1
|
Zhang M, Huang J, Chi Q, Ran X, Wen X. Antiviral effects and mechanism of Ma-Xing-Shi-Gan-San on porcine reproductive and respiratory syndrome virus. Front Microbiol 2025; 16:1539094. [PMID: 40365068 PMCID: PMC12069324 DOI: 10.3389/fmicb.2025.1539094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Background Currently, vaccination has consistently posed challenges in preventing the Porcine reproductive and respiratory syndrome virus (PRRSV), so there is an urgent need for effective controlling strategies. Ma-Xing-Shi-Gan-San (MXSGS), a traditional Chinese medicine (TCM) formula used for pulmonary diseases and respiratory disorders, has proven effective in treating H1N1 and COVID-19. Herein, we evaluated whether MXSGS exhibits potent antiviral activity against PRRSV. Methods First, a PRRSV-infected Marc-145 cell model was established. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the tissue culture infective dose (TCID₅₀) assay were performed to assess the inhibitory effects of MXSGS on PRRSV during different administration stages. Network pharmacology was then employed to identify key active ingredients and core potential targets of MXSGS against PRRSV. In addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to elucidate the antiviral signaling pathways modulated by MXSGS. Lastly, candidate ingredients and targets were validated by molecular docking analysis. Results MXSGS significantly inhibited PRRSV through prophylactic and therapeutic administration and suppressed multiple phases of the viral life cycle, including attachment, internalization, replication, and release. In network pharmacology results, 82 active ingredients and 118 therapeutic targets related to MXSGS and PRRSV were identified. Among them, Calycosin, Odoratin, Glyzaglabrin, 7,2',4'-trihydroxy-5-methoxy-3-arylcoumarin, and Eriodictyol were selected as key active ingredients. ALB, PPARG, CASP3, STAT3, TGFB1, JAK2, TLR4, PRKACA, and PRKACB were screened as potential core targets. Furthermore, pathway and functional enrichment analysis revealed that the impact of MXSGS on PRRSV mainly involved Toll-like receptor signaling pathway, typical NF-κB signaling, positive regulation of interleukin-6 production, Th17 cell differentiation, inflammatory response, and viral defense response. Lastly, molecular docking analysis indicated an excellent binding affinity between the core potential targets and key active ingredients, with all binding energies < -6.0 kcal/mol. Conclusion In vitro experiments indicated that MXSGS exhibited considerable anti-PRRSV activity. Using network pharmacology and molecular docking approaches, five key active ingredients and six core potential targets were identified, underscoring MXSGS as a promising pharmaceutical agent for controlling PRRSV.
Collapse
Affiliation(s)
- Miao Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Jiankun Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Qingan Chi
- Hainan Animal Disease Prevention and Control Center, Haikou, Hainan, China
| | - Xuhua Ran
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Xiaobo Wen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
2
|
Jayamali BPMV, Wijerathna HMSM, Sirisena DMKP, Hanchapola HACR, Warnakula WADLR, Arachchi UPE, Liyanage DS, Jung S, Wan Q, Lee J. Molecular depiction and functional delineation of E3 ubiquitin ligase MARCH5 in yellowtail clownfish (Amphiprion clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105283. [PMID: 39481581 DOI: 10.1016/j.dci.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Membrane-associated Ring-CH 5 (MARCH5) is a mitochondrial E3 ubiquitin ligase playing a key role in the regulation of mitochondrial dynamics. In mammals, MARCH5 negatively regulates mitochondrial antiviral signaling (MAVS) protein aggregation during viral infection and hampers downstream type I interferon signaling to prevent excessive immune activation. However, its precise functional role in the teleost immune system remains unclear. This study investigated the molecular characteristics and immune response of the MARCH5 ortholog in Amphiprion clarkii (A. clarkii; AcMARCH5). The predicted AcMARCH5 protein sequence consists of 287 amino acids with a molecular weight of 32.02 kDa and a theoretical isoelectric point of 9.11. It contains four C-terminal transmembrane (TM) domains and an N-terminal RING cysteine-histidine (CH) domain, which directly regulates ubiquitin transfer. Multiple sequence alignment revealed a high level of conservation between AcMARCH5 and its orthologs in other vertebrate species. Under normal physiological conditions, AcMARCH5 showed the highest mRNA expression in the muscle, brain, and kidney tissues of A. clarkii. Upon stimulation with polyinosinic:polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi, AcMARCH5 expression was drastically modulated. Functional assays showed that overexpression of AcMARCH5 in fathead minnow (FHM) cells downregulated antiviral gene expression, accompanied by enhanced viral hemorrhagic septicemia virus (VHSV) replication. In murine macrophages, AcMARCH5 overexpression markedly reduced the production of pro-inflammatory cytokines in response to poly I:C treatment. Additionally, AcMARCH5 exhibited an anti-apoptotic effect in H2O2-treated FHM cells. Collectively, these results suggest that AcMARCH5 may play a role in maintaining cellular homeostasis under disease and stress conditions in A. clarkii.
