction, proliferation, and development throughout eukaryotes. The apicomplexan parasite Toxoplasma gondii expresses three MAPKs. Two of these, extracellular signal-regulated kinase 7 (ERK7) and MAPKL1, have been implicated in the regulation of conoid biogenesis and centrosome duplication, respectively. The third kinase, MAPK2, is specific to and conserved throughout the Alveolata, although its function is unknown. We used the auxin-inducible degron system to determine phenotypes associated with MAPK2 loss of function in Toxoplasma We observed that parasites lacking MAPK2 failed to duplicate their centrosomes and therefore did not initiate daughter cell budding, which ultimately led to parasite death. MAPK2-deficient parasites initiated but did not complete DNA replication and arrested prior to mitosis. Surprisingly, the parasites continued to grow and replicate their Golgi apparatus, mitochondria, and apicoplasts. We found that the failure in centrosome duplication is distinct from the phenotype caused by the depletion of MAPKL1. As we did not observe MAPK2 localization at the centrosome at any point in the cell cycle, our data suggest that MAPK2 regulates a process at a distal site that is required for the completion of centrosome duplication and the initiation of parasite mitosis.IMPORTANCE Toxoplasma gondii is a ubiquitous intracellular protozoan parasite that can cause severe and fatal disease in immunocompromised patients and the developing fetus. Rapid parasite replication is critical for establishing a productive infection. Here, we demonstrate that a Toxoplasma protein kinase called MAPK2 is conserved throughout the Alveolata and essential for parasite replication. We found that parasites lacking MAPK2 protein were defective in the initiation of daughter cell budding and were rendered inviable. Specifically, T. gondii MAPK2 (TgMAPK2) appears to be required for centrosome replication at the basal end of the nucleus, and its loss causes arrest early in parasite division. MAPK2 is unique to the Alveolata and not found in metazoa and likely is a critical component of an essential parasite-specific signaling network.
Collapse
|
32
|
Abstract
Toxoplasma gondii is a single-celled parasite that persists in its host by converting into a latent cyst stage. This work describes a new transcriptional factor called AP2XII-2 that plays a role in properly maintaining the growth rate of replicating parasites, which contributes to signals required for development into its dormant stage. Without AP2XII-2, Toxoplasma parasites experience a delay in their cell cycle that increases the frequency of latent cyst formation. In addition, we found that AP2XII-2 operates in a multisubunit complex with other AP2 factors and chromatin remodeling machinery that represses gene expression. These findings add to our understanding of how Toxoplasma parasites balance replication and dormancy, revealing novel points of potential therapeutic intervention to disrupt this clinically relevant process. Toxoplasma gondii is a protozoan parasite that causes lifelong chronic infection that can reactivate in immunocompromised individuals. Upon infection, the replicative stage (tachyzoite) converts into a latent tissue cyst stage (bradyzoite). Like other apicomplexans, T. gondii possesses an extensive lineage of proteins called ApiAP2s that contain DNA-binding domains first characterized in plants. The function of most ApiAP2s is unknown. We previously found that AP2IX-4 is a cell cycle-regulated ApiAP2 expressed only in dividing parasites as a putative transcriptional repressor. In this study, we purified proteins interacting with AP2IX-4, finding it to be a component of the recently characterized microrchidia (MORC) transcriptional repressor complex. We further analyzed AP2XII-2, another cell cycle-regulated factor that associates with AP2IX-4. We monitored parallel expression of AP2IX-4 and AP2XII-2 proteins in tachyzoites, detecting peak expression during S/M phase. Unlike AP2IX-4, which is dispensable in tachyzoites, loss of AP2XII-2 resulted in a slowed tachyzoite growth due to a delay in S-phase progression. We also found that AP2XII-2 depletion increased the frequency of bradyzoite differentiation in vitro. These results suggest that multiple AP2 factors collaborate to ensure proper cell cycle progression and tissue cyst formation in T. gondii. IMPORTANCEToxoplasma gondii is a single-celled parasite that persists in its host by converting into a latent cyst stage. This work describes a new transcriptional factor called AP2XII-2 that plays a role in properly maintaining the growth rate of replicating parasites, which contributes to signals required for development into its dormant stage. Without AP2XII-2, Toxoplasma parasites experience a delay in their cell cycle that increases the frequency of latent cyst formation. In addition, we found that AP2XII-2 operates in a multisubunit complex with other AP2 factors and chromatin remodeling machinery that represses gene expression. These findings add to our understanding of how Toxoplasma parasites balance replication and dormancy, revealing novel points of potential therapeutic intervention to disrupt this clinically relevant process.
