1
|
Ndlovu M, Wardjomto MB, Pori T, Nangammbi TC. Diversity and Host Specificity of Avian Haemosporidians in an Afrotropical Conservation Region. Animals (Basel) 2024; 14:2906. [PMID: 39409855 PMCID: PMC11475415 DOI: 10.3390/ani14192906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Afrotropical regions have high bird diversity, yet few studies have attempted to unravel the prevalence of avian haemosporidia in conservation areas. The diversity and host specificity of parasites in biodiversity hotspots is crucial to understanding parasite distribution and potential disease emergence. We test the hypothesis that biodiverse regions are associated with highly diverse parasites. By targeting the cytochrome b (Cytb) gene, we molecularly screened 1035 blood samples from 55 bird species for avian haemosporidia infections to determine its prevalence and diversity on sites inside and adjacent to the Kruger National Park. Overall infection prevalence was 28.41%. Haemoproteus, Leucocytozoon, and Plasmodium presented prevalences of 17.39%, 9.24%, and 4.64%, respectively. One hundred distinct parasite lineages were detected, of which 56 were new lineages. Haemoproteus also presented the highest diversity compared to Leucocytozoon and Plasmodium with varying levels of specificity. Haemoproteus lineages were found to be specialists while Plasmodium and Leucocytozoon lineages were generalists. We also found a positive relationship between avian host diversity and parasite diversity, supporting an amplification effect. These findings provide insight data for host-parasite and co-evolutionary relationship models.
Collapse
Affiliation(s)
- Mduduzi Ndlovu
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1201, South Africa
| | - Maliki B. Wardjomto
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1201, South Africa
| | - Tinotendashe Pori
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Tshifhiwa C. Nangammbi
- Department of Nature Conservation, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
2
|
Gómez JM, González-Megías A, Armas C, Narbona E, Navarro L, Perfectti F. The role of phenotypic plasticity in shaping ecological networks. Ecol Lett 2023; 26 Suppl 1:S47-S61. [PMID: 37840020 DOI: 10.1111/ele.14192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 10/17/2023]
Abstract
Plasticity-mediated changes in interaction dynamics and structure may scale up and affect the ecological network in which the plastic species are embedded. Despite their potential relevance for understanding the effects of plasticity on ecological communities, these effects have seldom been analysed. We argue here that, by boosting the magnitude of intra-individual phenotypic variation, plasticity may have three possible direct effects on the interactions that the plastic species maintains with other species in the community: may expand the interaction niche, may cause a shift from one interaction niche to another or may even cause the colonization of a new niche. The combined action of these three factors can scale to the community level and eventually expresses itself as a modification in the topology and functionality of the entire ecological network. We propose that this causal pathway can be more widespread than previously thought and may explain how interaction niches evolve quickly in response to rapid changes in environmental conditions. The implication of this idea is not solely eco-evolutionary but may also help to understand how ecological interactions rewire and evolve in response to global change.
Collapse
Affiliation(s)
- José M Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Genética, Universidad de Granada, Granada, Spain
| |
Collapse
|
3
|
Sacco NE, Hajek AE. Diversity and Breadth of Host Specificity among Arthropod Pathogens in the Entomophthoromycotina. Microorganisms 2023; 11:1658. [PMID: 37512833 PMCID: PMC10386553 DOI: 10.3390/microorganisms11071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
A meta-analysis based on the published literature was conducted to evaluate the breadth of host ranges of arthropod pathogens in the fungal subphylum Entomophthoromycotina. The majority of pathogens in this subphylum infect insects, although arachnids (especially mites), collembola, and myriapods are also used as hosts. Most species (76%) have specialized host ranges and only infect arthropods in one host family. The breadth of host ranges in the Entomophthoromycotina is generally greater for species in more basal groups (Conidiobolaceae and Neoconidiobolaceae), where most species are soil-borne saprobes and few are pathogens. The Batkoaceae is a transitionary family in which all species are pathogens and both generalists and specialists occur. Among pathogen-infecting insects, Hemiptera and Diptera are the most commonly infected insect orders. Within the Hemiptera, hosts in the suborder Sternorrhycha were infected by more fungal species than the Auchenorrhyncha and Heteroptera.
