1
|
Abernathy‐Close L, Mears J, Billi AC, Sirobhushanam S, Berthier C, Lu A, Zhang Z, Hurst A, Gudjonsson JE, Kahlenberg JM. Topical Mupirocin Treatment Reduces Interferon and Myeloid Signatures in Cutaneous Lupus Erythematous Lesions Through Targeting of Staphylococcus Species. Arthritis Rheumatol 2025; 77:705-715. [PMID: 39648343 PMCID: PMC12123252 DOI: 10.1002/art.43079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE Cutaneous lupus erythematosus (CLE) is an inflammatory skin manifestation of systemic lupus erythematosus. Type I interferons (IFNs) promote inflammatory responses and are elevated in CLE lesions. We recently reported that CLE lesions are frequently colonized with Staphylococcus aureus. Here, we follow up via a proof-of-concept study to investigate whether type I IFN and inflammatory gene signatures in CLE lesions can be modulated with mupirocin, a topical antibiotic treatment against S aureus-mediated skin infections. METHODS Participants with active CLE lesions (n = 12) were recruited and randomized into a week of topical treatment with either 2% mupirocin or petroleum jelly vehicle. Paired samples were collected before and after seven days of treatment to assess microbial lesional skin responses. Microbial samples from nares and lesional skin were used to determine baseline and posttreatment Staphylococcus abundance and microbial community profiles by 16S ribosomal RNA gene sequencing. Inflammatory responses were evaluated by bulk RNA sequencing of lesional skin biopsies. RESULTS We identified 173 differentially expressed genes in CLE lesions after topical mupirocin treatment. Decreased lesional Staphylococcus burden correlated with decreased IFN pathway signaling and inflammatory gene expression and barrier dysfunction. Interestingly, mupirocin treatment lowered skin monocyte levels, and this mupirocin-associated depletion of monocytes correlated with decreased inflammatory gene expression. CONCLUSION Mupirocin treatment decreased lesional Staphylococcus, and this correlated with decreased IFN signaling and inflammatory gene expression. This study suggests a topical antibiotic could be employed to decrease lupus skin inflammation and type I IFN responses by reducing Staphylococcus colonization.
Collapse
|
2
|
Gao X, Wu B, Qiu Y, Feng S, Zhang J, Miao J. STING contributes to the inflammation and proliferation of Staphylococcus aureus via mitochondrial reactive oxygen species-hypoxic inducible factor 1α axis in epithelial cells. Infect Immun 2025:e0013825. [PMID: 40387431 DOI: 10.1128/iai.00138-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025] Open
Abstract
Staphylococcus aureus infection poses a serious threat to the dairy industry and public health safety. The stimulator of interferon gene (STING) signaling pathway has been well established as effective in defending against viral infections. However, the role of STING is controversial during bacterial infections. Herein, we provide an insight into the role of STING during S. aureus infection. Our data revealed that the STING signaling pathway was activated in S. aureus-infected cells. In vitro investigations demonstrated that inhibiting STING reduced inflammation, hypoxia-inducible factor-1 alpha (HIF1α) expression, and mitochondrial reactive oxygen species (mROS) production. Interestingly, blocking HIF1α eliminated the escalation of inflammation associated with STING. Additionally, suppressing mROS production significantly reduced HIF1α expression and inflammation levels, while elevating mROS had the opposite effect. These results indicate that STING promoted inflammation through the mROS-HIF1α pathway. Given that glycolysis is driven by HIF1α, we investigated the role of glycolysis during infection. As expected, STING-elevated inflammation was linked with HIF1α-driven glycolysis. In terms of pathogenesis, STING contributed to S. aureus proliferation within cells and mouse mammary glands. Collectively, our findings demonstrate that STING facilitates infection via the mROS-HIF1α-glycolysis axis, highlighting its potential as a promising anti-inflammatory target.
Collapse
Affiliation(s)
- Xing Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Binfeng Wu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yawei Qiu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shiyuan Feng
- Sanya Research Institute, Nanjing Agricultural University, Sanya, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Zhao Y, Li W, Xu J, Bao L, Wu K, Shan R, Hu X, Fu Y, Zhao C. Endogenous retroviruses modulate the susceptibility of mice to Staphylococcus aureus-induced mastitis by activating cGAS-STING signaling. Int Immunopharmacol 2024; 142:113171. [PMID: 39312862 DOI: 10.1016/j.intimp.2024.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Recently studies showed that cow mastitis seriously affected the economic benefit of dairy industry and pathogen infection including S. aureus is the main cause of mastitis. However, there is still a lack of safe and effective treatment for S. aureus-induced mastitis due to its complex pathogenesis. Endogenous retroviruses (ERVs) have long been symbiotic with mammals, and most ERVs still have the ability to produces complementary DNA (cDNA) by reverse transcription, whose induction by commensal or pathogens can regulate host immunity and inflammatory responses through the cGAS-STING pathway. However, whether and how ERVs participate in the pathogenesis of S. aureus-induced mastitis still unclear. In this study, we found that S. aureus treatment increased the levels of ERVs and IFN-β. Inhibition the transcription of ERVs by emtricitabine alleviated S. aureus-induced mammary injury, reduced mammary bacterial burden, and inhibited the production of mammary proinflammatory factors including TNF-α, IL-1β and MPO activity. Moreover, inhibition of ERVs restored the function of blood-milk barrier caused by S. aureus. Next, we showed that S. aureus infection activated mammary cGAS-STING signaling pathway, which was mediated by ERVs, as evidenced by emtricitabine inhibited S. aureus-induced activation of the cGAS-STING pathway. Interestingly, inhibition of cGAS-STING by Ru.521 and H151 respectively, significantly alleviated S. aureus-induced mammary injury and inflammatory responses, which was associated with the inhibition of NF-κB and NLRP3 signaling pathways. In conclusion, our study revealed that ERVs regulate the development of S. aureus-induced mastitis in mice through NF-κB- and NLRP3-mediated inflammatory responses via the activation of cGAS-STING pathway, suggesting that targeting ERVs-cGAS-STING axis may be a potential approach for the treatment of S. aureus-induced mastitis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China.
| |
Collapse
|
4
|
Li M, Wang B, Chen J, Jiang L, Zhou Y, Guo G, Jiang F, Hu Y, Wang C, Yang Y, Tang J, Han P, Yu J, Shen H. Staphylococcus aureus SaeRS impairs macrophage immune functions through bacterial clumps formation in the early stage of infection. NPJ Biofilms Microbiomes 2024; 10:102. [PMID: 39370453 PMCID: PMC11456606 DOI: 10.1038/s41522-024-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
The Staphylococcus aureus (S. aureus) SaeRS two-component system (TCS) regulates over 20 virulence factors. While its impact on chronic infection has been thoroughly discussed, its role in the early stage of infection remains elusive. Since macrophages serve as the primary immune defenders at the onset of infection, this study investigates the influence of SaeRS on macrophage functions and elucidates the underlying mechanisms. Macrophage expression of inflammatory and chemotactic factors, phagocytosis, and bactericidal activity against S. aureus were assessed, along with the evaluation of cellular oxidative stress. SaeRS was found to impair macrophage function. Mechanistically, SaeRS inhibited NF-κB pathway activation via toll-like receptor 2 (TLR2). Its immune-modulating effect could partially be explained by the strengthened biofilm formation. More importantly, we found SaeRS compromised macrophage immune functions at early infection stages even prior to biofilm formation. These early immune evasion effects were dependent on bacterial clumping as cytokine secretion, phagocytosis, and bactericidal activity were repaired when clumping was inhibited. We speculate that the bacterial clumping-mediated antigen mask is responsible for SaeRS-mediated immune evasion at the early infection stage. In vivo, ΔsaeRS infection was cleared earlier, accompanied by early pro-inflammatory cytokines production, and increased tissue oxidative stress. Subsequently, macrophages transitioned to an anti-inflammatory state, thereby promoting tissue repair. In summary, our findings underscore the critical role of the SaeRS TCS in S. aureus pathogenicity, particularly during early infection, which is likely initiated by SaeRS-mediated bacterial clumping.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiani Chen
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Luhui Jiang
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yawen Zhou
- Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Changming Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yi Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Yin S, Yuan M, Zhang S, Chen H, Zhou J, He T, Li G, Yu Y, Zhang F, Li M, Zhao Y. Streptococcus suis Serotype 2 Type IV Secretion Effector SspA-1 Induces Proinflammatory Cytokine Production via TLR2 Endosomal and Type I Interferon Signaling. J Infect Dis 2024; 230:188-197. [PMID: 39052722 PMCID: PMC11272045 DOI: 10.1093/infdis/jiad454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 11/17/2023] Open
Abstract
The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.
Collapse
Affiliation(s)
- Supeng Yin
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Mengmeng Yuan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Sirui Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Jing Zhou
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Tongyu He
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Gang Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Yanlan Yu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Fan Zhang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| | - Ming Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Moran EA, Salas-Briceno K, Zhao W, Enya T, Aguilera AN, Acosta I, Alonzo F, Kiani D, Behnsen J, Alvarez C, Keane TM, Adams DJ, Lilue J, Ross SR. IFI207, a young and fast-evolving protein, controls retroviral replication via the STING pathway. mBio 2024; 15:e0120924. [PMID: 38860764 PMCID: PMC11253629 DOI: 10.1128/mbio.01209-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.
