1
|
Cao W, Wu LY, Xia XY, Chen X, Wang ZX, Pan XM. A sequence-based evolutionary distance method for Phylogenetic analysis of highly divergent proteins. Sci Rep 2023; 13:20304. [PMID: 37985846 PMCID: PMC10662474 DOI: 10.1038/s41598-023-47496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
Because of the limited effectiveness of prevailing phylogenetic methods when applied to highly divergent protein sequences, the phylogenetic analysis problem remains challenging. Here, we propose a sequence-based evolutionary distance algorithm termed sequence distance (SD), which innovatively incorporates site-to-site correlation within protein sequences into the distance estimation. In protein superfamilies, SD can effectively distinguish evolutionary relationships both within and between protein families, producing phylogenetic trees that closely align with those based on structural information, even with sequence identity less than 20%. SD is highly correlated with the similarity of the protein structure, and can calculate evolutionary distances for thousands of protein pairs within seconds using a single CPU, which is significantly faster than most protein structure prediction methods that demand high computational resources and long run times. The development of SD will significantly advance phylogenetics, providing researchers with a more accurate and reliable tool for exploring evolutionary relationships.
Collapse
Affiliation(s)
- Wei Cao
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lu-Yun Wu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xia-Yu Xia
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiang Chen
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xian-Ming Pan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Risueño C, Abrescia NGA, Coluzza I. Insights into Hepatitis C Virus E2 core Interactions with Human Cellular Receptor CD81 at Different pHs from Molecular Simulations. J Phys Chem B 2022; 126:8391-8403. [PMID: 36255318 DOI: 10.1021/acs.jpcb.2c04697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV) is the second viral agent that causes the majority of chronic hepatic infections worldwide, following Hepatitis B virus (HBV) infection. HCV infection comprises several steps, from the attachment to the receptors to the delivery of the viral genetic material and replication inside the cells. Tetraspanin CD81 is a key entry factor for HCV as it accompanies the virus during attachment and internalization through clathrin-mediated endocytosis. HCV-CD81 binding takes place through the viral glycoprotein E2. We performed full-atom molecular dynamics simulations reproducing the pH conditions that occur during the viral attachment to the hepatocytes (pH 7.4) and internalization (pH 6.2-4.6). We observed that changing the pH from 7.4 to 6.2 triggers a large conformational change in the binding orientation between E2core (E2core corresponds to residues 412-645 of the viral glycoprotein E2) and CD81LEL (CD81LEL corresponds to residues 112-204 of CD81) that occurs even more rapidly at low pH 4.6. This pH-induced switching mechanism has never been observed before and could allow the virus particles to sense the right moment during the maturation of the endosome to start fusion.
Collapse
Affiliation(s)
- Cristina Risueño
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160, Spain.,Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain.,Basque Foundation for Science, IKERBASQUE, Bilbao 48009, Spain
| | - Ivan Coluzza
- Computational Biophysics Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain.,Basque Foundation for Science, IKERBASQUE, Bilbao 48009, Spain.,Computational Biophysics Lab, Basque Center for Materials, Applications and Nanostructures (BCMaterials), Buil. Martina Casiano, Pl. 3 Parque Científico UPV/EHU Barrio Sarriena, Leioa 48940, Spain
| |
Collapse
|
3
|
Guo J, Wang S, Gao Q. Can next-generation humanized mice that reconstituted with both functional human immune system and hepatocytes model the progression of viral hepatitis to hepatocarcinogenesis? Front Med (Lausanne) 2022; 9:1002260. [PMID: 36213658 PMCID: PMC9537463 DOI: 10.3389/fmed.2022.1002260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) chronic infections cause liver immunopathological diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinomas, which are difficult to treat and continue to be major health problems globally. Due to the species-specific hepato-tropism of HBV and HCV, conventional rodent models are limited in their utility for studying the infection and associated liver immunopathogenesis. Humanized mice reconstituted with both functional human immune system and hepatocytes (HIS-HuHEP mice) have been extremely instrumental for in