1
|
Barmettler K, Waser S, Stephan R. Microbiological Quality of Plant-based Meat-alternative Products Collected at Retail Level in Switzerland. J Food Prot 2025; 88:100402. [PMID: 39542106 DOI: 10.1016/j.jfp.2024.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
As the interest in plant-based alternative food products has increased significantly in the last years, it is also important to investigate these products regarding microbiological aspects. The aim of this study was to assess the microbiological quality and the occurrence of selected foodborne pathogens in plant-based meat alternative products (PBMA) collected at retail level in Switzerland. A total of 100 PBMA (84 vegan and 16 vegetarian products) was analyzed qualitatively for the presence of Salmonella, Listeria monocytogenes and quantitatively for Staphylococcus aureus, Bacillus cereus group members, Enterobacteriaceae, and the total viable count. Furthermore, pH measurements were carried out and the aw-value was determined. Isolates were further analyzed with Whole Genome Sequencing. The total viable count before the expiration date was between <2 log and 7 log CFU/g (median: 5.97 log CFU/g). In six (6%) samples, Enterobacteriaceae with 2 log to 3 log CFU/g were detected. No Salmonella and no Listeria monocytogenes were detected. However, seven products (7%) were contaminated with other Listeria spp. (six L. innocua and one L. seeligeri). Further findings were two (2%) Staphylococcus aureus ST8 with the presence of selx and tsst-1 genes, and five (5%) Bacillus cereus group members (three B. paranthracis, one B. cereus sensu stricto, and one B. cytotoxicus) which all were diarrhea-associated strains. This study provides data that are relevant for HACCP concepts of companies that produce plant-based meat alternative products and helps to define microbiological parameters that should be included when testing such products.
Collapse
Affiliation(s)
- Karen Barmettler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - Silja Waser
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
2
|
Zheng J, Liu L, Chen G, Xu W, Huang Y, Lei G, Huang W, Lv H, Yang X. Molecular Characteristics of Staphylococcus aureus Isolates form Food-Poisoning Outbreaks (2011-2022) in Sichuan, China. Foodborne Pathog Dis 2024; 21:323-330. [PMID: 38237168 DOI: 10.1089/fpd.2023.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Staphylococcal food poisoning (SFP) is one of the most common foodborne diseases in the world. This study aimed to investigate the molecular epidemiological characteristics of Staphylococcus aureus isolated from SFP. A total of 103 S. aureus isolates were obtained during 2011-2022 in Sichuan, southwest China. All isolates were tested for the genomic characteristics and phylogenetic analysis by performing whole-genome sequencing. Multilocus sequence typing analysis showed 17 multilocus sequence types (STs), ST7 (23.30%), ST5 (22.33%), and ST6 (16.50%) being the most common. A total of 45 virulence genes were detected, 22 of which were staphylococcal enterotoxin (SE) genes. Among the identified SE genes, selX exhibited the highest prevalence (86.4%). All isolates carried at least one SE gene. The results of the antimicrobial resistance (AMR) gene detection revealed 41 AMR genes of 12 classes. β-lactam resistance genes (blal, blaR1, blaZ) and tetracycline resistance gene (tet(38)) exhibited a higher prevalence rate. Core genome single nucleotide polymorphism showed phylogenetic clustering of the isolates with the same region, year, and ST. The results indicated that the SFP isolates in southwest of China harbored multiple toxin and resistance genes, with a high prevalence of new SEs. Therefore, it is important to monitor the antimicrobial susceptibility and SE of S. aureus to reduce the potential risks to public health.
Collapse
Affiliation(s)
- Jie Zheng
- College of Public Health, Southwest Medical University, Luzhou, China
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Li Liu
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Guo Chen
- Center for Disease Control and Prevention of Mianyang City, Mianyang, China
| | - Wenping Xu
- Center for Disease Control and Prevention of Luzhou City, Luzhou, China
| | - Yulan Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Hong Lv
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Xiaorong Yang
- College of Public Health, Southwest Medical University, Luzhou, China
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Chan JYH, Clow F, Pearson V, Langley RJ, Fraser JD, Radcliff FJ. Feasibility of using a combination of staphylococcal superantigen-like proteins 3, 7 and 11 in a fusion vaccine for Staphylococcus aureus. Immunol Cell Biol 2024; 102:365-380. [PMID: 38572664 DOI: 10.1111/imcb.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.