Collapse
Affiliation(s)
- Eileen A. Moran
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Wenming Zhao
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Takuji Enya
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Alexya N. Aguilera
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Ivan Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Dara Kiani
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | | | | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jingtao Lilue
- Gulbenkian Institute of Science, Oeiras, Portugal
- Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Gao L, Tian T, Xiong T, Zhang X, Wang N, Liu L, Shi Y, Liu Q, Lu D, Luo P, Zhang W, Cheng P, Gou Q, Wang Y, Zeng H, Zhang X, Zou Q. Type VII secretion system extracellular protein B targets STING to evade host anti- Staphylococcus aureus immunity. Proc Natl Acad Sci U S A 2024; 121:e2402764121. [PMID: 38771879 PMCID: PMC11145284 DOI: 10.1073/pnas.2402764121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024] Open
Abstract
Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.
Collapse
Affiliation(s)
- Lin Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Tian Tian
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Tingrong Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Xiaomei Zhang
- Department of Medical Engineering, Xinqiao Hospital, Third Military Medical University, Chongqing400038, China
| | - Ning Wang
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Luxuan Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Yun Shi
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Qiang Liu
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Yu Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
- Department of Basic Courses, Non-Commissioned Officer School, Third Military Medical University, Shijiazhuang050081, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing400038, China
| | - Xiaokai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing400038, China
| |
Collapse
|
8
|
Kumar V, Stewart JH. cGLRs Join Their Cousins of Pattern Recognition Receptor Family to Regulate Immune Homeostasis. Int J Mol Sci 2024; 25:1828. [PMID: 38339107 PMCID: PMC10855445 DOI: 10.3390/ijms25031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Pattern recognition receptors (PRRs) recognize danger signals such as PAMPs/MAMPs and DAMPs to initiate a protective immune response. TLRs, NLRs, CLRs, and RLRs are well-characterized PRRs of the host immune system. cGLRs have been recently identified as PRRs. In humans, the cGAS/STING signaling pathway is a part of cGLRs. cGAS recognizes cytosolic dsDNA as a PAMP or DAMP to initiate the STING-dependent immune response comprising type 1 IFN release, NF-κB activation, autophagy, and cellular senescence. The present article discusses the emergence of cGLRs as critical PRRs and how they regulate immune responses. We examined the role of cGAS/STING signaling, a well-studied cGLR system, in the activation of the immune system. The following sections discuss the role of cGAS/STING dysregulation in disease and how immune cross-talk with other PRRs maintains immune homeostasis. This understanding will lead to the design of better vaccines and immunotherapeutics for various diseases, including infections, autoimmunity, and cancers.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Tumor Immunology and Immunotherapy, Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | | |
Collapse
|
9
|
Yao L, Liu Q, Lei Z, Sun T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol 2023; 253:126819. [PMID: 37709236 DOI: 10.1016/j.ijbiomac.2023.126819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.
Collapse
Affiliation(s)
- Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
10
|
Yoon J, Jeong M, Park JH. Intratumoral adoptive transfer of inflammatory macrophages engineered by co-activating TLR and STING signaling pathways exhibits robust antitumor activity. Clin Exp Med 2023; 23:5025-5037. [PMID: 37535193 DOI: 10.1007/s10238-023-01157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Despite the success of chimeric antigen receptor (CAR) T cells in hematologic malignancies, adoptive cell therapy (ACT) has not been effective in treating solid tumors. Here, we developed an inflammatory macrophage-based ACT to effectively treat solid tumors. We engineered inflammatory macrophages to enhance their antitumor activities, including proinflammatory cytokine secretion and co-stimulatory molecule expression by co-activating toll-like receptor and stimulator of interferon genes signaling pathways. Engineered macrophages maintain an inflammatory phenotype after their adoptive transfer into the anti-inflammatory tumor microenvironment (TME), whereas conventional inflammatory macrophages prepared using interferon-γ treatment are repolarized to an anti-inflammatory phenotype. In a mouse melanoma model, intratumoral adoptive transfer of engineered macrophages showed robust tumor growth inhibition by increasing CD8+ T cells in the TME and tumor antigen-specific CD8+ T cells in the blood. This study demonstrated that engineered inflammatory macrophages have potential as an effective ACT for treating solid tumors.
Collapse
Affiliation(s)
- Junyong Yoon
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Moonkyoung Jeong
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Seebach E, Sonnenmoser G, Kubatzky KF. Staphylococcus aureus planktonic but not biofilm environment induces an IFN-β macrophage immune response via the STING/IRF3 pathway. Virulence 2023; 14:2254599. [PMID: 37655977 PMCID: PMC10496530 DOI: 10.1080/21505594.2023.2254599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Chronic implant-related bone infections are a severe complication in orthopaedic surgery. Biofilm formation on the implant impairs the immune response, leading to bacterial persistence. In a previous study, we found that Staphylococcus aureus (SA) induced interferon regulatory factor 3 (IRF3) activation and Ifnb expression only in its planktonic form but not in the biofilm. The aim of this study was to clarify the role of the stimulator of interferon genes (STING) in this process. We treated RAW 264.7 macrophages with conditioned media (CM) generated from planktonic or biofilm cultured SA in combination with agonists or inhibitors of the cyclic GMP-AMP synthase (cGAS)/STING pathway. We further evaluated bacterial gene expression of planktonic and biofilm SA to identify potential mediators. STING inhibition resulted in the loss of IRF3 activation and Ifnb induction in SA planktonic CM, whereas STING activation induced an IRF3 dependent IFN-β response in SA biofilm CM. The expression levels of virulence-associated genes decreased during biofilm formation, but genes associated with cyclic dinucleotide (CDN) synthesis did not correlate with Ifnb induction. We further observed that cGAS contributed to Ifnb induction by SA planktonic CM, although cGAS activation was not sufficient to induce Ifnb expression in SA biofilm CM. Our data indicate that the different degrees of virulence associated with SA planktonic and biofilm environments result in an altered induction of the IRF3 mediated IFN-β response via the STING pathway. This finding suggests that the STING/IRF3/IFN-β axis is a potential candidate as an immunotherapeutic target for implant-related bone infections.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Gabriele Sonnenmoser
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Li F, Song B, Zhou WF, Chu LJ. Toll-Like Receptors 7/8: A Paradigm for the Manipulation of Immunologic Reactions for Immunotherapy. Viral Immunol 2023; 36:564-578. [PMID: 37751284 DOI: 10.1089/vim.2023.0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The innate immune system recognizes conserved features of viral and microbial pathogens through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one type of PRR used by the innate immune system to mediate the secretion of proinflammatory cytokines and promote innate and adaptive immune responses. TLR family members TLR7 and TLR8 (referred to as TLR7/8 from herein) are endosomal transmembrane receptors that recognize purine-rich single-stranded RNA (ssRNA) and bacterial DNA, eliciting an immunologic reaction to pathogens. TLR7/8 were discovered to mediate the secretion of proinflammatory cytokines by activating immune cells. In addition, accumulating evidence has indicated that TLR7/8 may be closely related to numerous immune-mediated disorders, specifically several types of cancer, autoimmune disease, and viral disease. TLR7/8 agonists and antagonists, which are used as drugs or adjuvants, have been identified in preclinical studies and clinical trials as promising immune stimulators for the immunotherapy of these immune-mediated disorders. These results provided reasoning to further explore immunotherapy for the treatment of immune-mediated disorders. Nevertheless, numerous needs remain unmet, and the therapeutic effects of TLR7/8 agonists and antagonists are poor and exert strong immune-related toxicities. The present review aimed to provide an overview of the TLR family members, particularly TLR7/8, and address the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders. The aim of the work is to discuss the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders.
Collapse
Affiliation(s)
- Fang Li
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Feng Zhou
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Li-Jin Chu
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| |
Collapse
|
13
|
Acosta IC, Alonzo F. The Intersection between Bacterial Metabolism and Innate Immunity. J Innate Immun 2023; 15:782-803. [PMID: 37899025 PMCID: PMC10663042 DOI: 10.1159/000534872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The innate immune system is the first line of defense against microbial pathogens and is essential for maintaining good health. If pathogens breach innate barriers, the likelihood of infection is significantly increased. Many bacterial pathogens pose a threat to human health on account of their ability to evade innate immunity and survive in growth-restricted environments. These pathogens have evolved sophisticated strategies to obtain nutrients as well as manipulate innate immune responses, resulting in disease or chronic infection. SUMMARY The relationship between bacterial metabolism and innate immunity is complex. Although aspects of bacterial metabolism can be beneficial to the host, particularly those related to the microbiota and barrier integrity, others can be harmful. Several bacterial pathogens harness metabolism to evade immune responses and persist during infection. The study of these adaptive traits provides insight into the roles of microbial metabolism in pathogenesis that extend beyond energy balance. This review considers recent studies on bacterial metabolic pathways that promote infection by circumventing several facets of the innate immune system. We also discuss relationships between innate immunity and antibiotics and highlight future directions for research in this field. KEY MESSAGES Pathogenic bacteria have a remarkable capacity to harness metabolism to manipulate immune responses and promote pathogenesis. While we are beginning to understand the multifaceted and complex metabolic adaptations that occur during infection, there is still much to uncover with future research.