Collapse
Affiliation(s)
- Natalie E Sacco
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
5
|
Torres-Sánchez M, Villate J, McGrath-Blaser S, Longo AV. Panzootic chytrid fungus exploits diverse amphibian host environments through plastic infection strategies. Mol Ecol 2022; 31:4558-4570. [PMID: 35796691 DOI: 10.1111/mec.16601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
While some pathogens are limited to single species, others can colonize many hosts, likely contributing to the emergence of novel disease outbreaks. Despite this biodiversity threat, traits associated with host niche expansions are not well understood in multi-host pathogens. Here, we aimed to uncover functional machinery driving multi-host invasion by focusing on Batrachochytrium dendrobatidis (Bd), a pathogen that infects the skin of hundreds of amphibians worldwide. We performed a meta-analysis of Bd gene expression using data from published infection experiments and newly generated profiles. We analyzed Bd transcriptomic landscapes across the skin of 14 host species, reconstructed Bd isolates phylogenetic relationships, and inferred the origin and evolutionary history of differentially expressed genes under a phylogenetic framework comprising other 12 zoosporic fungi. Bd displayed plastic infection strategies when challenged by hosts with different disease susceptibility. Our analyses identified sets of differentially expressed genes under host environments with similar infection outcome. We stressed nutritional immunity and gene silencing as important processes required to overcome challenging skin environments in less susceptible hosts. Overall, Bd genes expressed during amphibian skin exploitation have arisen mainly via gene duplications with great family expansions, increasing the gene copy events previously described for this fungal species. Finally, we provide a comprehensive gene dataset that can be used to further examine eco-evolutionary hypotheses for this host-pathogen system. Our study supports the idea that host environments exert contrasting selective pressures, such that gene expression plasticity could be one of the evolutionary keys leading to the success of multi-host pathogens.
Collapse
Affiliation(s)
| | - Jennifer Villate
- Department of Biology, University of Florida, 32611, Gainesville, FL
| | | | - Ana V Longo
- Department of Biology, University of Florida, 32611, Gainesville, FL
| |
Collapse
|
6
|
Mathieu-Bégné E, Blanchet S, Mitta G, Le Potier C, Loot G, Rey O. Transcriptomic Adjustments in a Freshwater Ectoparasite Reveal the Role of Molecular Plasticity for Parasite Host Shift. Genes (Basel) 2022; 13:525. [PMID: 35328078 PMCID: PMC8952325 DOI: 10.3390/genes13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
A parasite's lifestyle is characterized by a critical dependency on its host for feeding, shelter and/or reproduction. The ability of parasites to exploit new host species can reduce the risk associated with host dependency. The number of host species that can be infected by parasites strongly affects their ecological and evolutionary dynamics along with their pathogenic effects on host communities. However, little is known about the processes and the pathways permitting parasites to successfully infect alternative host species, a process known as host shift. Here, we tested whether molecular plasticity changes in gene expression and in molecular pathways could favor host shift in parasites. Focusing on an invasive parasite, Tracheliastes polycolpus, infecting freshwater fish, we conducted a transcriptomic study to compare gene expression in parasites infecting their main host species and two alternative host species. We found 120 significant differentially expressed genes (DEGs) between parasites infecting the different host species. A total of 90% of the DEGs were identified between parasites using the main host species and those using the two alternative host species. Only a few significant DEGs (seven) were identified when comparing parasites from the two alternative host species. Molecular pathways enriched in DEGs and associated with the use of alternative host species were related to cellular machinery, energetic metabolism, muscle activity and oxidative stress. This study strongly suggests that molecular plasticity is an important mechanism sustaining the parasite's ability to infect alternative hosts.
Collapse
Affiliation(s)
- Eglantine Mathieu-Bégné
- Laboratoire Evolution et Diversité Biologique (UMR5174), Institut de Recherche pour le Développement, Centre National pour la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France; (S.B.); (C.L.P.)