Collapse
Affiliation(s)
- Janlin Ying Hui Chan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Victoria Pearson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Zhang P, Zhang Y, Ruan F, Chang G, Lü Z, Tian L, Ji H, Zhou T, Wang X. Genotypic diversity of staphylococcal enterotoxin B gene (seb) and its association with molecular characterization and antimicrobial resistance of Staphylococcus aureus from retail food. Int J Food Microbiol 2024; 408:110444. [PMID: 37862853 DOI: 10.1016/j.ijfoodmicro.2023.110444] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
To investigate the expression pattern of staphylococcal enterotoxin B (SEB) in food and the genotypic diversity of SEB-encoding gene in association with molecular characteristics and antimicrobial resistance of S. aureus, 498 isolates from retail food were screened for seb gene and detected for SEB production in S. aureus. In addition, the seb nucleotide sequences, virulence genes, resistance genes, antimicrobial susceptibility and molecular characteristics of S. aureus were examined. A total of 45 (9.0 %) seb-positive S. aureus strains were identified, all of which expressed SEB. The detection rate of SEB-production strains was significantly higher from dairy-related sources than those from other sources (P < 0.05). In vitro simulations showed that S. aureus could grow and express SEB in both milk and pork, with SEB expression exceeding 20 ng/g after 1 day of storage at room temperature. There were 2 distinct SEB genotyping (SEB1 and SEB2) in the SEB amino acid sequences of the 45 isolates, including 4 amino acid differences (Ala-13Val, Ser14Ala, Asn192Ser, and Met222Leu). There was no significant difference (P > 0.05) in SEB production between SEB1 and SEB2 genotyping strains. Based on MLST clustering analysis, the same molecular type strains were found to have the same SEB genotyping, virulence gene profile, resistance gene profile and drug resistance profile. Among them, the dominant molecular types of SEB1 and SEB2 strains were CC1-ST188-t189 and CC59-ST59-t437, respectively. Compared to the CC1-ST188-t189 clonal strain, the CC59-ST59-t437 clonal strain carried a higher number of virulence and resistance genes and exhibited a broader resistance profile. Therefore, understanding the characteristics of the strains and their expression patterns in food can be effective in preventing food poisoning incidents.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuqian Ruan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
6
|
Blicharz L, Żochowski M, Szymanek-Majchrzak K, Czuwara J, Goldust M, Skowroński K, Młynarczyk G, Olszewska M, Samochocki Z, Rudnicka L. Enterotoxin Gene Cluster and selX Are Associated with Atopic Dermatitis Severity-A Cross-Sectional Molecular Study of Staphylococcus aureus Superantigens. Cells 2022; 11:cells11233921. [PMID: 36497178 PMCID: PMC9737390 DOI: 10.3390/cells11233921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus superantigens (SAgs) have been reported to aggravate atopic dermatitis. However, comprehensive analyses of these molecules in multiple microniches are lacking. The present study involved 50 adult patients with active atopic dermatitis. S. aureus was isolated from the lesional skin, nonlesional skin, and anterior nares. Multiplex-PCR was performed to identify genes encoding (1) selX (core genome); (2) seg, selI, selM, selN, selO, selU (enterotoxin gene cluster, EGC); and (3) sea, seb, sec, sed, see, tstH (classic SAgs encoded on other mobile genetic elements). The results were correlated to clinical parameters of the study group. selx and EGC were the most prevalent in all microniches. The number of SAg-encoding genes correlated between the anterior nares and nonlesional skin, and between the nonlesional and lesional skin. On lesional skin, the total number of SAg genes correlated with disease severity (total and objective SCORAD, intensity, erythema, edema/papulation, lichenification and dryness). Linear regression revealed that AD severity was predicted only by selx and EGC. This study revealed that selX and EGC are associated with atopic dermatitis severity. Anterior nares and nonlesional skin could be reservoirs of SAg-positive S. aureus. Restoring the physiological microbiome could reduce the SAg burden and alleviate syndromes of atopic dermatitis.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Maciej Żochowski
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | | | - Joanna Czuwara
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
- Correspondence:
| | - Mohamad Goldust
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT 06519, USA
| | | | - Grażyna Młynarczyk
- Department of Medical Microbiology, Medial University of Warsaw, 02-004 Warsaw, Poland
| | | | - Zbigniew Samochocki
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| |
Collapse
|
7
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
8
|
First Genome-Based Characterisation and Staphylococcal Enterotoxin Production Ability of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Strains Isolated from Ready-to-Eat Foods in Algiers (Algeria). Toxins (Basel) 2022; 14:toxins14110731. [PMID: 36355981 PMCID: PMC9694651 DOI: 10.3390/toxins14110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Staphylococcus aureus is a pathogenic microorganism of humans and animals, able to cause foodborne intoxication due to the production of staphylococcal enterotoxins (SEs) and to resist antibiotic treatment as in the case of methicillin-resistant S. aureus (MRSA). In this study, we performed a genomic characterisation of 12 genetically diverse S. aureus strains isolated from ready-to-eat foods in Algiers (Algeria). Moreover, their ability to produce some classical and new staphylococcal enterotoxins (SEs) was investigated. The 12 S. aureus strains resulted to belong to nine known sequence types (STs) and to the novel ST7199 and ST7200. Furthermore, S. aureus SA46 was assigned to the European clone MRSA-ST80-SCCmec-IV. The 12 strains showed a wide endowment of se and sel (staphylococcal enterotoxin-like toxin) genes (sea, seb, sed, seg, seh, sei, selj, sek, sem, sen, seo, seq, ser, selu2, selw, selx, sey, sel30; ψent1-ψent2), including variants and pseudogenes, and harboured the enterotoxin gene cluster (egc) types 1 and 5. Additionally, they produced various amounts of SEA (64.54-345.02 ng/mL), SEB (2871.28-14739.17 ng/mL), SED (322.70-398.94 ng/mL), SEH (not detectable-239.48 ng/mL), and SER (36,720.10-63,176.06 ng/mL) depending on their genotypes. The genetic determinants related to their phenotypic resistance to β-lactams (blaZ, mecA), ofloxacin (gyrA-S84L), erythromycin (ermB), lincomycin (lmrS), kanamycin (aph(3')-III, ant(6)-I), and tetracyclin (tet(L), tet(38)) were also detected. A plethora of virulence-related genes, including major virulence genes such as the tst gene, determinant for the toxic shock syndrome toxin-1, and the lukF-PV and lukS-PV genes, encoding the panton-valentine leukocidin (PVL), were present in the S. aureus strains, highlighting their pathogenic potential. Furthermore, a phylogenomic reconstruction including worldwide foodborne S. aureus showed a clear clustering based on ST and geographical origin rather than the source of isolation.