Collapse
Affiliation(s)
- B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute of Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
3
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024; 43:1257-1277. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
4
|
Xiao X, Fu Y, You W, Huang C, Zeng F, Gu X, Sun X, Li J, Zhang Q, Du W, Cheng G, Liu Z, Liu L. Inhibition of the RLR signaling pathway by SARS-CoV-2 ORF7b is mediated by MAVS and abrogated by ORF7b-homologous interfering peptide. J Virol 2024; 98:e0157323. [PMID: 38572974 PMCID: PMC11092349 DOI: 10.1128/jvi.01573-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-β). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yanan Fu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Wanling You
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Feng Zeng
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Xinsheng Gu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiaoguang Sun
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zhixin Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Long Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Tuminello S, Nguyen E, Durmus N, Alptekin R, Yilmaz M, Crisanti MC, Snuderl M, Chen Y, Shao Y, Reibman J, Taioli E, Arslan AA. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. EPIGENOMES 2023; 7:31. [PMID: 38131903 PMCID: PMC10742700 DOI: 10.3390/epigenomes7040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Known carcinogens in the dust and fumes from the destruction of the World Trade Center (WTC) towers on 9 November 2001 included metals, asbestos, and organic pollutants, which have been shown to modify epigenetic status. Epigenome-wide association analyses (EWAS) using uniform (Illumina) methodology have identified novel epigenetic profiles of WTC exposure. Methods: We reviewed all published data, comparing differentially methylated gene profiles identified in the prior EWAS studies of WTC exposure. This included DNA methylation changes in blood-derived DNA from cases of cancer-free "Survivors" and those with breast cancer, as well as tissue-derived DNA from "Responders" with prostate cancer. Emerging molecular pathways related to the observed DNA methylation changes in WTC-exposed groups were explored and summarized. Results: WTC dust exposure appears to be associated with DNA methylation changes across the genome. Notably, WTC dust exposure appears to be associated with increased global DNA methylation; direct dysregulation of cancer genes and pathways, including inflammation and immune system dysregulation; and endocrine system disruption, as well as disruption of cholesterol homeostasis and lipid metabolism. Conclusion: WTC dust exposure appears to be associated with biologically meaningful DNA methylation changes, with implications for carcinogenesis and development of other chronic diseases.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
| | - Emelie Nguyen
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Muhammed Yilmaz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
9
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
10
|
Guo Y, Zhang XN, Su S, Ruan ZL, Hu MM, Shu HB. β-adrenoreceptor-triggered PKA activation negatively regulates the innate antiviral response. Cell Mol Immunol 2023; 20:175-188. [PMID: 36600052 PMCID: PMC9886936 DOI: 10.1038/s41423-022-00967-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Upon viral infection, cytoplasmic pattern recognition receptors detect viral nucleic acids and activate the adaptor protein VISA/MAVS- or MITA/STING-mediated innate antiviral response. Whether and how the innate antiviral response is regulated by neuronal endocrine functions is unclear. Here, we show that viral infection reduced the serum levels of the β-adrenergic hormones epinephrine and norepinephrine as well as the cellular levels of their receptors ADRB1 and ADRB2. We further show that an increase in epinephrine/norepinephrine level inhibited the innate antiviral response in an ADRB1-/2-dependent manner. Mechanistically, epinephrine/norepinephrine stimulation activated the downstream kinase PKA, which catalyzed the phosphorylation of MITA at S241, S243 and T263, inhibiting MITA activation and suppressing the innate immune response to DNA virus. In addition, phosphorylation of VISA at T54 by PKA antagonized the innate immune response to RNA virus. These findings reveal the regulatory mechanisms of innate antiviral responses by epinephrine/norepinephrine and provide a possible explanation for increased host susceptibility to viral infection in stressful and anxiety-promoting situations.
Collapse
Affiliation(s)
- Yi Guo
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xia-Nan Zhang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shan Su
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University; College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
11
|
Nagashima S, Ito N, Shiiba I, Shimura H, Yanagi S. Ubiquitin-mediated mitochondrial regulation by MITOL/MARCHF5 at a glance. J Biochem 2022; 173:1-11. [PMID: 36346121 DOI: 10.1093/jb/mvac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Mitochondria are involved in various cellular processes, such as energy production, inflammatory responses and cell death. Mitochondrial dysfunction is associated with many age-related diseases, including neurological disorders and heart failure. Mitochondrial quality is strictly maintained by mitochondrial dynamics linked to an adequate supply of phospholipids and other substances from the endoplasmic reticulum (ER). The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 is responsible for mitochondrial quality control through the regulation of mitochondrial dynamics, formation of mitochondria-ER contacts and mitophagy. MITOL deficiency has been shown to impair mitochondrial function, cause an excessive inflammatory response and increase vulnerability to stress, resulting in the exacerbation of the disease. In this study, we overview the ubiquitin-mediated regulation of mitochondrial function by MITOL and the relationship between MITOL and diseases.