vivo studies of HBV or HCV infection and human-specific aspects of the progression of liver immunopathogenesis. However, none of the current HIS-HuHEP mice can model the progression of viral hepatitis to hepatocarcinogenesis which may be a notorious result of HBV or HCV chronic infection in patients, suggesting that they were functionally compromised and that there is still significant space to improve and establish next-generation of HIS-HuHEP mice with more sophisticated functions. In this review, we first summarize the principal requirements to establish HIS-HuHEP mice. We then discuss the respective protocols for current HIS-HuHEP mice and their applications, as well as their advantages and disadvantages. We also raise perspectives for further improving and establishing next-generation HIS-HuHEP mice.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Ward KM, Pickett BD, Ebbert MTW, Kauwe JSK, Miller JB. Web-Based Protein Interactions Calculator Identifies Likely Proteome Coevolution with Alzheimer’s Disease-Associated Proteins. Genes (Basel) 2022; 13:genes13081346. [PMID: 36011253 PMCID: PMC9407263 DOI: 10.3390/genes13081346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Protein–protein functional interactions arise from either transitory or permanent biomolecular associations and often lead to the coevolution of the interacting residues. Although mutual information has traditionally been used to identify coevolving residues within the same protein, its application between coevolving proteins remains largely uncharacterized. Therefore, we developed the Protein Interactions Calculator (PIC) to efficiently identify coevolving residues between two protein sequences using mutual information. We verified the algorithm using 2102 known human protein interactions and 233 known bacterial protein interactions, with a respective 1975 and 252 non-interacting protein controls. The average PIC score for known human protein interactions was 4.5 times higher than non-interacting proteins (p = 1.03 × 10−108) and 1.94 times higher in bacteria (p = 1.22 × 10−35). We then used the PIC scores to determine the probability that two proteins interact. Using those probabilities, we paired 37 Alzheimer’s disease-associated proteins with 8608 other proteins and determined the likelihood that each pair interacts, which we report through a web interface. The PIC had significantly higher sensitivity and residue-specific resolution not available in other algorithms. Therefore, we propose that the PIC can be used to prioritize potential protein interactions, which can lead to a better understanding of biological processes and additional therapeutic targets belonging to protein interaction groups.
Collapse
Affiliation(s)
- Katrisa M. Ward
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (K.M.W.); (B.D.P.); (J.S.K.K.)
| | - Brandon D. Pickett
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (K.M.W.); (B.D.P.); (J.S.K.K.)
| | - Mark T. W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA;
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40506, USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (K.M.W.); (B.D.P.); (J.S.K.K.)
| | - Justin B. Miller
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA;
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-0333
| |
Collapse
|
5
|
Oteri F, Sarti E, Nadalin F, Carbone A. iBIS2Analyzer: a web server for a phylogeny-driven coevolution analysis of protein families. Nucleic Acids Res 2022; 50:W412-W419. [PMID: 35670671 PMCID: PMC9252744 DOI: 10.1093/nar/gkac481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Residue coevolution within and between proteins is used as a marker of physical interaction and/or residue functional cooperation. Pairs or groups of coevolving residues are extracted from multiple sequence alignments based on a variety of computational approaches. However, coevolution signals emerging in subsets of sequences might be lost if the full alignment is considered. iBIS2Analyzer is a web server dedicated to a phylogeny-driven coevolution analysis of protein families with different evolutionary pressure. It is based on the iterative version, iBIS2, of the coevolution analysis method BIS, Blocks in Sequences. iBIS2 is designed to iteratively select and analyse subtrees in phylogenetic trees, possibly large and comprising thousands of sequences. With iBIS2Analyzer, openly accessible at http://ibis2analyzer.lcqb.upmc.fr/, the user visualizes, compares and inspects clusters of coevolving residues by mapping them onto sequences, alignments or structures of choice, greatly simplifying downstream analysis steps. A rich and interactive graphic interface facilitates the biological interpretation of the results.