Collapse
Affiliation(s)
- Ivan C Acosta
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Nakamura A, Sakai S, Taketomi Y, Tsuyama J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M, Shichita T. PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron 2023; 111:2995-3010.e9. [PMID: 37490917 DOI: 10.1016/j.neuron.2023.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Laboratory for Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
15
|
Jani C, Solomon SL, Peters JM, Pringle SC, Hinman AE, Boucau J, Bryson BD, Barczak AK. TLR2 is non-redundant in the population and subpopulation responses to Mycobacterium tuberculosis in macrophages and in vivo. mSystems 2023; 8:e0005223. [PMID: 37439558 PMCID: PMC10506474 DOI: 10.1128/msystems.00052-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/02/2023] [Indexed: 07/14/2023] Open
Abstract
Tuberculosis (TB), caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is a global health threat. Targeting host pathways that modulate protective or harmful components of inflammation has been proposed as a therapeutic strategy that could aid sterilization or mitigate TB-associated permanent tissue damage. In purified form, many Mtb components can activate innate immune pathways. However, knowledge of the pathways that contribute most to the observed response to live Mtb is incomplete, limiting the possibility of precise intervention. We took a systematic, unbiased approach to define the pathways that drive the earliest immune response to Mtb. Using a macrophage model of infection, we compared the bulk transcriptional response to infection with the response to a panel of Mtb-derived putative innate immune ligands. We identified two axes of response: an NF-kB-dependent response similarly elicited by all Mtb pathogen-associated molecular patterns (PAMPs) and a type I interferon axis unique to cells infected with live Mtb. Consistent with growing literature data pointing to TLR2 as a dominant Mtb-associated PAMP, the TLR2 ligand PIM6 most closely approximated the NF-kB-dependent response to the intact bacterium. Quantitatively, the macrophage response to Mtb was slower and weaker than the response to purified PIM6. On a subpopulation level, the TLR2-dependent response was heterogeneously induced, with only a subset of infected cells expressing key inflammatory genes known to contribute to the control of infection. Despite potential redundancies in Mtb ligand/innate immune receptor interactions during in vivo infection, loss of the TLR2/PIM6 interaction impacted the cellular composition of both the innate and adaptive compartments. IMPORTANCE Tuberculosis (TB) is a leading cause of death globally. Drug resistance is outpacing new antibiotic discovery, and even after successful treatment, individuals are often left with permanent lung damage from the negative consequences of inflammation. Targeting host inflammatory pathways has been proposed as an approach that could either improve sterilization or improve post-treatment lung health. However, our understanding of the inflammatory pathways triggered by Mycobacterium tuberculosis (Mtb) in infected cells and lungs is incomplete, in part because of the complex array of potential molecular interactions between bacterium and host. Here, we take an unbiased approach to identify the pathways most central to the host response to Mtb. We examine how individual pathways are triggered differently by purified Mtb products or infection with the live bacterium and consider how these pathways inform the emergence of subpopulation responses in cell culture and in infected mice. Understanding how individual interactions and immune pathways contribute to inflammation in TB opens the door to the possibility of developing precise therapeutic interventions.
Collapse
Affiliation(s)
- Charul Jani
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Sydney L. Solomon
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joshua M. Peters
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Amelia E. Hinman
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julie Boucau
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Bryan D. Bryson
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amy K. Barczak
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- The Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Yilmaz IC, Dunuroglu E, Ayanoglu IC, Ipekoglu EM, Yildirim M, Girginkardesler N, Ozbel Y, Toz S, Ozbilgin A, Aykut G, Gursel I, Gursel M. Leishmania kinetoplast DNA contributes to parasite burden in infected macrophages: Critical role of the cGAS-STING-TBK1 signaling pathway in macrophage parasitemia. Front Immunol 2022; 13:1007070. [PMID: 36405710 PMCID: PMC9667060 DOI: 10.3389/fimmu.2022.1007070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Leishmania parasites harbor a unique network of circular DNA known as kinetoplast DNA (kDNA). The role of kDNA in leishmania infections is poorly understood. Herein, we show that kDNA delivery to the cytosol of Leishmania major infected THP-1 macrophages provoked increased parasite loads when compared to untreated cells, hinting at the involvement of cytosolic DNA sensors in facilitating parasite evasion from the immune system. Parasite proliferation was significantly hindered in cGAS- STING- and TBK-1 knockout THP-1 macrophages when compared to wild type cells. Nanostring nCounter gene expression analysis on L. major infected wild type versus knockout cells revealed that some of the most upregulated genes including, Granulysin (GNLY), Chitotriosidase-1 (CHIT1), Sialomucin core protein 24 (CD164), SLAM Family Member 7 (SLAMF7), insulin-like growth factor receptor 2 (IGF2R) and apolipoprotein E (APOE) were identical in infected cGAS and TBK1 knockout cells, implying their involvement in parasite control. Amlexanox treatment (a TBK1 inhibitor) of L. major infected wild type cells inhibited both the percentage and the parasite load of infected THP-1 cells and delayed footpad swelling in parasite infected mice. Collectively, these results suggest that leishmania parasites might hijack the cGAS-STING-TBK1 signaling pathway to their own advantage and the TBK1 inhibitor amlexanox could be of interest as a candidate drug in treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Ismail Cem Yilmaz
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Dunuroglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ihsan Cihan Ayanoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Mert Ipekoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Muzaffer Yildirim
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Nogay Girginkardesler
- Department of Parasitology, School of Medicine, Celal Bayar University, Manisa, Turkey
| | - Yusuf Ozbel
- Department of Parasitology, Ege University, Izmir, Turkey
| | - Seray Toz
- Department of Parasitology, Ege University, Izmir, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, School of Medicine, Celal Bayar University, Manisa, Turkey
| | - Gamze Aykut
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Ihsan Gursel
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Mayda Gursel
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- *Correspondence: Mayda Gursel,
| |
Collapse
|
18
|
Acosta IC, Alonzo F. Antibiotic treatment ignites a fire that lasts. Cell Host Microbe 2022; 30:897-899. [DOI: 10.1016/j.chom.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-Translational Modifications of STING: A Potential Therapeutic Target. Front Immunol 2022; 13:888147. [PMID: 35603197 PMCID: PMC9120648 DOI: 10.3389/fimmu.2022.888147] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic-reticulum resident protein, playing essential roles in immune responses against microbial infections. However, over-activation of STING is accompanied by excessive inflammation and results in various diseases, including autoinflammatory diseases and cancers. Therefore, precise regulation of STING activities is critical for adequate immune protection while limiting abnormal tissue damage. Numerous mechanisms regulate STING to maintain homeostasis, including protein-protein interaction and molecular modification. Among these, post-translational modifications (PTMs) are key to accurately orchestrating the activation and degradation of STING by temporarily changing the structure of STING. In this review, we focus on the emerging roles of PTMs that regulate activation and inhibition of STING, and provide insights into the roles of the PTMs of STING in disease pathogenesis and as potential targeted therapy.
Collapse
Affiliation(s)
- Jiaqi Kang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjie Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
20
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
21
|
Goldmann O, Sauerwein T, Molinari G, Rohde M, Förstner KU, Medina E. Cytosolic Sensing of Intracellular Staphylococcus aureus by Mast Cells Elicits a Type I IFN Response That Enhances Cell-Autonomous Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1675-1685. [PMID: 35321877 DOI: 10.4049/jimmunol.2100622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Strategically located at mucosal sites, mast cells are instrumental in sensing invading pathogens and modulating the quality of the ensuing immune responses depending on the nature of the infecting microbe. It is believed that mast cells produce type I IFN (IFN-I) in response to viruses, but not to bacterial infections, because of the incapacity of bacterial pathogens to internalize within mast cells, where signaling cascades leading to IFN-I production are generated. However, we have previously reported that, in contrast with other bacterial pathogens, Staphylococcus aureus can internalize into mast cells and therefore could trigger a unique response. In this study, we have investigated the molecular cross-talk between internalized S. aureus and the human mast cells HMC-1 using a dual RNA sequencing approach. We found that a proportion of internalized S. aureus underwent profound transcriptional reprogramming within HMC-1 cells to adapt to the nutrients and stress encountered in the intracellular environment and remained viable. HMC-1 cells, in turn, recognized intracellular S. aureus via cGMP-AMP synthase-STING-TANK-binding kinase 1 signaling pathway, leading to the production of IFN-I. Bacterial internalization and viability were crucial for IFN-I induction because inhibition of S. aureus internalization or infection with heat-killed bacteria completely prevented the production of IFN-I by HMC-1 cells. Feeding back in an autocrine manner in S. aureus-harboring HMC-1 cells and in a paracrine manner in noninfected neighboring HMC-1 cells, IFN-I promoted a cell-autonomous antimicrobial state by inducing the transcription of IFN-I-stimulated genes. This study provides unprecedented evidence of the capacity of mast cells to produce IFN-I in response to a bacterial pathogen.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Till Sauerwein
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- ZB MED-Information Centre for Life Science, 50931 Cologne, Germany
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- ZB MED-Information Centre for Life Science, 50931 Cologne, Germany
- TH Köln, University of Applied Sciences, Faculty of Information Science and Communication Studies, 50678 Cologne, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| |
Collapse
|
22
|
Rawle DJ, Le TT, Dumenil T, Bishop C, Yan K, Nakayama E, Bird PI, Suhrbier A. Widespread discrepancy in Nnt genotypes and genetic backgrounds complicates granzyme A and other knockout mouse studies. eLife 2022; 11:e70207. [PMID: 35119362 PMCID: PMC8816380 DOI: 10.7554/elife.70207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.