Collapse
|
9
|
Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23158088. [PMID: 35897667 PMCID: PMC9332259 DOI: 10.3390/ijms23158088] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
This paper discusses the mechanisms of S. aureus drug resistance including: (1) introduction. (2) resistance to beta-lactam antibiotics, with particular emphasis on the mec genes found in the Staphylococcaceae family, the structure and occurrence of SCCmec cassettes, as well as differences in the presence of some virulence genes and its expression in major epidemiological types and clones of HA-MRSA, CA-MRSA, and LA-MRSA strains. Other mechanisms of resistance to beta-lactam antibiotics will also be discussed, such as mutations in the gdpP gene, BORSA or MODSA phenotypes, as well as resistance to ceftobiprole and ceftaroline. (3) Resistance to glycopeptides (VRSA, VISA, hVISA strains, vancomycin tolerance). (4) Resistance to oxazolidinones (mutational and enzymatic resistance to linezolid). (5) Resistance to MLS-B (macrolides, lincosamides, ketolides, and streptogramin B). (6) Aminoglycosides and spectinomicin, including resistance genes, their regulation and localization (plasmids, transposons, class I integrons, SCCmec), and types and spectrum of enzymes that inactivate aminoglycosides. (7). Fluoroquinolones (8) Tetracyclines, including the mechanisms of active protection of the drug target site and active efflux of the drug from the bacterial cell. (9) Mupirocin. (10) Fusidic acid. (11) Daptomycin. (12) Resistance to other antibiotics and chemioterapeutics (e.g., streptogramins A, quinupristin/dalfopristin, chloramphenicol, rifampicin, fosfomycin, trimethoprim) (13) Molecular epidemiology of MRSA.
Collapse
|
10
|
Kinney KJ, Stach JM, Kulhankova K, Brown M, Salgado-Pabón W. Vegetation Formation in Staphylococcus Aureus Endocarditis Inversely Correlates With RNAIII and sarA Expression in Invasive Clonal Complex 5 Isolates. Front Cell Infect Microbiol 2022; 12:925914. [PMID: 35860377 PMCID: PMC9289551 DOI: 10.3389/fcimb.2022.925914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/14/2022] [Indexed: 01/29/2023] Open
Abstract
Infective endocarditis (IE) is one of the most feared and lethal diseases caused by Staphylococcus aureus. Once established, the infection is fast-progressing and tissue destructive. S. aureus of the clonal complex 5 (CC5) commonly cause IE yet are severely understudied. IE results from bacterial colonization and formation of tissue biofilms (known as vegetations) on injured or inflamed cardiac endothelium. S. aureus IE is promoted by adhesins, coagulases, and superantigens, with the exotoxins and exoenzymes likely contributing to tissue destruction and dissemination. Expression of the large repertoire of virulence factors required for IE and sequelae is controlled by complex regulatory networks. We investigated the temporal expression of the global regulators agr (RNAIII), rot, sarS, sarA, sigB, and mgrA in 8 invasive CC5 isolates and established intrinsic expression patterns associated with IE outcomes. We show that vegetation formation, as tested in the rabbit model of IE, inversely correlates with RNAIII and sarA expression during growth in Todd-Hewitt broth (TH). Large vegetations with severe sequelae arise from strains with high-level expression of colonization factors but slower transition towards expression of the exotoxins. Overall, strains proficient in vegetation formation, a hallmark of IE, exhibit lower expression of RNAIII and sarA. Simultaneous high expression of RNAIII, sarA, sigB, and mgrA is the one phenotype assessed in this study that fails to promote IE. Thus, RNAIII and sarA expression that provides for rheostat control of colonization and virulence genes, rather than an on and off switch, promote both vegetation formation and lethal sepsis.
Collapse
Affiliation(s)
- Kyle J. Kinney
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jessica M. Stach
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Katarina Kulhankova
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Matthew Brown
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Wilmara Salgado-Pabón
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Yang C, Barbieri JT, Dahms NM, Chen C. Multiple Domains of Staphylococcal Superantigen-like Protein 11 (SSL11) Contribute to Neutrophil Inhibition. Biochemistry 2022; 61:616-624. [PMID: 35285627 DOI: 10.1021/acs.biochem.2c00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen producing many immune evasion molecules targeting various components of the host immune defense, including the Staphylococcal superantigen-like protein (SSL 1-14) family. Despite sharing similar structures with the powerful superantigens (SAgs), which cause massive T cell activation, SSLs interfere with a wide range of innate immune defenses. SSLs are divided into two subgroups, SSLs that contain a conserved carbohydrate Sialyl Lewis X [Neu5Acα2-3Galβ1-4(Fucα1-3) GlcNAcβ, SLeX] binding site and SSLs that lack the SLeX binding site. SSL2-6 and SSL11 possess the SLeX binding site. Our previous studies showed that SSL11 arrests cell motility by inducing cell adhesion in differentiated HL60 (dHL60) cells, while SSL7 did not bind dHL60 cells. SSL7-based chimeras were engineered by exchanging the SSL7 sequence with the corresponding SSL11 sequence and assaying for a gain of SSL11 function, namely, the induction of cell spreading and motility arrest. In addition to the SLeX-binding site, we observed that three beta-strands β6, β7, and β9 and the N-terminal residues, Y16 and Y17, transitioned SSL7 to gain SSL11 activities. These studies define the structure-function properties of SSL11 that may allow SSL11 to inhibit S. aureus clearance by the host innate immune system, allowing S. aureus to maintain a carrier state in humans, an understudied aspect of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph T Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Chen Chen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
12
|
Belen SM, Sofía NT, Romina M, Belén AM, Santiago C, María Julieta FL, Pablo R, Cristina V, Martín D, Mauricio DM, Emilio M, Marisa F. Optimized surface plasmon resonance immunoassay for staphylococcal enterotoxin G detection using silica nanoparticles. Biochem Biophys Res Commun 2021; 558:168-174. [PMID: 33932776 DOI: 10.1016/j.bbrc.2021.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Staphylococcal enterotoxins are one of the most important causative agents of food poisoning. These molecules function as both gastrointestinal toxins and superantigens (SAgs) which can simultaneously bind MHC-II and T cell receptor leading to a non-specific polyclonal T cell activation and massive proinflammatory cytokine release. Common symptoms include vomiting and diarrhea; however, in more severe cases, systemic dissemination may result in toxic shock syndrome and can be lethal in a few hours. Only small amounts of these heat-stable toxins are needed to cause the disease. Therefore, it is highly important to detect quickly low concentrations of SAgs in biological samples. In this work, we report a surface plasmon resonance (SPR)-based capture immunoassay for the detection of the SAg SEG. We analyzed the use of different amplification strategies. The SPR-based double-antibody sandwich approach could detect picomolar levels of SEG. The use of antibody-coated silica nanoparticles (AbSiNPs) as an alternative enhancing reagent also detected SEG in the picomolar range. Although AbSiNPs did not improve the limit of detection, for the same amount of SAg tested, AbSiNPs gave a higher response level than free antibodies. This work highlights the suitability of silica nanoparticles for signal amplification in SPR-based biosensors. Overall, SPR biosensors offer the capability for continuous real-time monitoring and high sensitivity that can be befitting for the detection of enterotoxins in food industries, laboratories and regulatory agencies.
