1
|
Heller CD, Zahedifard F, Doskocil I, Pamfil D, Zoltner M, Kokoska L, Rondevaldova J. Traditional Medicinal Ranunculaceae Species from Romania and Their In Vitro Antioxidant, Antiproliferative, and Antiparasitic Potential. Int J Mol Sci 2024; 25:10987. [PMID: 39456769 PMCID: PMC11507926 DOI: 10.3390/ijms252010987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.
Collapse
Affiliation(s)
- Cristina D. Heller
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic;
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Doru Pamfil
- Department of Horticulture and Landscape Architecture, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| |
Collapse
|
2
|
Zoltner M, Horn D, Field MC. Pass the boron: benzoxaboroles as antiparasite drugs. Trends Parasitol 2024; 40:820-828. [PMID: 39107181 DOI: 10.1016/j.pt.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024]
Abstract
The development of new drug modalities has been facilitated recently by the introduction of boron as a component of organic compounds, and specifically within a benzoxaborale scaffold. This has enabled exploration of new chemical space and the development of effective compounds targeting a broad range of morbidities, including infections by protozoa, fungi, worms, and bacteria. Most notable is the recent demonstration of a single oral dose cure using acoziborole against African trypanosomiasis. Common and species-/structure-specific interactions between benzoxaboroles and parasite species have emerged and provide vital insights into the mechanisms of cidality, as well as potential challenges in terms of resistance and/or side effects. Here, we discuss the literature specific to benzoxaborole studies in parasitic protists and consider unanswered questions concerning this important new drug class.
Collapse
Affiliation(s)
- Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, BIOCEV, Vestec, Czech Republic
| | - David Horn
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mark C Field
- Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Institute of Parasitology, Faculty of Sciences, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Zahedifard F, Bansal M, Sharma N, Kumar S, Shen S, Singh P, Rathi B, Zoltner M. Phenotypic screening reveals a highly selective phthalimide-based compound with antileishmanial activity. PLoS Negl Trop Dis 2024; 18:e0012050. [PMID: 38527083 PMCID: PMC10994559 DOI: 10.1371/journal.pntd.0012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/04/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 μM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.
Collapse
Affiliation(s)
- Farnaz Zahedifard
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Meenakshi Bansal
- H. G. Khorana Centre for Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
- Department of Chemistry, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat Haryana, India
| | - Neha Sharma
- H. G. Khorana Centre for Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram, University of Science & Technology, Murthal, Sonepat Haryana, India
| | - Siqi Shen
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Priyamvada Singh
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India
| | - Brijesh Rathi
- H. G. Khorana Centre for Chemical Biology, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India
| | - Martin Zoltner
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| |
Collapse
|
4
|
Fairlamb AH, Wyllie S. The critical role of mode of action studies in kinetoplastid drug discovery. FRONTIERS IN DRUG DISCOVERY 2023; 3:fddsv.2023.1185679. [PMID: 37600222 PMCID: PMC7614965 DOI: 10.3389/fddsv.2023.1185679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Understanding the target and mode of action of compounds identified by phenotypic screening can greatly facilitate the process of drug discovery and development. Here, we outline the tools currently available for target identification against the neglected tropical diseases, human African trypanosomiasis, visceral leishmaniasis and Chagas' disease. We provide examples how these tools can be used to identify and triage undesirable mechanisms, to identify potential toxic liabilities in patients and to manage a balanced portfolio of target-based campaigns. We review the primary targets of drugs that are currently in clinical development that were initially identified via phenotypic screening, and whose modes of action affect protein turnover, RNA trans-splicing or signalling in these protozoan parasites.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
The 4-Aminomethylphenoxy-Benzoxaborole AN3057 as a Potential Treatment Option for Primary Amoebic Meningoencephalitis. Antimicrob Agents Chemother 2023; 67:e0150622. [PMID: 36688657 PMCID: PMC9933681 DOI: 10.1128/aac.01506-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Primary amoebic meningoencephalitis is a rare but fatal central nervous system (CNS) disease caused by the "brain-eating amoeba" Naegleria fowleri. A major obstacle is the requirement for drugs with the ability to cross the blood-brain barrier, which are used in extremely high doses, cause severe side effects, and are usually ineffective. We discovered that the 4-aminomethylphenoxy-benzoxaborole AN3057 exhibits nanomolar potency against N. fowleri, and experimental treatment of infected mice significantly prolonged survival and demonstrated a 28% relapse-free cure rate.
