1
|
Siff TE, Allen PE, Armistead DL, Hunt JR, Rolland SJ, Agaisse H, Carlyon JA. Orientia tsutsugamushi Modulates RIPK3 Cellular Levels but Does Not Inhibit Necroptosis. Pathogens 2025; 14:478. [PMID: 40430799 PMCID: PMC12114526 DOI: 10.3390/pathogens14050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Scrub typhus is an emerging chigger-borne disease caused by the obligate intracellular bacterium Orientia tsutsugamushi. Necroptosis is a form of programmed cell death (PCD) mediated by RIPK3 (serine/threonine kinase receptor interacting protein 3) and its downstream effector MLKL (mixed-lineage kinase domain-like). While O. tsutsugamushi modulates apoptosis, another form of PCD, its interplay with necroptosis is unknown. Much of Orientia pathobiology is linked to its ankyrin repeat (AR)-containing effectors (Anks). Two of these, Ank1 and Ank6, share similarities with the cowpox AR protein, vIRD (viral inducer of RIPK3 degradation) that prevents necroptosis. Here, we show that Ank1 and Ank6 reduce RIPK3 cellular levels although not as robustly as and mechanistically distinct from vIRD. Orientia infection lowers RIPK3 amounts and does not elicit necroptosis in endothelial cells. In HeLa cells ectopically expressing RIPK3, Orientia fails to inhibit RIPK3 and MLKL phosphorylation as well as cell death. MLKL colocalization with Orientia or Listeria monocytogenes, another intracytoplasmic pathogen, was not observed. Thus, O. tsutsugamushi reduces cellular levels of RIPK3 and does not elicit necroptosis but cannot inhibit this PCD pathway once it is induced. This study is a first step toward understanding how the relationship between Orientia and necroptosis contributes to scrub typhus pathogenesis.
Collapse
Affiliation(s)
- Thomas E. Siff
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Paige E. Allen
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - David L. Armistead
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Jason R. Hunt
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Steven J. Rolland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.J.R.); (H.A.)
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.J.R.); (H.A.)
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| |
Collapse
|
2
|
Luo Y, Guo Y, Wang Y, Yang X. Development and validation of a simple-to-use nomogram for predicting severe scrub typhus in children. PLoS Negl Trop Dis 2025; 19:e0013090. [PMID: 40338980 DOI: 10.1371/journal.pntd.0013090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 05/16/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
OBJECTIVE This study aimed to develop and validate a simple-to-use nomogram for predicting severe scrub typhus (ST) in children. METHODS A retrospective study of 256 patients with ST was performed at the Kunming Children's Hospital from January 2015 to November 2022. ALL patients were divided into a common and severe group based on the severity of the disease. A least absolute shrinkage and selection operator (LASSO) regression model was used to identify the optimal predictors, and the predictive nomogram was plotted by multivariable logistic regression. The nomogram was assessed by calibration, discrimination, and clinical utility. RESULTS LASSO regression analysis identified that hemoglobin count (Hb), platelet count (PLT), lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatine kinase isoenzyme MB(CK-MB) and hypoproteinemia were the optimal predictors for severe ST. The nomogram was plotted by the six predictors. The area under the receiver operating characteristic (ROC) curve of the nomogram was 0.870(95% CI = 0.812 ~ 0.928) in training set and 0.839(95% CI = 0.712 ~ 0.967) in validation set. The calibration curve demonstrated that the nomogram was well-fitted, and the decision curve analysis (DCA) showed that the nomogram was clinically beneficial. CONCLUSIONS This study developed and validated a simple-to-use nomogram for predicting severe ST in children based on six predictors including Hb, PLT, LDH, BUN, CK-MB and hypoproteinemia, demonstrating excellent predictive accuracy for the data, though external and prospective validation is required to assess its potential clinical utility.
Collapse
Affiliation(s)
- Yonghan Luo
- Second Department of Infectious Disease, Yunnan Key Specialty of Pediatric Infection (Training and Education Program)/Kunming Key Specialty of Pediatric Infection, Kunming Children's Hospital, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Reproductive Gynecology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yanchun Wang
- Second Department of Infectious Disease, Yunnan Key Specialty of Pediatric Infection (Training and Education Program)/Kunming Key Specialty of Pediatric Infection, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Xiaotao Yang
- Second Department of Infectious Disease, Yunnan Key Specialty of Pediatric Infection (Training and Education Program)/Kunming Key Specialty of Pediatric Infection, Kunming Children's Hospital, Kunming, Yunnan, China
| |
Collapse
|
3
|
Steiert B, Weber MM. Nuclear warfare: pathogen manipulation of the nuclear pore complex and nuclear functions. mBio 2025; 16:e0194024. [PMID: 40111017 PMCID: PMC11980394 DOI: 10.1128/mbio.01940-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Viruses and bacteria exploit the nuclear pore complex (NPC) and host nuclear functions to bypass cellular barriers and manipulate essential processes. Viruses frequently engage directly with NPC components, such as nucleoporins, to enable genome import and evade immune defenses. In contrast, bacterial pathogens rely on secreted effector proteins to disrupt nuclear transport and reprogram host transcription. These strategies reflect a remarkable evolutionary convergence, with both types of pathogens targeting the NPC and nuclear functions to promote infection. This minireview explores the overlapping and unique mechanisms by which pathogens hijack the host nucleus, shedding light on their roles in disease and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Allen PE, Adcox HE, Siff TE, Gupta S, Hunt JR, Carlyon JA. Orientia tsutsugamushi alters the intranuclear balance of cullin-1 and c-MYC to inhibit apoptosis. Infect Immun 2025; 93:e0055924. [PMID: 39976440 PMCID: PMC11895443 DOI: 10.1128/iai.00559-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Cullin-1 (Cul1), a cullin-RING ubiquitin ligase component, represses c-MYC activity in the nucleus. Orientia tsutsugamushi causes the potentially fatal rickettsiosis, scrub typhus. The obligate intracellular bacterium encodes an arsenal of ankyrin repeat-containing effectors (Anks), many of which carry a eukaryotic-like F-box motif that binds Cul1. O. tsutsugamushi reduces Cul1 levels in the nucleus. This phenomenon is not due to an alteration in Cul1 neddylation but is bacterial burden- and protein synthesis-dependent. Five of the 11 Anks capable of binding Cul1 (Ank1, Ank5, Ank6, Ank9, Ank17) sequester it in the cytoplasm when each is ectopically expressed. Ank1 and Ank6 proteins with alanine substitutions in their F-boxes that render them unable to bind Cul1 cannot exclude Cul1 from the nucleus. Coincident with the reduction of Cul1 in the nuclei of Orientia-infected cells, c-MYC nuclear levels are elevated, and Cul1 target genes are differentially expressed. Several of these genes regulate apoptosis. The resistance of O. tsutsugamushi-infected cells to staurosporine-induced apoptosis is recapitulated in uninfected cells expressing Ank1 or Ank6 but not alanine-substituted versions thereof that cannot bind Cul1. Other F-box-containing Anks that cannot bind or exclude Cul1 from the nucleus also fail to confer resistance to apoptosis. Overall, O. tsutsugamushi modulates the Cul1:c-MYC intranuclear balance as an anti-apoptotic strategy that is functionally linked to a subset of its F-box-containing Anks.