Collapse
|
33
|
Abstract
Apicomplexans are obligate intracellular parasites harboring three sets of unique secretory organelles termed micronemes, rhoptries, and dense granules that are dedicated to the establishment of infection in the host cell. Apicomplexans rely on the endolysosomal system to generate the secretory organelles and to ingest and digest host cell proteins. These parasites also possess a metabolically relevant secondary endosymbiotic organelle, the apicoplast, which relies on vesicular trafficking for correct incorporation of nuclear-encoded proteins into the organelle. Here, we demonstrate that the trafficking and destination of vesicles to the unique and specialized parasite compartments depend on SNARE proteins that interact with tethering factors. Specifically, all secreted proteins depend on the function of SLY1 at the Golgi. In addition to a critical role in trafficking of endocytosed host proteins, TgVps45 is implicated in the biogenesis of the inner membrane complex (alveoli) in both Toxoplasma gondii and Plasmodium falciparum, likely acting in a coordinated manner with Stx16 and Stx6. Finally, Stx12 localizes to the endosomal-like compartment and is involved in the trafficking of proteins to the apical secretory organelles rhoptries and micronemes as well as to the apicoplast.IMPORTANCE The phylum of Apicomplexa groups medically relevant parasites such as those responsible for malaria and toxoplasmosis. As members of the Alveolata superphylum, these protozoans possess specialized organelles in addition to those found in all members of the eukaryotic kingdom. Vesicular trafficking is the major route of communication between membranous organelles. Neither the molecular mechanism that allows communication between organelles nor the vesicular fusion events that underlie it are completely understood in Apicomplexa. Here, we assessed the function of SEC1/Munc18 and SNARE proteins to identify factors involved in the trafficking of vesicles between these various organelles. We show that SEC1/Munc18 in interaction with SNARE proteins allows targeting of vesicles to the inner membrane complex, prerhoptries, micronemes, apicoplast, and vacuolar compartment from the endoplasmic reticulum, Golgi apparatus, or endosomal-like compartment. These data provide an exciting look at the "ZIP code" of vesicular trafficking in apicomplexans, essential for precise organelle biogenesis, homeostasis, and inheritance.
Collapse
|
34
|
Sinai AP, Suvorova ES. The RESTRICTION checkpoint: a window of opportunity governing developmental transitions in Toxoplasma gondii. Curr Opin Microbiol 2020; 58:99-105. [PMID: 33065371 DOI: 10.1016/j.mib.2020.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023]
Abstract
The life cycle of Toxoplasma gondii is characterized by active replication alternating with periods of rest. Encysted dormant sporozoites and bradyzoites initiate active replication as tachyzoites and merozoites. Here we explore the role of the cell cycle with a focus on the canonical G1 RESTRICTION checkpoint (R-point) as the integrator governing developmental decisions in T. gondii. This surveillance mechanism, which licenses replication, creates a window of opportunity in G1 for cellular reorganization in the execution of developmental transitions. We also explore the unique status of the bradyzoite, the only life cycle stage executing both a forward (entry into the sexual cycle) and reverse (recrudescence) developmental transitions as a multipotent cell. These opposing decisions are executed through the common machinery of the RESTRICTION checkpoint.