Collapse
|
6
|
Makarov A, Began J, Mautone IC, Pinto E, Ferguson L, Zoltner M, Zoll S, Field MC. The role of invariant surface glycoprotein 75 in xenobiotic acquisition by African trypanosomes. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:18-35. [PMID: 36789350 PMCID: PMC9896412 DOI: 10.15698/mic2023.02.790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
The surface proteins of parasitic protozoa mediate functions essential to survival within a host, including nutrient accumulation, environmental sensing and immune evasion. Several receptors involved in nutrient uptake and defence from the innate immune response have been described in African trypanosomes and, together with antigenic variation, contribute towards persistence within vertebrate hosts. Significantly, a superfamily of invariant surface glycoproteins (ISGs) populates the trypanosome surface, one of which, ISG75, is implicated in uptake of the century-old drug suramin. By CRISPR/Cas9 knockout and biophysical analysis, we show here that ISG75 directly binds suramin and mediates uptake of additional naphthol-related compounds, making ISG75 a conduit for entry of at least one structural class of trypanocidal compounds. However, ISG75 null cells present only modest attenuation of suramin sensitivity, have unaltered viability in vivo and in vitro and no alteration to suramin-invoked proteome responses. While ISG75 is demonstrated as a valid suramin cell entry pathway, we suggest the presence of additional mechanisms for suramin accumulation, further demonstrating the complexity of trypanosomatid drug interactions and potential for evolution of resistance.
Collapse
Affiliation(s)
- Alexandr Makarov
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jakub Began
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Ileana Corvo Mautone
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Laboratorio de Moléculas Bioactivas, Departamento de Ciencias Biológicas, Universidad de la República, Paysandú 60000, Uruguay
| | - Erika Pinto
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Liam Ferguson
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Charles University, Faculty of Science, Department of Parasitology, Vestec, Czech Republic
| | - Sebastian Zoll
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Farfán-García ED, Kilic A, García-Machorro J, Cuevas-Galindo ME, Rubio-Velazquez BA, García-Coronel IH, Estevez-Fregoso E, Trujillo-Ferrara JG, Soriano-Ursúa MA. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:733-754. [DOI: 10.1016/b978-0-323-85730-7.00026-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Şenocak A, Taş NA, Taslimi P, Tüzün B, Aydin A, Karadağ A. Novel amino acid Schiff base Zn(II) complexes as new therapeutic approaches in diabetes and Alzheimer's disease: Synthesis, characterization, biological evaluation, and molecular docking studies. J Biochem Mol Toxicol 2021; 36:e22969. [PMID: 34812557 DOI: 10.1002/jbt.22969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/25/2021] [Accepted: 10/13/2021] [Indexed: 01/05/2023]
Abstract
Schiff bases are compounds that have gained importance in the paint industry due to their colorful nature and in the field of chemistry and biochemistry due to their biological activities. Various biological applications of Schiff bases, such as antitumor, antifungal, antibacterial, antioxidant, antituberculosis, and anthelmintic, have been widely studied. Within the scope of the study, 5-bromo-2-hydroxybenzaldehyde and amino acid methyl esters (isoleucine, phenylalanine, and methionine) and amino acid Schiff bases were synthesized first. The synthesis of the new Zn(II) complexes of these Schiff bases was carried out by the reaction of synthesized Schiff bases and Zn(OAc)2 ·2H2 O. The structures of the synthesized complexes were elucidated using elemental analysis, Fourier transform infrared, nuclear magnetic resonance, UV-visible, and thermal analysis spectroscopy techniques. These synthesized salts were found to be effective inhibitor compounds for the α-glycosidase, and acetylcholinesterase enzyme with Ki values in the range of 30.50 ± 3.82-38.17 ± 6.26 µM for α-glycosidase, 3.68 ± 0.54-10.27 ± 1.68 µM for butyrylcholinesterase, and 6.26 ± 0.83-15.73 ± 4.73 µM for acetylcholinesterase, respectively.