Collapse
Affiliation(s)
- Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| | - Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo 171-8588, Japan
| |
Collapse
|
12
|
Yu T, Zeng Q, Mao H, Liu Y, Zhang H, Wang S, Hu C, Xu X. Grass carp (Ctenopharyngodon idella) NLK2 inhibits IFN I response through blocking MAVS-IRF3 axis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:206-217. [PMID: 36220536 DOI: 10.1016/j.fsi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
In mammals, nemo-like kinase 2 (NLK2) is a conservative protein kinase involved in Wnt/β-catenin signaling pathway and immune response. However, the role of NLK2 in immune response in teleost remain unclear. In this study, we identified an ortholog of mammalian NLK from grass carp (Ctenopharyngodon idellus) named CiNLK2. CiNLK2 shares a high level of homology with the counterparts, especially with that of Cyprinus carpio. CiNLK2 was ubiquitously expressed in all tested tissues (liver, brain, spleen, gill, kidney and eye) and its expression was up-regulated under the treatment with poly I:C or GCRV. Overexpression of CiNLK2 suppressed the production of IFN I in CIK cells whether or not treated with poly I:C. However, knockdown of CiNLK2 increased the expression level of IFN I. The analysis of subcellular localization showed that CiNLK2 protein was scattered throughout the cytoplasm and nucleus. In terms of mechanism, CiNLK2 can directly interact with MAVS and inhibit MAVS-induced IFN I response. Moreover, CiNLK2 increased the phosphorylation level of MAVS, which led to the degradation of MAVS protein. On the other hand, CiNLK2 suppressed the phosphorylation and nuclear translocation of IRF3. In general, CiNLK2 served as an inhibitor for IFN I response by targeting MAVS-IRF3 signal axis.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Qing Zeng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China; Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
13
|
Rusilowicz-Jones EV, Brazel AJ, Frigenti F, Urbé S, Clague MJ. Membrane compartmentalisation of the ubiquitin system. Semin Cell Dev Biol 2022; 132:171-184. [PMID: 34895815 DOI: 10.1016/j.semcdb.2021.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
We now have a comprehensive inventory of ubiquitin system components. Understanding of any system also needs an appreciation of how components are organised together. Quantitative proteomics has provided us with a census of their relative populations in several model cell types. Here, by examining large scale unbiased data sets, we seek to identify and map those components, which principally reside on the major organelles of the endomembrane system. We present the consensus distribution of > 50 ubiquitin modifying enzymes, E2s, E3s and DUBs, that possess transmembrane domains. This analysis reveals that the ER and endosomal compartments have a diverse cast of resident E3s, whilst the Golgi and mitochondria operate with a more restricted palette. We describe key functions of ubiquitylation that are specific to each compartment and relate this to their signature complement of ubiquitin modifying components.
Collapse
Affiliation(s)
- Emma V Rusilowicz-Jones
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ailbhe J Brazel
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; Department of Biology, Maynooth University, Maynooth W23 F2K6, Ireland
| | - Francesca Frigenti
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Sylvie Urbé
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| | - Michael J Clague
- Dept. of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
14
|
Tankyrases inhibit innate antiviral response by PARylating VISA/MAVS and priming it for RNF146-mediated ubiquitination and degradation. Proc Natl Acad Sci U S A 2022; 119:e2122805119. [PMID: 35733260 DOI: 10.1073/pnas.2122805119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During viral infection, sensing of viral RNA by retinoic acid-inducible gene-I-like receptors (RLRs) initiates an antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA (virus-induced signal adaptor; also known as mitochondrial antiviral signaling protein [MAVS]). VISA is regulated by various posttranslational modifications (PTMs), such as polyubiquitination, phosphorylation, O-linked β-d-N-acetylglucosaminylation (O-GlcNAcylation), and monomethylation. However, whether other forms of PTMs regulate VISA-mediated innate immune signaling remains elusive. Here, we report that Poly(ADP-ribosyl)ation (PARylation) is a PTM of VISA, which attenuates innate immune response to RNA viruses. Using a biochemical purification approach, we identified tankyrase 1 (TNKS1) as a VISA-associated protein. Viral infection led to the induction of TNKS1 and its homolog TNKS2, which translocated from cytosol to mitochondria and interacted with VISA. TNKS1 and TNKS2 catalyze the PARylation of VISA at Glu137 residue, thereby priming it for K48-linked polyubiquitination by the E3 ligase Ring figure protein 146 (RNF146) and subsequent degradation. Consistently, TNKS1, TNKS2, or RNF146 deficiency increased the RNA virus-triggered induction of downstream effector genes and impaired the replication of the virus. Moreover, TNKS1- or TNKS2-deficient mice produced higher levels of type I interferons (IFNs) and proinflammatory cytokines after virus infection and markedly reduced virus loads in the brains and lungs. Together, our findings uncover an essential role of PARylation of VISA in virus-triggered innate immune signaling, which represents a mechanism to avoid excessive harmful immune response.