Collapse
Affiliation(s)
- Francesco Oteri
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Edoardo Sarti
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Francesca Nadalin
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| |
Collapse
|
6
|
Tamura T, Torii S, Kajiwara K, Anzai I, Fujioka Y, Noda K, Taguwa S, Morioka Y, Suzuki R, Fauzyah Y, Ono C, Ohba Y, Okada M, Fukuhara T, Matsuura Y. Secretory glycoprotein NS1 plays a crucial role in the particle formation of flaviviruses. PLoS Pathog 2022; 18:e1010593. [PMID: 35658055 PMCID: PMC9200304 DOI: 10.1371/journal.ppat.1010593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/15/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
Flaviviruses, which are globally distributed and cause a spectrum of potentially severe illnesses, pose a major threat to public health. Although Flaviviridae viruses, including flaviviruses, possess similar genome structures, only the flaviviruses encode the non-structural protein NS1, which resides in the endoplasmic reticulum (ER) and is secreted from cells after oligomerization. The ER-resident NS1 is known to be involved in viral genome replication, but the essential roles of secretory NS1 in the virus life cycle are not fully understood. Here we characterized the roles of secretory NS1 in the particle formation of flaviviruses. We first identified an amino acid residue essential for the NS1 secretion but not for viral genome replication by using protein-protein interaction network analyses and mutagenesis scanning. By using the recombinant flaviviruses carrying the identified NS1 mutation, we clarified that the mutant flaviviruses employed viral genome replication. We then constructed a recombinant NS1 with the identified mutation and demonstrated by physicochemical assays that the mutant NS1 was unable to form a proper oligomer or associate with liposomes. Finally, we showed that the functions of NS1 that were lost by the identified mutation could be compensated for by the in trans-expression of Erns of pestiviruses and host exchangeable apolipoproteins, which participate in the infectious particle formation of pestiviruses and hepaciviruses in the family Flaviviridae, respectively. Collectively, our study suggests that secretory NS1 plays a role in the particle formation of flaviviruses through its interaction with the lipid membrane. It is difficult to characterize the function of NS1 in the post-genome replication stages in the virus life cycle of flaviviruses. Here, by means of protein-protein interaction network analyses and mutagenesis scanning, we identified a unique mutation in NS1 by which the protein loses its secretory capacity while retaining its genome replication activity. Physicochemical assays using the mutant NS1 revealed that oligomerization of NS1 is responsible for the lipid association and secretion of NS1. In addition, we established a complementation assay that can evaluate the particle formation of Flaviviridae viruses. By using recombinant flaviviruses possessing the identified mutation in NS1, we clarified that NS1 is involved in particle formation. Our findings reveal that the flavivirus NS1 has at least two roles in the virus life cycles—namely, a role in infectious particle formation and a role in viral genome replication.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Kentaro Kajiwara
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Sapporo, Hokkaido, Japan
| | - Kisho Noda
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yuhei Morioka
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Sapporo, Hokkaido, Japan
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail: (TF); (YoM)
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- * E-mail: (TF); (YoM)
| |
Collapse
|
7
|
Pfaff-Kilgore JM, Davidson E, Kadash-Edmondson K, Hernandez M, Rosenberg E, Chambers R, Castelli M, Clementi N, Mancini N, Bailey JR, Crowe JE, Law M, Doranz BJ. Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening. Cell Rep 2022; 39:110859. [PMID: 35613596 PMCID: PMC9281441 DOI: 10.1016/j.celrep.2022.110859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/08/2021] [Accepted: 05/01/2022] [Indexed: 12/15/2022] Open
Abstract
The E1 and E2 envelope proteins of hepatitis C virus (HCV) form a heterodimer that drives virus-host membrane fusion. Here, we analyze the role of each amino acid in E1E2 function, expressing 545 individual alanine mutants of E1E2 in human cells, incorporating them into infectious viral pseudoparticles, and testing them against 37 different monoclonal antibodies (MAbs) to ascertain full-length translation, folding, heterodimer assembly, CD81 binding, viral pseudoparticle incorporation, and infectivity. We propose a model describing the role of each critical residue in E1E2 functionality and use it to examine how MAbs neutralize infection by exploiting functionally critical sites of vulnerability on E1E2. Our results suggest that E1E2 is a surprisingly fragile protein complex where even a single alanine mutation at 92% of positions disrupts its function. The amino-acid-level targets identified are highly conserved and functionally critical and can be exploited for improved therapies and vaccines.