Collapse
Affiliation(s)
- Ayşegül Şenocak
- Chemistry Department, Art and Science Faculty, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Nilay A Taş
- Chemistry Department, Art and Science Faculty, Tokat Gaziosmanpasa University, Tokat, Turkey.,Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Burak Tüzün
- Chemistry Department, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ali Aydin
- Department of Basic Medical Science, Yozgat Bozok University, Yozgat, Turkey
| | - Ahmet Karadağ
- Department of Chemistry, Faculty of Arts and Sciences, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
10
|
Steketee PC, Giordani F, Vincent IM, Crouch K, Achcar F, Dickens NJ, Morrison LJ, MacLeod A, Barrett MP. Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole. PLoS Negl Trop Dis 2021; 15:e0009939. [PMID: 34752454 PMCID: PMC8648117 DOI: 10.1371/journal.pntd.0009939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/06/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Subspecies of the protozoan parasite Trypanosoma brucei are the causative agents of Human African Trypanosomiasis (HAT), a debilitating neglected tropical disease prevalent across sub-Saharan Africa. HAT case numbers have steadily decreased since the start of the century, and sustainable elimination of one form of the disease is in sight. However, key to this is the development of novel drugs to combat the disease. Acoziborole is a recently developed benzoxaborole, currently in advanced clinical trials, for treatment of stage 1 and stage 2 HAT. Importantly, acoziborole is orally bioavailable, and curative with one dose. Recent studies have made significant progress in determining the molecular mode of action of acoziborole. However, less is known about the potential mechanisms leading to acoziborole resistance in trypanosomes. In this study, an in vitro-derived acoziborole-resistant cell line was generated and characterised. The AcoR line exhibited significant cross-resistance with the methyltransferase inhibitor sinefungin as well as hypersensitisation to known trypanocides. Interestingly, transcriptomics analysis of AcoR cells indicated the parasites had obtained a procyclic- or stumpy-like transcriptome profile, with upregulation of procyclin surface proteins as well as differential regulation of key metabolic genes known to be expressed in a life cycle-specific manner, even in the absence of major morphological changes. However, no changes were observed in transcripts encoding CPSF3, the recently identified protein target of acoziborole. The results suggest that generation of resistance to this novel compound in vitro can be accompanied by transcriptomic switches resembling a procyclic- or stumpy-type phenotype.
Collapse
Affiliation(s)
- Pieter C. Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Nicholas J. Dickens
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, United Kingdom
| |
Collapse
|
11
|
Bettadapur A, Hunter SS, Suleiman RL, Ruyechan MC, Huang W, Barbieri CG, Miller HW, Tam TSY, Settles ML, Ralston KS. Establishment of quantitative RNAi-based forward genetics in Entamoeba histolytica and identification of genes required for growth. PLoS Pathog 2021; 17:e1010088. [PMID: 34843592 PMCID: PMC8716031 DOI: 10.1371/journal.ppat.1010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/29/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
While Entamoeba histolytica remains a globally important pathogen, it is dramatically understudied. The tractability of E. histolytica has historically been limited, which is largely due to challenging features of its genome. To enable forward genetics, we constructed and validated the first genome-wide E. histolytica RNAi knockdown mutant library. This library allows for Illumina deep sequencing analysis for quantitative identification of mutants that are enriched or depleted after selection. We developed a novel analysis pipeline to precisely define and quantify gene fragments. We used the library to perform the first RNAi screen in E. histolytica and identified slow growth (SG) mutants. Among genes targeted in SG mutants, many had annotated functions consistent with roles in cellular growth or metabolic pathways. Some targeted genes were annotated as hypothetical or lacked annotated domains, supporting the power of forward genetics in uncovering functional information that cannot be gleaned from databases. While the localization of neither of the proteins targeted in SG1 nor SG2 mutants could be predicted by sequence analysis, we showed experimentally that SG1 localized to the cytoplasm and cell surface, while SG2 localized to the cytoplasm. Overexpression of SG1 led to increased growth, while expression of a truncation mutant did not lead to increased growth, and thus aided in defining functional domains in this protein. Finally, in addition to establishing forward genetics, we uncovered new details of the unusual E. histolytica RNAi pathway. These studies dramatically improve the tractability of E. histolytica and open up the possibility of applying genetics to improve understanding of this important pathogen.