Collapse
Affiliation(s)
- Paige E. Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Thomas E. Siff
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Sarika Gupta
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason R. Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
5
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
6
|
Hamilton WC, Newton ILG. crANKing up the infection: ankyrin domains in Rickettsiales and their role in host manipulation. Infect Immun 2024; 92:e0005924. [PMID: 39212405 PMCID: PMC11475675 DOI: 10.1128/iai.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intracellular bacteria use secreted effector proteins to modify host biology and facilitate infection. For many of these microbes, a particular eukaryotic domain-the ankyrin repeat (ANK)-plays a central role in specifying the host proteins and pathways targeted by the microbe. While we understand much of how some ANKs function in model organisms like Legionella and Coxiella, the understudied Rickettsiales species harbor many proteins with ANKs, some of which play critical roles during infection. This minireview is meant to organize and summarize the research progress made in understanding some of these Rickettsiales ANKs as well as document some of the techniques that have driven much of this progress.
Collapse
Affiliation(s)
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Adcox HE, Hunt JR, Allen PE, Siff TE, Rodino KG, Ottens AK, Carlyon JA. Orientia tsutsugamushi Ank5 promotes NLRC5 cytoplasmic retention and degradation to inhibit MHC class I expression. Nat Commun 2024; 15:8069. [PMID: 39277599 PMCID: PMC11401901 DOI: 10.1038/s41467-024-52119-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
How intracellular bacteria subvert the major histocompatibility complex (MHC) class I pathway is poorly understood. Here, we show that the obligate intracellular bacterium Orientia tsutsugamushi uses its effector protein, Ank5, to inhibit nuclear translocation of the MHC class I gene transactivator, NLRC5, and orchestrate its proteasomal degradation. Ank5 uses a tyrosine in its fourth ankyrin repeat to bind the NLRC5 N-terminus while its F-box directs host SCF complex ubiquitination of NLRC5 in the leucine-rich repeat region that dictates susceptibility to Orientia- and Ank5-mediated degradation. The ability of O. tsutsugamushi strains to degrade NLRC5 correlates with ank5 genomic carriage. Ectopically expressed Ank5 that can bind but not degrade NLRC5 protects the transactivator during Orientia infection. Thus, Ank5 is an immunoevasin that uses its bipartite architecture to rid host cells of NLRC5 and reduce surface MHC class I molecules. This study offers insight into how intracellular pathogens can impair MHC class I expression.
Collapse
Affiliation(s)
- Haley E Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Thomas E Siff
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
8
|
Hart TM, Sonnert ND, Tang X, Chaurasia R, Allen PE, Hunt JR, Read CB, Johnson EE, Arora G, Dai Y, Cui Y, Chuang YM, Yu Q, Rahman MS, Mendes MT, Rolandelli A, Singh P, Tripathi AK, Ben Mamoun C, Caimano MJ, Radolf JD, Lin YP, Fingerle V, Margos G, Pal U, Johnson RM, Pedra JHF, Azad AF, Salje J, Dimopoulos G, Vinetz JM, Carlyon JA, Palm NW, Fikrig E, Ring AM. An atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms. Cell 2024; 187:4113-4127.e13. [PMID: 38876107 PMCID: PMC11959484 DOI: 10.1016/j.cell.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 01/15/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.
Collapse
Affiliation(s)
- Thomas M Hart
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nicole D Sonnert
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaotian Tang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reetika Chaurasia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paige E Allen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Curtis B Read
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Emily E Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Gunjan Arora
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yingjun Cui
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yu-Min Chuang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Yu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pallavi Singh
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abhai K Tripathi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, CT 06030, USA; Department of Pediatrics, UConn Health, Farmington, CT 06030, USA; Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, Oberschleißheim, Munich 85764, Bavaria, Germany
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Raymond M Johnson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeanne Salje
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1TN, UK
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph M Vinetz
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Aaron M Ring
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98102, USA.
| |
Collapse
|
9
|
Lu D, Chen J, Zhang M, Fu Y, Raheem A, Chen Y, Chen X, Hu C, Chen J, Schieck E, Zhao G, Guo A. Identification of potential nucleomodulins of Mycoplasma bovis by direct biotinylation and proximity-based biotinylation approaches. Front Microbiol 2024; 15:1421585. [PMID: 39044956 PMCID: PMC11263210 DOI: 10.3389/fmicb.2024.1421585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Mycoplasma bovis (M. bovis) is a significant bovine pathogen associated with various diseases, including bovine bronchopneumonia and mastitis resulting in substantial economic losses within the livestock industry. However, the development of effective control measures for M. bovis is hindered by a limited understanding of its virulence factors and pathogenesis. Nucleomodulins are newly identified secreted proteins of bacteria that internalize the host nuclei to regulate host cell gene expression and serve as critical virulence factors. Although recent reports have initiated exploration of mycoplasma nucleomodulins, the efficiency of conventional techniques for identification is very limited. Therefore, this study aimed to establish high-throughput methods to identify novel nucleomodulins of M. bovis. Using a direct biotinylation (DB) approach, a total of 289 proteins were identified including 66 high abundant proteins. In parallel, the use of proximity-based biotinylation (PBB), identified 28 proteins. Finally, seven nucleomodulins were verified to be nuclear by transfecting the bovine macrophage cell line BoMac with the plasmids encoding EGFP-fused proteins and observed with Opera Phenix, including the known nucleomodulin MbovP475 and six novel nucleomodulins. The novel nucleomodulins were four ribosomal proteins (MbovP599, MbovP678, MbovP710, and MbovP712), one transposase (MbovP790), and one conserved hypothetical protein (MbovP513). Among them, one unique nucleomodulin MbovP475 was identified with DB, two unique nucleomodulins (MbovP513 and MbovP710) with PBB, and four nucleomodulins by both. Overall, these findings established a foundation for further research on M. bovis nucleomodulin-host interactions for identification of new virulence factors.
