1
|
Bento I, Parrington BA, Pascual R, Goldberg AS, Wang E, Liu H, Borrmann H, Zelle M, Coburn N, Takahashi JS, Elias JE, Mota MM, Rijo-Ferreira F. Parasite and vector circadian clocks mediate efficient malaria transmission. Nat Microbiol 2025; 10:882-896. [PMID: 40164831 PMCID: PMC11964930 DOI: 10.1038/s41564-025-01949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2025] [Indexed: 04/02/2025]
Abstract
Malaria transmission begins when Anopheles mosquitos deposit saliva and Plasmodium parasites during a bloodmeal. As Anopheles mosquitos are nocturnal, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating parasite biology for host encounters. Here we show that approximately half of the mosquito salivary gland transcriptome, particularly genes essential for efficient bloodmeals such as anti-blood clotting factors, exhibits circadian expression. Furthermore, measuring haemoglobin levels, we demonstrate that mosquitos prefer to feed and ingest more blood at nighttime. Notably, we show a substantial subset of the salivary-gland-resident parasite transcriptome cycling throughout the day, indicating that this stage is not transcriptionally quiescent. Among the sporozoite genes undergoing rhythmic expression are those involved in parasite motility, potentially modulating the ability to initiate infection at different times of day. Our findings suggest a circadian tripartite relationship between the vector, parasite and mammalian host that together modulates malaria transmission.
Collapse
Affiliation(s)
- Inês Bento
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Brianna A Parrington
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Rushlenne Pascual
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Alexander S Goldberg
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Eileen Wang
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA
| | - Hani Liu
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Mira Zelle
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Nicholas Coburn
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Joshua E Elias
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA
| | - Maria M Mota
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Larrondo LF. Circadian rhythms: pervasive, and often times evasive. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230477. [PMID: 39842475 DOI: 10.1098/rstb.2023.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 01/24/2025] Open
Abstract
Most circadian texts begin by stating that clocks are pervasive throughout the tree of life. Indeed, clock mechanisms have been described from cyanobacteria to humans, representing a notable example of convergent evolution: yet, there are several phyla in animals, protists or within fungi and bacteria, in which homologs of some-or all-known clock components seem to be absent, posing inevitable questions about the evolution of circadian systems. Moreover, as we move away from model organisms, there are several taxa in which core clock elements can be identified at the genomic levels. However, the functional description of those putative clocks has been hard to achieve, as rhythmicity is not observed unless defined abiotic or nutritional cues are provided. The mechanisms 'conditioning' the functionality of clocks remain uncertain, emphasizing the need to delve further into non-model circadian systems. As the absence of evidence is not evidence of absence, the lack of known core-clock homologs or of observable rhythms in a given organism, cannot be an a priori criterion to discard the presence of a functional clock, as rhythmicity may be limited to yet untested experimental conditions or phenotypes. This article seeks to reflect on these topics, highlighting some of the pressing questions awaiting to be addressed.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Luis F Larrondo
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
3
|
Zhang X, Jie Y. Importance of Circadian Rhythms in the Ocular Surface. Biomolecules 2024; 14:796. [PMID: 39062510 PMCID: PMC11274730 DOI: 10.3390/biom14070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian rhythms are a ubiquitous feature throughout the organism. Accumulating evidence suggests that the dysfunction of circadian rhythms due to genetic mutations or environmental factors contributes to the genesis and progress of multiple diseases. The physiological homeostasis of the ocular surface, like any other tissue or organ, is also orchestrated by circadian rhythms. In this review, we summarize the molecular clocks and the expression of clock-controlled genes in the mammalian ocular surface. Based on the circadian expression of these genes, we conclude the diurnal oscillations of cellular biological activities in the mammalian ocular surface. Moreover, we evaluate the factors entraining circadian oscillators in the ocular surface. Finally, we further discuss the latest development of the close correlation between circadian rhythms and ocular health. Briefly, this review aimed to synthesize the previous studies to aid in understanding the importance of circadian rhythms in the ocular surface and the possible opportunities for circadian rhythm-based interventional strategies to restore the homeostasis of the ocular surface.