Collapse
Affiliation(s)
- Akhila Bettadapur
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Samuel S. Hunter
- Genome Center, University of California, Davis, California, United States of America
| | - Rene L. Suleiman
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Maura C. Ruyechan
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Wesley Huang
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | | | - Hannah W. Miller
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Tammie S. Y. Tam
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Matthew L. Settles
- Genome Center, University of California, Davis, California, United States of America
| | - Katherine S. Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| |
Collapse
|
12
|
Horn D. Genome-scale RNAi screens in African trypanosomes. Trends Parasitol 2021; 38:160-173. [PMID: 34580035 DOI: 10.1016/j.pt.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Genome-scale genetic screens allow researchers to rapidly identify the genes and proteins that impact a particular phenotype of interest. In African trypanosomes, RNA interference (RNAi) knockdown screens have revealed mechanisms underpinning drug resistance, drug transport, prodrug metabolism, quorum sensing, genome replication, and gene expression control. RNAi screening has also been remarkably effective at highlighting promising potential antitrypanosomal drug targets. The first ever RNAi library screen was implemented in African trypanosomes, and genome-scale RNAi screens and other related approaches continue to have a major impact on trypanosomatid research. Here, I review those impacts in terms of both discovery and translation.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
13
|
Van den Kerkhof M, Leprohon P, Mabille D, Hendrickx S, Tulloch LB, Wall RJ, Wyllie S, Chatelain E, Mowbray CE, Braillard S, Ouellette M, Maes L, Caljon G. Identification of Resistance Determinants for a Promising Antileishmanial Oxaborole Series. Microorganisms 2021; 9:microorganisms9071408. [PMID: 34210040 PMCID: PMC8305145 DOI: 10.3390/microorganisms9071408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Current treatment options for visceral leishmaniasis have several drawbacks, and clinicians are confronted with an increasing number of treatment failures. To overcome this, the Drugs for Neglected Diseases initiative (DNDi) has invested in the development of novel antileishmanial leads, including a very promising class of oxaboroles. The mode of action/resistance of this series to Leishmania is still unknown and may be important for its further development and implementation. Repeated in vivo drug exposure and an in vitro selection procedure on both extracellular promastigote and intracellular amastigote stages were both unable to select for resistance. The use of specific inhibitors for ABC-transporters could not demonstrate the putative involvement of efflux pumps. Selection experiments and inhibitor studies, therefore, suggest that resistance to oxaboroles may not emerge readily in the field. The selection of a genome-wide cosmid library coupled to next-generation sequencing (Cos-seq) was used to identify resistance determinants and putative targets. This resulted in the identification of a highly enriched cosmid, harboring genes of chromosome 2 that confer a subtly increased resistance to the oxaboroles tested. Moderately enriched cosmids encompassing a region of chromosome 34 contained the cleavage and polyadenylation specificity factor (cpsf) gene, encoding the molecular target of several related benzoxaboroles in other organisms.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada; (P.L.); (M.O.)
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Lindsay B. Tulloch
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Richard J. Wall
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Susan Wyllie
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; (L.B.T.); (R.J.W.); (S.W.)
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Charles E. Mowbray
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Stéphanie Braillard
- Drugs for Neglected Diseases initiative (DNDi), 1202 Geneva, Switzerland; (E.C.); (C.E.M.); (S.B.)
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada; (P.L.); (M.O.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (D.M.); (S.H.); (L.M.)