- Station d’Ecologie Théorique et Expérimentale (UPR 2001), Centre National pour la Recherche Scientifique, 2 Route du CNRS, F-09200 Moulis, France
- Interactions Hôtes-Pathogènes-Environnement (UMR5244 IHPE), CNRS, Université de Montpellier, Ifremer, Université de Perpignan Via Domitia, F-66000 Perpignan, France;
| | - Simon Blanchet
- Laboratoire Evolution et Diversité Biologique (UMR5174), Institut de Recherche pour le Développement, Centre National pour la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France; (S.B.); (C.L.P.)
- Station d’Ecologie Théorique et Expérimentale (UPR 2001), Centre National pour la Recherche Scientifique, 2 Route du CNRS, F-09200 Moulis, France
| | - Guillaume Mitta
- UMR EIO, ILM, IRD, Ifremer, University Polynesie Francaise, Taravao F-98719, Tahiti, French Polynesia;
| | - Clément Le Potier
- Laboratoire Evolution et Diversité Biologique (UMR5174), Institut de Recherche pour le Développement, Centre National pour la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France; (S.B.); (C.L.P.)
| | - Géraldine Loot
- Laboratoire Evolution et Diversité Biologique (UMR5174), Institut de Recherche pour le Développement, Centre National pour la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France; (S.B.); (C.L.P.)
- Institut Universitaire de France, Université Paul Sabatier, CEDEX 05, F-75231 Paris, France
| | - Olivier Rey
- Interactions Hôtes-Pathogènes-Environnement (UMR5244 IHPE), CNRS, Université de Montpellier, Ifremer, Université de Perpignan Via Domitia, F-66000 Perpignan, France;
| |
Collapse
|
7
|
Buzzanca D, Botta C, Ferrocino I, Alessandria V, Houf K, Rantsiou K. Functional pangenome analysis reveals high virulence plasticity of Aliarcobacter butzleri and affinity to human mucus. Genomics 2021; 113:2065-2076. [PMID: 33961980 DOI: 10.1016/j.ygeno.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
Aliarcobacter butzleri is an emerging pathogen that may cause enteritis in humans, however, the incidence of disease caused by this member of the Campylobacteriaceae family is still underestimated. Furthermore, little is known about the precise virulence mechanism and behavior during infection. Therefore, in the present study, through complementary use of comparative genomics and physiological tests on human gut models, we sought to elucidate the genetic background of a set of 32 A. butzleri strains of diverse origin and to explore the correlation with the ability to colonize and invade human intestinal cells in vitro. The simulated infection of human intestinal models showed a higher colonization rate in presence of mucus-producing cells. For some strains, human mucus significantly improved the resistance to physical removal from the in vitro mucosa, while short time-frame growth was even observed. Pangenome analysis highlighted a hypervariable accessory genome, not strictly correlated to the isolation source. Likewise, the strain phylogeny was unrelated to their shared origin, despite a certain degree of segregation was observed among strains isolated from different segments of the intestinal tract of pigs. The putative virulence genes detected in all strains were mostly encompassed in the accessory fraction of the pangenome. The LPS biosynthesis and in particular the chain glycosylation of the O-antigen is harbored in a region of high plasticity of the pangenome, which would indicate frequent horizontal gene transfer phenomena, as well as the involvement of this hypervariable structure in the adaptive behavior and sympatric evolution of A. butzleri. Results of the present study deepen the current knowledge on A. butzleri pangenome by extending the pool of genes regarded as virulence markers and provide bases to develop new diagnostic approaches for the detection of those strains with a higher virulence potential.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy; Department of Veterinary Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Italy.