Collapse
Affiliation(s)
| | - Edgar Davidson
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | | | - Mayda Hernandez
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Erin Rosenberg
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Ross Chambers
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA
| | - Matteo Castelli
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, University Vita-Salute San Raffaele, Milan, Italy; IRCSS San Raffaele Hospital, Milan, Italy
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin J Doranz
- Integral Molecular, Inc., 3711 Market St, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Kitsou K, Iliopoulou M, Spoulou V, Lagiou P, Magiorkinis G. Viral Causality of Human Cancer and Potential Roles of Human Endogenous Retroviruses in the Multi-Omics Era: An Evolutionary Epidemiology Review. Front Oncol 2021; 11:687631. [PMID: 34778024 PMCID: PMC8586426 DOI: 10.3389/fonc.2021.687631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Being responsible for almost 12% of cancers worldwide, viruses are among the oldest known and most prevalent oncogenic agents. The quality of the evidence for the in vivo tumorigenic potential of microorganisms varies, thus accordingly, viruses were classified in 4 evidence-based categories by the International Agency for Research on Cancer in 2009. Since then, our understanding of the role of viruses in cancer has significantly improved, firstly due to the emergence of high throughput sequencing technologies that allowed the “brute-force” recovery of unknown viral genomes. At the same time, multi-omics approaches unravelled novel virus-host interactions in stem-cell biology. We now know that viral elements, either exogenous or endogenous, have multiple sometimes conflicting roles in human pathophysiology and the development of cancer. Here we integrate emerging evidence on viral causality in human cancer from basic mechanisms to clinical studies. We analyze viral tumorigenesis under the scope of deep-in-time human-virus evolutionary relationships and critically comment on the evidence through the eyes of clinical epidemiology, firstly by reviewing recognized oncoviruses and their mechanisms of inducing tumorigenesis, and then by examining the potential role of integrated viruses in our genome in the process of carcinogenesis.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Iliopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Peadiatrics, "Aghia Sophia" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Lozada C, Barlow TMA, Gonzalez S, Lubin-Germain N, Ballet S. Identification and Characteristics of Fusion Peptides Derived From Enveloped Viruses. Front Chem 2021; 9:689006. [PMID: 34497798 PMCID: PMC8419435 DOI: 10.3389/fchem.2021.689006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Membrane fusion events allow enveloped viruses to enter and infect cells. The study of these processes has led to the identification of a number of proteins that mediate this process. These proteins are classified according to their structure, which vary according to the viral genealogy. To date, three classes of fusion proteins have been defined, but current evidence points to the existence of additional classes. Despite their structural differences, viral fusion processes follow a common mechanism through which they exert their actions. Additional studies of the viral fusion proteins have demonstrated the key role of specific proteinogenic subsequences within these proteins, termed fusion peptides. Such peptides are able to interact and insert into membranes for which they hold interest from a pharmacological or therapeutic viewpoint. Here, the different characteristics of fusion peptides derived from viral fusion proteins are described. These criteria are useful to identify new fusion peptides. Moreover, this review describes the requirements of synthetic fusion peptides derived from fusion proteins to induce fusion by themselves. Several sequences of the viral glycoproteins E1 and E2 of HCV were, for example, identified to be able to induce fusion, which are reviewed here.