Collapse
|
15
|
Zhu L, Gao T, Huang Y, Jin J, Wang D, Zhang L, Jin Y, Li P, Hu Y, Wu Y, Liu H, Dong Q, Wang G, Zheng T, Song C, Bai Y, Zhang X, Liu Y, Yang W, Xu K, Zou G, Zhao L, Cao R, Zhong W, Xia X, Xiao G, Liu X, Cao C. Ebola virus VP35 hijacks the PKA-CREB1 pathway for replication and pathogenesis by AKIP1 association. Nat Commun 2022; 13:2256. [PMID: 35474062 PMCID: PMC9042921 DOI: 10.1038/s41467-022-29948-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV), one of the deadliest viruses, is the cause of fatal Ebola virus disease (EVD). The underlying mechanism of viral replication and EBOV-related hemorrhage is not fully understood. Here, we show that EBOV VP35, a cofactor of viral RNA-dependent RNA polymerase, binds human A kinase interacting protein (AKIP1), which consequently activates protein kinase A (PKA) and the PKA-downstream transcription factor CREB1. During EBOV infection, CREB1 is recruited into EBOV ribonucleoprotein complexes in viral inclusion bodies (VIBs) and employed for viral replication. AKIP1 depletion or PKA-CREB1 inhibition dramatically impairs EBOV replication. Meanwhile, the transcription of several coagulation-related genes, including THBD and SERPINB2, is substantially upregulated by VP35-dependent CREB1 activation, which may contribute to EBOV-related hemorrhage. The finding that EBOV VP35 hijacks the host PKA-CREB1 signal axis for viral replication and pathogenesis provides novel potential therapeutic approaches against EVD. Ebola virus virion protein 35 (VP35) is a cofactor of the viral RNA-dependent RNA polymerase, required for viral assembly and IFN antagonist. Here, Zhu et al. provide evidence that EBOV VP35 induces an AKIP1-mediated (human A kinase interacting protein) activation of the PKA-CREB1 signaling pathway and contributes to viral replication and pathogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Zhu
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yi Huang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China
| | - Jing Jin
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Di Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Leike Zhang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China
| | - Yanwen Jin
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yan Wu
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Qincai Dong
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Guangfei Wang
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Tong Zheng
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Caiwei Song
- Beijing Institute of Biotechnology, Beijing, 100039, China
| | - Yu Bai
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Xun Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Yaoning Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Weihong Yang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Zou
- Insitut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Gengfu Xiao
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan, Hubei, 430020, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing, 100039, China.
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, 100039, China.
| |
Collapse
|
16
|
Wang Q, Ai Y, Wang C, Liu Y, Zhong H, Yan W, He Y, Deng Z, Zou J, Feng H. PKACα negatively regulates TAK1/IRF7 signaling in black carp Mylopharyngodon piceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104306. [PMID: 34736993 DOI: 10.1016/j.dci.2021.104306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Protein Kinase A catalytic subunit α (PKACα), plays an important role in the PKA and NF-κB signaling pathway in mammals. However, the function of PKACα in teleost fish remains largely unknown. In this study, PKACα from black carp (bcPKACα) has been cloned and its role in the innate immune antiviral signaling pathway was investigated. The open reading frame of bcPKACα gene contains 1056 nucleotides and the immunofluorescence assay verified that PKACα was mainly distributed in the cytoplasm. The reporter assay showed that bcPKACα expression and co-expression of bcPKACα and black carp TAK1 (bcTAK1) could activate the transcription of NF-κB. However, bcTAK1/bcIRF7-mediated IFN transcription was inhibited by bcPKACα. Knockdown of bcPKACα showed slightly enhanced antiviral activity against spring viremia of carp virus (SVCV) compared with control group. Accordingly, the antiviral activity against SVCV and grass carp reovirus (GCRV) of EPC cells co-expressing bcPKACα, bcTAK1 and bcIRF7 was obviously lower than that of EPC cells co-expressing bcTAK1 and bcIRF7. The similar subcellular distribution and interaction between bcPKACα and bcTAK1 were detected by immunofluorescent staining and co-immunoprecipitation assay separately. The data generated in this study demonstrates that bcPKACα associates with bcTAK1 and positively regulates NF-κB signaling, however, negatively regulates TAK1/IRF7 signaling pathway.