| |
Collapse
|
8
|
Jenull S, Tscherner M, Kashko N, Shivarathri R, Stoiber A, Chauhan M, Petryshyn A, Chauhan N, Kuchler K. Transcriptome Signatures Predict Phenotypic Variations of Candida auris. Front Cell Infect Microbiol 2021; 11:662563. [PMID: 33937102 PMCID: PMC8079977 DOI: 10.3389/fcimb.2021.662563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Health care facilities are facing serious threats by the recently emerging human fungal pathogen Candida auris owing to its pronounced antifungal multidrug resistance and poor diagnostic tools. Distinct C. auris clades evolved seemingly simultaneously at independent geographical locations and display both genetic and phenotypic diversity. Although comparative genomics and phenotypic profiling studies are increasing, we still lack mechanistic knowledge about the C. auris species diversification and clinical heterogeneity. Since gene expression variability impacts phenotypic plasticity, we aimed to characterize transcriptomic signatures of C. auris patient isolates with distinct antifungal susceptibility profiles in this study. First, we employed an antifungal susceptibility screening of clinical C. auris isolates to identify divergent intra-clade responses to antifungal treatments. Interestingly, comparative transcriptional profiling reveals large gene expression differences between clade I isolates and one clade II strain, irrespective of their antifungal susceptibilities. However, comparisons at the clade levels demonstrate that minor changes in gene expression suffice to drive divergent drug responses. Finally, we functionally validate transcriptional signatures reflecting phenotypic divergence of clinical isolates. Thus, our results suggest that large-scale transcriptional profiling allows for predicting phenotypic diversities of patient isolates, which may help choosing suitable antifungal therapies of multidrug-resistant C. auris.
Collapse
Affiliation(s)
- Sabrina Jenull
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Michael Tscherner
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Nataliya Kashko
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute & Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Anton Stoiber
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute & Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Andriy Petryshyn
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Neeraj Chauhan
- Public Health Research Institute & Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Karl Kuchler
- Max Perutz Labs Vienna, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Gossner MM, Beenken L, Arend K, Begerow D, Peršoh D. Insect herbivory facilitates the establishment of an invasive plant pathogen. ISME COMMUNICATIONS 2021; 1:6. [PMID: 37938649 PMCID: PMC9723786 DOI: 10.1038/s43705-021-00004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 05/17/2023]
Abstract
Plants can be severely affected by insect herbivores and phytopathogenic fungi, but interactions between these plant antagonists are poorly understood. We analysed the impact of feeding damage by the abundant herbivore Orchestes fagi on infection rates of beech (Fagus sylvatica) leaves with Petrakia liobae, an invasive plant pathogenic fungus. The fungus was not detected in hibernating beetles, indicating that O. fagi does not serve as vector for P. liobae, at least not between growing seasons. Abundance of the fungus in beech leaves increased with feeding damage of the beetle and this relationship was stronger for sun-exposed than for shaded leaves. A laboratory experiment revealed sun-exposed leaves to have thicker cell walls and to be more resistant to pathogen infection than shaded leaves. Mechanical damage significantly increased frequency and size of necroses in the sun, but not in shade leaves. Our findings indicate that feeding damage of adult beetles provides entry ports for fungal colonization by removal of physical barriers and thus promotes infection success by pathogenic fungi. Feeding activity by larvae probably provides additional nutrient sources or eases access to substrates for the necrotrophic fungus. Our study exemplifies that invasive pathogens may benefit from herbivore activity, which may challenge forest health in light of climate change.
Collapse
Affiliation(s)
- Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Zurich, Switzerland.
| | - Ludwig Beenken
- Forest Protection, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kirstin Arend
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany
| | - Dominik Begerow
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany
| | - Derek Peršoh
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany.
| |
Collapse
|
10
|
What Do We Know about Botryosphaeriaceae? An Overview of a Worldwide Cured Dataset. FORESTS 2021. [DOI: 10.3390/f12030313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Botryosphaeriaceae-related diseases occur worldwide in a wide variety of plant hosts. The number of studies targeting the distribution, diversity, ecology, and pathogenicity of Botryosphaeriaceae species are consistently increasing. However, with the lack of consistency in species delimitation, the name of hosts, and the locations of studies, it is almost impossible to quantify the presence of these species worldwide, or the number of different host–fungus interactions that occur. In this review, we collected and organized Botryosphaeriaceae occurrences in a single cured dataset, allowing us to obtain for the first time a complete perspective on species’ global diversity, dispersion, host association, ecological niches, pathogenicity, communication efficiency of new occurrences, and new host–fungus associations. This dataset is freely available through an interactive and online application. The current release (version 1.0) contains 14,405 cured isolates and 2989 literature references of 12,121 different host–fungus interactions with 1692 different plant species from 149 countries.