Collapse
Affiliation(s)
- Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiongxi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Menghan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingjie Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi, Kenya
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Giengkam S, Kullapanich C, Wongsantichon J, Adcox HE, Gillespie JJ, Salje J. Orientia tsutsugamushi: comprehensive analysis of the mobilome of a highly fragmented and repetitive genome reveals the capacity for ongoing lateral gene transfer in an obligate intracellular bacterium. mSphere 2023; 8:e0026823. [PMID: 37850800 PMCID: PMC10732058 DOI: 10.1128/msphere.00268-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Obligate intracellular bacteria, or those only capable of growth inside other living cells, have limited opportunities for horizontal gene transfer with other microbes due to their isolated replicative niche. The human pathogen Ot, an obligate intracellular bacterium causing scrub typhus, encodes an unusually high copy number of a ~40 gene mobile genetic element that typically facilitates genetic transfer across microbes. This proliferated element is heavily degraded in Ot and previously assumed to be inactive. Here, we conducted a detailed analysis of this element in eight Ot strains and discovered two strains with at least one intact copy. This implies that the element is still capable of moving across Ot populations and suggests that the genome of this bacterium may be even more dynamic than previously appreciated. Our work raises questions about intracellular microbial evolution and sounds an alarm for gene-based efforts focused on diagnosing and combatting scrub typhus.
Collapse
Affiliation(s)
- Suparat Giengkam
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chitrasak Kullapanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Jeanne Salje
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Bui DC, Luo T, McBride JW. Type 1 secretion system and effectors in Rickettsiales. Front Cell Infect Microbiol 2023; 13:1175688. [PMID: 37256108 PMCID: PMC10225607 DOI: 10.3389/fcimb.2023.1175688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Obligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in Ehrlichia. These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity. To evade innate immune responses and promote intracellular survival, Ehrlichia and other related obligate pathogens secrete multiple T1SS effectors which interact with a diverse network of host targets associated with essential cellular processes. T1SS effectors have multiple functional activities during infection including acting as nucleomodulins and ligand mimetics that activate evolutionarily conserved cellular signaling pathways. In Ehrlichia, an array of newly defined major immunoreactive proteins have been identified that are predicted as T1SS substrates and have conformation-dependent antibody epitopes. These findings highlight the underappreciated and largely uncharacterized roles of T1SS effector proteins in pathobiology and immunity. This review summarizes current knowledge regarding roles of T1SS effectors in Rickettsiales members during infection and explores newly identified immunoreactive proteins as potential T1SS substrates and targets of a protective host immune response.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
12
|
Giengkam S, Kullapanich C, Wongsantichon J, Adcox HE, Gillespie JJ, Salje J. Orientia tsutsugamushi: analysis of the mobilome of a highly fragmented and repetitive genome reveals ongoing lateral gene transfer in an obligate intracellular bacterium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540415. [PMID: 37215039 PMCID: PMC10197636 DOI: 10.1101/2023.05.11.540415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The rickettsial human pathogen Orientia tsutsugamushi (Ot) is an obligate intracellular Gram-negative bacterium with one of the most highly fragmented and repetitive genomes of any organism. Around 50% of its ~2.3 Mb genome is comprised of repetitive DNA that is derived from the highly proliferated Rickettsiales amplified genetic element (RAGE). RAGE is an integrative and conjugative element (ICE) that is present in a single Ot genome in up to 92 copies, most of which are partially or heavily degraded. In this report, we analysed RAGEs in eight fully sequenced Ot genomes and manually curated and reannotated all RAGE-associated genes, including those encoding DNA mobilisation proteins, P-type (vir) and F-type (tra) type IV secretion system (T4SS) components, Ankyrin repeat- and tetratricopeptide repeat-containing effectors, and other piggybacking cargo. Originally, the heavily degraded Ot RAGEs led to speculation that they are remnants of historical ICEs that are no longer active. Our analysis, however, identified two Ot genomes harbouring one or more intact RAGEs with complete F-T4SS genes essential for mediating ICE DNA transfer. As similar ICEs have been identified in unrelated rickettsial species, we assert that RAGEs play an ongoing role in lateral gene transfer within the Rickettsiales. Remarkably, we also identified in several Ot genomes remnants of prophages with no similarity to other rickettsial prophages. Together these findings indicate that, despite their obligate intracellular lifestyle and host range restricted to mites, rodents and humans, Ot genomes are highly dynamic and shaped through ongoing invasions by mobile genetic elements and viruses.
Collapse
Affiliation(s)
- Suparat Giengkam
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chitrasak Kullapanich
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD 21201
| | - Jeanne Salje
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Pathology, Department of Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
13
|
Fisher J, Gonzales C, Chroust Z, Liang Y, Soong L. Orientia tsutsugamushi Infection Stimulates Syk-Dependent Responses and Innate Cytosolic Defenses in Macrophages. Pathogens 2022; 12:pathogens12010053. [PMID: 36678402 PMCID: PMC9861896 DOI: 10.3390/pathogens12010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium and an etiological agent of scrub typhus. Human studies and animal models of scrub typhus have shown robust type 1-skewed proinflammatory responses during severe infection. Macrophages (MΦ) play a critical role in initiating such responses, yet mechanisms of innate recognition for O. tsutsugamushi remain unclear. In this study, we investigated whether Syk-dependent C-type lectin receptors (CLRs) contribute to innate immune recognition and the generation of proinflammatory responses. To validate the role of CLRs in scrub typhus, we infected murine bone marrow-derived MΦ with O. tsutsugamushi in the presence of selective Syk inhibitors and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that Mincle/Clec4a and Clec5a transcription was significantly abrogated upon Syk inhibition at 6 h of infection. The effect of Syk inhibition on Mincle protein expression was validated via Western blot. Syk-inhibited MΦ had diminished expression of type 1 cytokines/chemokines (Il12p40, Tnf, Il27p28, Cxcl1) during infection. Additionally, expression of innate immune cytosolic sensors (Mx1 and Oas1-3) was highly induced in the brain of lethally infected mice. We established that Mx1 and Oas1 expression was reduced in Syk-inhibited MΦ, while Oas2, Oas3, and MerTK were not sensitive to Syk inhibition. This study reveals that Syk-dependent CLRs contribute to inflammatory responses against O. tsutsugamushi. It also provides the first evidence for Syk-dependent activation of intracellular defenses during infection, suggesting a role of pattern recognition receptor crosstalk in orchestrating macrophage-mediated responses to this poorly studied bacterium.