Collapse
Affiliation(s)
- Anthony P Sinai
- Department of Microbiology Immunology and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | - Elena S Suvorova
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
35
|
Jiang YY, Maier W, Chukka UN, Choromanski M, Lee C, Joachimiak E, Wloga D, Yeung W, Kannan N, Frankel J, Gaertig J. Mutual antagonism between Hippo signaling and cyclin E drives intracellular pattern formation. J Cell Biol 2020; 219:e202002077. [PMID: 32642758 PMCID: PMC7480119 DOI: 10.1083/jcb.202002077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022] Open
Abstract
Not much is known about how organelles organize into patterns. In ciliates, the cortical pattern is propagated during "tandem duplication," a cell division that remodels the parental cell into two daughter cells. A key step is the formation of the division boundary along the cell's equator. In Tetrahymena thermophila, the cdaA alleles prevent the formation of the division boundary. We find that the CDAA gene encodes a cyclin E that accumulates in the posterior cell half, concurrently with accumulation of CdaI, a Hippo/Mst kinase, in the anterior cell half. The division boundary forms between the margins of expression of CdaI and CdaA, which exclude each other from their own cortical domains. The activities of CdaA and CdaI must be balanced to initiate the division boundary and to position it along the cell's equator. CdaA and CdaI cooperate to position organelles near the new cell ends. Our data point to an intracellular positioning mechanism involving antagonistic Hippo signaling and cyclin E.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Wolfgang Maier
- Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | | | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Joseph Frankel
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
36
|
Balestra AC, Zeeshan M, Rea E, Pasquarello C, Brusini L, Mourier T, Subudhi AK, Klages N, Arboit P, Pandey R, Brady D, Vaughan S, Holder AA, Pain A, Ferguson DJP, Hainard A, Tewari R, Brochet M. A divergent cyclin/cyclin-dependent kinase complex controls the atypical replication of a malaria parasite during gametogony and transmission. eLife 2020; 9:e56474. [PMID: 32568069 PMCID: PMC7308089 DOI: 10.7554/elife.56474] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Cell cycle transitions are generally triggered by variation in the activity of cyclin-dependent kinases (CDKs) bound to cyclins. Malaria-causing parasites have a life cycle with unique cell-division cycles, and a repertoire of divergent CDKs and cyclins of poorly understood function and interdependency. We show that Plasmodium berghei CDK-related kinase 5 (CRK5), is a critical regulator of atypical mitosis in the gametogony and is required for mosquito transmission. It phosphorylates canonical CDK motifs of components in the pre-replicative complex and is essential for DNA replication. During a replicative cycle, CRK5 stably interacts with a single Plasmodium-specific cyclin (SOC2), although we obtained no evidence of SOC2 cycling by transcription, translation or degradation. Our results provide evidence that during Plasmodium male gametogony, this divergent cyclin/CDK pair fills the functional space of other eukaryotic cell-cycle kinases controlling DNA replication.
Collapse
Affiliation(s)
| | - Mohammad Zeeshan
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Edward Rea
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | | | - Lorenzo Brusini
- University of Geneva, Faculty of MedicineGenevaSwitzerland
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Tobias Mourier
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Amit Kumar Subudhi
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Natacha Klages
- University of Geneva, Faculty of MedicineGenevaSwitzerland
| | | | - Rajan Pandey
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Declan Brady
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical SciencesOxfordUnited Kingdom
| | - Anthony A Holder
- The Francis Crick Institute, Malaria Parasitology LaboratoryLondonUnited Kingdom
| | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - David JP Ferguson
- Oxford Brookes University, Department of Biological and Medical SciencesOxfordUnited Kingdom
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Laboratory ScienceOxfordUnited Kingdom
| | | | - Rita Tewari
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | | |
Collapse
|
37
|
Gubbels MJ, Keroack CD, Dangoudoubiyam S, Worliczek HL, Paul AS, Bauwens C, Elsworth B, Engelberg K, Howe DK, Coppens I, Duraisingh MT. Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes. Front Cell Infect Microbiol 2020; 10:269. [PMID: 32582569 PMCID: PMC7289922 DOI: 10.3389/fcimb.2020.00269] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular reproduction defines life, yet our textbook-level understanding of cell division is limited to a small number of model organisms centered around humans. The horizon on cell division variants is expanded here by advancing insights on the fascinating cell division modes found in the Apicomplexa, a key group of protozoan parasites. The Apicomplexa display remarkable variation in offspring number, whether karyokinesis follows each S/M-phase or not, and whether daughter cells bud in the cytoplasm or bud from the cortex. We find that the terminology used to describe the various manifestations of asexual apicomplexan cell division emphasizes either the number of offspring or site of budding, which are not directly comparable features and has led to confusion in the literature. Division modes have been primarily studied in two human pathogenic Apicomplexa, malaria-causing Plasmodium spp. and Toxoplasma gondii, a major cause of opportunistic infections. Plasmodium spp. divide asexually by schizogony, producing multiple daughters per division round through a cortical budding process, though at several life-cycle nuclear amplifications stages, are not followed by karyokinesis. T. gondii divides by endodyogeny producing two internally budding daughters per division round. Here we add to this diversity in replication mechanisms by considering the cattle parasite Babesia bigemina and the pig parasite Cystoisospora suis. B. bigemina produces two daughters per division round by a “binary fission” mechanism whereas C. suis produces daughters through both endodyogeny and multiple internal budding known as endopolygeny. In addition, we provide new data from the causative agent of equine protozoal myeloencephalitis (EPM), Sarcocystis neurona, which also undergoes endopolygeny but differs from C. suis by maintaining a single multiploid nucleus. Overall, we operationally define two principally different division modes: internal budding found in cyst-forming Coccidia (comprising endodyogeny and two forms of endopolygeny) and external budding found in the other parasites studied (comprising the two forms of schizogony, binary fission and multiple fission). Progressive insights into the principles defining the molecular and cellular requirements for internal vs. external budding, as well as variations encountered in sexual stages are discussed. The evolutionary pressures and mechanisms underlying apicomplexan cell division diversification carries relevance across Eukaryota.