Collapse
Affiliation(s)
- Sarratea Maria Belen
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Noli Truant Sofía
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Mitarotonda Romina
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Luján, Argentina; Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Buenos Aires, Argentina
| | - Antonoglou María Belén
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Chiappini Santiago
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Fernández Lynch María Julieta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Romasanta Pablo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Vescina Cristina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Química Analítica, Buenos Aires, Argentina
| | - Desimone Martín
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - De Marzi Mauricio
- Universidad Nacional de Luján, Departamento de Ciencias Básicas, Luján, Argentina; Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES)-CONICET, Laboratorio de Inmunología, Buenos Aires, Argentina
| | - Malchiodi Emilio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina
| | - Fernández Marisa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Ricardo A. Margni (IDEHU), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Genome Sequencing of a Historic Staphylococcus aureus Collection Reveals New Enterotoxin Genes and Sheds Light on the Evolution and Genomic Organization of This Key Virulence Gene Family. J Bacteriol 2021; 203:JB.00587-20. [PMID: 33649144 DOI: 10.1128/jb.00587-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
We take advantage of a historic collection of 133 Staphylococcus aureus strains accessioned between 1924 and 2016, whose genomes have been long-read sequenced as part of a major National Collection of Type Cultures (NCTC) initiative, to conduct a gene family-wide computational analysis of enterotoxin genes. We identify two novel staphylococcal enterotoxin (pseudo)genes (sel29p and sel30), the former of which has not been observed in any contemporary strain to date. We provide further information on five additional enterotoxin genes or gene variants that either have recently entered the literature or for which the nomenclature or description is currently unclear (selz, sel26, sel27, sel28, and ses-2p). An examination of over 11,000 RefSeq genomes in search of wider support for these seven (pseudo)genes led to the identification of an additional three novel enterotoxin gene family members (sel31, sel32, and sel33) plus two new variants (seh-2p and ses-3p). We cast light on the genomic distribution of the enterotoxin genes, further defining their arrangement in gene clusters. Finally, we show that cooccurrence of enterotoxin genes is prevalent, with individual NCTC strains possessing as many as 18 enterotoxin genes and pseudogenes, and that clonal complex membership rather than time of isolation is the key factor in determining enterotoxin load.IMPORTANCE Staphylococcus aureus strains pose a significant health risk to both human and animal populations. Key among this species' virulence factors is the staphylococcal enterotoxin gene family. Certain enterotoxin forms can induce a potentially life-threatening immune response, while others are implicated in less fatal though often severe conditions such as food poisoning. Genetic characterization of staphylococcal enterotoxin gene family members has steadily accumulated over recent decades, with over 20 genes now established in the literature. Despite the current wealth of knowledge on this important gene family, questions remain about the presence of additional enterotoxin genes and the genomic composition of family members. This study further expands knowledge of the staphylococcal enterotoxins while shedding light on their evolution over the last century.
Collapse
|
14
|
Grispoldi L, Karama M, Armani A, Hadjicharalambous C, Cenci-Goga BT. Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1871428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Musafiri Karama
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Andrea Armani
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Beniamino T. Cenci-Goga
- Department of Veterinary Medicine, Perugia, Italy
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
15
|
Staphylococcal Enterotoxin Gene Cluster: Prediction of Enterotoxin (SEG and SEI) Production and of the Source of Food Poisoning on the Basis of vSaβ Typing. Appl Environ Microbiol 2021; 87:e0266220. [PMID: 33355100 PMCID: PMC8090894 DOI: 10.1128/aem.02662-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Besides the infection properties in human and animals, S. aureus can produce different enterotoxins in food. The enterotoxins can cause vomiting and diarrhea, often involving many people. Currently, only 5 (SEA to SEE) out of 27 known staphylococcal enterotoxins can be analyzed using commercially available kits. Six genes (seg, sei, sem, sen, seo, and seu), encoding putative and undetectable enterotoxins, are located on the enterotoxin gene cluster (egc), which is part of the Staphylococcus aureus genomic island vSaβ. These enterotoxins have been described as likely being involved in staphylococcal food-poisoning outbreaks. The aim of the present study was to determine if whole-genome data can be used for the prediction of staphylococcal egc enterotoxin production, particularly enterotoxin G (SEG) and enterotoxin I (SEI). For this purpose, whole-genome sequences of 75 Staphylococcus aureus strains from different origins (food-poisoning outbreaks, human, and animal) were investigated by applying bioinformatics methods (phylogenetic analysis using the core genome and different alignments). SEG and SEI expression was tested in vitro using a sandwich enzyme-linked immunosorbent assay method. Strains could be allocated to 14 different vSaβ types, each type being associated with a single clonal complex (CC). In addition, the vSaβ type and CC were associated with the origin of the strain (human or cattle derived). The amount of SEG and SEI produced also correlated with the vSaβ type and the CC of a strain. The present results show promising indications that the in vitro production of SEG and SEI can be predicted based on the vSaβ type or CC of a strain. IMPORTANCE Besides having infectious properties in human and animals, S. aureus can produce different enterotoxins in food. The enterotoxins can cause vomiting and diarrhea, often involving many people. Most of these outbreaks remain undiscovered, as detection methods for enterotoxins are only available for a few enterotoxins but not for the more recently discovered enterotoxins G (SEG) and I (SEI). In this study, we show promising results that in vitro production of SEG and SEI can be predicted based on the whole-genome sequencing data of a strain. In addition, these data could be used to find the source (human or cattle derived) of an outbreak strain, which is the key for a better understanding of the role SEG and SEI play in foodborne outbreaks caused by S. aureus.