Collapse
Affiliation(s)
| | - Ying Jie
- Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing 100730, China;
| |
Collapse
|
4
|
Bento I, Parrington B, Pascual R, Goldberg AS, Wang E, Liu H, Zelle M, Takahashi JS, Elias JE, Mota MM, Rijo-Ferreira F. Circadian rhythms mediate malaria transmission potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594221. [PMID: 38798622 PMCID: PMC11118478 DOI: 10.1101/2024.05.14.594221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Malaria transmission begins when infected female Anopheles mosquitos deposit Plasmodium parasites into the mammalian host's skin during a bloodmeal. The salivary gland-resident sporozoite parasites migrate to the bloodstream, subsequently invading and replicating within hepatocytes. As Anopheles mosquitos are more active at night, with a 24-hour rhythm, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating sporozoite biology for host encounters. Here we show that approximately half of the mosquito salivary gland transcriptome, particularly genes essential for efficient bloodmeals such as anti-blood clotting factors, exhibits circadian rhythmic expression. Furthermore, we demonstrate that mosquitoes prefer to feed during nighttime, with the amount of blood ingested varying cyclically throughout the day. Notably, we show a substantial subset of the sporozoite transcriptome cycling throughout the day. These include genes involved in parasite motility, potentially modulating the ability to initiate infection at different times of day. Thus, although sporozoites are typically considered quiescent, our results demonstrate their transcriptional activity, revealing robust daily rhythms of gene expression. Our findings suggest a circadian evolutionary relationship between the vector, parasite and mammalian host that together modulate malaria transmission.
Collapse
|
5
|
Borrmann H, Rijo-Ferreira F. Crosstalk between circadian clocks and pathogen niche. PLoS Pathog 2024; 20:e1012157. [PMID: 38723104 PMCID: PMC11081299 DOI: 10.1371/journal.ppat.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.
Collapse
Affiliation(s)
- Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
6
|
Kotake M, Watanabe Y, Itoh N, Yoshinaga T. Effect of light exposure on circadian rhythm in theront excystment in Cryptocaryon irritans. Parasitol Int 2024; 98:102812. [PMID: 37777053 DOI: 10.1016/j.parint.2023.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
We examined the effects of light exposure on the theront excystment circadian rhythm in Cryptocaryon irritans using a newly invented apparatus, which enabled us to examine the excystment rhythms of theronts from tomonts with low labor. Using the apparatus, we examined the timings of theront excystment from tomonts exposed directly to light and from tomonts exposed to light-exposed seawater by counting the number of excysted theronts. We found that the theront excystment time changed only when tomonts were directly exposed to light, indicating that light reception is essential for circadian rhythm entrainment. When tomonts were exposed to light only once for 12 h, either on Day 1, Day 2, or Day 3 after leaving host and being encysted, the circadian rhythm was entrained according to the photoperiod given on tomonts. Tomonts exposed to a low light (1 lx) with 12L:12D photoperiod daily showed a circadian rhythm similar to that in tomonts exposed to an intense light (500 lx) under the same photoperiod. When tomonts were incubated at 22 °C, 25 °C, or 28 °C under the same photoperiod, almost the same circadian rhythm was developed, suggesting temperature has little effect on the circadian rhythm entrainment between the range, even though the date of excystment was delayed in lower temperatures. These results suggest the circadian rhythm of theront excystment can be entrained in tomonts on the seabed of inner bays where net-cage aquaculture is conducted, and be involved in the outbreaks of cryptocaryoniasis there.
Collapse
Affiliation(s)
- Maho Kotake
- The University of Tokyo, Graduate School of Agricultural and Life Sciences, Tokyo, Japan
| | - Yuho Watanabe
- The University of Tokyo, Graduate School of Agricultural and Life Sciences, Tokyo, Japan
| | - Naoki Itoh
- The University of Tokyo, Graduate School of Agricultural and Life Sciences, Tokyo, Japan
| | - Tomoyoshi Yoshinaga
- The University of Tokyo, Graduate School of Agricultural and Life Sciences, Tokyo, Japan.
| |
Collapse
|
7
|
Huang H, Mehta A, Kalmanovich J, Anand A, Bejarano MC, Garg T, Khan N, Tonpouwo GK, Shkodina AD, Bardhan M. Immunological and inflammatory effects of infectious diseases in circadian rhythm disruption and future therapeutic directions. Mol Biol Rep 2023; 50:3739-3753. [PMID: 36656437 PMCID: PMC9851103 DOI: 10.1007/s11033-023-08276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Circadian rhythm is characterised by daily variations in biological activity to align with the light and dark cycle. These diurnal variations, in turn, influence physiological functions such as blood pressure, temperature, and sleep-wake cycle. Though it is well established that the circadian pathway is linked to pro-inflammatory responses and circulating immune cells, its association with infectious diseases is widely unknown. OBJECTIVE This comprehensive review aims to describe the association between circadian rhythm and host immune response to various kinds of infection. METHODS We conducted a literature search in databases Pubmed/Medline and Science direct. Our paper includes a comprehensive analysis of findings from articles in English which was related to our hypothesis. FINDINGS Molecular clocks determine circadian rhythm disruption in response to infection, influencing the host's response toward infection. Moreover, there is a complex interplay with intrinsic oscillators of pathogens and the influence of specific infectious processes on the CLOCK: BMAL1 pathway. Such mechanisms vary for bacterial and viral infections, both well studied in the literature. However, less is known about the association of parasitic infections and fungal pathogens with circadian rhythm modulation. CONCLUSION It is shown that bidirectional relationships exist between circadian rhythm disruption and infectious process, which contains interplay between the host's and pathogens' circadian oscillator, immune response, and the influence of specific infectious. Further studies exploring the modulations of circadian rhythm and immunity can offer novel explanations of different susceptibilities to infection and can lead to therapeutic avenues in circadian immune modulation of infectious diseases.