Collapse
Affiliation(s)
- Daniel J Rawle
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Thuy T Le
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Troy Dumenil
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Cameron Bishop
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Kexin Yan
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Eri Nakayama
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Department of Virology I, National Institute of Infectious DiseasesTokyoJapan
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash UniversityMelbourneAustralia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Australian Infectious Disease Research Centre, GVN Center of ExcellenceBrisbaneAustralia
| |
Collapse
|
23
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
24
|
Liu N, Pang X, Zhang H, Ji P. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front Immunol 2022; 12:814709. [PMID: 35095914 PMCID: PMC8793285 DOI: 10.3389/fimmu.2021.814709] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS), along with the adaptor stimulator of interferon genes (STING), are crucial components of the innate immune system, and their study has become a research hotspot in recent years. Many biochemical and structural studies that have collectively elucidated the mechanism of activation of the cGAS-STING pathway with atomic resolution have provided insights into the roles of the cGAS-STING pathway in innate immunity and clues to the origin and evolution of the modern cGAS-STING signaling pathway. The cGAS-STING pathway has been identified to protect the host against viral infection. After detecting viral dsDNA, cGAS synthesizes a second messenger to activate STING, eliciting antiviral immune responses by promoting the expression of interferons (IFNs) and hundreds of IFN-stimulated genes (ISGs). Recently, the cGAS-STING pathway has also been found to be involved in response to bacterial infections, including bacterial pneumonia, melioidosis, tuberculosis, and sepsis. However, compared with its functions in viral infection, the cGAS-STING signaling pathway in bacterial infection is more complex and diverse since the protective and detrimental effects of type I IFN (IFN-I) on the host depend on the bacterial species and infection mode. Besides, STING activation can also affect infection prognosis through other mechanisms in different bacterial infections, independent of the IFN-I response. Interestingly, the core protein components of the mammalian cGAS-STING signaling pathway have been found in the bacterial defense system, suggesting that this widespread signaling pathway may have originated in bacteria. Here, we review recent findings related to the structures of major molecules involved in the cGAS-STING pathway and the effects of the cGAS-STING pathway in various bacterial infections and bacterial immunity, which may pave the way for the development of new antibacterial drugs that specifically kill bacteria without harmful effects on the host.
Collapse
Affiliation(s)
- Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Liu X, Wu Y, Mao C, Shen J, Zhu K. Host-acting antibacterial compounds combat cytosolic bacteria. Trends Microbiol 2022; 30:761-777. [DOI: 10.1016/j.tim.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 01/25/2023]
|
26
|
Hinman AE, Jani C, Pringle SC, Zhang WR, Jain N, Martinot AJ, Barczak AK. Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response. eLife 2021; 10:e73984. [PMID: 34755600 PMCID: PMC8610422 DOI: 10.7554/elife.73984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/29/2021] [Indexed: 01/15/2023] Open
Abstract
For many intracellular pathogens, the phagosome is the site of events and interactions that shape infection outcome. Phagosomal membrane damage, in particular, is proposed to benefit invading pathogens. To define the innate immune consequences of this damage, we profiled macrophage transcriptional responses to wild-type Mycobacterium tuberculosis (Mtb) and mutants that fail to damage the phagosomal membrane. We identified a set of genes with enhanced expression in response to the mutants. These genes represented a late component of the TLR2-dependent transcriptional response to Mtb, distinct from an earlier component that included Tnf. Expression of the later component was inherent to TLR2 activation, dependent upon endosomal uptake, and enhanced by phagosome acidification. Canonical Mtb virulence factors that contribute to phagosomal membrane damage blunted phagosome acidification and undermined the endosome-specific response. Profiling cell survival and bacterial growth in macrophages demonstrated that the attenuation of these mutants is partially dependent upon TLR2. Further, TLR2 contributed to the attenuated phenotype of one of these mutants in a murine model of infection. These results demonstrate two distinct components of the TLR2 response and identify a component dependent upon endosomal uptake as a point where pathogenic bacteria interfere with the generation of effective inflammation. This interference promotes tuberculosis (TB) pathogenesis in both macrophage and murine infection models.
Collapse
Affiliation(s)
- Amelia E Hinman
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | - Charul Jani
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | | | - Wei R Zhang
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
| | - Neharika Jain
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary MedicineNorth Grafton, MAUnited States
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts University Cummings School of Veterinary MedicineNorth Grafton, MAUnited States
| | - Amy K Barczak
- The Ragon Institute, Massachusetts General HospitalCambridgeUnited States
- The Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
27
|
Ragland SA, Kagan JC. Cytosolic detection of phagosomal bacteria-Mechanisms underlying PAMP exodus from the phagosome into the cytosol. Mol Microbiol 2021; 116:1420-1432. [PMID: 34738270 DOI: 10.1111/mmi.14841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The metazoan innate immune system senses bacterial infections by detecting highly conserved bacterial molecules, termed pathogen-associated molecular patterns (PAMPs). PAMPs are detected by a variety of host pattern recognition receptors (PRRs), whose function is to coordinate downstream immune responses. PRR activities are, in part, regulated by their subcellular localizations. Accordingly, professional phagocytes can detect extracellular bacteria and their PAMPs via plasma membrane-oriented PRRs. Conversely, phagocytosed bacteria and their PAMPs are detected by transmembrane PRRs oriented toward the phagosomal lumen. Even though PAMPs are unable to passively diffuse across membranes, phagocytosed bacteria are also detected by PRRs localized within the host cell cytosol. This phenomenon is explained by phagocytosis of bacteria that specialize in phagosomal escape and cytosolic residence. Contrary to this cytosolic lifestyle, most bacteria studied to date spend their entire intracellular lifestyle contained within phagosomes, yet they also stimulate cytosolic PRRs. Herein, we will review our current understanding of how phagosomal PAMPs become accessible to cytosolic PRRs, as well as highlight knowledge gaps that should inspire future investigations.
Collapse
Affiliation(s)
- Stephanie A Ragland
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Regulation of cGAS-STING pathway - Implications for systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:173-184. [PMID: 36465073 PMCID: PMC9524788 DOI: 10.2478/rir-2021-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
Abstract
Type I interferon (IFN-I) is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and the closely associated monogenic autoinflammatory disorders termed the “interferonopathies.” Recently, the cytosolic DNA sensor cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have been identified as having important, if not central, roles in driving IFN-I expression in response to self-DNA. This review highlights the many ways in which this pathway is regulated in order to prevent self-DNA recognition and underlines the importance of maintaining tight control in order to prevent autoimmune disease. We will discuss the murine and human studies that have implicated the cGAS-STING pathway as being an important contributor to breakdown in tolerance in SLE and highlight the potential therapeutic application of this knowledge for the treatment of SLE.
Collapse
|
29
|
Yokota M, Häffner N, Kassier M, Brunner M, Shambat SM, Brennecke F, Schniering J, Marques Maggio E, Distler O, Zinkernagel AS, Maurer B. Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing. FASEB J 2021; 35:e21695. [PMID: 34160101 DOI: 10.1096/fj.201902836r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Chronic wounds are a major disease burden worldwide. The breach of the epithelial barrier facilitates transition of skin commensals to invasive facultative pathogens. Therefore, we investigated the potential effects of Staphylococcus aureus (SA) on dermal fibroblasts as key cells for tissue repair. In co-culture systems combining live or heat-killed SA with dermal fibroblasts derived from the BJ-5ta cell line, healthy individuals, and patients with systemic sclerosis, we assessed tissue repair including pro-inflammatory cytokines, matrix metalloproteases (MMPs), myofibroblast functions, and host defense responses. Only live SA induced the upregulation of IL-1β/-6/-8 and MMP1/3 as co-factors of tissue degradation. Additionally, the increased cell death reduced collagen production, proliferation, migration, and contractility, prerequisite mechanisms for wound closure. Intracellular SA triggered inflammatory and type I IFN responses via intracellular dsDNA sensor molecules and MyD88 and STING signaling pathways. In conclusion, live SA affected various key tissue repair functions of dermal fibroblasts from different sources to a similar extent. Thus, SA infection of dermal fibroblasts should be taken into account for future wound management strategies.
Collapse
Affiliation(s)
- Masaya Yokota
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland.,Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nicola Häffner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthew Kassier
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fabian Brennecke
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Janine Schniering
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Ewerton Marques Maggio
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Annelies Sophie Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Britta Maurer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland.,Department of Rheumatology and Immunology, University Hospital Bern, University Bern, Bern, Switzerland
| |
Collapse
|
30
|
Mai J, Li Z, Xia X, Zhang J, Li J, Liu H, Shen J, Ramirez M, Li F, Li Z, Yokoi K, Liu X, Mittendorf EA, Ferrari M, Shen H. Synergistic Activation of Antitumor Immunity by a Particulate Therapeutic Vaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100166. [PMID: 34194942 PMCID: PMC8224417 DOI: 10.1002/advs.202100166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Success in anticancer immune therapy relies on stimulation of tumor antigen-specific T lymphocytes and effective infiltration of the T cells into tumor tissue. Here, a therapeutic vaccine that promotes proliferation and tumor infiltration of antigen-specific T cells in both inflamed and noninflamed tumor types is described. The vaccine consists of STING agonist 2'3'-cGAMP, TLR9 ligand CpG, and tumor antigen peptides that are loaded into nanoporous microparticles (μGCVax). μGCVax is effective in inhibiting lung metastatic melanoma, primary breast cancer, and subcutaneous colorectal cancer in their respective murine models, including functional cure of HER2-positive breast cancer. Mechanistically, μGCVax potently stimulates type I interferon expression in dendritic cells, and promotes CD8+ and CD103+ dendritic cell maturation and migration to lymph nodes and other lymphatic tissues. Antitumor responses are dependent on TLR9 and interferon α/β receptor signaling, and to a less extent on STING signaling. These results demonstrate a high potential for μGCVax in mediating antitumor immunity in personalized cancer therapy.