Collapse
Affiliation(s)
- Qun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yue Ai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Chanyuan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yankai Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Weiyi Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunfan He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhuoyi Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
17
|
Chu PY, Tzeng YDT, Chiu YH, Lin HY, Kuo CH, Hou MF, Li CJ. Multi-Omics Reveals the Immunological Role and Prognostic Potential of Mitochondrial Ubiquitin Ligase MARCH5 in Human Breast Cancer. Biomedicines 2021; 9:1329. [PMID: 34680446 PMCID: PMC8533422 DOI: 10.3390/biomedicines9101329] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023] Open
Abstract
E3 ubiquitin-linked enzyme MARCH5, also known as membrane-associated circular finger 5, is an enzyme encoded by the human MARCH5 gene. The main objective of this study was to visualize the prognosis of MARCH5 in breast cancer and to determine the relationship between MARCH5 expression and tumor immunity. MARCH5 expression was significantly higher in several cancers, including breast cancer (BRCA), compared with corresponding normal tissues. Not only was high MARCH5 expression associated with poorer overall survival, but also MARCH5 expression was positively correlated with the number of tumor-infiltrating immune cells in BRCA malignant tissues. Furthermore, MARCH5 expression showed a strong correlation with various immune markers of BRCA, suggesting its role in regulating tumor immunity. MARCH5 is a useful prognostic biomarker in several cancers, and its expression is highly correlated with tumor immune cell infiltration, and increased MARCH5 expression may serve as a new biomarker for BRCA diagnosis and prognosis.
Collapse
Affiliation(s)
- Pei-Yi Chu
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111, Taiwan;
| | - Hung-Yu Lin
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Chen-Hsin Kuo
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan;
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
18
|
Fu YZ, Wang SY, Zheng ZQ, Yi Huang, Li WW, Xu ZS, Wang YY. SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cell Mol Immunol 2021; 18:613-620. [PMID: 33110251 PMCID: PMC7588591 DOI: 10.1038/s41423-020-00571-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
A novel SARS-related coronavirus (SARS-CoV-2) has recently emerged as a serious pathogen that causes high morbidity and substantial mortality. However, the mechanisms by which SARS-CoV-2 evades host immunity remain poorly understood. Here, we identified SARS-CoV-2 membrane glycoprotein M as a negative regulator of the innate immune response. We found that the M protein interacted with the central adaptor protein MAVS in the innate immune response pathways. This interaction impaired MAVS aggregation and its recruitment of downstream TRAF3, TBK1, and IRF3, leading to attenuation of the innate antiviral response. Our findings reveal a mechanism by which SARS-CoV-2 evades the innate immune response and suggest that the M protein of SARS-CoV-2 is a potential target for the development of SARS-CoV-2 interventions.
Collapse
Affiliation(s)
- Yu-Zhi Fu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Zhou-Qin Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yi Huang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Wei-Wei Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
19
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
20
|
Zheng C. The emerging roles of the MARCH ligases in antiviral innate immunity. Int J Biol Macromol 2021; 171:423-427. [PMID: 33428955 DOI: 10.1016/j.ijbiomac.2020.12.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Membrane-associated RING (really interesting new gene)-cysteine-histidine (CH) (MARCH) ubiquitin ligases belong to a RING finger domain E3 ligases family. So far, eleven members have been found in the MARCH family, which are MARCH 1 to 11. The members of the MARCH family are widely distributed and involve in a variety of cellular functions, including regulation of the immune system, transmembrane transport of proteins, protein stability, endoplasmic reticulum-related degradation, and endosome protein transport. Several seminal studies over the past decade have delineated that MARCH affects viral replication through various mechanisms by regulating the activity of signaling molecules and their expression in the antiviral innate immune responses. Here, we summarize the complex roles of MARCH ligases in the antiviral innate immune signaling pathway and its impact on viral replication in host immune defense systems. A better understanding of this interplay's molecular mechanisms is important concerning the development of new therapeutics targeting viral infections.
Collapse
Affiliation(s)
- Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Nonga OE, Enkvist E, Herberg FW, Uri A. Inhibitors and fluorescent probes for protein kinase PKAcβ and its S54L mutant, identified in a patient with cortisol producing adenoma. Biosci Biotechnol Biochem 2020; 84:1839-1845. [DOI: 10.1080/09168451.2020.1772038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Recently, a mutation was discovered in the gene PRKACB encoding the catalytic subunit β of PKA (PKAcβ) from a patient with severe Cushing’s syndrome. This mutation, S54L, leads to a structural change in the glycine-rich loop of the protein. In the present study, an inhibitor with six-fold selectivity toward S54L-PKAcβ mutant over the wild-type enzyme was constructed. Moreover, we developed a fluorescent assay allowing to determine side by side the affinity of commercially available PKA inhibitors, newly synthesized compounds, and fluorescent probes toward PKAcβ and S54L-PKAcβ.