Collapse
Affiliation(s)
- Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Aashna Mehta
- Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | | | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Maria Chilo Bejarano
- Facultad de Ciencias de la Salud Humana, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Tulika Garg
- Government Medical College and Hospital, Chandigarh, India
| | - Nida Khan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Gauvain Kankeu Tonpouwo
- Faculté de Médecine, Université de Lubumbashi, Plaine Tshombé, Lubumbashi, Democratic Republic of the Congo
| | | | - Mainak Bardhan
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| |
Collapse
|
8
|
Rijo-Ferreira F, Takahashi JS. Circadian rhythms in infectious diseases and symbiosis. Semin Cell Dev Biol 2022; 126:37-44. [PMID: 34625370 PMCID: PMC9183220 DOI: 10.1016/j.semcdb.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Timing is everything. Many organisms across the tree of life have evolved timekeeping mechanisms that regulate numerous of their cellular functions to optimize timing by anticipating changes in the environment. The specific environmental changes that are sensed depends on the organism. For animals, plants, and free-living microbes, environmental cues include light/dark cycles, daily temperature fluctuations, among others. In contrast, for a microbe that is never free-living, its rhythmic environment is its host's rhythmic biology. Here, we describe recent research on the interactions between hosts and microbes, from the perspective both of symbiosis as well as infections. In addition to describing the biology of the microbes, we focus specifically on how circadian clocks modulate these host-microbe interactions.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
9
|
Hunt R, Cable J, Ellison A. Daily patterns in parasite processes: diel variation in fish louse transcriptomes. Int J Parasitol 2022; 52:509-518. [PMID: 35533730 DOI: 10.1016/j.ijpara.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/05/2022]
Abstract
Parasites, similar to all other organisms, time themselves to environmental cues using a molecular clock to generate and maintain rhythms. Chronotherapeutic (timed treatment) techniques based on such rhythms offer great potential for improving control of chronic, problematic parasites. Fish lice are a key disease threat in aquaculture, with current control insufficient. Assessing the rhythmicity of fish lice transcriptomes offers not only insight into the viability of chronotherapy, but the opportunity to identify new drug targets. Here, for the first known time in any crustacean parasite, diel changes in gene transcription are examined, revealing that approximately half of the Argulus foliaceus annotated transcriptome displays significant daily rhythmicity. We identified rhythmically transcribed putative clock genes including core clock/cycle and period/timeless pairs, alongside rhythms in feeding-associated genes and processes involving immune response, as well as fish louse drug targets. A substantial number of gene pathways showed peak transcription in hours immediately preceding onset of light, potentially in anticipation of peak host anti-parasite responses or in preparation for increased feeding activity. Genes related to immune haemocyte activity and chitin development were more highly transcribed 4 h post light onset, although inflammatory gene transcription was highest during dark periods. Our study provides an important resource for application of chronotherapy in fish lice; timed application could increase efficacy and/or reduce dose requirement, improving the current landscape of drug resistance and fish health while reducing the economic cost of infection.
Collapse
Affiliation(s)
- R Hunt
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - J Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - A Ellison
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, United Kingdom.