Collapse
|
16
|
Population Analysis of Staphylococcus aureus Reveals a Cryptic, Highly Prevalent Superantigen SElW That Contributes to the Pathogenesis of Bacteremia. mBio 2020; 11:mBio.02082-20. [PMID: 33109757 PMCID: PMC7593966 DOI: 10.1128/mbio.02082-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an important human and animal pathogen associated with an array of diseases, including life-threatening necrotizing pneumonia and infective endocarditis. The success of S. aureus as a pathogen has been linked in part to its ability to manipulate the host immune response through the secretion of toxins and immune evasion molecules. The staphylococcal superantigens (SAgs) have been studied for decades, but their role in S. aureus pathogenesis is not well understood, and an appreciation for how SAgs manipulate the host immune response to promote infection may be crucial for the development of novel intervention strategies. Here, we characterized a widely prevalent, previously cryptic, staphylococcal SAg, SElW, that contributes to the severity of S. aureus infections caused by an important epidemic clone of S. aureus CC398. Our findings add to the understanding of staphylococcal SAg diversity and function and provide new insights into the capacity of S. aureus to cause disease. Staphylococcal superantigens (SAgs) are a family of secreted toxins that stimulate T cell activation and are associated with an array of diseases in humans and livestock. Most SAgs produced by Staphylococcus aureus are encoded by mobile genetic elements, such as pathogenicity islands, bacteriophages, and plasmids, in a strain-dependent manner. Here, we carried out a population genomic analysis of >800 staphylococcal isolates representing the breadth of S. aureus diversity to investigate the distribution of all 26 identified SAg genes. Up to 14 SAg genes were identified per isolate with the most common gene selw (encoding a putative SAg, SElW) identified in 97% of isolates. Most isolates (62.5%) have a full-length open reading frame of selw with an alternative TTG start codon that may have precluded functional characterization of SElW to date. Here, we demonstrate that S. aureus uses the TTG start codon to translate a potent SAg SElW that induces Vβ-specific T cell proliferation, a defining feature of classical SAgs. SElW is the only SAg predicted to be expressed by isolates of the CC398 lineage, an important human and livestock epidemic clone. Deletion of selw in a representative CC398 clinical isolate, S. aureus NM001, resulted in complete loss of T cell mitogenicity in vitro, and in vivo expression of SElW by S. aureus increased the bacterial load in the liver during bloodstream infection of SAg-sensitive HLA-DR4 transgenic mice. Overall, we report the characterization of a novel, highly prevalent, and potent SAg that contributes to the pathogenesis of S. aureus infection.
Collapse
|
17
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
18
|
Younis IY, Hifnawy MS, El-Hawary SS, El Bishbishy MH, Elateek SY. Bioactive metabolites of hass and reed avocados targeting methicillin-resistant Staphylococcus aureus enterotoxin-like X via molecular modeling and cytotoxicity assessments. Nat Prod Res 2020; 35:6040-6044. [PMID: 32912020 DOI: 10.1080/14786419.2020.1817013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study is to estimate the nutritive values, metabolites of Hass and Reed Avocado cultivars and evaluate their antimicrobial and anticancer activities. Hass was rich in water soluble vitamins, iron and calcium while, Reed contains more fat soluble vitamins. Benzaldehyde and butyl phenol derivatives were the major volatile components identified by solid phase extraction in Hass and Reed, respectively. Naringenin and rutin were the major compounds identified in Hass and Reed by HPLC analysis respectively. Hass showed a promising antimicrobial activity, especially, against Methicillin-Resistant S. aureus (MIC = 7.81 μg/mL). Two targets sites were selected to investigate the mechanism of action of Hass, Staphylococcal Enterotoxin-like X and Serine/threonine kinases Proteins (STK). Molecular docking demonstrated high binding affinity of naringenin towards Enterotoxin-like X. However, high levels of rutin in Reed might account for its cytotoxic activity against colorectal adenocarcinoma. Avocado extracts may be used for developing potential antibiotics.