Collapse
Affiliation(s)
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Asko Uri
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Zhang C, Yan Y, He H, Wang L, Zhang N, Zhang J, Huang H, Wu N, Ren H, Qian M, Liu M, Du B. IFN-stimulated P2Y13 protects mice from viral infection by suppressing the cAMP/EPAC1 signaling pathway. J Mol Cell Biol 2020; 11:395-407. [PMID: 30137373 PMCID: PMC7107496 DOI: 10.1093/jmcb/mjy045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Among the most important sensors of extracellular danger signals, purinergic receptors have been demonstrated to play crucial roles in host defense against infection. However, the function of P2 receptors in viral infection has been little explored. Here we demonstrated that P2Y13 and its ligand ADP play an important role in protecting hosts from viral infections. First, we demonstrate that P2Y13, as a typical interferon-stimulated gene, is induced together with extracellular ADP during viral infection. Most importantly, extracellular ADP restricts the replication of different kinds of viruses, including vesicular stomatitis virus, Newcastle disease virus, herpes simplex virus 1, and murine leukemia virus. This kind of protection is dependent on P2Y13 but not P2Y1 or P2Y12, which are also considered as receptors for ADP. Furthermore, cyclic adenosine monophosphate and EPAC1 are downregulated by extracellular ADP through the P2Y13-coupled Gi alpha subunit. Accordingly, inhibition or deletion of EPAC1 significantly eliminates ADP/P2Y13-mediated antiviral activities. Taken together, our results show that P2Y13 and ADP play pivotal roles in the clearance of invaded virus and have the potential as antiviral targets.
Collapse
Affiliation(s)
- Chengfei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Yan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongwang He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongjun Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Nannan Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
23
|
Li M, Shu HB. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response. Protein Cell 2020; 11:584-599. [PMID: 32474700 PMCID: PMC7381519 DOI: 10.1007/s13238-020-00729-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in host defense by sensing cytosolic DNA derived from microbial pathogens or mis-located cellular DNA. Upon DNA binding, cGAS utilizes GTP and ATP as substrates to synthesize cGAMP, leading to MITA-mediated innate immune response. In this study, we identified the phosphatase PPP6C as a negative regulator of cGAS-mediated innate immune response. PPP6C is constitutively associated with cGAS in un-stimulated cells. DNA virus infection causes rapid disassociation of PPP6C from cGAS, resulting in phosphorylation of human cGAS S435 or mouse cGAS S420 in its catalytic pocket. Mutation of this serine residue of cGAS impairs its ability to synthesize cGAMP upon DNA virus infection. In vitro experiments indicate that S420-phosphorylated mcGAS has higher affinity to GTP and enzymatic activity. PPP6C-deficiency promotes innate immune response to DNA virus in various cells. Our findings suggest that PPP6C-mediated dephosphorylation of a catalytic pocket serine residue of cGAS impairs its substrate binding activity and innate immune response, which provides a mechanism for keeping the DNA sensor cGAS inactive in the absence of infection to avoid autoimmune response.
Collapse
Affiliation(s)
- Mi Li
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
24
|
Overview of Mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5 from Molecular Mechanisms to Diseases. Int J Mol Sci 2020; 21:ijms21113781. [PMID: 32471110 PMCID: PMC7312067 DOI: 10.3390/ijms21113781] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
The molecular pathology of diseases seen from the mitochondrial axis has become more complex with the progression of research. A variety of factors, including the failure of mitochondrial dynamics and quality control, have made it extremely difficult to narrow down drug discovery targets. We have identified MITOL (mitochondrial ubiquitin ligase: also known as MARCH5) localized on the mitochondrial outer membrane and previously reported that it is an important regulator of mitochondrial dynamics and mitochondrial quality control. In this review, we describe the pathological aspects of MITOL revealed through functional analysis and its potential as a drug discovery target.
Collapse
|
25
|
Phu L, Rose CM, Tea JS, Wall CE, Verschueren E, Cheung TK, Kirkpatrick DS, Bingol B. Dynamic Regulation of Mitochondrial Import by the Ubiquitin System. Mol Cell 2020; 77:1107-1123.e10. [DOI: 10.1016/j.molcel.2020.02.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023]
|
26
|
Haschka MD, Karbon G, Soratroi C, O'Neill KL, Luo X, Villunger A. MARCH5-dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic drug treatment. Cell Death Differ 2020; 27:2297-2312. [PMID: 32015503 PMCID: PMC7370223 DOI: 10.1038/s41418-020-0503-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023] Open
Abstract
Cells experiencing delays in mitotic progression are prone to undergo apoptosis unless they can exit mitosis before proapoptotic factors reach a critical threshold. Microtubule targeting agents (MTAs) arrest cells in mitosis and induce apoptotic cell death engaging the BCL2 network. Degradation of the antiapoptotic BCL2 family member MCL-1 is considered to set the time until onset of apoptosis upon MTA treatment. MCL1 degradation involves its interaction with one of its key binding partners, the proapoptotic BH3-only protein NOXA. Here, we report that the mitochondria-associated E3-ligase MARCH5, best known for its role in mitochondrial quality control and regulation of components of the mitochondrial fission machinery, controls the levels of MCL1/NOXA protein complexes in steady state as well as during mitotic arrest. Inhibition of MARCH5 function sensitizes cancer cells to the proapoptotic effects of MTAs by the accumulation of NOXA and primes cancer cells that may undergo slippage to escape death in mitosis to cell death in the next G1 phase. We propose that inhibition of MARCH5 may be a suitable strategy to sensitize cancer cells to antimitotic drug treatment.