| |
Collapse
|
10
|
Araújo PM, Dias MR, Matos DM, Norte AC. Reliability of steatocrit as an indicator of intestinal health in young birds – Relationships with morphology and growth rate of canary Serinus canaria nestlings. ZOOLOGY 2022; 151:126004. [DOI: 10.1016/j.zool.2022.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
11
|
Ngarka L, Siewe Fodjo JN, Aly E, Masocha W, Njamnshi AK. The Interplay Between Neuroinfections, the Immune System and Neurological Disorders: A Focus on Africa. Front Immunol 2022; 12:803475. [PMID: 35095888 PMCID: PMC8792387 DOI: 10.3389/fimmu.2021.803475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Neurological disorders related to neuroinfections are highly prevalent in Sub-Saharan Africa (SSA), constituting a major cause of disability and economic burden for patients and society. These include epilepsy, dementia, motor neuron diseases, headache disorders, sleep disorders, and peripheral neuropathy. The highest prevalence of human immunodeficiency virus (HIV) is in SSA. Consequently, there is a high prevalence of neurological disorders associated with HIV infection such as HIV-associated neurocognitive disorders, motor disorders, chronic headaches, and peripheral neuropathy in the region. The pathogenesis of these neurological disorders involves the direct role of the virus, some antiretroviral treatments, and the dysregulated immune system. Furthermore, the high prevalence of epilepsy in SSA (mainly due to perinatal causes) is exacerbated by infections such as toxoplasmosis, neurocysticercosis, onchocerciasis, malaria, bacterial meningitis, tuberculosis, and the immune reactions they elicit. Sleep disorders are another common problem in the region and have been associated with infectious diseases such as human African trypanosomiasis and HIV and involve the activation of the immune system. While most headache disorders are due to benign primary headaches, some secondary headaches are caused by infections (meningitis, encephalitis, brain abscess). HIV and neurosyphilis, both common in SSA, can trigger long-standing immune activation in the central nervous system (CNS) potentially resulting in dementia. Despite the progress achieved in preventing diseases from the poliovirus and retroviruses, these microbes may cause motor neuron diseases in SSA. The immune mechanisms involved in these neurological disorders include increased cytokine levels, immune cells infiltration into the CNS, and autoantibodies. This review focuses on the major neurological disorders relevant to Africa and neuroinfections highly prevalent in SSA, describes the interplay between neuroinfections, immune system, neuroinflammation, and neurological disorders, and how understanding this can be exploited for the development of novel diagnostics and therapeutics for improved patient care.
Collapse
Affiliation(s)
- Leonard Ngarka
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Joseph Nelson Siewe Fodjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Esraa Aly
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
12
|
Chagas CRF, Binkienė R, Valkiūnas G. Description and Molecular Characterization of Two Species of Avian Blood Parasites, with Remarks on Circadian Rhythms of Avian Haematozoa Infections. Animals (Basel) 2021; 11:3490. [PMID: 34944267 PMCID: PMC8698112 DOI: 10.3390/ani11123490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Avian blood parasites are remarkably diverse and frequently occur in co-infections, which predominate in wildlife. This makes wildlife pathogen research challenging, particularly if they belong to closely related groups, resulting in diagnostic problems and poor knowledge about such infections as well as the patterns of their co-occurrence and interactions. This is particularly true due to the periodicity (circadian rhythms) of parasitemia, which means that different parasitemia and parasite stages might be found throughout the day. We analysed blood samples from a Eurasian blackbird (Turdus merula) and a Song thrush (Turdus philomelos). This study aimed to describe a new avian Lankesterella species and molecularly characterize and redescribe Splendidofilaria mavis, a common avian filarioid nematode. Additionally, it was possible to investigate the circadian rhythms of the avian blood parasites belonging to Plasmodium, Haemoproteus, Leucocytozoon, and Trypanosoma, which occurred in co-infection in the same avian host individuals. Different circadian rhythms were seen in different parasites, with Plasmodium sp. peaks occurring at midday, Leucocytozoon spp. peaks mainly during the evening and night, and Trypanosoma spp. and microfilariae peaks at midnight. No periodicity was seen in Haemoproteus and Lankesterella species infections. The time of parasitemia peaks most likely coincides with the time of vectors' activity, and this should be beneficial for transmission. Knowledge about the circadian rhythms is needed for better understanding patterns in host-parasite interactions and disease transmission.