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Caroline D Keroack
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Sriveny Dangoudoubiyam
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Hanna L Worliczek
- Department of Biology, Boston College, Chestnut Hill, MA, United States.,Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Ciara Bauwens
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States.,School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Daniel K Howe
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
38
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins: the extended family portrait. Cell Mol Life Sci 2020; 77:231-242. [PMID: 31420702 PMCID: PMC6971155 DOI: 10.1007/s00018-019-03262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Regulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic "cyclin box" that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the "cyclin box" domain. These potential "cyclins" have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| |
Collapse
|
39
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Semenovskaya K, Lévêque MF, Berry L, Bordat Y, Dubremetz JF, Lebrun M, Besteiro S. TgZFP2 is a novel zinc finger protein involved in coordinating mitosis and budding in Toxoplasma. Cell Microbiol 2019; 22:e13120. [PMID: 31628778 DOI: 10.1111/cmi.13120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Zinc finger proteins (ZFPs) are one of the most abundant groups of proteins with a wide range of molecular functions. We have characterised a Toxoplasma protein that we named TgZFP2, as it bears a zinc finger domain conserved in eukaryotes. However, this protein has little homology outside this region and contains no other conserved domain that could hint for a particular function. We thus investigated TgZFP2 function by generating a conditional mutant. We showed that depletion of TgZFP2 leads to a drastic arrest in the parasite cell cycle, and complementation assays demonstrated the zinc finger domain is essential for TgZFP2 function. More precisely, whereas replication of the nuclear material is initially essentially unaltered, daughter cell budding is seriously impaired: to a large extent newly formed buds fail to incorporate nuclear material. TgZFP2 is found at the basal complex in extracellular parasites and after invasion, but as the parasites progress into cell division, it relocalises to cytoplasmic punctate structures and, strikingly, accumulates in the pericentrosomal area at the onset of daughter cell elongation. Centrosomes have emerged as major coordinators of the budding and nuclear cycles in Toxoplasma, and our study identifies a novel and important component of this machinery.
Collapse
Affiliation(s)
- Ksenia Semenovskaya
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Maude F Lévêque
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France.,MiVEGEC, Université de Montpellier, CNRS, IRD, CHU de Montpellier, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Yann Bordat
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Jean-François Dubremetz
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| | - Sébastien Besteiro
- Laboratory of Pathogen Host Interactions UMR5235, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
41
|
Baptista CG, Lis A, Deng B, Gas-Pascual E, Dittmar A, Sigurdson W, West CM, Blader IJ. Toxoplasma F-box protein 1 is required for daughter cell scaffold function during parasite replication. PLoS Pathog 2019; 15:e1007946. [PMID: 31348812 PMCID: PMC6685633 DOI: 10.1371/journal.ppat.1007946] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/07/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023] Open
Abstract
By binding to the adaptor protein SKP1 and serving as substrate receptors for the SKP1 Cullin, F-box E3 ubiquitin ligase complex, F-box proteins regulate critical cellular processes including cell cycle progression and membrane trafficking. While F-box proteins are conserved throughout eukaryotes and are well studied in yeast, plants, and animals, studies in parasitic protozoa are lagging. We have identified eighteen putative F-box proteins in the Toxoplasma genome of which four have predicted homologs in Plasmodium. Two of the conserved F-box proteins were demonstrated to be important for Toxoplasma fitness and here we focus on an F-box protein, named TgFBXO1, because it is the most highly expressed by replicative tachyzoites and was also identified in an interactome screen as a Toxoplasma SKP1 binding protein. TgFBXO1 interacts with Toxoplasma SKP1 confirming it as a bona fide F-box protein. In interphase parasites, TgFBXO1 is a component of the Inner Membrane Complex (IMC), which is an organelle that underlies the plasma membrane. Early during replication, TgFBXO1 localizes to the developing daughter cell scaffold, which is the site where the daughter cell IMC and microtubules form and extend from. TgFBXO1 localization to the daughter cell scaffold required centrosome duplication but before kinetochore separation was completed. Daughter cell scaffold localization required TgFBXO1 N-myristoylation and was dependent on the small molecular weight GTPase, TgRab11b. Finally, we demonstrate that TgFBXO1 is required for parasite growth due to its function as a daughter cell scaffold effector. TgFBXO1 is the first F-box protein to be studied in apicomplexan parasites and represents the first protein demonstrated to be important for daughter cell scaffold function.