Collapse
|
11
|
Alors D, Boussiba S, Zarka A. Paraphysoderma sedebokerense Infection in Three Economically Valuable Microalgae: Host Preference Correlates with Parasite Fitness. J Fungi (Basel) 2021; 7:jof7020100. [PMID: 33535515 PMCID: PMC7912770 DOI: 10.3390/jof7020100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
The blastocladialean fungus Paraphysoderma sedebokerense parasitizes three microalgae species of economic interest: Haematococcus pluvialis, Chromochloris zofingiensis and Scenedesmus dimorphus. For the first time, we characterized the developmental stages of isolated fungal propagules in H. pluvialis co-culture, finding a generation time of 16 h. We established a patho-system to compare the infection in the three different host species for 48 h, with two different setups to quantify parameters of the infection and parameters of the parasite fitness. The prevalence of the parasite in H. pluvialis and C. zofingiensis cultures was 100%, but only 20% in S. dimorphus culture. The infection of S. dimorphus not only reached lower prevalence but was also qualitatively different; the infection developed preferentially on senescent cells and more resting cysts were produced, being consistent with a reservoir host. In addition, we carried out cross infection experiments and the inoculation of a mixed algal culture containing the three microalgae, to determine the susceptibility of the host species and to investigate the preference of P. sedebokerense for these microalgae. The three tested microalgae showed different susceptibility to P. sedebokerense, which correlates with blastoclad’s preference to the host in the following order: H. pluvialis > C. zofingiensis > S. dimorphus.
Collapse
|
12
|
McLeish MJ, Fraile A, García-Arenal F. Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. PHYTOPATHOLOGY 2021; 111:32-39. [PMID: 33210987 DOI: 10.1094/phyto-08-20-0355-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The genomics era has revolutionized studies of adaptive evolution by monitoring large numbers of loci throughout the genomes of many individuals. Ideally, the investigation of emergence in plant viruses requires examining the population dynamics of both virus and host, their interactions with each other, with other organisms and the abiotic environment. Genetic mechanisms that affect demographic processes are now being studied with high-throughput technologies, traditional genetics methods, and new computational tools for big-data. In this review, we discuss the utility of these approaches to monitor and detect changes in virus populations within cells and individuals, and over wider areas across species and communities of ecosystems. The advent of genomics in virology has fostered a multidisciplinary approach to tackling disease risk. The ability to make sense of the information now generated in this integrated setting is by far the most substantial obstacle to the ultimate goal of plant virology to minimize the threats to food security posed by disease. To achieve this goal, it is imperative to understand and forecast how populations respond to future changes in complex natural systems.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
13
|
Barwell LJ, Perez-Sierra A, Henricot B, Harris A, Burgess TI, Hardy G, Scott P, Williams N, Cooke DEL, Green S, Chapman DS, Purse BV. Evolutionary trait-based approaches for predicting future global impacts of plant pathogens in the genus Phytophthora. J Appl Ecol 2020; 58:718-730. [PMID: 33883780 DOI: 10.1111/1365-2664.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