Collapse
Affiliation(s)
- Camille Lozada
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas M. A. Barlow
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Simon Gonzalez
- BioCIS, CNRS, CY Cergy-Paris Université, Cergy-Pontoise, France
| | | | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Teppa E, Zea DJ, Oteri F, Carbone A. COVTree: Coevolution in OVerlapped sequences by Tree analysis server. Nucleic Acids Res 2020; 48:W558-W565. [PMID: 32374885 PMCID: PMC7319473 DOI: 10.1093/nar/gkaa330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Overlapping genes are commonplace in viruses and play an important role in their function and evolution. For these genes, molecular coevolution may be seen as a mechanism to decrease the evolutionary constraints of amino acid positions in the overlapping regions and to tolerate or compensate unfavorable mutations. Tracing these mutational sites, could help to gain insight on the direct or indirect effect of the mutations in the corresponding overlapping proteins. In the past, coevolution analysis has been used to identify residue pairs and coevolutionary signatures within or between proteins that served as markers of physical interactions and/or functional relationships. Coevolution in OVerlapped sequences by Tree analysis (COVTree) is a web server providing the online analysis of coevolving amino-acid pairs in overlapping genes, where residues might be located inside or outside the overlapping region. COVTree is designed to handle protein families with various characteristics, among which those that typically display a small number of highly conserved sequences. It is based on BIS2, a fast version of the coevolution analysis tool Blocks in Sequences (BIS). COVTree provides a rich and interactive graphical interface to ease biological interpretation of the results and it is openly accessible at http://www.lcqb.upmc.fr/COVTree/.
Collapse
Affiliation(s)
- Elin Teppa
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Diego J Zea
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Francesco Oteri
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| |
Collapse
|
11
|
Hu Z, Rolt A, Hu X, Ma CD, Le DJ, Park SB, Houghton M, Southall N, Anderson DE, Talley DC, Lloyd JR, Marugan JC, Liang TJ. Chlorcyclizine Inhibits Viral Fusion of Hepatitis C Virus Entry by Directly Targeting HCV Envelope Glycoprotein 1. Cell Chem Biol 2020; 27:780-792.e5. [PMID: 32386595 PMCID: PMC7368827 DOI: 10.1016/j.chembiol.2020.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/04/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022]
Abstract
Chlorcyclizine (CCZ) is a potent hepatitis C virus (HCV) entry inhibitor, but its molecular mechanism is unknown. Here, we show that CCZ directly targets the fusion peptide of HCV E1 and interferes with the fusion process. Generation of CCZ resistance-associated substitutions of HCV in vitro revealed six missense mutations in the HCV E1 protein, five being in the putative fusion peptide. A viral fusion assay demonstrated that CCZ blocked HCV entry at the membrane fusion step and that the mutant viruses acquired resistance to CCZ's action in blocking membrane fusion. UV cross-linking of photoactivatable CCZ-diazirine-biotin in both HCV-infected cells and recombinant HCV E1/E2 protein demonstrated direct binding to HCV E1 glycoprotein. Mass spectrometry analysis revealed that CCZ cross-linked to an E1 sequence adjacent to the putative fusion peptide. Docking simulations demonstrate a putative binding model, wherein CCZ binds to a hydrophobic pocket of HCV E1 and forms extensive interactions with the fusion peptide.
Collapse
Affiliation(s)
- Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Adam Rolt
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Xin Hu
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Christopher D Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Derek J Le
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Michael Houghton
- Li Ka Shing Virology Institute, University of Alberta, Edmonton, Canada
| | - Noel Southall
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Daniel C Talley
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - John R Lloyd
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Juan C Marugan
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Meyer X, Dib L, Salamin N. CoevDB: a database of intramolecular coevolution among protein-coding genes of the bony vertebrates. Nucleic Acids Res 2020; 47:D50-D54. [PMID: 30357342 PMCID: PMC6324051 DOI: 10.1093/nar/gky986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/10/2018] [Indexed: 01/15/2023] Open
Abstract
The study of molecular coevolution, due to its potential to identify gene regions under functional or structural constraints, has recently been subject to numerous scientific inquiries. Particular efforts have been conducted to develop methods predicting the presence of coevolution in molecular sequences. Among these methods, a few aim to model the underlying evolutionary process of coevolution, which enable to differentiate the shared history of genes to coevolution and thus improve their accuracy. However, the usage of such methods remains sparse due to their expensive computational cost and the lack of resources alleviating this issue. Here we present CoevDB (http://phylodb.unil.ch/CoevDB), a database containing the result of a large-scale analysis of intramolecular coevolution of 8201 protein-coding genes of bony vertebrates. The web interface of CoevDB gives access to the results to 800 millions of statistical tests corresponding to all the pairs of sites analyzed. Several type of queries enable users to explore the database by either targeting specific genes or by discovering genes having promising estimations of coevolution.