Collapse
Affiliation(s)
- Carlos Gustavo Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Agnieszka Lis
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Bowen Deng
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ashley Dittmar
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Wade Sigurdson
- Department of Physiology and Biophysics, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
42
|
Chen CT, Gubbels MJ. TgCep250 is dynamically processed through the division cycle and is essential for structural integrity of the Toxoplasma centrosome. Mol Biol Cell 2019; 30:1160-1169. [PMID: 30865554 PMCID: PMC6724518 DOI: 10.1091/mbc.e18-10-0608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The apicomplexan centrosome has a unique bipartite structure comprising an inner and outer core responsible for the nuclear cycle (mitosis) and budding cycles (cytokinesis), respectively. Although these two cores are always associated, they function independently to facilitate polyploid intermediates in the production of many progeny per replication round. Here, we describe the function of a large coiled-coil protein in Toxoplasma gondii, TgCep250, in connecting the two centrosomal cores and promoting their structural integrity. Throughout the cell cycle, TgCep250 localizes to the inner core but, associated with proteolytic processing, is also present on the outer core during the onset of cell division. In the absence of TgCep250, stray centrosome inner and outer core foci were observed. The detachment between centrosomal inner and outer cores was found in only one of the centrosomes during cell division, indicating distinct states of mother and daughter centrosomes. In mammals, Cep250 processing is required for centrosomal splitting and is mediated by Nek phopsphorylation. However, we show that neither the nonoverlapping spatiotemporal localization of TgNek1 and TgCep250 nor the distinct phenotypes upon their respective depletion support conservation of this mechanism in Toxoplasma. In conclusion, TgCep250 has a tethering function tailored to the unique bipartite centrosome in the Apicomplexa.
Collapse
Affiliation(s)
- Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | | |
Collapse
|
43
|
Berry L, Chen CT, Francia ME, Guerin A, Graindorge A, Saliou JM, Grandmougin M, Wein S, Bechara C, Morlon-Guyot J, Bordat Y, Gubbels MJ, Lebrun M, Dubremetz JF, Daher W. Toxoplasma gondii chromosomal passenger complex is essential for the organization of a functional mitotic spindle: a prerequisite for productive endodyogeny. Cell Mol Life Sci 2018; 75:4417-4443. [PMID: 30051161 PMCID: PMC6260807 DOI: 10.1007/s00018-018-2889-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
The phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once. The inherent flexibility of their cell division mechanisms allows these parasites to adapt to different niches, facilitating their dissemination. Toxoplasma gondii tachyzoites divide using a unique form of cell division called endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. In higher Eukaryotes, the four-subunit chromosomal passenger complex (CPC) (Aurora kinase B (ARKB)/INCENP/Borealin/Survivin) promotes chromosome bi-orientation by detaching incorrect kinetochore-microtubule attachments, playing an essential role in controlling cell division fidelity. Herein, we report the characterization of the Toxoplasma CPC (Aurora kinase 1 (Ark1)/INCENP1/INCENP2). We show that the CPC exhibits dynamic localization in a cell cycle-dependent manner. TgArk1 interacts with both TgINCENPs, with TgINCENP2 being essential for its translocation to the nucleus. While TgINCENP1 appears to be dispensable, interfering with TgArk1 or TgINCENP2 results in pronounced division and growth defects. Significant anti-cancer drug development efforts have focused on targeting human ARKB. Parasite treatment with low doses of hesperadin, a known inhibitor of human ARKB at higher concentrations, phenocopies the TgArk1 and TgINCENP2 mutants. Overall, our study provides new insights into the mechanisms underpinning cell cycle control in Apicomplexa, and highlights TgArk1 as potential drug target.