Plant pathogens are introduced to new geographical regions ever more frequently as global connectivity increases. Predicting the threat they pose to plant health can be difficult without in-depth knowledge of behaviour, distribution and spread. Here, we evaluate the potential for using biological traits and phylogeny to predict global threats from emerging pathogens.We use a species-level trait database and phylogeny for 179 Phytophthora species: oomycete pathogens impacting natural, agricultural, horticultural and forestry settings. We compile host and distribution reports for Phytophthora species across 178 countries and evaluate the power of traits, phylogeny and time since description (reflecting species-level knowledge) to explain and predict their international transport, maximum latitude and host breadth using Bayesian phylogenetic generalised linear mixed models.In the best-performing models, traits, phylogeny and time since description together explained up to 90%, 97% and 87% of variance in number of countries reached, latitudinal limits and host range, respectively. Traits and phylogeny together explained up to 26%, 41% and 34% of variance in the number of countries reached, maximum latitude and host plant families affected, respectively, but time since description had the strongest effect.Root-attacking species were reported in more countries, and on more host plant families than foliar-attacking species. Host generalist pathogens had thicker-walled resting structures (stress-tolerant oospores) and faster growth rates at their optima. Cold-tolerant species are reported in more countries and at higher latitudes, though more accurate interspecific empirical data are needed to confirm this finding. Policy implications. We evaluate the potential of an evolutionary trait-based framework to support horizon-scanning approaches for identifying pathogens with greater potential for global-scale impacts. Potential future threats from Phytophthora include Phytophthora x heterohybrida, P. lactucae, P. glovera, P. x incrassata, P. amnicola and P. aquimorbida, which are recently described, possibly under-reported species, with similar traits and/or phylogenetic proximity to other high-impact species. Priority traits to measure for emerging species may be thermal minima, oospore wall index and growth rate at optimum temperature. Trait-based horizon-scanning approaches would benefit from the development of international and cross-sectoral collaborations to deliver centralised databases incorporating pathogen distributions, traits and phylogeny.
Collapse
Affiliation(s)
| | | | | | | | - Treena I Burgess
- Phytophthora Science and Management Centre for Climate Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University Murdoch Australia
| | - Giles Hardy
- Phytophthora Science and Management Centre for Climate Impacted Terrestrial Ecosystems Harry Butler Institute Murdoch University Murdoch Australia
| | | | | | | | - Sarah Green
- Forest Research Northern Research Station Roslin UK
| | - Daniel S Chapman
- Biological and Environmental Sciences University of Stirling Stirling UK
| | | |
Collapse
|
14
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
15
|
Albeshr MF, Alrefaei AF. Isolation and Characterization of Novel Trichomonas gallinae Ribotypes Infecting Domestic and Wild Birds in Riyadh, Saudi Arabia. Avian Dis 2020; 64:130-134. [PMID: 32550612 DOI: 10.1637/0005-2086-64.2.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/30/2019] [Indexed: 11/05/2022]
Abstract
Trichomonas gallinae, a single-celled protozoan parasite, is a causative agent of the disease trichomonosis, which is distributed worldwide and has recently been highlighted as a pandemic threat to several wild bird species. The aim of this study was to determine the prevalence and genotypic diversity of T. gallinae in Riyadh, Saudi Arabia. For this purpose, 273 oral swab samples from different bird species (feral pigeon Columba livia, common mynah Acridotheres tristis, chicken Gallus gallus domesticus, turkey Meleagris gallopavo, and ducks Anatidae) were collected and tested for T. gallinae infection with InPouch™ TV culture kits. The results showed that the overall prevalence of T. gallinae in these samples was 26.4% (n = 72). The PCRs were used to detect the internal transcribed spacer (ITS) region of T. gallinae, and the results of the sequence analysis indicated genetic variation. Among 48 sequences, we found 15 different ribotypes, of which 12 were novel. Three had been previously described as ribotypes A, C, and II. To our knowledge, this study demonstrated the presence of T. gallinae strain diversity in Saudi Arabian birds for the first time and revealed that ribotypes A and C are predominant among Riyadh birds.