Collapse
Affiliation(s)
- Manuel D Haschka
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Gerlinde Karbon
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Claudia Soratroi
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Katelyn L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Abstract
The antiviral innate immune and inflammatory responses are critical for host defense against viral infection. How these antiviral responses are initiated and regulated has been intensively investigated. Viral nucleic acids are sensed by pattern-recognition receptors (PRRs), which trigger various signaling pathways by utilizing distinct adaptor proteins, kinases and regulatory proteins. These pathways lead to activation of the transcriptional factors NF-κB and IRF3 and ultimate induction of antiviral effector proteins including type I interferons (IFNs), TNF and IL-1β, which are critical mediators of antiviral innate immune and inflammatory responses. For the past 20 years, our groups at Peking University and Wuhan University have made restless efforts in deciphering the molecular mechanisms of antiviral innate immune and inflammatory responses. Here, we summarize the major discoveries from our groups, including the identifications of the critical adaptors VISA/MAVS and MITA/STING, regulatory mechanisms of these adapter-mediated signaling, and regulation of TNF- and IL1β-triggered inflammatory responses.
Collapse
Affiliation(s)
- Qing Yang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
The E3 Ubiquitin Ligase TBK1 Mediates the Degradation of Multiple Picornavirus VP3 Proteins by Phosphorylation and Ubiquitination. J Virol 2019; 93:JVI.01438-19. [PMID: 31534043 DOI: 10.1128/jvi.01438-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
Abstract
TANK-binding kinase 1 (TBK1) is essential for interferon beta (IFN-β) production and innate antiviral immunity. However, other, additional functions of TBK1 have remained elusive. Here, we showed that TBK1 is an E3 ubiquitin ligase that undergoes self-ubiquitylation in vitro in the presence of the E2 enzyme UbcH5c. Further evidence showed that TBK1 could also be self-ubiquitylated in vivo Importantly, multiple picornavirus VP3 proteins were degraded by TBK1 through its kinase and E3 ubiquitin ligase activity. Mechanistically, TBK1 phosphorylated multiple picornavirus VP3 proteins at serine residues and ubiquitinated them via K63-linked ubiquitination at lysine residues. In addition, the C426 and C605 residues of TBK1 were not essential for TBK1 innate immunity activity; however, these residues were required for degradation of multiple picornavirus VP3 proteins and for its E3 ubiquitin ligase activity. Hence, our findings identified a novel role of TBK1 in regulating the virus life cycle and provided new insights into the molecular mechanisms of TBK1-mediated antiviral response.IMPORTANCE TBK1 is an important adaptor protein required for innate immune response to viruses, but its other functions were unknown. In this study, we found that TBK1 is an E3 ubiquitin ligase that undergoes self-ubiquitylation in vitro in the presence of the E2 enzyme UbcH5c. In addition, multiple picornavirus VP3 proteins were degraded by TBK1 through its kinase and E3 ubiquitin ligase activity. Our report provides evidence that TBK1 plays a role in viral protein degradation.
Collapse
|
29
|
Zhu W, Li J, Zhang R, Cai Y, Wang C, Qi S, Chen S, Liang X, Qi N, Hou F. TRAF3IP3 mediates the recruitment of TRAF3 to MAVS for antiviral innate immunity. EMBO J 2019; 38:e102075. [PMID: 31390091 DOI: 10.15252/embj.2019102075] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
RIG-I-MAVS antiviral signaling represents an important pathway to stimulate interferon production and confer innate immunity to the host. Upon binding to viral RNA and Riplet-mediated polyubiquitination, RIG-I promotes prion-like aggregation and activation of MAVS. MAVS subsequently induces interferon production by activating two signaling pathways mediated by TBK1-IRF3 and IKK-NF-κB respectively. However, the mechanism underlying the activation of MAVS downstream pathways remains elusive. Here, we demonstrated that activation of TBK1-IRF3 by MAVS-Region III depends on its multimerization state and identified TRAF3IP3 as a critical regulator for the downstream signaling. In response to virus infection, TRAF3IP3 is accumulated on mitochondria and thereby facilitates the recruitment of TRAF3 to MAVS for TBK1-IRF3 activation. Traf3ip3-deficient mice demonstrated a severely compromised potential to induce interferon production and were vulnerable to RNA virus infection. Our findings uncover that TRAF3IP3 is an important regulator for RIG-I-MAVS signaling, which bridges MAVS and TRAF3 for an effective antiviral innate immune response.
Collapse
Affiliation(s)
- Wenting Zhu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiaxin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yixiang Cai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Changwan Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shishi Qi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Nan Qi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Lin H, Li S, Shu HB. The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Front Immunol 2019; 10:1751. [PMID: 31404274 PMCID: PMC6669941 DOI: 10.3389/fimmu.2019.01751] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023] Open
Abstract
The membrane-associated RING-CH-type finger (MARCH) proteins of E3 ubiquitin ligases have emerged as critical regulators of immune responses. MARCH proteins target immune receptors, viral proteins as well as components in innate immune response for polyubiquitination and degradations via distinct routes. This review summarizes the current progress about MARCH proteins and their regulation on immune responses.