Collapse
Affiliation(s)
- James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Casey Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Zachary Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Correspondence: (Y.L.); (L.S.)
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Correspondence: (Y.L.); (L.S.)
| |
Collapse
|
14
|
Orientia tsutsugamushi OtDUB Is Expressed and Interacts with Adaptor Protein Complexes during Infection. Infect Immun 2022; 90:e0046922. [PMID: 36374099 PMCID: PMC9753657 DOI: 10.1128/iai.00469-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Orientia tsutsugamushi is an etiologic agent of scrub typhus, a globally emerging rickettsiosis that can be fatal. The bacterium's obligate intracellular lifestyle requires its interaction with host eukaryotic cellular pathways. The proteins it employs to do so and their functions during infection are understudied. Recombinant versions of the recently characterized O. tsutsugamushi deubiquitylase (OtDUB) exhibit high-affinity ubiquitin binding, mediate guanine nucleotide exchange to activate Rho GTPases, bind clathrin adaptor protein complexes 1 and 2, and bind the phospholipid phosphatidylserine. Whether OtDUB is expressed and its function during O. tsutsugamushi infection have yet to be explored. Here, OtDUB expression, location, and interactome during infection were examined. O. tsutsugamushi transcriptionally and translationally expresses OtDUB throughout infection of epithelial, monocytic, and endothelial cells. Results from structured illumination microscopy, surface trypsinization of intact bacteria, and acetic acid extraction of non-integral membrane proteins indicate that OtDUB peripherally associates with the O. tsutsugamushi cell wall and is at least partially present on the bacterial surface. Analyses of the proteins with which OtDUB associates during infection revealed several known O. tsutsugamushi cell wall proteins and others. It also forms an interactome with adapter protein complex 2 and other endosomal membrane traffic regulators. This study documents the first interactors of OtDUB during O. tsutsugamushi infection and establishes a strong link between OtDUB and the host endocytic pathway.
Collapse
|
15
|
Dubytska LP, Koirala R, Sanchez A, Thune R. Edwardsiella ictaluri T3SS Effector EseN Modulates Expression of Host Genes Involved in the Immune Response. Microorganisms 2022; 10:microorganisms10071334. [PMID: 35889053 PMCID: PMC9323599 DOI: 10.3390/microorganisms10071334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
The type III secretion system (T3SS) effector EseN is encoded on the Edwardsiella ictaluri chromosome and is homologous to a family of T3SS effector proteins with phosphothreonine lyase activity. Previously we demonstrated that E. ictaluri invasion activates extracellular signal-regulated kinases 1 and 2 (ERK1/2) early in the infection, which are subsequently inactivated by EseN. Comparative transcriptomic analysis showed a total of 753 significant differentially expressed genes in head-kidney-derived macrophages (HKDM) infected with an EseN mutant (∆EseN) compared to HKDM infected with wild-type (WT) strains. This data strongly indicates classical activation of macrophages (the M1 phenotype) in response to E. ictaluri infection and a significant role for EseN in the manipulation of this process. Our data also indicates that E. ictaluri EseN is involved in the modulation of pathways involved in the immune response to infection and expression of several transcription factors, including NF-κβ (c-rel and relB), creb3L4, socs6 and foxo3a. Regulation of transcription factors leads to regulation of proinflammatory interleukins (IL-8, IL-12a, IL-15, IL-6) and cyclooxygenase-2 (COX-2) expression. Inhibition of COX-2 mRNA by WT E. ictaluri leads to decreased production of prostaglandin E2 (PGE2), which is the product of COX-2 activity. Collectively, our results indicate that E. ictaluri EseN is an important player in the modulation of host immune responses to E.ictaluri infection.
Collapse
Affiliation(s)
- Lidiya P. Dubytska
- Department of Biology and Chemistry, Southern University and A & M College, Baton Rouge, LA 70813, USA; (R.K.); (A.S.)
- Correspondence: ; Tel.: +1-225-771-33743
| | - Ranjan Koirala
- Department of Biology and Chemistry, Southern University and A & M College, Baton Rouge, LA 70813, USA; (R.K.); (A.S.)
| | - Azhia Sanchez
- Department of Biology and Chemistry, Southern University and A & M College, Baton Rouge, LA 70813, USA; (R.K.); (A.S.)
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA;
- School of Animal Science, Louisiana State University Agricultural Experiment Station, Baton Rouge, LA 70803, USA
| |
Collapse
|
16
|
OtDUB from the Human Pathogen Orientia tsutsugamushi Modulates Host Membrane Trafficking by Multiple Mechanisms. Mol Cell Biol 2022; 42:e0007122. [PMID: 35727026 PMCID: PMC9302166 DOI: 10.1128/mcb.00071-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Host cell membrane-trafficking pathways are often manipulated by bacterial pathogens to gain cell entry, avoid immune responses, or to obtain nutrients. The 1,369-residue OtDUB protein from the obligate intracellular human pathogen Orientia tsutsugamushi bears a deubiquitylase (DUB) and additional domains. Here we show that OtDUB ectopic expression disrupts membrane trafficking through multiple mechanisms. OtDUB binds directly to the clathrin adaptor-protein (AP) complexes AP-1 and AP-2, and the OtDUB275-675 fragment is sufficient for binding to either complex. To assess the impact of OtDUB interactions with AP-1 and AP-2, we examined trans-Golgi trafficking and endocytosis, respectively. Endocytosis is reduced by two separate OtDUB fragments: one contains the AP-binding domain (OtDUB1-675), and the other does not (OtDUB675-1369). OtDUB1-675 disruption of endocytosis requires its ubiquitin-binding capabilities. OtDUB675-1369 also fragments trans- and cis-Golgi structures. Using a growth-based selection in yeast, we identified viable OtDUB675-1369 point mutants that also no longer caused Golgi defects in human cells. In parallel, we found OtDUB675-1369 binds directly to phosphatidylserine, and this lipid binding is lost in the same mutants. Together these results show that OtDUB contains multiple activities capable of modulating membrane trafficking. We discuss how these activities may contribute to Orientia infections.