- Correspondence: ; Tel.: +32-32652610
| |
Collapse
|
14
|
Giordani F, Paape D, Vincent IM, Pountain AW, Fernández-Cortés F, Rico E, Zhang N, Morrison LJ, Freund Y, Witty MJ, Peter R, Edwards DY, Wilkes JM, van der Hooft JJJ, Regnault C, Read KD, Horn D, Field MC, Barrett MP. Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. PLoS Pathog 2020; 16:e1008932. [PMID: 33141865 PMCID: PMC7710103 DOI: 10.1371/journal.ppat.1008932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/02/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
Livestock diseases caused by Trypanosoma congolense, T. vivax and T. brucei, collectively known as nagana, are responsible for billions of dollars in lost food production annually. There is an urgent need for novel therapeutics. Encouragingly, promising antitrypanosomal benzoxaboroles are under veterinary development. Here, we show that the most efficacious subclass of these compounds are prodrugs activated by trypanosome serine carboxypeptidases (CBPs). Drug-resistance to a development candidate, AN11736, emerged readily in T. brucei, due to partial deletion within the locus containing three tandem copies of the CBP genes. T. congolense parasites, which possess a larger array of related CBPs, also developed resistance to AN11736 through deletion within the locus. A genome-scale screen in T. brucei confirmed CBP loss-of-function as the primary mechanism of resistance and CRISPR-Cas9 editing proved that partial deletion within the locus was sufficient to confer resistance. CBP re-expression in either T. brucei or T. congolense AN11736-resistant lines restored drug-susceptibility. CBPs act by cleaving the benzoxaborole AN11736 to a carboxylic acid derivative, revealing a prodrug activation mechanism. Loss of CBP activity results in massive reduction in net uptake of AN11736, indicating that entry is facilitated by the concentration gradient created by prodrug metabolism.
Collapse
Affiliation(s)
- Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fernando Fernández-Cortés
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Eva Rico
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael J. Witty
- Global Alliance for Livestock and Veterinary Medicine, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Rosemary Peter
- Global Alliance for Livestock and Veterinary Medicine, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Darren Y. Edwards
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jonathan M. Wilkes
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Justin J. J. van der Hooft
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Current address: Bioinformatics Group, Wageningen University, Wageningen, the Netherlands
| | - Clément Regnault
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
A Trypanosoma brucei ORFeome-Based Gain-of-Function Library Identifies Genes That Promote Survival during Melarsoprol Treatment. mSphere 2020; 5:5/5/e00769-20. [PMID: 33028684 PMCID: PMC7568655 DOI: 10.1128/msphere.00769-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei is an early branching protozoan parasite that causes human and animal African trypanosomiasis. Forward genetics approaches are powerful tools for uncovering novel aspects of trypanosomatid biology, pathogenesis, and therapeutic approaches against trypanosomiasis. Here, we have generated a T. brucei cloned ORFeome consisting of >90% of the targeted 7,245 genes and used it to make an inducible gain-of-function parasite library broadly applicable to large-scale forward genetic screens. We conducted a proof-of-principle genetic screen to identify genes whose expression promotes survival in melarsoprol, a critical drug of last resort. The 57 genes identified as overrepresented in melarsoprol survivor populations included the gene encoding the rate-limiting enzyme for the biosynthesis of an established drug target (trypanothione), validating the tool. In addition, novel genes associated with gene expression, flagellum localization, and mitochondrion localization were identified, and a subset of those genes increased melarsoprol resistance upon overexpression in culture. These findings offer new insights into trypanosomatid basic biology, implications for drug targets, and direct or indirect drug resistance mechanisms. This study generated a T. brucei ORFeome and gain-of-function parasite library, demonstrated the library's usefulness in forward genetic screening, and identified novel aspects of melarsoprol resistance that will be the subject of future investigations. These powerful genetic tools can be used to broadly advance trypanosomatid research.IMPORTANCE Trypanosomatid parasites threaten the health of more than 1 billion people worldwide. Because their genomes are highly diverged from those of well-established eukaryotes, conservation is not always useful in assigning gene functions. However, it is precisely among the trypanosomatid-specific genes that ideal therapeutic targets might be found. Forward genetics approaches are an effective way to identify novel gene functions. We used an ORFeome approach to clone a large percentage of Trypanosoma brucei genes and generate a gain-of-function parasite library. This library was used in a genetic screen to identify genes that promote resistance to the clinically significant yet highly toxic drug melarsoprol. Hits arising from the screen demonstrated the library's usefulness in identifying known pathways and uncovered novel aspects of resistance mediated by proteins localized to the flagellum and mitochondrion. The powerful new genetic tools generated herein are expected to promote advances in trypanosomatid biology and therapeutic development in the years to come.