Collapse
Affiliation(s)
- Junhua Mai
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Zhaoqi Li
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Xiaojun Xia
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Department of Experimental Medicine Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Guangzhou 510060 China
| | - Jingxin Zhang
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Jun Li
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Haoran Liu
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Jianliang Shen
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- School of Ophthalmology & Optometry School of Biomedical Engineering Wenzhou Medical University Wenzhou 325035 China
| | - Maricela Ramirez
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Feng Li
- Center for Bioenergetics Houston Methodist Academic Institute Houston TX 77030 USA
| | - Zheng Li
- Center for Bioenergetics Houston Methodist Academic Institute Houston TX 77030 USA
| | - Kenji Yokoi
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Xuewu Liu
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Elizabeth A Mittendorf
- Department of Surgery Brigham and Women's Hospital Boston MA 02115 USA
- Breast Oncology Program Dana-Farber/Brigham and Women's Cancer Center Boston MA 02115 USA
| | - Mauro Ferrari
- Department of Pharmaceutics School of Pharmacy University of Washington Seattle WA 98195 USA
| | - Haifa Shen
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Houston Methodist Cancer Center Houston TX 77030 USA
- Department of Cell and Developmental Biology Weill Cornell Medical College New York NY 10065 USA
| |
Collapse
|
31
|
Liu ZZ, Yang YJ, Zhou CK, Yan SQ, Ma K, Gao Y, Chen W. STING Contributes to Host Defense Against Staphylococcus aureus Pneumonia Through Suppressing Necroptosis. Front Immunol 2021; 12:636861. [PMID: 34135886 PMCID: PMC8202078 DOI: 10.3389/fimmu.2021.636861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
STING (Stimulator of interferon genes) is known as an important adaptor protein or direct sensor in the detection of nucleotide originating from pathogens or the host. The implication of STING during pulmonary microbial infection remains unknown to date. Herein, we showed that STING protected against pulmonary S.aureus infection by suppressing necroptosis. STING deficiency resulted in increased mortality, more bacteria burden in BALF and lungs, severe destruction of lung architecture, and elevated inflammatory cells infiltration and inflammatory cytokines secretion. STING deficiency also had a defect in bacterial clearance, but did not exacerbate pulmonary inflammation during the early stage of infection. Interestingly, TUNEL staining and LDH release assays showed that STING-/- mice had increased cell death than WT mice. We further demonstrated that STING-/- mice had decreased number of macrophages accompanied by increased dead macrophages. Our in vivo and in vitro findings further demonstrated this cell death as necroptosis. The critical role of necroptosis was detected by the fact that MLKL-/- mice exhibited decreased macrophage death and enhanced host defense to S.aureus infection. Importantly, blocking necroptosis activation rescued host defense defect against S.aureus pneumonia in STING-/- mice. Hence, these results reveal an important role of STING in suppressing necroptosis activation to facilitate early pathogen control during pulmonary S.aureus infection.
Collapse
Affiliation(s)
- Zhen-Zhen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cheng-Kai Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shi-Qing Yan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
32
|
Kirk SG, Murphy PR, Wang X, Cash CJ, Barley TJ, Bowman BA, Batty AJ, Ackerman WE, Zhang J, Nelin LD, Hafner M, Liu Y. Knockout of MAPK Phosphatase-1 Exaggerates Type I IFN Response during Systemic Escherichia coli Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:2966-2979. [PMID: 34039638 DOI: 10.4049/jimmunol.2001468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
We have previously shown that Mkp-1-deficient mice produce elevated TNF-α, IL-6, and IL-10 following systemic Escherichia coli infection, and they exhibited increased mortality, elevated bacterial burden, and profound metabolic alterations. To understand the function of Mkp-1 during bacterial infection, we performed RNA-sequencing analysis to compare the global gene expression between E. coli-infected wild-type and Mkp-1 -/- mice. A large number of IFN-stimulated genes were more robustly expressed in E. coli-infected Mkp-1 -/- mice than in wild-type mice. Multiplex analysis of the serum cytokine levels revealed profound increases in IFN-β, IFN-γ, TNF-α, IL-1α and β, IL-6, IL-10, IL-17A, IL-27, and GMSF levels in E. coli-infected Mkp-1 -/- mice relative to wild-type mice. Administration of a neutralizing Ab against the receptor for type I IFN to Mkp-1 -/- mice prior to E. coli infection augmented mortality and disease severity. Mkp-1 -/- bone marrow-derived macrophages (BMDM) produced higher levels of IFN-β mRNA and protein than did wild-type BMDM upon treatment with LPS, E. coli, polyinosinic:polycytidylic acid, and herring sperm DNA. Augmented IFN-β induction in Mkp-1 -/- BMDM was blocked by a p38 inhibitor but not by an JNK inhibitor. Enhanced Mkp-1 expression abolished IFN-β induction by both LPS and E. coli but had little effect on the IFN-β promoter activity in LPS-stimulated RAW264.7 cells. Mkp-1 deficiency did not have an overt effect on IRF3/7 phosphorylation or IKK activation but modestly enhanced IFN-β mRNA stability in LPS-stimulated BMDM. Our results suggest that Mkp-1 regulates IFN-β production primarily through a p38-mediated mechanism and that IFN-β plays a beneficial role in E. coli-induced sepsis.
Collapse
Affiliation(s)
- Sean G Kirk
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Parker R Murphy
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Charles J Cash
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Timothy J Barley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Bridget A Bowman
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Abel J Batty
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
33
|
Liu ZZ, Yang YJ, Zhou FH, Ma K, Lin XQ, Yan SQ, Gao Y, Chen W. GSDMD contributes to host defence against Staphylococcus aureus skin infection by suppressing the Cxcl1-Cxcr2 axis. Vet Res 2021; 52:71. [PMID: 34011393 PMCID: PMC8132424 DOI: 10.1186/s13567-021-00937-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Gasdermin D (GSDMD), a member of the gasdermin protein family, is a caspase substrate, and its cleavage is required for pyroptosis and IL-1β secretion. To date, the role and regulatory mechanism of GSDMD during cutaneous microbial infection remain unclear. Here, we showed that GSDMD protected against Staphylococcus aureus skin infection by suppressing Cxcl1–Cxcr2 signalling. GSDMD deficiency resulted in larger abscesses, more bacterial colonization, exacerbated skin damage, and increased inflammatory cell infiltration. Although GSDMD deficiency resulted in defective IL-1β production, the critical role of IL-1β was counteracted by the fact that Caspase-1/11 deficiency also resulted in less IL-1β production but did not aggravate disease severity during S. aureus skin infection. Interestingly, GSDMD-deficient mice had increased Cxcl1 secretion accompanied by increased recruitment of neutrophils, whereas Caspase-1/11-deficient mice presented similar levels of Cxcl1 and neutrophils as wild-type mice. Moreover, the absence of GSDMD promoted Cxcl1 secretion in bone marrow-derived macrophages induced by live, dead, or different strains of S. aureus. Corresponding to higher transcription and secretion of Cxcl1, enhanced NF-κB activation was shown in vitro and in vivo in the absence of GSDMD. Importantly, inhibiting the Cxcl1–Cxcr2 axis with a Cxcr2 inhibitor or anti-Cxcl1 blocking antibody rescued host defence defects in the GSDMD-deficient mice. Hence, these results revealed an important role of GSDMD in suppressing the Cxcl1–Cxcr2 axis to facilitate pathogen control and prevent tissue damage during cutaneous S. aureus infection.
Collapse
Affiliation(s)
- Zhen-Zhen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng-Hua Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ke Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Qi Lin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shi-Qing Yan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
34
|
Griffin DR, Archang MM, Kuan CH, Weaver WM, Weinstein JS, Feng AC, Ruccia A, Sideris E, Ragkousis V, Koh J, Plikus MV, Di Carlo D, Segura T, Scumpia PO. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. NATURE MATERIALS 2021; 20:560-569. [PMID: 33168979 PMCID: PMC8005402 DOI: 10.1038/s41563-020-00844-w] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/25/2020] [Indexed: 05/15/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are flowable, in situ crosslinked, microporous scaffolds composed of microgel building blocks and were previously shown to accelerate wound healing. To promote more extensive tissue ingrowth before scaffold degradation, we aimed to slow MAP degradation by switching the chirality of the crosslinking peptides from L- to D-amino acids. Unexpectedly, despite showing the predicted slower enzymatic degradation in vitro, D-peptide crosslinked MAP hydrogel (D-MAP) hastened material degradation in vivo and imparted significant tissue regeneration to healed cutaneous wounds, including increased tensile strength and hair neogenesis. MAP scaffolds recruit IL-33 type 2 myeloid cells, which is amplified in the presence of D-peptides. Remarkably, D-MAP elicited significant antigen-specific immunity against the D-chiral peptides, and an intact adaptive immune system was required for the hydrogel-induced skin regeneration. These findings demonstrate that the generation of an adaptive immune response from a biomaterial is sufficient to induce cutaneous regenerative healing despite faster scaffold degradation.