Collapse
|
17
|
Kim Y, Wang J, Clemens EG, Grab DJ, Dumler JS. Anaplasma phagocytophilum Ankyrin A Protein (AnkA) Enters the Nucleus Using an Importin-β-, RanGTP-Dependent Mechanism. Front Cell Infect Microbiol 2022; 12:828605. [PMID: 35719343 PMCID: PMC9204287 DOI: 10.3389/fcimb.2022.828605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Anaplasma phagocytophilum, a tick-borne obligately intracellular bacterium of neutrophils, causes human granulocytic anaplasmosis. Ankyrin A (AnkA), an effector protein with multiple ankyrin repeats (AR) is injected via type IV-secretion into the host neutrophil to gain access to the nucleus where it modifies the epigenome to promote microbial fitness and propagation. AR proteins transported into the host cell nucleus must use at least one of two known eukaryotic pathways, the classical importin β-dependent pathway, and/or the RanGDP- and AR (ankyrin-repeat)-dependent importin β-independent (RaDAR) pathway. Truncation of the first four AnkA N-terminal ARs (AR1-4), but not other regions, prevents AnkA nuclear accumulation. To investigate the mechanism of nuclear import, we created point mutations of AnkA N-terminal ARs, predicted to interfere with RaDAR protein import, and used importazole, a specific inhibitor of the importin α/β, RanGTP-dependent pathway. Nuclear colocalization analysis shows that nuclear localization of AnkA is unaffected by single AR1-4 mutations but is significantly reduced by single mutations in consecutive ARs suggesting RaDAR protein nuclear import. However, AnkA nuclear localization was also decreased with importazole, and with GTPγS. Furthermore, A. phagocytophilum growth in HL-60 cells was completely suppressed with importazole, indicating that A. phagocytophilum propagation requires a β-importin-dependent pathway. A typical classical NLS overlapping AR4 was subsequently identified suggesting the primacy of the importin-α/β system in AnkA nuclear localization. Whether the mutational studies of putative key residues support RaDAR NLS function or simply reflect structural changes that diminish engagement of an AR-NLS-importin pathway needs to be resolved through careful structure-function studies.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jianyang Wang
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Emily G. Clemens
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - J. Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States,*Correspondence: J. Stephen Dumler,
| |
Collapse
|
18
|
Functional Characterization of Non-Ankyrin Repeat Domains of Orientia tsutsugamushi Ank Effectors Reveals Their Importance for Molecular Pathogenesis. Infect Immun 2022; 90:e0062821. [PMID: 35435726 DOI: 10.1128/iai.00628-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi is a genetically intractable obligate intracellular bacterium, causes scrub typhus, and has one of the largest known armamentariums of ankyrin repeat-containing effectors (Anks). Most have a C-terminal F-box presumed to interact with the SCF ubiquitin ligase complex primarily based on their ability to bind overexpressed Skp1. Whether all F-box-containing Anks bind endogenous SCF components and the F-box residues essential for such interactions has gone unexplored. Many O. tsutsugamushi Ank F-boxes occur as part of a PRANC (pox protein repeats of ankyrin-C-terminal) domain. Roles of the non-F-box portion of the PRANC and intervening sequence region (ISR) that links the ankyrin repeat and F-box/PRANC domains are unknown. The functional relevance of these effectors' non-ankyrin repeat domains was investigated. The F-box was necessary for Flag-tagged versions of most F-box-containing Anks to precipitate endogenous Skp1, Cul1, and/or Rbx1, while the ISR and PRANC were dispensable. Ank toxicity in yeast was predominantly F-box dependent. Interrogations of Ank1, Ank5, and Ank6 established that L1, P2, E4, I9, and D17 of the F-box consensus are key for binding native SCF components and for Ank1 and Ank6 to inhibit NF-κB. The ISR is also essential for Ank1 and Ank6 to impair NF-κB. Ectopically expressed Ank1 and Ank6 lacking the ISR or having a mutagenized F-box incapable of binding SCF components performed as dominant-negative inhibitors to block O. tsutsugamushi NF-κB modulation. This study advances knowledge of O. tsutsugamushi Ank functional domains and offers an approach for validating their roles in infection.
Collapse
|
19
|
Matos AL, Curto P, Simões I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Trop Med Infect Dis 2022; 7:32. [PMID: 35202227 PMCID: PMC8877226 DOI: 10.3390/tropicalmed7020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus (R. typhi), Mediterranean spotted fever (R. conorii), or Rocky Mountain spotted fever (R. rickettsii). These diseases are gaining a new momentum given their resurgence patterns and geographical expansion due to the overall rise in temperature and other human-induced pressure, thereby remaining a major public health concern. As obligate intracellular bacteria, Rickettsiales are characterized by their small genome sizes due to reductive evolution. Many pathogens employ moonlighting/multitasking proteins as virulence factors to interfere with multiple cellular processes, in different compartments, at different times during infection, augmenting their virulence. The utilization of this multitasking phenomenon by Rickettsiales as a strategy to maximize the use of their reduced protein repertoire is an emerging theme. Here, we provide an overview of the role of various moonlighting proteins in the pathogenicity of these species. Despite the challenges that lie ahead to determine the multiple potential faces of every single protein in Rickettsiales, the available examples anticipate this multifunctionality as an essential and intrinsic feature of these obligates and should be integrated into available moonlighting repositories.
Collapse
Affiliation(s)
- Ana Luísa Matos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Pedro Curto
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Isaura Simões
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
20
|
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins (Basel) 2021; 13:toxins13100713. [PMID: 34679006 PMCID: PMC8539587 DOI: 10.3390/toxins13100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.