Collapse
Affiliation(s)
- Inas Youssef Younis
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Mahitab Helmi El Bishbishy
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | | |
Collapse
|
19
|
Chajęcka-Wierzchowska W, Gajewska J, Wiśniewski P, Zadernowska A. Enterotoxigenic Potential of Coagulase-Negative Staphylococci from Ready-to-Eat Food. Pathogens 2020; 9:pathogens9090734. [PMID: 32899905 PMCID: PMC7559265 DOI: 10.3390/pathogens9090734] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
Although coagulase-positive staphylococci are considered to be the main factor responsible for food poisoning, an increasing role for the coagulase-negative staphylococci in the production of enterotoxins has been observed in recent years. This study was conducted to assess the occurrence of genes responsible for the production of staphylococcal enterotoxins (SE), enterotoxin-like toxins (SEI) and toxic shock syndrome toxin-1 (TSST-1) in coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food from bars and restaurants. One hundred and eighteen CoNS strains were tested using polymerase chain reaction (PCR) to five superantigenic toxin genes, including five different types of classical enterotoxins (sea, seb, sec, sed and see) and the toxic shock syndrome toxin-1 (tsst-1) as well as to supertoxin-like genes. PCR-positive isolates were then tested using immunoenzymatic methods (SET-RPLA, Vidas SET 2) for toxin expression. Out of 118 CoNS strains, the presence of staphylococcal enterotoxins was confirmed in 72% of them. The most frequently found enterotoxin-like genotype was ser, selu. Two of the tested strains had up to ten different enterotoxin genes in the genome at the same time. Although no production of enterotoxins was detected in the CoNS, which means that their possible role in the epidemiology of food-borne diseases is minimal, the data demonstrated that the toxigenic capacity of the CoNS should not be ignored, and that this group of microorganisms should be continuously monitored in food.
Collapse
|
20
|
Bennett MR, Thomsen IP. Epidemiological and Clinical Evidence for the Role of Toxins in S. aureus Human Disease. Toxins (Basel) 2020; 12:toxins12060408. [PMID: 32575633 PMCID: PMC7354447 DOI: 10.3390/toxins12060408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus asymptomatically colonizes approximately 30–50% of the population and is a leading cause of bacteremia, bone/joint infections, and skin infections in the US. S. aureus has become a major public health threat due to antibiotic resistance and an increasing number of failed vaccine attempts. To develop new anti-staphylococcal preventive therapies, it will take a more thorough understanding of the current role S. aureus virulence factors play in contributing to human disease. This review focuses on the clinical association of individual toxins with S. aureus infection as well as attempted treatment options. Further understanding of these associations will increase understanding of toxins and their importance to S. aureus pathogenesis.
Collapse
Affiliation(s)
- Monique R. Bennett
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Vanderbilt Vaccine Research Program, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Isaac P. Thomsen
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Vanderbilt Vaccine Research Program, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
21
|
Aung MS, Urushibara N, Kawaguchiya M, Ito M, Habadera S, Kobayashi N. Prevalence and Genetic Diversity of Staphylococcal Enterotoxin (-Like) Genes sey, selw, selx, selz, sel26 and sel27 in Community-Acquired Methicillin-Resistant Staphylococcus aureus. Toxins (Basel) 2020; 12:toxins12050347. [PMID: 32456224 PMCID: PMC7291287 DOI: 10.3390/toxins12050347] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal enterotoxins (SEs) are virulence factors of Staphylococcus aureus associated with various toxic diseases due to their emetic and superantigenic activities. Although at least 27 SE(-like) genes have been identified in S. aureus to date, the newly identified SE(-like) genes have not yet been well characterized by their epidemiological features. In this study, the prevalence and genetic diversity of SE gene sey and SE-like genes selw, selx, selz, sel26, and sel27 were investigated for 624 clinical isolates of community-acquired methicillin-resistant S. aureus (CA-MRSA). The most prevalent SE(-like) gene was selw (92.9%), followed by selx (85.6%), sey (35.4%) and selz (5.6%), while sel26 and sel27 were not detected. Phylogenetically, sey, selw, selx, and selz were discriminated into 7, 10, 16, and 9 subtypes (groups), respectively. Among these subtypes, sey was the most conserved and showed the highest sequence identity (>98.8%), followed by selz and selx. The SE-like gene selw was the most divergent, and four out of ten genetic groups contained pseudogenes that may encode truncated product. Individual subtypes of SE(-like) genes were generally found in isolates with specific genotypes/lineages of S. aureus. This study revealed the putative ubiquity of selw and selx and the prevalence of sey and selz in some specific lineages (e.g., ST121) in CA-MRSA, suggesting a potential role of these newly described SEs(-like) in pathogenicity.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
- Correspondence: ; Tel.: +81-11-611-2111
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo 060-0005, Japan; (M.I.); (S.H.)
| | - Satoshi Habadera
- Sapporo Clinical Laboratory, Inc., Sapporo 060-0005, Japan; (M.I.); (S.H.)
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (N.U.); (M.K.); (N.K.)
| |
Collapse
|
22
|
Stochastic Expression of Sae-Dependent Virulence Genes during Staphylococcus aureus Biofilm Development Is Dependent on SaeS. mBio 2020; 11:mBio.03081-19. [PMID: 31937649 PMCID: PMC6960292 DOI: 10.1128/mbio.03081-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The intricate process of biofilm formation in the human pathogen Staphylococcus aureus involves distinct stages during which a complex mixture of matrix molecules is produced and modified throughout the developmental cycle. Early in biofilm development, a subpopulation of cells detaches from its substrate in an event termed "exodus" that is mediated by SaePQRS-dependent stochastic expression of a secreted staphylococcal nuclease, which degrades extracellular DNA within the matrix, causing the release of cells and subsequently allowing for the formation of metabolically heterogenous microcolonies. Since the SaePQRS regulatory system is involved in the transcriptional control of multiple S. aureus virulence factors, the expression of several additional virulence genes was examined within a developing biofilm by introducing fluorescent gene reporter plasmids into wild-type S. aureus and isogenic regulatory mutants and growing these strains in a microfluidic system that supplies the bacteria with a constant flow of media while simultaneously imaging developing biofilms in 5-min intervals. This study demonstrated that multiple virulence genes, including nuc, were expressed stochastically within a specialized subpopulation of cells in nascent biofilms. We demonstrated that virulence genes regulated by SaePQRS were stochastically expressed in nearly all strains examined whereas Agr-regulated genes were expressed more homogenously within maturing microcolonies. The commonly used Newman strain contains a variant of SaeS (SaeSP) that confers constitutive kinase activity to the protein and caused this strain to lack the stochastic expression pattern observed in other strain backgrounds. Importantly, repair of the SaeSP allele resulting in reversion to the well-conserved SaeS L allele found in other strains restored stochastic expression in this strain.IMPORTANCE Staphylococcus aureus is an important human pathogen capable of colonizing diverse tissue types and inducing severe disease in both immunocompromised and otherwise healthy individuals. Biofilm infections caused by this bacterial species are of particular concern because of their persistence, even in the face of intensive therapeutic intervention. The results of the current study demonstrate the stochastic nature of Sae-mediated virulence gene expression in S. aureus and indicate that this regulatory system may function as a "bistable switch" in a manner similar to that seen with regulators controlling competence gene expression in Bacillus subtilis and persister cell formation in Escherichia coli The results of this study provide a new perspective on the complex mechanisms utilized by S. aureus during the establishment of infections.