Collapse
Affiliation(s)
- Xavier Meyer
- Department of Computational Biology, University of Lausanne, Biophore, 1015 Lausanne, Switzerland.,Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg, Berkeley, CA 94720-3140, USA
| | - Linda Dib
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Biophore, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. Int J Mol Sci 2020; 21:ijms21062091. [PMID: 32197477 PMCID: PMC7140000 DOI: 10.3390/ijms21062091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.
Collapse
|
14
|
Stejskal L, Lees WD, Moss DS, Palor M, Bingham RJ, Shepherd AJ, Grove J. Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein. PLoS Comput Biol 2020; 16:e1007710. [PMID: 32109245 PMCID: PMC7065822 DOI: 10.1371/journal.pcbi.1007710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/11/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
The glycoproteins of hepatitis C virus, E1E2, are unlike any other viral fusion machinery yet described, and are the current focus of immunogen design in HCV vaccine development; thus, making E1E2 both scientifically and medically important. We used pre-existing, but fragmentary, structures to model a complete ectodomain of the major glycoprotein E2 from three strains of HCV. We then performed molecular dynamic simulations to explore the conformational landscape of E2, revealing a number of important features. Despite high sequence divergence, and subtle differences in the models, E2 from different strains behave similarly, possessing a stable core flanked by highly flexible regions, some of which perform essential functions such as receptor binding. Comparison with sequence data suggest that this consistent behaviour is conferred by a network of conserved residues that act as hinge and anchor points throughout E2. The variable regions (HVR-1, HVR-2 and VR-3) exhibit particularly high flexibility, and bioinformatic analysis suggests that HVR-1 is a putative intrinsically disordered protein region. Dynamic cross-correlation analyses demonstrate intramolecular communication and suggest that specific regions, such as HVR-1, can exert influence throughout E2. To support our computational approach we performed small-angle X-ray scattering with purified E2 ectodomain; this data was consistent with our MD experiments, suggesting a compact globular core with peripheral flexible regions. This work captures the dynamic behaviour of E2 and has direct relevance to the interaction of HCV with cell-surface receptors and neutralising antibodies.
Collapse
Affiliation(s)
- Lenka Stejskal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - William D. Lees
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - David S. Moss
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Machaela Palor
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Richard J. Bingham
- Department of Biological Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Adrian J. Shepherd
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
15
|
Ivey G, Youker RT. Disease-relevant mutations alter amino acid co-evolution networks in the second nucleotide binding domain of CFTR. PLoS One 2020; 15:e0227668. [PMID: 31978131 PMCID: PMC6980524 DOI: 10.1371/journal.pone.0227668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 12/25/2019] [Indexed: 01/23/2023] Open
Abstract
Cystic Fibrosis (CF) is an inherited disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Mutations in CFTR cause impaired chloride ion transport in the epithelial tissues of patients leading to cardiopulmonary decline and pancreatic insufficiency in the most severely affected patients. CFTR is composed of twelve membrane-spanning domains, two nucleotide-binding domains (NBDs), and a regulatory domain. The most common mutation in CFTR is a deletion of phenylalanine at position 508 (ΔF508) in NBD1. Previous research has primarily concentrated on the structure and dynamics of the NBD1 domain; However numerous pathological mutations have also been found in the lesser-studied NBD2 domain. We have investigated the amino acid co-evolved network of interactions in NBD2, and the changes that occur in that network upon the introduction of CF and CF-related mutations (S1251N(T), S1235R, D1270N, N1303K(T)). Extensive coupling between the α- and β-subdomains were identified with residues in, or near Walker A, Walker B, H-loop and C-loop motifs. Alterations in the predicted residue network varied from moderate for the S1251T perturbation to more severe for N1303T. The S1235R and D1270N networks varied greatly compared to the wildtype, but these CF mutations only affect ion transport preference and do not severely disrupt CFTR function, suggesting dynamic flexibility in the network of interactions in NBD2. Our results also suggest that inappropriate interactions between the β-subdomain and Q-loop could be detrimental. We also identified mutations predicted to stabilize the NBD2 residue network upon introduction of the CF and CF-related mutations, and these predicted mutations are scored as benign by the MUTPRED2 algorithm. Our results suggest the level of disruption of the co-evolution predictions of the amino acid networks in NBD2 does not have a straightforward correlation with the severity of the CF phenotypes observed.