Collapse
|
21
|
Hunt JR, Carlyon JA. Analysis of Orientia tsutsugamushi promoter activity. Pathog Dis 2021; 79:6369350. [PMID: 34515306 DOI: 10.1093/femspd/ftab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium that causes scrub typhus, a potentially fatal rickettsiosis, and for which no genetic tools exist. Critical to addressing this technical gap is to identify promoters for driving expression of antibiotic resistance and fluorescence reporter genes in O. tsutsugamushi. Such promoters would need to be highly conserved among strains, expressed throughout infection, and exhibit strong activity. We examined the untranslated regions upstream of O. tsutsugamushi genes encoding outer membrane protein A (ompA), 22-kDa type-specific antigen (tsa22) and tsa56. The bacterium transcribed all three during infection of monocytic, endothelial and epithelial cells. Examination of the upstream noncoding regions revealed putative ribosome binding sites, one set of predicted -10 and -35 sequences for ompA and two sets of -10 and -35 sequences for tsa22 and tsa56. Comparison of these regions among geographically diverse O. tsutsugamushi patient isolates revealed nucleotide identities ranging from 84.8 to 100.0%. Upon examination of the candidates for the ability to drive green fluorescence protein expression in Escherichia coli, varying activities were observed with one of the tsa22 promoters being the strongest. Identification and validation of O. tsutsugamushi promoters is an initial key step toward genetically manipulating this important pathogen.
Collapse
Affiliation(s)
- Jason R Hunt
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, School of Medicine, VCU, Richmond, VA 23298, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, School of Medicine, VCU, Richmond, VA 23298, USA
| |
Collapse
|
22
|
Orientia tsutsugamushi Nucleomodulin Ank13 Exploits the RaDAR Nuclear Import Pathway To Modulate Host Cell Transcription. mBio 2021; 12:e0181621. [PMID: 34340535 PMCID: PMC8406279 DOI: 10.1128/mbio.01816-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi is the etiologic agent of scrub typhus, the deadliest of all diseases caused by obligate intracellular bacteria. Nucleomodulins, bacterial effectors that dysregulate eukaryotic transcription, are being increasingly recognized as key virulence factors. How they translocate into the nucleus and their functionally essential domains are poorly defined. We demonstrate that Ank13, an O. tsutsugamushi effector conserved among clinical isolates and expressed during infection, localizes to the nucleus in an importin β1-independent manner. Rather, Ank13 nucleotropism requires an isoleucine at the thirteenth position of its fourth ankyrin repeat, consistent with utilization of eukaryotic RaDAR (RanGDP-ankyrin repeats) nuclear import. RNA-seq analyses of cells expressing green fluorescent protein (GFP)-tagged Ank13, nucleotropism-deficient Ank13I127R, or Ank13ΔF-box, which lacks the F-box domain essential for interacting with SCF ubiquitin ligase, revealed Ank13 to be a nucleomodulin that predominantly downregulates transcription of more than 2,000 genes. Its ability to do so involves its nucleotropism and F-box in synergistic and mutually exclusive manners. Ank13 also acts in the cytoplasm to dysregulate smaller cohorts of genes. The effector’s toxicity in yeast heavily depends on its F-box and less so on its nucleotropism. Genes negatively regulated by Ank13 include those involved in the inflammatory response, transcriptional control, and epigenetics. Importantly, the majority of genes that GFP-Ank13 most strongly downregulates are quiescent or repressed in O. tsutsugamushi-infected cells when Ank13 expression is strongest. Ank13 is the first nucleomodulin identified to coopt RaDAR and a multifaceted effector that functions in the nucleus and cytoplasm via F-box-dependent and -independent mechanisms to globally reprogram host cell transcription.
Collapse
|
23
|
Orientia tsutsugamushi selectively stimulates the C-type lectin receptor Mincle and type 1-skewed proinflammatory immune responses. PLoS Pathog 2021; 17:e1009782. [PMID: 34320039 PMCID: PMC8351992 DOI: 10.1371/journal.ppat.1009782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/09/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium and the etiological agent of scrub typhus. The lung is a major target organ of infection, displaying type 1-skewed proinflammatory responses. Lung injury and acute respiratory distress syndrome are common complications of severe scrub typhus; yet, their underlying mechanisms remain unclear. In this study, we investigated whether the C-type lectin receptor (CLR) Mincle contributes to immune recognition and dysregulation. Following lethal infection in mice, we performed pulmonary differential expression analysis with NanoString. Of 671 genes examined, we found 312 significantly expressed genes at the terminal phase of disease. Mincle (Clec4e) was among the top 5 greatest up-regulated genes, accompanied with its signaling partners, type 1-skewing chemokines (Cxcr3, Ccr5, and their ligands), as well as Il27. To validate the role of Mincle in scrub typhus, we exposed murine bone marrow-derived macrophages (MΦ) to live or inactivated O. tsutsugamushi and analyzed a panel of CLRs and proinflammatory markers via qRT-PCR. We found that while heat-killed bacteria stimulated transitory Mincle expression, live bacteria generated a robust response in MΦ, which was validated by indirect immunofluorescence and western blot. Notably, infection had limited impact on other tested CLRs or TLRs. Sustained proinflammatory gene expression in MΦ (Cxcl9, Ccl2, Ccl5, Nos2, Il27) was induced by live, but not inactivated, bacteria; infected Mincle-/- MΦ significantly reduced proinflammatory responses compared with WT cells. Together, this study provides the first evidence for a selective expression of Mincle in sensing O. tsutsugamushi and suggests a potential role of Mincle- and IL-27-related pathways in host responses to severe infection. Additionally, it provides novel insight into innate immune recognition of this poorly studied bacterium.
Collapse
|
24
|
Nucleocytoplasmic Trafficking Perturbation Induced by Picornaviruses. Viruses 2021; 13:v13071210. [PMID: 34201715 PMCID: PMC8310216 DOI: 10.3390/v13071210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022] Open
Abstract
Picornaviruses are positive-stranded RNA viruses. Even though replication and translation of their genome take place in the cytoplasm, these viruses evolved different strategies to disturb nucleocytoplasmic trafficking of host proteins and RNA. The major targets of picornavirus are the phenylalanine-glycine (FG)-nucleoporins, which form a mesh in the central channel of the nuclear pore complex through which protein cargos and karyopherins are actively transported in both directions. Interestingly, while enteroviruses use the proteolytic activity of their 2A protein to degrade FG-nucleoporins, cardioviruses act by triggering phosphorylation of these proteins by cellular kinases. By targeting the nuclear pore complex, picornaviruses recruit nuclear proteins to the cytoplasm, where they increase viral genome translation and replication; they affect nuclear translocation of cytoplasmic proteins such as transcription factors that induce innate immune responses and retain host mRNA in the nucleus thereby preventing cell emergency responses and likely making the ribosomal machinery available for translation of viral RNAs.