Collapse
Affiliation(s)
- Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Amandine Guerin
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800, Spruce Street, Philadelphia, PA, 19104, USA
| | - Arnault Graindorge
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-Michel Saliou
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Maurane Grandmougin
- CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, University of Lille, 59000, Lille, France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Chérine Bechara
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS, UMR5230 INSERM U1191, University of Montpellier, 34094, Montpellier, France
| | - Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yann Bordat
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
44
|
White MW, Suvorova ES. Apicomplexa Cell Cycles: Something Old, Borrowed, Lost, and New. Trends Parasitol 2018; 34:759-771. [PMID: 30078701 PMCID: PMC6157590 DOI: 10.1016/j.pt.2018.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Increased parasite burden is linked to the severity of clinical disease caused by Apicomplexa parasites such as Toxoplasma gondii, Plasmodium spp, and Cryptosporidium. Pathogenesis of apicomplexan infections is greatly affected by the growth rate of the parasite asexual stages. This review discusses recent advances in deciphering the mitotic structures and cell cycle regulatory factors required by Apicomplexa parasites to replicate. As the molecular details become clearer, it is evident that the highly unconventional cell cycles of these parasites is a blending of many ancient and borrowed elements, which were then adapted to enable apicomplexan proliferation in a wide variety of different animal hosts.
Collapse
Affiliation(s)
- Michael W White
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Elena S Suvorova
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
45
|
Abstract
Toxoplasma gondii is a common veterinary and human pathogen that persists as latent bradyzoite forms within infected hosts. The ability of the parasite to interconvert between tachyzoite and bradyzoite is key for pathogenesis of toxoplasmosis, particularly in immunocompromised individuals. The transition between tachyzoites and bradyzoites is epigenetically regulated and coupled to the cell cycle. Recent epigenomic studies have begun to elucidate the chromatin states associated with developmental switches in T. gondii. Evidence is also emerging that AP2 transcription factors both activate and repress the bradyzoite developmental program. Further studies are needed to understand the mechanisms by which T. gondii transduces environmental signals to coordinate the epigenetic and transcriptional machinery that are responsible for tachyzoite-bradyzoite interconversion.
Collapse
Affiliation(s)
- Kami Kim
- Department of Internal Medicine, Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.,Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida 33612, USA;
| |
Collapse
|
46
|
Varberg JM, Coppens I, Arrizabalaga G, Gaji RY. TgTKL1 Is a Unique Plant-Like Nuclear Kinase That Plays an Essential Role in Acute Toxoplasmosis. mBio 2018; 9:e00301-18. [PMID: 29559568 PMCID: PMC5874906 DOI: 10.1128/mbio.00301-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022] Open
Abstract
In the protozoan parasite Toxoplasma gondii, protein kinases have been shown to play key roles in regulating parasite motility, invasion, replication, egress, and survival within the host. The tyrosine kinase-like (TKL) family of proteins are an unexplored set of kinases in Toxoplasma Of the eight annotated TKLs in the Toxoplasma genome, a recent genome-wide loss-of-function screen showed that six are important for tachyzoite fitness. By utilizing an endogenous tagging approach, we showed that these six T. gondii TKLs (TgTKLs) localize to various subcellular compartments, including the nucleus, the cytosol, the inner membrane complex, and the Golgi apparatus. To gain insight into the function of TKLs in Toxoplasma, we first characterized TgTKL1, which contains the plant-like enhanced disease resistance 1 (EDR1) domain and localizes to the nucleus. TgTKL1 knockout parasites displayed significant defects in progression through the lytic cycle; we show that the defects were due to specific impairment of host cell attachment. Transcriptomics analysis identified over 200 genes of diverse functions that were differentially expressed in TgTKL1 knockout parasites. Importantly, numerous genes implicated in host cell attachment and invasion were among those most significantly downregulated, resulting in defects in microneme secretion and processing. Significantly, all of the mice inoculated intraperitoneally with TgTKL1 knockout parasites survived the infection, suggesting that TgTKL1 plays an essential role in acute toxoplasmosis. Together, these findings suggest that TgTKL1 mediates a signaling pathway that regulates the expression of multiple factors required for parasite virulence, underscoring the potential of this kinase as a novel therapeutic target.IMPORTANCEToxoplasma gondii is a protozoan parasite that can cause chronic and life-threatening disease in mammals; new drugs are greatly needed for treatment. One attractive group of drug targets consists of parasite kinases containing unique features that distinguish them from host proteins. In this report, we identify and characterize a previously unstudied kinase, TgTKL1, that localizes to the nucleus and contains a domain architecture unique to plants and protozoa. By disrupting TgTKL1, we showed that this kinase is required for the proper expression of hundreds of genes, including many that are required for the parasite to gain entry into the host cell. Specifically, parasites lacking TgTKL1 have defects in host cell attachment, resulting in impaired growth in vitro and a complete loss of virulence in mice. This report provides insight into the importance of the parasite tyrosine kinase-like kinases and establishes TgTKL1 as a novel and essential virulence factor in Toxoplasma.