Collapse
|
23
|
Zaatout N, Ayachi A, Kecha M, Kadlec K. Identification of staphylococci causing mastitis in dairy cattle from Algeria and characterization of Staphylococcus aureus. J Appl Microbiol 2019; 127:1305-1314. [PMID: 31356718 DOI: 10.1111/jam.14402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
AIMS This study was conducted to determine the occurrence of staphylococci from cows with subclinical mastitis from independent herds in Algeria, and to characterize Staphylococcus aureus isolates. METHODS AND RESULTS Quarter milk samples were collected separately, somatic cells were counted and samples with more than 200 000 somatic cells per ml were cultured on blood agar. Staphylococci isolates were identified by routine diagnostics, and S. aureus isolates were tested for antibiotic susceptibility by disk diffusion and microdilution. Congo red agar was used to detect biofilm formation and capsule synthesis was detected on serum soft agar (SSA). The S. aureus isolates were characterized by spa typing. DNA microarray analysis was performed to detect resistance and virulence genes. Overall, 40·0% (167/418) of the cows suffered from mastitis. In 63·5% (106/167) of the cows staphylococci were identified. Nine of the 106 Staphylococcus isolates (8·5%) were S. aureus. The coagulase-negative staphylococci belonged to 14 species. All S. aureus isolates were multiresistant and biofilm forming, with 66·67% of them showing diffuse colonies on SSA and belonged to CC97-agrI-cap5. Biofilm genes (icaA/C/D), 13 genes encoding for adhesion, six genes encoding proteases, 11 genes encoding superantigen like toxins were found. Genes conferring resistance to tetracycline (tet(K)), penicillin (blaZ/I/R) and macrolide-lincosamide-streptogramin B (erm(B), erm(A)) were also detected in the S. aureus from this study. CONCLUSIONS The current investigation provides a detailed molecular and biofilm formation ability of S. aureus involved in subclinical mastitis in Algeria and shows the wide distribution of adhesion and enterotoxin(-like) genes among S. aureus responsible for causing subclinical bovine mastitis. SIGNIFICANCE AND IMPACT OF THE STUDY These findings are valuable in tracking the evolution and genomic variation of S. aureus from bovine origin.
Collapse
Affiliation(s)
- N Zaatout
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - A Ayachi
- Institute of Veterinary and Agricultural Sciences, University of Batna, Batna, Algeria
| | - M Kecha
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - K Kadlec
- Dairy Herd Consulting and Research Company (MBFG), Wunstorf, Germany
| |
Collapse
|
24
|
Rocha LS, Silva DM, Silva MP, Vidigal PMP, Silva JCF, Guerra ST, Ribeiro MG, Mendes TADO, Ribon ADOB. Comparative genomics of Staphylococcus aureus associated with subclinical and clinical bovine mastitis. PLoS One 2019; 14:e0220804. [PMID: 31390381 PMCID: PMC6685620 DOI: 10.1371/journal.pone.0220804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/23/2019] [Indexed: 01/09/2023] Open
Abstract
Many efforts have been made to understand the pathogenesis of bovine mastitis to reduce losses and promote animal welfare. Staphylococcus aureus may cause bovine clinical mastitis, but it is mainly associated with subclinical infection, which is usually persistent and can easily reoccur. Here, we conducted a comparative genomic analysis between strains of S. aureus causing subclinical infection (Sau170, 302, 1269, 1364), previously sequenced by our group, and two well-characterized strains causing clinical mastitis (N305 and RF122) to find differences that could be linked to mastitis outcome. A total of 146 virulence-associated genes were compared and no appreciable differences were found between the bacteria. However, several nonsynonymous single nucleotide polymorphisms (SNPs) were identified in genes present in the subclinical strains when compared to RF122 and N305, especially in genes encoding host immune evasion and surface proteins. The secreted and surface proteins predicted by in silico tools were compared through multidimensional scaling analysis (MDS), revealing a high degree of similarity among the strains. The comparison of orthologous genes by OrthoMCL identified a membrane transporter and a lipoprotein as exclusive of bacteria belonging to the subclinical and clinical groups, respectively. No hit was found in RF122 and N305 for the membrane transporter using BLAST algorithm. For the lipoprotein, sequences of Sau170, 302, 1269, and 1364 with identities between 68–73% were found in the MDS dataset. A conserved region found only in the lipoprotein genes of RF122 and N305 was used for primer design. Although the polymerase chain reaction (PCR) on field isolates of S. aureus did not validate the findings for the transporter, the lipoprotein was able to separate the clinical from the subclinical isolates. These results show that sequence variation among bovine S. aureus, and not only the presence/absence of virulence factors, is an important aspect to consider when comparing isolates causing different mastitis outcomes.