Collapse
Affiliation(s)
- Mohammed F Albeshr
- Department of Zoology, King Saud University, College of Science, Riyadh-11451, Saudi Arabia
| | - Abdulwahed F Alrefaei
- Department of Zoology, King Saud University, College of Science, Riyadh-11451, Saudi Arabia,
| |
Collapse
|
16
|
Guth S, Hanley KA, Althouse BM, Boots M. Ecological processes underlying the emergence of novel enzootic cycles: Arboviruses in the neotropics as a case study. PLoS Negl Trop Dis 2020; 14:e0008338. [PMID: 32790670 PMCID: PMC7425862 DOI: 10.1371/journal.pntd.0008338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogens originating from wildlife (zoonoses) pose a significant public health burden, comprising the majority of emerging infectious diseases. Efforts to control and prevent zoonotic disease have traditionally focused on animal-to-human transmission, or "spillover." However, in the modern era, increasing international mobility and commerce facilitate the spread of infected humans, nonhuman animals (hereafter animals), and their products worldwide, thereby increasing the risk that zoonoses will be introduced to new geographic areas. Imported zoonoses can potentially "spill back" to infect local wildlife-a danger magnified by urbanization and other anthropogenic pressures that increase contacts between human and wildlife populations. In this way, humans can function as vectors, dispersing zoonoses from their ancestral enzootic systems to establish reservoirs elsewhere in novel animal host populations. Once established, these enzootic cycles are largely unassailable by standard control measures and have the potential to feed human epidemics. Understanding when and why translocated zoonoses establish novel enzootic cycles requires disentangling ecologically complex and stochastic interactions between the zoonosis, the human population, and the natural ecosystem. In this Review, we address this challenge by delineating potential ecological mechanisms affecting each stage of enzootic establishment-wildlife exposure, enzootic infection, and persistence-applying existing ecological concepts from epidemiology, invasion biology, and population ecology. We ground our discussion in the neotropics, where four arthropod-borne viruses (arboviruses) of zoonotic origin-yellow fever, dengue, chikungunya, and Zika viruses-have separately been introduced into the human population. This paper is a step towards developing a framework for predicting and preventing novel enzootic cycles in the face of zoonotic translocations.
Collapse
Affiliation(s)
- Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Epidemiology, Institute for Disease Modeling, Bellevue, Washington, United States of America
- Information School, University of Washington, Seattle, Washington, United States of America
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
17
|
de Vries S, Stukenbrock EH, Rose LE. Rapid evolution in plant-microbe interactions - an evolutionary genomics perspective. THE NEW PHYTOLOGIST 2020; 226:1256-1262. [PMID: 31997351 DOI: 10.1111/nph.16458] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Access to greater genomic resolution through new sequencing technologies is transforming the field of plant pathology. As scientists embrace these new methods, some overarching patterns and observations come into focus. Evolutionary genomic studies are used to determine not only the origins of pathogen lineages and geographic patterns of genetic diversity, but also to discern how natural selection structures genetic variation across the genome. With greater and greater resolution, we can now pinpoint the targets of selection on a large scale. At multiple levels, crypsis and convergent evolution are evident. Host jumps and shifts may be more pervasive than once believed, and hybridization and horizontal gene transfer (HGT) likely play important roles in the emergence of genetic novelty.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- The Botanical Institute, Christian-Albrechts University of Kiel, Am Botanischen Garden 9-11, 24118, Kiel, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
18
|
Moura de Aguiar D, Pessoa Araújo Junior J, Nakazato L, Bard E, Aguilar-Bultet L, Vorimore F, Leonidovich Popov V, Moleta Colodel E, Cabezas-Cruz A. Isolation and Characterization of a Novel Pathogenic Strain of Ehrlichia minasensis. Microorganisms 2019; 7:microorganisms7110528. [PMID: 31694172 PMCID: PMC6921006 DOI: 10.3390/microorganisms7110528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022] Open
Abstract