Collapse
|
13
|
Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun 2021; 12:2862. [PMID: 34001884 PMCID: PMC8129076 DOI: 10.1038/s41467-021-22922-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms. Circadian clocks link physiologic processes to environmental conditions and a mismatch between internal and external rhythms has negative effects on organismal health. In this review, the authors discuss the interactions between circadian clocks and dietary interventions targeted to promote healthy aging.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Finger A, Kramer A. Mammalian circadian systems: Organization and modern life challenges. Acta Physiol (Oxf) 2021; 231:e13548. [PMID: 32846050 DOI: 10.1111/apha.13548] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Humans and other mammalian species possess an endogenous circadian clock system that has evolved in adaptation to periodically reoccurring environmental changes and drives rhythmic biological functions, as well as behavioural outputs with an approximately 24-hour period. In mammals, body clocks are hierarchically organized, encompassing a so-called pacemaker clock in the hypothalamic suprachiasmatic nucleus (SCN), non-SCN brain and peripheral clocks, as well as cell-autonomous oscillators within virtually every cell type. A functional clock machinery on the molecular level, alignment among body clocks, as well as synchronization between endogenous circadian and exogenous environmental cycles has been shown to be crucial for our health and well-being. Yet, modern life constantly poses widespread challenges to our internal clocks, for example artificial lighting, shift work and trans-meridian travel, potentially leading to circadian disruption or misalignment and the emergence of associated diseases. For instance many of us experience a mismatch between sleep timing on work and free days (social jetlag) in our everyday lives without being aware of health consequences that may arise from such chronic circadian misalignment, Hence, this review provides an overview of the organization and molecular built-up of the mammalian circadian system, its interactions with the outside world, as well as pathologies arising from circadian disruption and misalignment.
Collapse
Affiliation(s)
- Anna‐Marie Finger
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - Achim Kramer
- Laboratory of Chronobiology Institute for Medical immunology Charité Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| |
Collapse
|
15
|
A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System. BIOLOGY 2021; 10:biology10010065. [PMID: 33477463 PMCID: PMC7829919 DOI: 10.3390/biology10010065] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In mammals, including humans, the body temperature displays a circadian rhythm and is maintained within a narrow range to facilitate the optimal functioning of physiological processes. Body temperature increases during the daytime and decreases during the nighttime thus influencing the expression of the molecular clock and the clock-control genes such as immune genes. An increase in body temperature (daytime, or fever) also prepares the organism to fight aggression by promoting the activation, function, and delivery of immune cells. Many factors may affect body temperature level and rhythm, including environment, age, hormones, or treatment. The disruption of the body temperature is associated with many kinds of diseases and their severity, thus supporting the assumed association between body temperature rhythm and immune functions. Recent studies using complex analysis suggest that circadian rhythm may change in all aspects (level, period, amplitude) and may be predictive of good or poor outcomes. The monitoring of body temperature is an easy tool to predict outcomes and maybe guide future studies in chronotherapy. Abstract The circadian rhythm of the body temperature (CRBT) is a marker of the central biological clock that results from multiple complex biological processes. In mammals, including humans, the body temperature displays a strict circadian rhythm and has to be maintained within a narrow range to allow optimal physiological functions. There is nowadays growing evidence on the role of the temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the proper functioning of the immune system. The disruption of the CRBT, such as fever, has been repeatedly described in diseases and likely reflects a physiological process to activate the molecular clock and trigger the immune response. On the other hand, temperature circadian disruption has also been described as associated with disease severity and thus may mirror or contribute to immune dysfunction. The present review aims to characterize the potential implication of the temperature circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT and physiological changes in body temperature will be mentioned. We further review the immune biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss the relationship between circadian disruption of the body temperature and diseases and highlight the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide future studies in chronotherapy.
Collapse
|
16
|
Rijo-Ferreira F, Takahashi JS. Sleeping Sickness: A Tale of Two Clocks. Front Cell Infect Microbiol 2020; 10:525097. [PMID: 33134186 PMCID: PMC7562814 DOI: 10.3389/fcimb.2020.525097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Sleeping sickness is caused by a eukaryotic unicellular parasite known to infect wild animals, cattle, and humans. It causes a fatal disease that disrupts many rhythmic physiological processes, including daily rhythms of hormonal secretion, temperature regulation, and sleep, all of which are under circadian (24-h) control. In this review, we summarize research on sleeping sickness parasite biology and the impact it has on host health. We also consider the possible evolutionary advantages of sleep and circadian deregulation for the parasite.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
17
|
Prior KF, Rijo-Ferreira F, Assis PA, Hirako IC, Weaver DR, Gazzinelli RT, Reece SE. Periodic Parasites and Daily Host Rhythms. Cell Host Microbe 2020; 27:176-187. [PMID: 32053788 DOI: 10.1016/j.chom.2020.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological rhythms appear to be an elegant solution to the challenge of coordinating activities with the consequences of the Earth's daily and seasonal rotation. The genes and molecular mechanisms underpinning circadian clocks in multicellular organisms are well understood. In contrast, the regulatory mechanisms and fitness consequences of biological rhythms exhibited by parasites remain mysterious. Here, we explore how periodicity in parasite traits is generated and why daily rhythms matter for parasite fitness. We focus on malaria (Plasmodium) parasites which exhibit developmental rhythms during replication in the mammalian host's blood and in transmission to vectors. Rhythmic in-host parasite replication is responsible for eliciting inflammatory responses, the severity of disease symptoms, and fueling transmission, as well as conferring tolerance to anti-parasite drugs. Thus, understanding both how and why the timing and synchrony of parasites are connected to the daily rhythms of hosts and vectors may make treatment more effective and less toxic to hosts.