Collapse
Affiliation(s)
- Joseph M Varberg
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rajshekhar Y Gaji
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Courjol F, Gissot M. A coiled-coil protein is required for coordination of karyokinesis and cytokinesis in Toxoplasma gondii. Cell Microbiol 2018; 20:e12832. [PMID: 29447426 DOI: 10.1111/cmi.12832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/19/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Toxoplasma gondii is a unicellular eukaryotic pathogen that belongs to the Apicomplexa phylum, which encompasses some of the deadliest pathogens of medical and veterinary importance. The centrosome is key to the organisation and coordination of the cell cycle and division of apicomplexan parasites. The T. gondii centrosome possesses a particular bipartite structure (outer and inner cores). One of the main roles of the centrosome is to ensure proper coordination of karyokinesis. However, how these 2 events are coordinated is still unknown in T. gondii, for which the centrosome components are poorly described. To gain more insights into the biology and the composition of the T. gondii centrosome, we characterised a protein that resides at the interface of the outer and inner core centrosomes. TgCep530 is a large coiled-coil protein with an essential role in the survival of the parasite. Depletion of this protein leads to the accumulation of parasites lacking nuclei and disruption of the normal cell cycle. Lack of TgCep530 results in a discoordination between the nuclear cycle and the budding cycle that yields fully formed parasites without nuclei. TgCep530 has a crucial role in the coordination of karyokinesis and cytokinesis.
Collapse
Affiliation(s)
- Flavie Courjol
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Univ. Lille, Lille, France
| | - Mathieu Gissot
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Univ. Lille, Lille, France
| |
Collapse
|
48
|
Cdk-related kinase 9 regulates RNA polymerase II mediated transcription in Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:572-585. [PMID: 29466697 DOI: 10.1016/j.bbagrm.2018.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinases are an essential part of eukaryotic transcriptional machinery. In Apicomplexan parasites, the role and relevance of the kinases in the multistep process of transcription seeks more attention given the absence of full repertoire of canonical Cdks and cognate cyclin partners. In this study, we functionally characterize T. gondii Cdk-related kinase 9 (TgCrk9) showing maximal homology to eukaryotic Cdk9. An uncanonical cyclin, TgCyclin L, colocalizes with TgCrk9 in the parasite nucleus and co-immunoprecipitate, could activate the kinase in-vitro. We identify two threonines in conserved T-loop domain of TgCrk9 that are important for its activity. The activated TgCrk9 phosphorylates C-terminal domain (CTD) of TgRpb1, the largest subunit of RNA polymerase II highlighting its role in transcription. Selective chemical inhibition of TgCrk9 affected serine 2 phosphorylation in the heptapeptide repeats of TgRpb1-CTD towards 3' end of genes consistent with a possible role in transcription elongation. Interestingly, TgCrk9 kinase activity is regulated by the upstream TgCrk7 based CAK complex. TgCrk9 was found to functionally complement the role of its yeast counterpart Bur1 establishing its role as an important transcriptional kinase. In this study, we provide robust evidence that TgCrk9 is an important part of transcription machinery regulating gene expression in T. gondii.