Collapse
|
16
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
17
|
Zoltner M, Campagnaro GD, Taleva G, Burrell A, Cerone M, Leung KF, Achcar F, Horn D, Vaughan S, Gadelha C, Zíková A, Barrett MP, de Koning HP, Field MC. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J Biol Chem 2020; 295:8331-8347. [PMID: 32354742 PMCID: PMC7294092 DOI: 10.1074/jbc.ra120.012355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Gustavo D Campagnaro
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gergana Taleva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alana Burrell
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Michela Cerone
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
18
|
Dickie EA, Giordani F, Gould MK, Mäser P, Burri C, Mottram JC, Rao SPS, Barrett MP. New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Trop Med Infect Dis 2020; 5:tropicalmed5010029. [PMID: 32092897 PMCID: PMC7157223 DOI: 10.3390/tropicalmed5010029] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
The twentieth century ended with human African trypanosomiasis (HAT) epidemics raging across many parts of Africa. Resistance to existing drugs was emerging, and many programs aiming to contain the disease had ground to a halt, given previous success against HAT and the competing priorities associated with other medical crises ravaging the continent. A series of dedicated interventions and the introduction of innovative routes to develop drugs, involving Product Development Partnerships, has led to a dramatic turnaround in the fight against HAT caused by Trypanosoma brucei gambiense. The World Health Organization have been able to optimize the use of existing tools to monitor and intervene in the disease. A promising new oral medication for stage 1 HAT, pafuramidine maleate, ultimately failed due to unforeseen toxicity issues. However, the clinical trials for this compound demonstrated the possibility of conducting such trials in the resource-poor settings of rural Africa. The Drugs for Neglected Disease initiative (DNDi), founded in 2003, has developed the first all oral therapy for both stage 1 and stage 2 HAT in fexinidazole. DNDi has also brought forward another oral therapy, acoziborole, potentially capable of curing both stage 1 and stage 2 disease in a single dosing. In this review article, we describe the remarkable successes in combating HAT through the twenty first century, bringing the prospect of the elimination of this disease into sight.
Collapse
Affiliation(s)
- Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Matthew K. Gould
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; (P.M.); (C.B.)
- University of Basel, Petersplatz 1, 4000 Basel, Switzerland
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK;
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, CA 94608, USA;
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK; (E.A.D.); (F.G.); (M.K.G.)