Collapse
Affiliation(s)
- Kimberley F Prior
- Institute of Evolutionary Biology & Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute & Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patricia A Assis
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Isabella C Hirako
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Laboratório de Imunopatologia, Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG, Brazil
| | - David R Weaver
- Department of Neurobiology & NeuroNexus Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Laboratório de Imunopatologia, Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG, Brazil
| | - Sarah E Reece
- Institute of Evolutionary Biology & Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Abstract
The biodiversity and composition of endoparasites in fish obtained from the Antarctic and subantarctic zones are compared in this study. Several fish were collected in the summer from Antarctica (King George Island) and the Southern Pacific coast (Strait of Magellan and Almirante Montt Gulf). This database was complemented with published information on fish endoparasite communities from both zones, with specimens of fish sample size n ≥ 15. Thus, 31 fish species were analysed in this study, which altogether had 79 parasite species. Diversity indices were calculated for the parasite community of each fish species. Then they were compared between the Antarctic and subantarctic zones. Parasite species composition and host specificity (as the number of fish species used by a parasite species) were also analysed and compared between zones. The diversity indices and the abundance of parasites were significantly higher in the Antarctic than the subantarctic fish. Few parasite species (7.6%) were shared between fish from both zones, showing significant differences in parasite composition. Antarctic parasites were less host-specific than subantarctic parasites, which allowed the coexistence of several parasite species in the fish. The high parasite abundance in Antarctic fish could trigger sympatric speciation in certain parasitic lineages or the exploitation of new resources, resulting in more parasite species than those in subantarctic environments. The high abundance of Antarctic parasites implies different methods and rates of transmission than those of subantarctic parasites. In addition, more alternative fish hosts were used by the Antarctic than subantarctic parasites. This altogether indicates that host-parasite interaction dynamics significantly differ between the Antarctic and subantarctic systems.
Collapse
|
19
|
Diallo AB, Coiffard B, Leone M, Mezouar S, Mege JL. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases. Front Immunol 2020; 11:1457. [PMID: 32733482 PMCID: PMC7363845 DOI: 10.3389/fimmu.2020.01457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
The host defense against pathogens varies among individuals. Among the factors influencing host response, those associated with circadian disruptions are emerging. These latter depend on molecular clocks, which control the two partners of host defense: microbes and immune system. There is some evidence that infections are closely related to circadian rhythms in terms of susceptibility, clinical presentation and severity. In this review, we overview what is known about circadian rhythms in infectious diseases and update the knowledge about circadian rhythms in immune system, pathogens and vectors. This heuristic approach opens a new fascinating field of time-based personalized treatment of infected patients.
Collapse
Affiliation(s)
- Aïssatou Bailo Diallo
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, Hôpital Nord, Médecine Intensive-Réanimation, Marseille, France
| | - Marc Leone
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, AP-HM, CHU Hôpital Nord, Service d'Anesthésie et de Réanimation, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, MEPHI, IRD, AP-HM, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,AP-HM, UF Immunologie, Marseille, France
| |
Collapse
|
20
|
Rijo-Ferreira F, Acosta-Rodriguez VA, Abel JH, Kornblum I, Bento I, Kilaru G, Klerman EB, Mota MM, Takahashi JS. The malaria parasite has an intrinsic clock. Science 2020; 368:746-753. [PMID: 32409471 PMCID: PMC7409452 DOI: 10.1126/science.aba2658] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/11/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023]
Abstract
Malarial rhythmic fevers are the consequence of the synchronous bursting of red blood cells (RBCs) on completion of the malaria parasite asexual cell cycle. Here, we hypothesized that an intrinsic clock in the parasite Plasmodium chabaudi underlies the 24-hour-based rhythms of RBC bursting in mice. We show that parasite rhythms are flexible and lengthen to match the rhythms of hosts with long circadian periods. We also show that malaria rhythms persist even when host food intake is evenly spread across 24 hours, suggesting that host feeding cues are not required for synchrony. Moreover, we find that the parasite population remains synchronous and rhythmic even in an arrhythmic clock mutant host. Thus, we propose that parasite rhythms are generated by the parasite, possibly to anticipate its circadian environment.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Victoria A Acosta-Rodriguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John H Abel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Izabela Kornblum
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ines Bento
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Gokhul Kilaru
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth B Klerman
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, Gelman AE, Haack M, Jelic S, Kim BS, Laposky AD, Lee YC, Mongodin E, Prather AA, Prendergast BJ, Reardon C, Shaw AC, Sengupta S, Szentirmai É, Thakkar M, Walker WE, Solt LA. Perfect timing: circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 2020; 5:131487. [PMID: 31941836 PMCID: PMC7030790 DOI: 10.1172/jci.insight.131487] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.