The genus Ehrlichia is composed of tick-borne obligate intracellular gram-negative alphaproteobacteria of the family Anaplasmataceae. Ehrlichia includes important pathogens affecting canids (E. canis, E. chaffeensis, and E. ewingii), rodents (E. muris), and ruminants (E. ruminantium). Ehrlichiaminasensis, an Ehrlichia closely related to E. canis, was initially reported in Canada and Brazil. This bacterium has now been reported in Pakistan, Malaysia, China, Ethiopia, South Africa, and the Mediterranean island of Corsica, suggesting that E. minasensis has a wide geographical distribution. Previously, E. minasensis was found to cause clinical ehrlichiosis in an experimentally infected calf. The type strain E. minasensis UFMG-EV was successfully isolated from Rhipicephalus microplus ticks and propagated in the tick embryonic cell line of Ixodes scapularis (IDE8). However, the isolation and propagation of E. minasensis strains from cattle has remained elusive. In this study, the E. minasensis strain Cuiabá was isolated from an eight-month-old male calf of Holstein breed that was naturally infected with the bacterium. The calf presented clinical signs and hematological parameters of bovine ehrlichiosis. The in vitro culture of the agent was established in the canine cell line DH82. Ehrlichial morulae were observed using light and electron microscopy within DH82 cells. Total DNA was extracted, and the full genome of the E. minasensis strain Cuiabá was sequenced. A core-genome-based phylogenetic tree of Ehrlichia spp. and Anaplasma spp. confirmed that E. minasensis is a sister taxa of E. canis. A comparison of functional categories among Ehrlichia showed that E. minasensis has significantly less genes in the ‘clustering-based subsystems’ category, which includes functionally coupled genes for which the functional attributes are not well understood. Results strongly suggest that E. minasensis is a novel pathogen infecting cattle. The epidemiology of this Ehrlichia deserves further attention because these bacteria could be an overlooked cause of tick-borne bovine ehrlichiosis, with a wide distribution.
Collapse
Affiliation(s)
- Daniel Moura de Aguiar
- Veterinary Hospital, Faculty of Veterinary Medicine, Federal University of Mato Grosso State (UFMT), 78060-900 Cuiabá, Brazil; (L.N.); (E.M.C.)
- Correspondence: (D.M.d.A.); (A.C.-C.)
| | | | - Luciano Nakazato
- Veterinary Hospital, Faculty of Veterinary Medicine, Federal University of Mato Grosso State (UFMT), 78060-900 Cuiabá, Brazil; (L.N.); (E.M.C.)
| | - Emilie Bard
- EPIA, INRA, VetAgro Sup, 63122 Saint Genès Champanelle, France;
| | - Lisandra Aguilar-Bultet
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, 4031 Basel, Switzerland;
| | - Fabien Vorimore
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, 94706 Maisons-Alfort, France;
| | | | - Edson Moleta Colodel
- Veterinary Hospital, Faculty of Veterinary Medicine, Federal University of Mato Grosso State (UFMT), 78060-900 Cuiabá, Brazil; (L.N.); (E.M.C.)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
- Correspondence: (D.M.d.A.); (A.C.-C.)
| |
Collapse
|
19
|
Mathieu-Bégné E, Loot G, Blanchet S, Toulza E, Genthon C, Rey O. De novo transcriptome assembly for Tracheliastes polycolpus, an invasive ectoparasite of freshwater fish in western Europe. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Eilenberg J, Saussure S, Ben Fekih I, Jensen AB, Klingen I. Factors driving susceptibility and resistance in aphids that share specialist fungal pathogens. CURRENT OPINION IN INSECT SCIENCE 2019; 33:91-98. [PMID: 31358202 DOI: 10.1016/j.cois.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 06/10/2023]
Abstract
Pandora neoaphidis and Entomophthora planchoniana are widespread and important specialist fungal pathogens of aphids in cereals (Sitobion avenae and Rhopalosiphum padi). The two aphid species share these pathogens and we compare factors influencing susceptibility and resistance. Among factors that may influence susceptibility and resistance are aphid behavior, conspecific versus heterospecific host, aphid morph, life cycle, and presence of protective endosymbionts. It seems that the conspecific host is more susceptible (less resistant) than the heterospecific host, and alates are more susceptible than apterae. We conceptualize the findings in a diagram showing possible transmission in field situations and we pinpoint where there are knowledge gaps.
Collapse
Affiliation(s)
- Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Stéphanie Saussure
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, P.O. Box 115, NO-1431 Ås, Norway; Norwegian University of Life Sciences, Department of Plant Science, P.O. Box 5003, NO-1432 Ås, Norway
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Annette Bruun Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ingeborg Klingen
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, P.O. Box 115, NO-1431 Ås, Norway
| |
Collapse
|