Collapse
|
25
|
Wangsanut T, Brann KR, Adcox HE, Carlyon JA. Orientia tsutsugamushi modulates cellular levels of NF-κB inhibitor p105. PLoS Negl Trop Dis 2021; 15:e0009339. [PMID: 33857149 PMCID: PMC8078813 DOI: 10.1371/journal.pntd.0009339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Background Scrub typhus is a neglected tropical disease that threatens more than one billion people. If antibiotic therapy is delayed, often due to mis- or late diagnosis, the case fatality rate can increase considerably. Scrub typhus is caused by the obligate intracellular bacterium, Orientia tsutsugamushi, which invades phagocytes and endothelial cells in vivo and diverse tissue culture cell types in vitro. The ability of O. tsutsugamushi to replicate in the cytoplasm indicates that it has evolved to counter eukaryotic host cell immune defense mechanisms. The transcription factor, NF-κB, is a tightly regulated initiator of proinflammatory and antimicrobial responses. Typically, the inhibitory proteins p105 and IκBα sequester the NF-κB p50:p65 heterodimer in the cytoplasm. Canonical activation of NF-κB via TNFα involves IKKβ-mediated serine phosphorylation of IκBα and p105, which leads to their degradation and enables NF-κB nuclear translocation. A portion of p105 is also processed into p50. O. tsutsugamushi impairs NF-κB translocation into the nucleus, but how it does so is incompletely defined. Principal findings Western blot, densitometry, and quantitative RT-PCR analyses of O. tsutsugamushi infected host cells were used to determine if the pathogen’s ability to inhibit NF-κB is linked to modulation of p105. Results demonstrate that p105 levels are elevated several-fold in O. tsutsugamushi infected HeLa and RF/6A cells with only a nominal increase in p50. The O. tsutsugamushi-stimulated increase in p105 is bacterial dose- and protein synthesis-dependent, but does not occur at the level of host cell transcription. While TNFα-induced phosphorylation of p105 serine 932 proceeds unhindered in infected cells, p105 levels remain elevated and NF-κB p65 is retained in the cytoplasm. Conclusions O. tsutsugamushi specifically stabilizes p105 to inhibit the canonical NF-κB pathway, which advances understanding of how it counters host immunity to establish infection. Scrub typhus is a neglected disease that can be fatal and occurs predominantly in the Asia-Pacific, one of the most densely populated regions of the world. Notably, cases continue to emerge outside this area. The etiologic agent is Orientia tsutsugamushi, a bacterial pathogen that infects certain leukocytes and cells that line blood vessels in animals and humans. The success of O. tsutsugamushi to colonize these cells is at least partially attributable to its ability to counter host immunity. In this study, we demonstrate that O. tsutsugamushi stabilizes p105, a mammalian inhibitor of the transcription factor, NF-κB, which is otherwise key for activating proinflammatory and antimicrobial gene expression. O. tsutsugamushi is the first example of a bacterium that inhibits NF-κB by promoting elevated levels of p105 and impairing its degradation. Our findings provide fundamental information that helps explain how this important pathogen has evolved to stealthily establish infection in host cells.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Katelynn R. Brann
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, Unites States of America
- * E-mail:
| |
Collapse
|
26
|
Patterson LL, Byerly CD, McBride JW. Anaplasmataceae: Dichotomous Autophagic Interplay for Infection. Front Immunol 2021; 12:642771. [PMID: 33912170 PMCID: PMC8075259 DOI: 10.3389/fimmu.2021.642771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a vital conserved degradative process that maintains cellular homeostasis by recycling or eliminating dysfunctional cellular organelles and proteins. More recently, autophagy has become a well-recognized host defense mechanism against intracellular pathogens through a process known as xenophagy. On the host-microbe battlefield many intracellular bacterial pathogens have developed the ability to subvert xenophagy to establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival within the host cell. In this review, the recent findings regarding how these master manipulators engage and inhibit autophagy for infection are explored. Future investigation to understand mechanisms used by Anaplasmataceae to exploit autophagy may advance novel antimicrobial therapies and provide new insights into how intracellular microbes exploit autophagy to survive.
Collapse
Affiliation(s)
- LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
27
|
Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol 2021; 19:375-390. [PMID: 33564174 DOI: 10.1038/s41579-020-00507-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The Rickettsiales are a group of obligate intracellular vector-borne Gram-negative bacteria that include many organisms of clinical and agricultural importance, including Anaplasma spp., Ehrlichia chaffeensis, Wolbachia, Rickettsia spp. and Orientia tsutsugamushi. This Review provides an overview of the current state of knowledge of the biology of these bacteria and their interactions with host cells, with a focus on pathogenic species or those that are otherwise important for human health. This includes a description of rickettsial genomics, bacterial cell biology, the intracellular lifestyles of Rickettsiales and the mechanisms by which they induce and evade the innate immune response.
Collapse
Affiliation(s)
- Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Public Health Research Institute, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
28
|
Fisher JR, Chroust ZD, Onyoni F, Soong L. Pattern Recognition Receptors in Innate Immunity to Obligate Intracellular Bacteria. ZOONOSES (BURLINGTON, MASS.) 2021; 1:10. [PMID: 35282331 PMCID: PMC8909792 DOI: 10.15212/zoonoses-2021-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Host pattern recognition receptors (PRRs) are crucial for sensing pathogenic microorganisms, launching innate responses, and shaping pathogen-specific adaptive immunity during infection. Rickettsia spp., Orientia tsutsugamushi, Anaplasma spp., Ehrlichia spp., and Coxiella burnetii are obligate intracellular bacteria, which can only replicate within host cells and must evade immune detection to successfully propagate. These five bacterial species are zoonotic pathogens of clinical or agricultural importance, yet, uncovering how immune recognition occurs has remained challenging. Recent evidence from in-vitro studies and animal models has offered new insights into the types and kinetics of PRR activation during infection with Rickettsia spp., A. phagocytophilum, E. chaffeensis, and C. burnetii, respectively. However, much less is known in these regards for O. tsutsugamushi infection, until the recent discovery for the role of the C-type lectin receptor Mincle during lethal infection in mice and in primary macrophage cultures. This review gives a brief summary for clinical and epidemiologic features of these five bacterial infections, focuses on fundamental biologic facets of infection, and recent advances in host recognition. In addition, we discuss knowledge gaps for innate recognition of these bacteria in the context of disease pathogenesis.