- Correspondence:
| |
Collapse
|
19
|
Sindhe KMV, Wu W, Legac J, Zhang YK, Easom EE, Cooper RA, Plattner JJ, Freund YR, DeRisi JL, Rosenthal PJ. Plasmodium falciparum Resistance to a Lead Benzoxaborole Due to Blocked Compound Activation and Altered Ubiquitination or Sumoylation. mBio 2020; 11:e02640-19. [PMID: 31992618 PMCID: PMC6989105 DOI: 10.1128/mbio.02640-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023] Open
Abstract
New antimalarial drugs are needed. The benzoxaborole AN13762 showed excellent activity against cultured Plasmodium falciparum, against fresh Ugandan P. falciparum isolates, and in murine malaria models. To gain mechanistic insights, we selected in vitro for P. falciparum isolates resistant to AN13762. In all of 11 independent selections with 100 to 200 nM AN13762, the 50% inhibitory concentration (IC50) increased from 18-118 nM to 180-890 nM, and whole-genome sequencing of resistant parasites demonstrated mutations in prodrug activation and resistance esterase (PfPARE). The introduction of PfPARE mutations led to a similar level of resistance, and recombinant PfPARE hydrolyzed AN13762 to the benzoxaborole AN10248, which has activity similar to that of AN13762 but for which selection of resistance was not readily achieved. Parasites further selected with micromolar concentrations of AN13762 developed higher-level resistance (IC50, 1.9 to 5.0 μM), and sequencing revealed additional mutations in any of 5 genes, 4 of which were associated with ubiquitination/sumoylation enzyme cascades; the introduction of one of these mutations, in SUMO-activating enzyme subunit 2, led to a similar level of resistance. The other gene mutated in highly resistant parasites encodes the P. falciparum cleavage and specificity factor homolog PfCPSF3, previously identified as the antimalarial target of another benzoxaborole. Parasites selected for resistance to AN13762 were cross-resistant with a close analog, AN13956, but not with standard antimalarials, AN10248, or other benzoxaboroles known to have different P. falciparum targets. Thus, AN13762 appears to have a novel mechanism of antimalarial action and multiple mechanisms of resistance, including loss of function of PfPARE preventing activation to AN10248, followed by alterations in ubiquitination/sumoylation pathways or PfCPSF3.IMPORTANCE Benzoxaboroles are under study as potential new drugs to treat malaria. One benzoxaborole, AN13762, has potent activity and promising features, but its mechanisms of action and resistance are unknown. To gain insights into these mechanisms, we cultured malaria parasites with nonlethal concentrations of AN13762 and generated parasites with varied levels of resistance. Parasites with low-level resistance had mutations in PfPARE, which processes AN13762 into an active metabolite; PfPARE mutations prevented this processing. Parasites with high-level resistance had mutations in any of a number of enzymes, mostly those involved in stress responses. Parasites selected for AN13762 resistance were not resistant to other antimalarials, suggesting novel mechanisms of action and resistance for AN13762, a valuable feature for a new class of antimalarial drugs.
Collapse
Affiliation(s)
- Kirthana M V Sindhe
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Wesley Wu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Eric E Easom
- Anacor Pharmaceuticals, Inc., Palo Alto, California, USA
| | - Roland A Cooper
- Dominican University of California, San Rafael, California, USA
| | | | | | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
21
|
Francklyn CS, Mullen P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem 2019; 294:5365-5385. [PMID: 30670594 DOI: 10.1074/jbc.rev118.002956] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are universal enzymes that catalyze the attachment of amino acids to the 3' ends of their cognate tRNAs. The resulting aminoacylated tRNAs are escorted to the ribosome where they enter protein synthesis. By specifically matching amino acids to defined anticodon sequences in tRNAs, ARSs are essential to the physical interpretation of the genetic code. In addition to their canonical role in protein synthesis, ARSs are also involved in RNA splicing, transcriptional regulation, translation, and other aspects of cellular homeostasis. Likewise, aminoacylated tRNAs serve as amino acid donors for biosynthetic processes distinct from protein synthesis, including lipid modification and antibiotic biosynthesis. Thanks to the wealth of details on ARS structures and functions and the growing appreciation of their additional roles regulating cellular homeostasis, opportunities for the development of clinically useful ARS inhibitors are emerging to manage microbial and parasite infections. Exploitation of these opportunities has been stimulated by the discovery of new inhibitor frameworks, the use of semi-synthetic approaches combining chemistry and genome engineering, and more powerful techniques for identifying leads from the screening of large chemical libraries. Here, we review the inhibition of ARSs by small molecules, including the various families of natural products, as well as inhibitors developed by either rational design or high-throughput screening as antibiotics and anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Christopher S Francklyn
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Patrick Mullen
- From the Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
22
|
Abstract
African trypanosomes cause lethal and neglected tropical diseases, known as sleeping sickness in humans and nagana in animals. Current therapies are limited, but fortunately, promising therapies are in advanced clinical and veterinary development, including acoziborole (AN5568 or SCYX-7158) and AN11736, respectively. These benzoxaboroles will likely be key to the World Health Organization's target of disease control by 2030. Their mode of action was previously unknown. We have developed a high-coverage overexpression library and use it here to explore drug mode of action in Trypanosoma brucei Initially, an inhibitor with a known target was used to select for drug resistance and to test massive parallel library screening and genome-wide mapping; this effectively identified the known target and validated the approach. Subsequently, the overexpression screening approach was used to identify the target of the benzoxaboroles, Cleavage and Polyadenylation Specificity Factor 3 (CPSF3, Tb927.4.1340). We validated the CPSF3 endonuclease as the target, using independent overexpression strains. Knockdown provided genetic validation of CPSF3 as essential, and GFP tagging confirmed the expected nuclear localization. Molecular docking and CRISPR-Cas9-based editing demonstrated how acoziborole can specifically block the active site and mRNA processing by parasite, but not host CPSF3. Thus, our findings provide both genetic and chemical validation for CPSF3 as an important drug target in trypanosomes and reveal inhibition of mRNA maturation as the mode of action of the trypanocidal benzoxaboroles. Understanding the mechanism of action of benzoxaborole-based therapies can assist development of improved therapies, as well as the prediction and monitoring of resistance, if or when it arises.