Collapse
Affiliation(s)
- Donald R Griffin
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, USA
- Departments of Biomedical Engineering and Chemical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Maani M Archang
- Bioengineering Department, University of California, Los Angeles, CA, USA
| | - Chen-Hsiang Kuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Westbrook M Weaver
- Bioengineering Department, University of California, Los Angeles, CA, USA
- Tempo Therapeutics, San Diego, CA, USA
| | - Jason S Weinstein
- Department of Medicine and Center for Immunity & Inflammation, Rutgers -New Jersey Medical School, Newark, NJ, USA
| | - An Chieh Feng
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Amber Ruccia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elias Sideris
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, USA
| | - Vasileios Ragkousis
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jaekyung Koh
- Bioengineering Department, University of California, Los Angeles, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| | - Dino Di Carlo
- Bioengineering Department, University of California, Los Angeles, CA, USA
| | - Tatiana Segura
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, USA.
- Departments of Biomedical Engineering, Neurology, Dermatology, Duke University, Durham, NC, USA.
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Dermatology, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Peignier A, Parker D. Impact of Type I Interferons on Susceptibility to Bacterial Pathogens. Trends Microbiol 2021; 29:823-835. [PMID: 33546974 DOI: 10.1016/j.tim.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022]
Abstract
Interferons (IFNs) are a broad class of cytokines that have multifaceted roles. Type I IFNs have variable effects when it comes to host susceptibility to bacterial infections, that is, the resulting outcomes can be either protective or deleterious. The mechanisms identified to date have been wide and varied between pathogens. In this review, we discuss recent literature that provides new insights into the mechanisms of how type I IFN signaling exerts its effects on the outcome of infection from the host's point of view.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
36
|
Liao W, Du C, Wang J. The cGAS-STING Pathway in Hematopoiesis and Its Physiopathological Significance. Front Immunol 2020; 11:573915. [PMID: 33329537 PMCID: PMC7734179 DOI: 10.3389/fimmu.2020.573915] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cytosolic DNA sensing is a fundamental mechanism by which organisms handle various stresses, including infection and genotoxicity. The hematopoietic system is sensitive to stresses, and hematopoietic changes are often rapid and the first response to stresses. Based on the transcriptome database, cytosolic DNA sensing pathways are widely expressed in the hematopoietic system, and components of these pathways may be expressed at even higher levels in hematopoietic stem and progenitor cells (HSPCs) than in their certain progeny immune cells. Recent studies have described a previously unrecognized role for cytosolic DNA sensing pathways in the regulation of hematopoiesis under both homeostatic and stress conditions. In particular, the recently discovered cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a critical modulator of hematopoiesis. Perturbation of the cGAS-STING pathway in HSPCs may be involved in the pathogenesis of hematopoietic disorders, autoimmune diseases, and inflammation-related diseases and may be candidate therapeutic targets. In this review, we focus on the recent findings of the cGAS-STING pathway in the regulation of hematopoiesis, and its physiopathological significance including its implications in diseases and therapeutic potential.
Collapse
Affiliation(s)
- Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
37
|
Ryu C, Walia A, Ortiz V, Perry C, Woo S, Reeves BC, Sun H, Winkler J, Kanyo JE, Wang W, Vukmirovic M, Ristic N, Stratton EA, Meena SR, Minasyan M, Kurbanov D, Liu X, Lam TT, Farina G, Gomez JL, Gulati M, Herzog EL. Bioactive Plasma Mitochondrial DNA Is Associated With Disease Progression in Scleroderma-Associated Interstitial Lung Disease. Arthritis Rheumatol 2020; 72:1905-1915. [PMID: 32602227 PMCID: PMC8081728 DOI: 10.1002/art.41418] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is characterized by variable clinical outcomes, activation of innate immune pattern-recognition receptors (PRRs), and accumulation of α-smooth muscle actin (α-SMA)-expressing myofibroblasts. The aim of this study was to identify an association between these entities and mitochondrial DNA (mtDNA), an endogenous ligand for the intracellular DNA-sensing PRRs Toll-like receptor 9 (TLR-9) and cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING), which has yet to be determined. METHODS Human lung fibroblasts (HLFs) from normal donors and SSc-ILD explants were treated with synthetic CpG DNA and assayed for α-SMA expression and extracellular mtDNA using quantitative polymerase chain reaction for the human MT-ATP6 gene. Plasma MT-ATP6 concentrations were evaluated in 2 independent SSc-ILD cohorts and demographically matched controls. The ability of SSc-ILD and control plasma to induce TLR-9 and cGAS/STING activation was evaluated with commercially available HEK 293 reporter cells. Plasma concentrations of type I interferons (IFNs), interleukin-6 (IL-6), and oxidized DNA were measured using electrochemiluminescence and enzyme-linked immunosorbent assay-based methods. Extracellular vesicles (EVs) precipitated from plasma were evaluated for MT-ATP6 concentrations and proteomics via liquid chromatography mass spectrometry. RESULTS Normal HLFs and SSc-ILD fibroblasts developed increased α-SMA expression and MT-ATP6 release following CpG stimulation. Plasma mtDNA concentrations were increased in the 2 SSc-ILD cohorts, reflective of ventilatory decline, and were positively associated with both TLR-9 and cGAS/STING activation as well as type I IFN and IL-6 expression. Plasma mtDNA was not oxidized and was conveyed by EVs displaying a proteomics profile consistent with a multicellular origin. CONCLUSION These findings demonstrate a previously unrecognized connection between EV-encapsulated mtDNA, clinical outcomes, and intracellular DNA-sensing PRR activation in SSc-ILD. Further study of these interactions could catalyze novel mechanistic and therapeutic insights into SSc-ILD and related disorders.
Collapse
Affiliation(s)
- Changwan Ryu
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Anjali Walia
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Vivian Ortiz
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Carrighan Perry
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Sam Woo
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Benjamin C. Reeves
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Huanxing Sun
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Julia Winkler
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Jean E. Kanyo
- Yale MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT
| | - Weiwei Wang
- Yale MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT
| | - Milica Vukmirovic
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Nicholas Ristic
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Eric A. Stratton
- Boston University School of Medicine, Department of Rheumatology
| | - Sita Ram Meena
- Yale University School of Medicine, Department of Cellular and Molecular Physiology
| | - Maksym Minasyan
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Daniel Kurbanov
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Xinran Liu
- Yale University School of Medicine, Department of Cell Biology, Center for Cellular and Molecular Imaging
| | - TuKiet T. Lam
- Yale MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry
| | | | - Jose L. Gomez
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Mridu Gulati
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
| | - Erica L. Herzog
- Yale University School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine
- Yale University School of Medicine, Department of Pathology
| |
Collapse
|
38
|
Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Sci Rep 2020; 10:18293. [PMID: 33106559 PMCID: PMC7589478 DOI: 10.1038/s41598-020-75108-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial-derived RNA and DNA can function as ligands for intracellular receptor activation and induce downstream signaling to modulate the host response to bacterial infection. The mechanisms underlying the secretion of immunomodulatory RNA and DNA by pathogens such as Staphylococcus aureus and their delivery to intracellular host cell receptors are not well understood. Recently, extracellular membrane vesicle (MV) production has been proposed as a general secretion mechanism that could facilitate the delivery of functional bacterial nucleic acids into host cells. S. aureus produce membrane-bound, spherical, nano-sized, MVs packaged with a select array of bioactive macromolecules and they have been shown to play important roles in bacterial virulence and in immune modulation through the transmission of biologic signals to host cells. Here we show that S. aureus secretes RNA and DNA molecules that are mostly protected from degradation by their association with MVs. Importantly, we demonstrate that MVs can be delivered into cultured macrophage cells and subsequently stimulate a potent IFN-β response in recipient cells via activation of endosomal Toll-like receptors. These findings advance our understanding of the mechanisms by which bacterial nucleic acids traffic extracellularly to trigger the modulation of host immune responses.