Collapse
Affiliation(s)
- Jeffrey A. Haspel
- Division of Pulmonary, Critical Care and Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ron Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marishka K. Brown
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher Depner
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Paula Desplats
- Department of Neurosciences and
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Monika Haack
- Human Sleep and Inflammatory Systems Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Brian S. Kim
- Center for the Study of Itch
- Department of Medicine
- Department of Anesthesiology
- Department of Pathology, and
- Department of Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aaron D. Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yvonne C. Lee
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aric A. Prather
- Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Brian J. Prendergast
- Department of Psychology and Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UCD School of Veterinary Medicine, Davis, California, USA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Éva Szentirmai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Health Sciences Center, Texas Tech University, El Paso, Texas, USA
| | - Laura A. Solt
- Department of Immunology and Microbiology, Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
22
|
Dawn to Dusk: Diurnal Rhythm of the Immune Response in Rainbow Trout ( Oncorhynchus Mykiss). BIOLOGY 2019; 9:biology9010008. [PMID: 31905814 PMCID: PMC7168250 DOI: 10.3390/biology9010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022]
Abstract
The daily change of light and dark periods influences different physiological processes including feeding, resting and locomotor activity. Previously, several studies on mammalian models revealed a strong link between day-night rhythms and key immunological parameters. Since teleost fishes possess innate and adaptive immune responses like those observed in higher vertebrates, we aimed to elucidate how changes in light-dark cycles shape the immune system of fish. Using the rainbow trout laboratory model, we investigated the link between diurnal rhythms and immune competence of fish. Initially, the cell composition and phagocytic activity of leukocytes was analyzed in the circulation as well as in the head kidney, the functional ortholog of mammalian bone marrow. Once the baseline was established, we evaluated the ability of fish to respond to a bacterial stimulus, as well as the changes in antimicrobial activity of the serum. Our results suggest increased immune competence during the day, manifested by the higher presence of myeloid cells in the circulation; increased overall phagocytic activity; and higher capacity of the sera to inhibit the growth of Aeromonas salmonicida. Notably, our flow cytometric analysis identified the myeloid cells as the major population influenced by the time of day, whereas IgM+ B cells and thrombocytes did not vary in a significant manner. Interestingly, the presence of myeloid cells in blood and head kidney followed complementary trends. Thus, while we observed the highest number of myeloid cells in the blood during early morning, we witnessed a reverse trend in the head kidney, suggesting a homing of myeloid cells to reservoir niches with the onset of the dark phase. Further, the presence of myeloid cells was mirrored in the expression of the proinflammatory marker tnfa as well as in the number of leukocytes recruited to the peritoneal cavity in the peritonitis model of inflammation. Overall, the data suggest a connection between diurnal rhythms and the immune response of rainbow trout and highlight the relevance of rhythmicity and its influence on experimental work in the field of fish chronoimmunology.
Collapse
|
23
|
Abstract
Circadian clocks are endogenous oscillators that control 24-h physiological and behavioral processes. The central circadian clock exerts control over myriad aspects of mammalian physiology, including the regulation of sleep, metabolism, and the immune system. Here, we review advances in understanding the genetic regulation of sleep through the circadian system, as well as the impact of dysregulated gene expression on metabolic function. We also review recent studies that have begun to unravel the circadian clock’s role in controlling the cardiovascular and nervous systems, gut microbiota, cancer, and aging. Such circadian control of these systems relies, in part, on transcriptional regulation, with recent evidence for genome-wide regulation of the clock through circadian chromosome organization. These novel insights into the genomic regulation of human physiology provide opportunities for the discovery of improved treatment strategies and new understanding of the biological underpinnings of human disease.