Collapse
Affiliation(s)
- Heng Lin
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Phosphorylation of MAVS/VISA by Nemo-like kinase (NLK) for degradation regulates the antiviral innate immune response. Nat Commun 2019; 10:3233. [PMID: 31324787 PMCID: PMC6642205 DOI: 10.1038/s41467-019-11258-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/25/2019] [Indexed: 01/05/2023] Open
Abstract
MAVS is essential for antiviral immunity, but the molecular mechanisms responsible for its tight regulation remain poorly understood. Here, we show that NLK inhibits the antiviral immune response during viral infection by targeting MAVS for degradation. NLK depletion promotes virus-induced antiviral cytokine production and decreases viral replication, which is potently rescued by the reintroduction of NLK. Moreover, the depletion of NLK promotes antiviral effects and increases the survival times of mice after infection with VSV. NLK interacts with and phosphorylates MAVS at multiple sites on mitochondria or peroxisomes, thereby inducing the degradation of MAVS and subsequent inactivation of IRF3. Most importantly, a peptide derived from MAVS promotes viral-induced IFN-β production and antagonizes viral replication in vitro and in vivo. These findings provide direct insights into the molecular mechanisms by which phosphorylation of MAVS regulates its degradation and influences its activation and identify an important peptide target for propagating antiviral responses.
Collapse
|
32
|
Nguyen TT, Suzuki S, Sugamata R, Ito F, Tran DH, Yamamoto T, Kawachi S, Suzuki K. Hypothiocyanous Acid Suppresses PolyI:C-Induced Antiviral Responses by Modulating IRF3 Phosphorylation in Human Airway Epithelial Cells. TOHOKU J EXP MED 2018; 245:131-140. [PMID: 29962372 DOI: 10.1620/tjem.245.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pattern recognition receptors recognize RNA viruses and trigger type I and III interferon (IFN) production and apoptosis to limit viral replication and spread. Some innate immune cells produce oxidants in response to viral infection to protect against invasion. Recent studies have demonstrated the virucidal activity of hypothiocyanous acid (HOSCN), an oxidant generated by the peroxidase-catalyzed reaction of thiocyanate with hydrogen peroxide. However, the effects of HOSCN on host antiviral responses are still unknown. In this study, we aimed to clarify the role of HOSCN in host antiviral responses against RNA viruses in airway epithelial cells using polyinosinic-polycytidylic acid (polyI:C), a mimic of viral RNA. Our results show that HOSCN repressed antiviral responses in NCI-H292 human airway epithelial cells. HOSCN decreased polyI:C-induced apoptosis and the expression levels of IFNB1, IFNL1, IFNL2 and IFNL3 mRNAs. In addition, the induction of other interferon regulatory factor 3 (IRF3)-dependent genes was also suppressed by HOSCN. Further analyses focused on IRF3 revealed that HOSCN inhibited the phosphorylation of IRF3 at Ser386 and Ser396 as well as its dimerization and nuclear translocation by inhibiting the phosphorylation of TANK-binding kinase 1 (TBK1). Furthermore, HOSCN led to the phosphorylation of IRF3 at residues other than Ser386 and Ser396, implying that HOSCN may cause a conformational change in IRF3 to impair its function. Collectively, these results suggest that HOSCN plays a novel signaling role in the antiviral response, acting as a negative regulator of apoptotic and TBK1-IRF3 signaling pathways and limiting IRF3-dependent gene expression.
Collapse
Affiliation(s)
- Thuy Thu Nguyen
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Shoichi Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Ryuichi Sugamata
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Fuyu Ito
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Dat Huu Tran
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| | - Tomoko Yamamoto
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Shoji Kawachi
- Asia International Institute of Infectious Disease Control, Teikyo University
| | - Kazuo Suzuki
- Department of Health Protection, Graduate School of Medicine, Teikyo University.,Asia International Institute of Infectious Disease Control, Teikyo University
| |
Collapse
|
33
|
Abstract
Microbial nucleic acids are major signatures of invading pathogens, and their recognition by various host pattern recognition receptors (PRRs) represents the first step toward an efficient innate immune response to clear the pathogens. The nucleic acid-sensing PRRs are localized at the plasma membrane, the cytosol, and/or various cellular organelles. Sensing of nucleic acids and signaling by PRRs involve recruitment of distinct signaling components, and PRRs are intensively regulated by cellular organelle trafficking. PRR-mediated innate immune responses are also heavily regulated by posttranslational modifications, including phosphorylation, polyubiquitination, sumoylation, and glutamylation. In this review, we focus on our current understanding of recognition of microbial nucleic acid by PRRs, particularly on their regulation by organelle trafficking and posttranslational modifications. We also discuss how sensing of self nucleic acids and dysregulation of PRR-mediated signaling lead to serious human diseases.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| |
Collapse
|