Collapse
|
39
|
Elmanfi S, Sintim HO, Zhou J, Gürsoy M, Könönen E, Gürsoy UK. Activation of Gingival Fibroblasts by Bacterial Cyclic Dinucleotides and Lipopolysaccharide. Pathogens 2020; 9:E792. [PMID: 32993127 PMCID: PMC7600373 DOI: 10.3390/pathogens9100792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on other periodontal cell types, such as gingival fibroblasts, remain to be clarified. The present aim was to examine the independent and combined effects of these cyclic dinucleotides and LPS on interleukin (IL) and matrix metalloproteinase (MMP) response of HGFs. The cells were incubated with c-di-GMP and c-di-AMP, either in the presence or absence of Porphyromonas gingivalis LPS, for 2 h and 24 h. The levels of IL-8, -10, and -34, and MMP-1, -2, and -3 secreted were measured by the Luminex technique. LPS alone or together with cyclic dinucleotides elevated IL-8 levels. IL-10 levels were significantly increased in the presence of c-di-GMP and LPS after 2 h but disappeared after 24 h of incubation. Concurrent treatment of c-di-AMP and LPS elevated MMP-1 levels, whereas c-di-GMP with LPS suppressed MMP-2 levels but increased MMP-3 levels. To conclude, we produce evidence that cyclic dinucleotides interact with LPS-mediated early response of gingival fibroblasts, while late cellular response is mainly regulated by LPS.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Jie Zhou
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
40
|
Hsieh WY, Zhou QD, York AG, Williams KJ, Scumpia PO, Kronenberger EB, Hoi XP, Su B, Chi X, Bui VL, Khialeeva E, Kaplan A, Son YM, Divakaruni AS, Sun J, Smale ST, Flavell RA, Bensinger SJ. Toll-Like Receptors Induce Signal-Specific Reprogramming of the Macrophage Lipidome. Cell Metab 2020; 32:128-143.e5. [PMID: 32516576 PMCID: PMC7891175 DOI: 10.1016/j.cmet.2020.05.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/07/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Macrophages reprogram their lipid metabolism in response to activation signals. However, a systems-level understanding of how different pro-inflammatory stimuli reshape the macrophage lipidome is lacking. Here, we use complementary "shotgun" and isotope tracer mass spectrometry approaches to define the changes in lipid biosynthesis, import, and composition of macrophages induced by various Toll-like receptors (TLRs) and inflammatory cytokines. "Shotgun" lipidomics data revealed that different TLRs and cytokines induce macrophages to acquire distinct lipidomes, indicating their specificity in reshaping lipid composition. Mechanistic studies showed that differential reprogramming of lipid composition is mediated by the opposing effects of MyD88- and TRIF-interferon-signaling pathways. Finally, we applied these insights to show that perturbing reprogramming of lipid composition can enhance inflammation and promote host defense to bacterial challenge. These studies provide a framework for understanding how inflammatory stimuli reprogram lipid composition of macrophages while providing a knowledge platform to exploit differential lipidomics to influence immunity.
Collapse
Affiliation(s)
- Wei-Yuan Hsieh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Quan D Zhou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Autumn G York
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Philip O Scumpia
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Eliza B Kronenberger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xen Ping Hoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Baolong Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xun Chi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Viet L Bui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Elvira Khialeeva
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amber Kaplan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Young Min Son
- Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jie Sun
- Department of Immunology, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
de Oliveira Mann CC, Orzalli MH, King DS, Kagan JC, Lee ASY, Kranzusch PJ. Modular Architecture of the STING C-Terminal Tail Allows Interferon and NF-κB Signaling Adaptation. Cell Rep 2020; 27:1165-1175.e5. [PMID: 31018131 PMCID: PMC7733315 DOI: 10.1016/j.celrep.2019.03.098] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/15/2019] [Accepted: 03/26/2019] [Indexed: 01/28/2023] Open
Abstract
Stimulator of interferon genes (STING) is a key regulator of type I interferon and pro-inflammatory responses during infection, cellular stress, and cancer. Here, we reveal a mechanism for how STING balances activation of IRF3- and NF-κB-dependent transcription and discover that acquisition of discrete signaling modules in the vertebrate STING C-terminal tail (CTT) shapes downstream immunity. As a defining example, we identify a motif appended to the CTT of zebrafish STING that inverts the typical vertebrate signaling response and results in dramatic NF-κB activation and weak IRF3-interferon signaling. We determine a co-crystal structure that explains how this CTT sequence recruits TRAF6 as a new binding partner and demonstrate that the minimal motif is sufficient to reprogram human STING and immune activation in macrophage cells. Together, our results define the STING CTT as a linear signaling hub that can acquire modular motifs to readily adapt downstream immunity. de Oliveira Mann et al. define a mechanism that allows emergence of a signaling response in an innate immune pathway. Modular motifs in the STING CTT control the strength and specificity of downstream responses, and evolutionary acquisition of new signaling elements is facilitated by the linear arrangement of the CTT.
Collapse
Affiliation(s)
- Carina C de Oliveira Mann
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - David S King
- HHMI Mass Spectrometry Laboratory, University of California, Berkeley, Berkeley, California 94720, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Amy S Y Lee
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
42
|
The role of the adaptor molecule STING during Schistosoma mansoni infection. Sci Rep 2020; 10:7901. [PMID: 32404867 PMCID: PMC7220917 DOI: 10.1038/s41598-020-64788-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Schistosomiasis is a human parasitic disease responsible for serious consequences for public health, as well as severe socioeconomic impacts in developing countries. Here, we provide evidence that the adaptor molecule STING plays an important role in Schistosoma mansoni infection. S. mansoni DNA is sensed by cGAS leading to STING activation in murine embryonic fibroblasts (MEFs). Sting-/- and C57BL/6 (WT) mice were infected with schistosome cercariae in order to assess parasite burden and liver pathology. Sting-/- mice showed worm burden reduction but no change in the number of eggs or granuloma numbers and area when compared to WT animals. Immunologically, a significant increase in IFN-γ production by the spleen cells was observed in Sting-/- animals. Surprisingly, Sting-/- mice presented an elevated percentage of neutrophils in lungs, bronchoalveolar lavage, and spleens. Moreover, Sting-/- neutrophils exhibited increased survival rate, but similar ability to kill schistosomula in vitro when stimulated with IFN-γ when compared to WT cells. Finally, microbiota composition was altered in Sting-/- mice, revealing a more inflammatory profile when compared to WT animals. In conclusion, this study demonstrates that STING signaling pathway is important for S. mansoni DNA sensing and the lack of this adaptor molecule leads to enhanced resistance to infection.
Collapse
|
43
|
Skopelja-Gardner S, An J, Tai J, Tanaka L, Sun X, Hermanson P, Baum R, Kawasumi M, Green R, Gale M, Kalus A, Werth VP, Elkon KB. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci Rep 2020; 10:7908. [PMID: 32404939 PMCID: PMC7220927 DOI: 10.1038/s41598-020-64865-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Most systemic lupus erythematosus (SLE) patients are photosensitive and ultraviolet B light (UVB) exposure worsens cutaneous disease and precipitates systemic flares of disease. The pathogenic link between skin disease and systemic exacerbations in SLE remains elusive. In an acute model of UVB-triggered inflammation, we observed that a single UV exposure triggered a striking IFN-I signature not only in the skin, but also in the blood and kidneys. The early IFN-I signature was significantly higher in female compared to male mice. The early IFN-I response in the skin was almost entirely, and in the blood partly, dependent on the presence of cGAS, as was skin inflammatory cell infiltration. Inhibition of cGAMP hydrolysis augmented the UVB-triggered IFN-I response. UVB skin exposure leads to cGAS-activation and both local and systemic IFN-I signature and could contribute to acute flares of disease in susceptible subjects such as patients with SLE.
Collapse
Affiliation(s)
| | - Jie An
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Joyce Tai
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Lena Tanaka
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Xizhang Sun
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Rebecca Baum
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Masaoki Kawasumi
- Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Richard Green
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Andrea Kalus
- Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Victoria P Werth
- Dermatology Section, Philadelphia Veterans Affairs Medical Center, Philadelphia, USA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Cruciani M, Sandini S, Etna MP, Giacomini E, Camilli R, Severa M, Rizzo F, Bagnoli F, Hiscott J, Coccia EM. Differential Responses of Human Dendritic Cells to Live or Inactivated Staphylococcus aureus: Impact on Cytokine Production and T Helper Expansion. Front Immunol 2019; 10:2622. [PMID: 31781115 PMCID: PMC6861420 DOI: 10.3389/fimmu.2019.02622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding Staphylococcus aureus (S. aureus)-host immune system interaction is crucial to meet the tremendous medical need associated with this life-threatening bacterial infection. Given the crucial role of dendritic cells (DC) in dictating immune responses upon microbial challenge, we investigated how the bacterial viability and the conservation of structural integrity influence the response of human DC to S. aureus. To this end, human primary DC were stimulated with the methicillin-resistant S. aureus USA300 live strain, USA300 inactivated by heat (HI), ultraviolet irradiation (UVI), or paraformaldehyde treatment (PFAI) and subsequently analyzed for cell phenotype and immune-modulatory properties. Although no differences in terms of DC viability and maturation were observed when DC were stimulated with live or inactivated bacteria, the production of IL-12, IL-23, and other cytokines differed significantly. The Th1 and Th17 expansion was also more pronounced in response to live vs. inactivated S. aureus. Interestingly, cytokine production in DC treated with live and inactivated USA300 required phagocytosis, whereas blocking endosomal Toll-like receptor signaling mainly reduced the cytokine release by live and HI USA300. A further analysis of IFN-β signaling revealed the induction of a cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING)-independent and IRF3-dependent signaling pathway(s) in UVI-stimulated DC. This study underscores the capacity of human DC to discriminate between live and inactivated S. aureus and, further, indicates that DC may represent a valuable experimental setting to test different inactivation methods with regard to the retention of S. aureus immunoregulatory properties. These and further insights may be useful for the development of novel therapeutic and prophylactic anti-S. aureus vaccine strategies.