Collapse
|
49
|
Ablation of an Ovarian Tumor Family Deubiquitinase Exposes the Underlying Regulation Governing the Plasticity of Cell Cycle Progression in Toxoplasma gondii. mBio 2017; 8:mBio.01846-17. [PMID: 29162714 PMCID: PMC5698556 DOI: 10.1128/mbio.01846-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Toxoplasma genome encodes the capacity for distinct architectures underlying cell cycle progression in a life cycle stage-dependent manner. Replication in intermediate hosts occurs by endodyogeny, whereas a hybrid of schizogony and endopolygeny occurs in the gut of the definitive feline host. Here, we characterize the consequence of the loss of a cell cycle-regulated ovarian tumor (OTU family) deubiquitinase, OTUD3A of Toxoplasma gondii (TgOTUD3A; TGGT1_258780), in T. gondii tachyzoites. Rather than the mutation being detrimental, mutant parasites exhibited a fitness advantage, outcompeting the wild type. This phenotype was due to roughly one-third of TgOTUD3A-knockout (TgOTUD3A-KO) tachyzoites exhibiting deviations from endodyogeny by employing replication strategies that produced 3, 4, or 5 viable progeny within a gravid mother instead of the usual 2. We established the mechanistic basis underlying these altered replication strategies to be a dysregulation of centrosome duplication, causing a transient loss of stoichiometry between the inner and outer cores that resulted in a failure to terminate S phase at the attainment of 2N ploidy and/or the decoupling of mitosis and cytokinesis. The resulting dysregulation manifested as deviations in the normal transitions from S phase to mitosis (S/M) (endopolygeny-like) or M phase to cytokinesis (M/C) (schizogony-like). Notably, these imbalances are corrected prior to cytokinesis, resulting in the generation of normal progeny. Our findings suggest that decisions regarding the utilization of specific cell cycle architectures are controlled by a ubiquitin-mediated mechanism that is dependent on the absolute threshold levels of an as-yet-unknown target(s). Analysis of the TgOTUD3A-KO mutant provides new insights into mechanisms underlying the plasticity of apicomplexan cell cycle architecture. Replication by Toxoplasma gondii can occur by 3 distinct cell cycle architectures. Endodyogeny is used by asexual stages, while a hybrid of schizogony and endopolygeny is used by merozoites in the definitive feline host. Here, we establish that the disruption of an ovarian-tumor (OTU) family deubiquitinase, TgOTUD3A, in tachyzoites results in dysregulation of the mechanism controlling the selection of replication strategy in a subset of parasites. The mechanistic basis for these altered cell cycles lies in the unique biology of the bipartite centrosome that is associated with the transient loss of stoichiometry between the inner and outer centrosome cores in the TgOTUD3A-KO mutant. This highlights the importance of ubiquitin-mediated regulation in the transition from the nuclear to the budding phases of the cell cycle and provides new mechanistic insights into the regulation of the organization of the apicomplexan cell cycle.
Collapse
|
50
|
Abstract
Our knowledge of cell cycle regulatory mechanisms in apicomplexan parasites is very limited. In this study, we describe a novel Toxoplasma gondii factor that has a vital role in chromosome replication and the regulation of cytoplasmic and nuclear mitotic structures, and we named this factor ECR1 for essential for chromosome replication 1. ECR1 was discovered by complementation of a temperature-sensitive (ts) mutant that suffers lethal, uncontrolled chromosome replication at 40°C similar to a ts mutant carrying a defect in topoisomerase. ECR1 is a 52-kDa protein containing divergent RING and TRAF-Sina-like zinc binding domains that are dynamically expressed in the tachyzoite cell cycle. ECR1 first appears in the unique spindle compartment of the Apicomplexa (centrocone) of the nuclear envelope in early S phase and then in the nucleus in late S phase where it reaches maximum expression. Following nuclear division, but before daughter parasites separate from the mother parasite, ECR1 is downregulated and is absent in new daughter parasites. The proteomics of ECR1 identified interactions with the ubiquitin-mediated protein degradation machinery and the minichromosome maintenance complex, and the loss of ECR1 led to increased stability of a key member of this complex, MCM2. ECR1 also forms a stable complex with the cyclin-dependent kinase (CDK)-related kinase, Tgondii Crk5 (TgCrk5), which displays a similar cell cycle expression and localization during tachyzoite replication. Importantly, the localization of ECR1/TgCrk5 in the centrocone indicates that this Apicomplexa-specific spindle compartment houses important regulatory factors that control the parasite cell cycle.IMPORTANCE Parasites of the apicomplexan family are important causes of human disease, including malaria, toxoplasmosis, and cryptosporidiosis. Parasite growth is the underlying cause of pathogenesis, yet despite this importance, the molecular basis for parasite replication is poorly understood. Filling this knowledge gap cannot be accomplished by mining recent whole-genome sequencing data because apicomplexan cell cycles differ substantially and lack many of the key regulatory factors of well-studied yeast and mammalian cell division models. We have utilized forward genetics to discover essential factors that regulate cell division in these parasites using the Toxoplasma gondii model. An example of this approach is described here with the discovery of a putative E3 ligase/protein kinase mechanism involved in regulating chromosome replication and mitotic processes of asexual stage parasites.
Collapse
|