Collapse
Affiliation(s)
- Gabrianne Ivey
- Kyder Christian Academy, Franklin, North Carolina, United States of America
- Southwestern Community College, Sylva, North Carolina, United States of America
| | - Robert T. Youker
- Department of Biology, Western Carolina University, Cullowhee, North Carolina, United States of America
| |
Collapse
|
16
|
Teppa E, Nadalin F, Combet C, Zea DJ, David L, Carbone A. Coevolution analysis of amino-acids reveals diversified drug-resistance solutions in viral sequences: a case study of hepatitis B virus. Virus Evol 2020; 6:veaa006. [PMID: 32158552 PMCID: PMC7050494 DOI: 10.1093/ve/veaa006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of mutational landscapes of viral proteins is fundamental for the understanding of the mechanisms of cross-resistance to drugs and the design of effective therapeutic strategies based on several drugs. Antiviral therapy with nucleos(t)ide analogues targeting the hepatitis B virus (HBV) polymerase protein (Pol) can inhibit disease progression by suppression of HBV replication and makes it an important case study. In HBV, treatment may fail due to the emergence of drug-resistant mutants. Primary and compensatory mutations have been associated with lamivudine resistance, whereas more complex mutational patterns are responsible for resistance to other HBV antiviral drugs. So far, all known drug-resistance mutations are located in one of the four Pol domains, called reverse transcriptase. We demonstrate that sequence covariation identifies drug-resistance mutations in viral sequences. A new algorithmic strategy, BIS2TreeAnalyzer, is designed to apply the coevolution analysis method BIS2, successfully used in the past on small sets of conserved sequences, to large sets of evolutionary related sequences. When applied to HBV, BIS2TreeAnalyzer highlights diversified viral solutions by discovering thirty-seven positions coevolving with residues known to be associated with drug resistance and located on the four Pol domains. These results suggest a sequential mechanism of emergence for some mutational patterns. They reveal complex combinations of positions involved in HBV drug resistance and contribute with new information to the landscape of HBV evolutionary solutions. The computational approach is general and can be applied to other viral sequences when compensatory mutations are presumed.
Collapse
Affiliation(s)
- Elin Teppa
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
- Sorbonne Université, Institut des Sciences du Calcul et des Données (ISCD), 4 Place Jussieu, 75005 Paris, France
| | - Francesca Nadalin
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
- Institute Curie, PSL Research University, INSERM U932, Immunity and Cancer Department, 26 rue d’Ulm, 75248 Paris, France
| | - Christophe Combet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 151 Cours Albert Thomas, 69424 Lyon, France
| | - Diego Javier Zea
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
| | - Laurent David
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Université, Univ P6, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, 4 Place Jussieu, 75005 Paris, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
17
|
Cao L, Yu B, Kong D, Cong Q, Yu T, Chen Z, Hu Z, Chang H, Zhong J, Baker D, He Y. Functional expression and characterization of the envelope glycoprotein E1E2 heterodimer of hepatitis C virus. PLoS Pathog 2019; 15:e1007759. [PMID: 31116791 PMCID: PMC6530877 DOI: 10.1371/journal.ppat.1007759] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a member of Hepacivirus and belongs to the family of Flaviviridae. HCV infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV envelope proteins, E1 and E2, play critical roles in viral cell entry and act as major epitopes for neutralizing antibodies. However, unlike other known flaviviruses, it has been challenging to study HCV envelope proteins E1E2 in the past decades as the in vitro expressed E1E2 heterodimers are usually of poor quality, making the structural and functional characterization difficult. Here we express the ectodomains of HCV E1E2 heterodimer with either an Fc-tag or a de novo designed heterodimeric tag and are able to isolate soluble E1E2 heterodimer suitable for functional and structural studies. Then we characterize the E1E2 heterodimer by electron microscopy and model the structure by the coevolution based modeling strategy with Rosetta, revealing the potential interactions between E1 and E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the known HCV receptors, neutralizing antibodies as well as the inhibition of HCV infection, confirming the functionality of the E1E2 heterodimer and the binding profiles of E1E2 with the cellular receptors. Therefore, the expressed E1E2 heterodimer would be a valuable target for both viral studies and vaccination against HCV. Hepatitis C virus (HCV) is an enveloped virus that infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV has two envelope proteins, E1 and E2, which form heterodimers on viral surface and are critical for HCV cell entry. However, current studies of HCV E1E2 are often limited by the poor quality of the in vitro expressed E1E2 heterodimers. Here we express the ectodomains of HCV E1E2 with different tags, and are able to isolate soluble E1E2 ectodomains suitable for structural and functional studies. Then we generate the 3D reconstruction of E1E2 heterodimer by electron microscopy and also model the E1E2 structure by the coevolution based strategy with Rosetta, showing the potential interactions between E1 and E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the HCV cellular receptors, neutralizing antibodies as well as the inhibition of HCV infection. These results suggest that the expressed E1E2 heterodimer would be a promising target for both viral studies and vaccination against HCV.