Collapse
Affiliation(s)
- Melania Cruciani
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena P Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Camilli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - John Hiscott
- Pasteur Laboratory, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Eliana M Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
45
|
Ceccarelli F, Perricone C, Olivieri G, Cipriano E, Spinelli FR, Valesini G, Conti F. Staphylococcus aureus Nasal Carriage and Autoimmune Diseases: From Pathogenic Mechanisms to Disease Susceptibility and Phenotype. Int J Mol Sci 2019; 20:ijms20225624. [PMID: 31717919 PMCID: PMC6888194 DOI: 10.3390/ijms20225624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
The role of infective agents in autoimmune diseases (ADs) development has been historically investigated, but in the last years has been strongly reconsidered due to the interest in the link between the microbiome and ADs. Together with the gut, the skin microbiome is characterized by the presence of several microorganisms, potentially influencing innate and adaptive immune response. S. aureus is one of the most important components of the skin microbiome that can colonize anterior nares without clinical manifestations. Data from the literature demonstrates a significantly higher prevalence of nasal colonization in ADs patients in comparison with healthy subjects, suggesting a possible role in terms of disease development and phenotypes. Thus, in the present narrative review we focused on the mechanisms by which S. aureus could influence the immune response and on its relationship with ADs, in particular granulomatosis with polyangiitis, rheumatoid arthritis, and systemic lupus erythematosus.
Collapse
|
46
|
Musilova J, Mulcahy ME, Kuijk MM, McLoughlin RM, Bowie AG. Toll-like receptor 2-dependent endosomal signaling by Staphylococcus aureus in monocytes induces type I interferon and promotes intracellular survival. J Biol Chem 2019; 294:17031-17042. [PMID: 31558608 PMCID: PMC6851302 DOI: 10.1074/jbc.ra119.009302] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Pathogen activation of innate immune pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) stimulates cellular signaling pathways. This often leads to outcomes that contribute to pathogen clearance. Alternatively, activation of specific PRR pathways can aid pathogen survival. The human pathogen Staphylococcus aureus is a case in point, employing strategies to escape innate immune recognition and killing by the host. As for other bacteria, PRR-stimulated type I interferon (IFN-I) induction has been proposed as one such immune escape pathway that may favor S. aureus. Cell wall components of S. aureus elicit TLR2-dependent cellular responses, but the exact signaling pathways activated by S. aureus–TLR2 engagement and the consequences of their activation for the host and bacterium are not fully known. We previously showed that TLR2 activates both a cytoplasmic and an endosome-dependent signaling pathway, the latter leading to IFN-I production. Here, we demonstrate that S. aureus infection of human monocytes activates a TLR2-dependent endosomal signaling pathway, leading to IFN-I induction. We mapped the signaling components of this pathway and identified roles in IFN-I stimulation for the Toll-interleukin-1 receptor (TIR) adaptor Myd88 adaptor-like (Mal), TNF receptor-associated factor 6 (TRAF6), and IκB kinase (IKK)-related kinases, but not for TRIF-related adaptor molecule (TRAM) and TRAF3. Importantly, monocyte TLR2-dependent endosomal signaling enabled immune escape for S. aureus, because this pathway, but not IFN-I per se, contributed to intracellular bacterial survival. These results reveal a TLR2-dependent mechanism in human monocytes whereby S. aureus manipulates innate immune signaling for its survival in cells.
Collapse
Affiliation(s)
- Jana Musilova
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michelle E Mulcahy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Marieke M Kuijk
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
47
|
Shang L, Deng D, Buskermolen JK, Roffel S, Janus MM, Krom BP, Crielaard W, Gibbs S. Commensal and Pathogenic Biofilms Alter Toll-Like Receptor Signaling in Reconstructed Human Gingiva. Front Cell Infect Microbiol 2019; 9:282. [PMID: 31448244 PMCID: PMC6692492 DOI: 10.3389/fcimb.2019.00282] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
The balance between the host and microbe is pivotal for oral health. A dysbiotic oral microbiome and the subsequent host inflammatory response are causes for the most common dental problems, such as periodontitis and caries. Classically, toll-like receptors (TLRs) are known to play important roles in host-microbe interactions by recognizing pathogens and activating innate immunity. However, emerging evidence suggests that commensals may also exploit TLRs to induce tolerance to the benefit of the host, especially in oral mucosa which is heavily colonized by abundant microbes. How TLRs and downstream signaling events are affected by different oral microbial communities to regulate host responses is still unknown. To compare such human host-microbe interactions in vitro, we exposed a reconstructed human gingiva (RHG) to commensal or pathogenic (gingivitis, cariogenic) multi-species oral biofilms cultured from human saliva. These biofilms contain in vivo like phylogenic numbers and typical bacterial genera. After 24 h biofilm exposure, TLR protein and gene expression of 84 TLR pathway related genes were investigated. Commensal and pathogenic biofilms differentially regulated TLR protein expression. Commensal biofilm up-regulated the transcription of a large group of key genes, which are involved in TLR signaling, including TLR7, the MyD88-dependent pathway (CD14, MyD88, TIRAP, TRAF6, IRAKs), MyD88-independent pathway (TAB1, TBK1, IRF3), and their downstream signaling pathways (NF-κB and MAPK pathways). In comparison, gingivitis biofilm activated fewer genes (e.g., TLR4) and cariogenic biofilm suppressed CD14, IRAK4, and IRF3 transcription. Fluorescence in situ hybridization staining showed the rRNA of the topically applied and invaded bacteria, and histology showed that the biofilms had no obvious detrimental effect on RHG morphology. These results show an important role of TLR signaling pathways in regulating host-microbe interactions: when a sterile gingival tissue is exposed to commensals, a strong immune activation occurs which may prime the host against potential challenges in order to maintain oral host-microbe homeostasis. In contrast, pathogenic biofilms stimulate a weaker immune response which might facilitate immune evasion thus enabling pathogens to penetrate undetected into the tissues.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen Kees Buskermolen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marleen Marga Janus
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bastiaan Philip Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
48
|
Abstract
Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Despite broad literature including basic and translational scientific studies, many gaps in our understanding of host-pathogen interactions remain. In this review, pathogen virulence factors that drive lung infection and injury are discussed in relation to their associated host immune pathways. CAP epidemiology is considered, with a focus on Staphylococcus aureus and Streptococcus pneumoniae as primary pathogens. Bacterial factors involved in nasal colonization and subsequent virulence are illuminated. A particular emphasis is placed on bacterial pore-forming toxins, host cell death, and inflammasome activation. Identified host-pathogen interactions are then examined by linking pathogen factors to aberrant host response pathways in the context of acute lung injury in both primary and secondary infection. While much is known regarding bacterial virulence and host immune responses, CAP management is still limited to mostly supportive care. It is likely that improvements in therapy will be derived from combinatorial targeting of both pathogen virulence factors and host immunomodulation.
Collapse
|
49
|
Glycyrrhizin administration ameliorates Streptococcus aureus-induced acute lung injury. Int Immunopharmacol 2019; 70:504-511. [PMID: 30884430 DOI: 10.1016/j.intimp.2019.02.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Streptococcus aureus (S. aureus)-induced acute lung injury (ALI) has a high incidence of mortality clinically. Glycyrrhizin (GL) is a traditional Chinese medicine for anti-inflammatory. However, the role of GL in S. aureus-induced ALI has not previously been elucidated. GL (25 mg/kg i.p.) administration exerts potent anti-inflammatory effect in this model. GL administration significantly alleviated inflammation via reduction of multiple cytokines (serum and lung tissue IL-6, TNF-α, IL-8, IL-1β and HMGB1) and immune cells (lung tissue neutrophil and macrophage infiltration). Additionally, we measured the signaling pathways (NF-kB and MARKs) and inflammasome dependent pyroptosis. The results suggest that GL inhibits NF-kB, p38/ERK pathways and pyroptosis. Furthermore, we used different inhibitors to treat infected-A549 cells and found that BMS-582949 (a p38 inhibitor) is the most effective inhibitor for inhibiting pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) production, which suggests that p38 signaling pathway might be the main pathway for S. aureus-induced inflammation. Collectively, the data demonstrates that GL could mitigate inflammation after S. aureus infection.
Collapse
|
50
|
Protective immunity in recurrent Staphylococcus aureus infection reflects localized immune signatures and macrophage-conferred memory. Proc Natl Acad Sci U S A 2018; 115:E11111-E11119. [PMID: 30297395 DOI: 10.1073/pnas.1808353115] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and skin structure infection (SSSI), a primary portal of entry for invasive infection. Our prior studies discovered a role for protective innate memory against recurrent methicillin-resistant S. aureus (MRSA) SSSI. In the present study, the dynamics and mechanisms of this response were explored in recurrent SSSI in WT mice. Priming by prior infection reduced skin lesion severity and MRSA burden, and protected against dissemination at day 7 but not day 2. Cytokine and cellular signatures in SSSI differed at day 2 versus 7, and were distinct in skin versus blood or spleen. Cytokines associated with protection in skin included increased IL-17, IL-6, monokine inducible by IFN-γ (MIG), and RANTES, while increased IP-10 correlated with protection from dissemination. Cellular signatures of protection included increased Th17, M1 macrophage, and dendritic cell populations in abscesses, and total macrophages in lymph nodes. Priming potentiated S. aureus-specific phagocytic killing by bone marrow-derived macrophages in vitro, and their adoptive transfer into naïve skin afforded protective efficacy in vivo. Present findings indicate that protective immunity in recurrent S. aureus infection is locally targeted, and involves specific memory conferred by macrophages. These insights provide targets for vaccine and immunotherapeutic development against MRSA.
Collapse
|