Collapse
|
23
|
Begolo D, Vincent IM, Giordani F, Pöhner I, Witty MJ, Rowan TG, Bengaly Z, Gillingwater K, Freund Y, Wade RC, Barrett MP, Clayton C. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog 2018; 14:e1007315. [PMID: 30252911 PMCID: PMC6173450 DOI: 10.1371/journal.ppat.1007315] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/05/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Kinetoplastid parasites-trypanosomes and leishmanias-infect millions of humans and cause economically devastating diseases of livestock, and the few existing drugs have serious deficiencies. Benzoxaborole-based compounds are very promising potential novel anti-trypanosomal therapies, with candidates already in human and animal clinical trials. We investigated the mechanism of action of several benzoxaboroles, including AN7973, an early candidate for veterinary trypanosomosis. In all kinetoplastids, transcription is polycistronic. Individual mRNA 5'-ends are created by trans splicing of a short leader sequence, with coupled polyadenylation of the preceding mRNA. Treatment of Trypanosoma brucei with AN7973 inhibited trans splicing within 1h, as judged by loss of the Y-structure splicing intermediate, reduced levels of mRNA, and accumulation of peri-nuclear granules. Methylation of the spliced leader precursor RNA was not affected, but more prolonged AN7973 treatment caused an increase in S-adenosyl methionine and methylated lysine. Together, the results indicate that mRNA processing is a primary target of AN7973. Polyadenylation is required for kinetoplastid trans splicing, and the EC50 for AN7973 in T. brucei was increased three-fold by over-expression of the T. brucei cleavage and polyadenylation factor CPSF3, identifying CPSF3 as a potential molecular target. Molecular modeling results suggested that inhibition of CPSF3 by AN7973 is feasible. Our results thus chemically validate mRNA processing as a viable drug target in trypanosomes. Several other benzoxaboroles showed metabolomic and splicing effects that were similar to those of AN7973, identifying splicing inhibition as a common mode of action and suggesting that it might be linked to subsequent changes in methylated metabolites. Granule formation, splicing inhibition and resistance after CPSF3 expression did not, however, always correlate and prolonged selection of trypanosomes in AN7973 resulted in only 1.5-fold resistance. It is therefore possible that the modes of action of oxaboroles that target trypanosome mRNA processing might extend beyond CPSF3 inhibition.
Collapse
Affiliation(s)
- Daniela Begolo
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
| | - Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
| | - Michael J. Witty
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Timothy G. Rowan
- Global Alliance for Livestock and Veterinary Medicine, Doherty Building, Pentlands Science Park, Penicuik, Edinburgh, United Kingdom
| | - Zakaria Bengaly
- Centre International de Recherche–Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso 01, Burkina Faso
| | - Kirsten Gillingwater
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Yvonne Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, CA, United States of America
| | - Rebecca C. Wade
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, 120 University Place, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Christine Clayton
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|