Collapse
|
24
|
Cheng Y, Chi Y, Zhang L, Wang GZ. A single factor dominates the behavior of rhythmic genes in mouse organs. BMC Genomics 2019; 20:879. [PMID: 31747875 PMCID: PMC6868821 DOI: 10.1186/s12864-019-6255-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Circadian rhythm, regulated by both internal and external environment of the body, is a multi-scale biological oscillator of great complexity. On the molecular level, thousands of genes exhibit rhythmic transcription, which is both organ- and species-specific, but it remains a mystery whether some common factors could potentially explain their rhythmicity in different organs. In this study we address this question by analyzing the transcriptome data in 12 mouse organs to determine such major impacting factors. Results We found a strong positive correlation between the transcriptional level and rhythmic amplitude of circadian rhythmic genes in mouse organs. Further, transcriptional level could explain over 70% of the variation in amplitude. In addition, the functionality and tissue specificity were not strong predictors of amplitude, and the expression level of rhythmic genes was linked to the energy consumption associated with transcription. Conclusion Expression level is a single major factor impacts the behavior of rhythmic genes in mouse organs. This single determinant implicates the importance of rhythmic expression itself on the design of the transcriptional system. So, rhythmic regulation of highly expressed genes can effectively reduce the energetic cost of transcription, facilitating the long-term adaptive evolution of the entire genetic system.
Collapse
Affiliation(s)
- Yang Cheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200031, China
| | - Yuhao Chi
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200031, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, Shanghai, 200031, China.
| |
Collapse
|
25
|
Pigeault R, Caudron Q, Nicot A, Rivero A, Gandon S. Timing malaria transmission with mosquito fluctuations. Evol Lett 2018; 2:378-389. [PMID: 30283689 PMCID: PMC6122125 DOI: 10.1002/evl3.61] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Temporal variations in the activity of arthropod vectors can dramatically affect the epidemiology and evolution of vector‐borne pathogens. Here, we explore the “Hawking hypothesis”, which states that these pathogens may evolve the ability to time investment in transmission to match the activity of their vectors. First, we use a theoretical model to identify the conditions promoting the evolution of time‐varying transmission strategies in pathogens. Second, we experimentally test the “Hawking hypothesis” by monitoring the within‐host dynamics of Plasmodium relictum throughout the acute and the chronic phases of the bird infection. We detect a periodic increase of parasitemia and mosquito infection in the late afternoon that coincides with an increase in the biting activity of its natural vector. We also detect a positive effect of mosquito bites on Plasmodium replication in the birds both in the acute and in the chronic phases of the infection. This study highlights that Plasmodium parasites use two different strategies to increase the match between transmission potential and vector availability. We discuss the adaptive nature of these unconditional and plastic transmission strategies with respect to the time scale and the predictability of the fluctuations in the activity of the vector.
Collapse
Affiliation(s)
- Romain Pigeault
- MIVEGEC (UMR CNRS 5290); University of Montpellier; Montpellier France
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | | | - Antoine Nicot
- CEFE (UMR CNRS 5175); University of Montpellier; Montpellier France
| | - Ana Rivero
- MIVEGEC (UMR CNRS 5290); University of Montpellier; Montpellier France
| | - Sylvain Gandon
- CEFE (UMR CNRS 5175); University of Montpellier; Montpellier France
| |
Collapse
|
26
|
Larrondo LF, Canessa P. The Clock Keeps on Ticking: Emerging Roles for Circadian Regulation in the Control of Fungal Physiology and Pathogenesis. Curr Top Microbiol Immunol 2018; 422:121-156. [PMID: 30255278 DOI: 10.1007/82_2018_143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tic-tac, tic-tac, the sound of time is familiar to us, yet, it also silently shapes daily biological processes conferring 24-hour rhythms in, among others, cellular and systemic signaling, gene expression, and metabolism. Indeed, circadian clocks are molecular machines that permit temporal control of a variety of processes in individuals, with a close to 24-hour period, optimizing cellular dynamics in synchrony with daily environmental cycles. For over three decades, the molecular bases of these clocks have been extensively described in the filamentous fungus Neurospora crassa, yet, there have been few molecular studies in fungi other than Neurospora, despite evidence of rhythmic phenomena in many fungal species, including pathogenic ones. This chapter will revise the mechanisms underlying clock regulation in the model fungus N. crassa, as well as recent findings obtained in several fungi. In particular, this chapter will review the effect of circadian regulation of virulence and organismal interactions, focusing on the phytopathogen Botrytis cinerea, as well as several entomopathogenic fungi, including the behavior-manipulating species Ophiocordyceps kimflemingiae and Entomophthora muscae. Finally, this review will comment current efforts in the study of mammalian pathogenic fungi, while highlighting recent circadian lessons from parasites such as Trypanosoma and Plasmodium. The clock keeps on ticking, whether we can hear it or not.
Collapse
Affiliation(s)
- Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Paulo Canessa
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Facultad de Ciencias de la Vida, Centro de Biotecnologia Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|