Collapse
Affiliation(s)
- Longxing Cao
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Bowen Yu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Dandan Kong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qian Cong
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Tao Yu
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Zhenzheng Hu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Haishuang Chang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Yongning He
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
19
|
Simultaneous Bayesian inference of phylogeny and molecular coevolution. Proc Natl Acad Sci U S A 2019; 116:5027-5036. [PMID: 30808804 DOI: 10.1073/pnas.1813836116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patterns of molecular coevolution can reveal structural and functional constraints within or among organic molecules. These patterns are better understood when considering the underlying evolutionary process, which enables us to disentangle the signal of the dependent evolution of sites (coevolution) from the effects of shared ancestry of genes. Conversely, disregarding the dependent evolution of sites when studying the history of genes negatively impacts the accuracy of the inferred phylogenetic trees. Although molecular coevolution and phylogenetic history are interdependent, analyses of the two processes are conducted separately, a choice dictated by computational convenience, but at the expense of accuracy. We present a Bayesian method and associated software to infer how many and which sites of an alignment evolve according to an independent or a pairwise dependent evolutionary process, and to simultaneously estimate the phylogenetic relationships among sequences. We validate our method on synthetic datasets and challenge our predictions of coevolution on the 16S rRNA molecule by comparing them with its known molecular structure. Finally, we assess the accuracy of phylogenetic trees inferred under the assumption of independence among sites using synthetic datasets, the 16S rRNA molecule and 10 additional alignments of protein-coding genes of eukaryotes. Our results demonstrate that inferring phylogenetic trees while accounting for dependent site evolution significantly impacts the estimates of the phylogeny and the evolutionary process.
Collapse
|
20
|
Tong Y, Lavillette D, Li Q, Zhong J. Role of Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Front Immunol 2018; 9:1411. [PMID: 29971069 PMCID: PMC6018474 DOI: 10.3389/fimmu.2018.01411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer to constitute viral envelope proteins, which play an essential role in virus entry. E1 does not directly interact with host receptors, and its functions in viral entry are exerted mostly through its interaction with E2 that directly binds the receptors. HCV enters the host cell via receptor-mediated endocytosis during which the fusion of viral and host endosomal membranes occurs to release viral genome to cytoplasm. A putative fusion peptide in E1 has been proposed to participate in membrane fusion, but its exact role and underlying molecular mechanisms remain to be deciphered. Recently solved crystal structures of the E2 ectodomains and N-terminal of E1 fail to reveal a classical fusion-like structure in HCV envelope glycoproteins. In addition, accumulating evidence suggests that E1 also plays an important role in virus assembly. In this mini-review, we summarize current knowledge on HCV E1 including its structure and biological functions in virus entry, fusion, and assembly, which may provide clues for developing HCV vaccines and more effective antivirals.
Collapse
Affiliation(s)
- Yimin Tong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dimitri Lavillette
- Unit of Interspecies Transmission of Arboviruses and Antivirals, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingchao Li
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|