Collapse
Affiliation(s)
- Lis S. Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Danielle M. Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mônica P. Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Cleydson F. Silva
- Instituto Nacional de Ciência e Tecnologia em Interações Planta Praga/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Simony T. Guerra
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, UNESP/Botucatu, Botucatu, Brazil
| | - Márcio G. Ribeiro
- Departamento de Higiene Veterinária e Saúde Pública, Faculdade de Medicina Veterinária e Zootecnia, UNESP/Botucatu, Botucatu, Brazil
| | | | - Andréa de O. B. Ribon
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
- * E-mail:
| |
Collapse
|
25
|
Abouelkhair MA, Bemis DA, Giannone RJ, Frank LA, Kania SA. Identification, cloning and characterization of SpEX exotoxin produced by Staphylococcus pseudintermedius. PLoS One 2019; 14:e0220301. [PMID: 31356636 PMCID: PMC6663030 DOI: 10.1371/journal.pone.0220301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
Staphylococci have evolved numerous strategies to evade their hosts’ immune systems. Some staphylococcal toxins target essential components of host innate immunity, one of the two main branches of the immune system. Analysis of the Staphylococcus pseudintermedius secretome using liquid chromatography mass spectrometry guided by genomic data, was used to identify an S. pseudintermedius exotoxin provisionally named SpEX. This exoprotein has low overall amino acid identity with the Staphylococcus aureus group of proteins named staphylococcal superantigen like proteins (SSLs) and staphylococcal enterotoxin- like toxin X (SEIX), but predictive modeling showed that it shares similar folds and domain architecture to these important virulence factors. In this study, we found SpEX binds to complement component C5, prevents complement mediated lysis of sensitized bovine red blood cells, kills polymorphonuclear leukocytes and monocytes and inhibits neutrophil migration at sub-lethal concentrations. A mutant version of SpEX, produced through amino acid substitution at selected positions, had diminished cytotoxicity. Anti-SpEX produced in dogs reduced the inhibitory effect of native SpEX on canine neutrophil migration and protected immune cells from the toxic effects of the native recombinant protein. These results suggest that SpEX likely plays an important role in S. pseudintermedius virulence and that attenuated SpEX may be an important candidate for inclusion in a vaccine against S. pseudintermedius infections.
Collapse
Affiliation(s)
- Mohamed A. Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - David A. Bemis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
| | - Richard J. Giannone
- Chemical Sciences Division, Biological Mass Spectrometry, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Linda A. Frank
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
Suzuki Y. Current Studies of Staphylococcal Food Poisoning. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2019; 60:27-37. [DOI: 10.3358/shokueishi.60.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Nasser A, Moradi M, Jazireian P, Safari H, Alizadeh-Sani M, Pourmand MR, Azimi T. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat. Microb Pathog 2019; 131:259-269. [PMID: 31002964 DOI: 10.1016/j.micpath.2019.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus (S.aureus) is a Gram-positive bacterium that causes many infections and diseases. This pathogen can cause many types of infections such as impetigo, toxic shock syndrome toxin (TSST1), pneumonia, endocarditis, and autoimmune diseases like lupus erythematosus and can infect other healthy individuals. In the pathogenic process, colonization is a main risk factor for invasive diseases. Various factors including the cell wall-associated factors and receptors of the epithelial cells facilitate adhesion and colonization of this pathogen. S. aureus has many enzymes, toxins, and strategies to evade from the immune system either by an enzyme that lyses cellular component or by hiding from the immune system via surface antigens like protein A and second immunoglobulin-binding protein (Sbi). The strategies of this bacterium can be divided into five groups: A: Inhibit neutrophil recruitment B: Inhibit phagocytosis C: Inhibit killing by ROS, D: Neutrophil killing, and E: Resistance to antimicrobial peptide. On the other hand, innate immune system via neutrophils, the most important polymorphonuclear leukocytes, fights against bacterial cells by neutrophil extracellular trap (NET). In this review, we try to explain the role of each factor in immune evasion.
Collapse
Affiliation(s)
- Ahmad Nasser
- Microbiology Research center, Ilam University of Medical Sciences, Ilam, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Jazireian
- Department of Biology, University Campus 2,University of Guilan, Rasht, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Food Safety and Hygiene Division, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
de Jong NWM, van Kessel KPM, van Strijp JAG. Immune Evasion by Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0061-2019. [PMID: 30927347 PMCID: PMC11590434 DOI: 10.1128/microbiolspec.gpp3-0061-2019] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
Affiliation(s)
- Nienke W M de Jong
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Tuffs SW, Haeryfar SMM, McCormick JK. Manipulation of Innate and Adaptive Immunity by Staphylococcal Superantigens. Pathogens 2018; 7:pathogens7020053. [PMID: 29843476 PMCID: PMC6027230 DOI: 10.3390/pathogens7020053] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcal superantigens (SAgs) constitute a family of potent exotoxins secreted by Staphylococcus aureus and other select staphylococcal species. SAgs function to cross-link major histocompatibility complex (MHC) class II molecules with T cell receptors (TCRs) to stimulate the uncontrolled activation of T lymphocytes, potentially leading to severe human illnesses such as toxic shock syndrome. The ubiquity of SAgs in clinical S. aureus isolates suggests that they likely make an important contribution to the evolutionary fitness of S. aureus. Although the apparent redundancy of SAgs in S. aureus has not been explained, the high level of sequence diversity within this toxin family may allow for SAgs to recognize an assorted range of TCR and MHC class II molecules, as well as aid in the avoidance of humoral immunity. Herein, we outline the major diseases associated with the staphylococcal SAgs and how a dysregulated immune system may contribute to pathology. We then highlight recent research that considers the importance of SAgs in the pathogenesis of S. aureus infections, demonstrating that SAgs are more than simply an immunological diversion. We suggest that SAgs can act as targeted modulators that drive the immune response away from an effective response, and thus aid in S. aureus persistence.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON N6A 3K7, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| | - John K McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
30
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|