Collapse
Affiliation(s)
- James R. Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zachary D. Chroust
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Florence Onyoni
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Corresponding author: Lynn Soong, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. MRB 3.142, Galveston, Texas 77555-1070,
| |
Collapse
|
29
|
Hanford HE, Von Dwingelo J, Abu Kwaik Y. Bacterial nucleomodulins: A coevolutionary adaptation to the eukaryotic command center. PLoS Pathog 2021; 17:e1009184. [PMID: 33476322 PMCID: PMC7819608 DOI: 10.1371/journal.ppat.1009184] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Through long-term interactions with their hosts, bacterial pathogens have evolved unique arsenals of effector proteins that interact with specific host targets and reprogram the host cell into a permissive niche for pathogen proliferation. The targeting of effector proteins into the host cell nucleus for modulation of nuclear processes is an emerging theme among bacterial pathogens. These unique pathogen effector proteins have been termed in recent years as "nucleomodulins." The first nucleomodulins were discovered in the phytopathogens Agrobacterium and Xanthomonas, where their nucleomodulins functioned as eukaryotic transcription factors or integrated themselves into host cell DNA to promote tumor induction, respectively. Numerous nucleomodulins were recently identified in mammalian pathogens. Bacterial nucleomodulins are an emerging family of pathogen effector proteins that evolved to target specific components of the host cell command center through various mechanisms. These mechanisms include: chromatin dynamics, histone modification, DNA methylation, RNA splicing, DNA replication, cell cycle, and cell signaling pathways. Nucleomodulins may induce short- or long-term epigenetic modifications of the host cell. In this extensive review, we discuss the current knowledge of nucleomodulins from plant and mammalian pathogens. While many nucleomodulins are already identified, continued research is instrumental in understanding their mechanisms of action and the role they play during the progression of pathogenesis. The continued study of nucleomodulins will enhance our knowledge of their effects on nuclear chromatin dynamics, protein homeostasis, transcriptional landscapes, and the overall host cell epigenome.
Collapse
Affiliation(s)
- Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Juanita Von Dwingelo
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
- Center for Predicative Medicine, College of Medicine, University of Louisville, Kentucky, United States of America
| |
Collapse
|
30
|
Narra HP, Sahni A, Alsing J, Schroeder CLC, Golovko G, Nia AM, Fofanov Y, Khanipov K, Sahni SK. Comparative transcriptomic analysis of Rickettsia conorii during in vitro infection of human and tick host cells. BMC Genomics 2020; 21:665. [PMID: 32977742 PMCID: PMC7519539 DOI: 10.1186/s12864-020-07077-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pathogenic Rickettsia species belonging to the spotted fever group are arthropod-borne, obligate intracellular bacteria which exhibit preferential tropism for host microvascular endothelium in the mammalian hosts, resulting in disease manifestations attributed primarily to endothelial damage or dysfunction. Although rickettsiae are known to undergo evolution through genomic reduction, the mechanisms by which these pathogens regulate their transcriptome to ensure survival in tick vectors and maintenance by transovarial/transstadial transmission, in contrast to their ability to cause debilitating infections in human hosts remain unknown. In this study, we compare the expression profiles of rickettsial sRNAome/transcriptome and determine the transcriptional start sites (TSSs) of R. conorii transcripts during in vitro infection of human and tick host cells. RESULTS We performed deep sequencing on total RNA from Amblyomma americanum AAE2 cells and human microvascular endothelial cells (HMECs) infected with R. conorii. Strand-specific RNA sequencing of R. conorii transcripts revealed the expression 32 small RNAs (Rc_sR's), which were preferentially expressed above the limit of detection during tick cell infection, and confirmed the expression of Rc_sR61, sR71, and sR74 by quantitative RT-PCR. Intriguingly, a total of 305 and 132 R. conorii coding genes were differentially upregulated (> 2-fold) in AAE2 cells and HMECs, respectively. Further, enrichment for primary transcripts by treatment with Terminator 5'-Phosphate-dependent Exonuclease resulted in the identification of 3903 and 2555 transcription start sites (TSSs), including 214 and 181 primary TSSs in R. conorii during the infection to tick and human host cells, respectively. Seventy-five coding genes exhibited different TSSs depending on the host environment. Finally, we also observed differential expression of 6S RNA during host-pathogen and vector-pathogen interactions in vitro, implicating an important role for this noncoding RNA in the regulation of rickettsial transcriptome depending on the supportive host niche. CONCLUSIONS In sum, the findings of this study authenticate the presence of novel Rc_sR's in R. conorii, reveal the first evidence for differential expression of coding transcripts and utilization of alternate transcriptional start sites depending on the host niche, and implicate a role for 6S RNA in the regulation of coding transcriptome during tripartite host-pathogen-vector interactions.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Alsing
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Casey L C Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
31
|
Green RS, Izac JR, Naimi WA, O'Bier N, Breitschwerdt EB, Marconi RT, Carlyon JA. Ehrlichia chaffeensis EplA Interaction With Host Cell Protein Disulfide Isomerase Promotes Infection. Front Cell Infect Microbiol 2020; 10:500. [PMID: 33072622 PMCID: PMC7538545 DOI: 10.3389/fcimb.2020.00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that invades monocytes to cause the emerging and potentially severe disease, monocytic ehrlichiosis. Ehrlichial invasion of host cells, a process that is essential for the bacterium's survival and pathogenesis, is incompletely understood. In this study, we identified ECH_0377, henceforth designated as EplA (E. chaffeensis PDI ligand A) as an E. chaffeensis adhesin that interacts with host cell protein disulfide isomerase (PDI) to mediate bacterial entry into host cells. EplA is an outer membrane protein that E. chaffeensis expresses during growth in THP-1 monocytic cells. Canine sera confirmed to be positive for exposure to Ehrlichia spp. recognized recombinant EplA, indicating that it is expressed during infection in vivo. EplA antiserum inhibited the bacterium's ability to infect monocytic cells. The EplA-PDI interaction was confirmed via co-immunoprecipitation. Treating host cell surfaces with antibodies that inhibit PDI and/or thioredoxin-1 thiol reductase activity impaired E. chaffeensis infection. Chemical reduction of host cell surfaces, but not bacterial surfaces with tris(2-carboxyethyl)phosphine (TCEP) restored ehrlichial infectivity in the presence of the PDI-neutralizing antibody. Antisera specific for EplA C-terminal residues 95-104 (EplA95−104) or outer membrane protein A amino acids 53-68 (OmpA53−68) reduced E. chaffeensis infection of THP-1 cells. Notably, TCEP rescued ehrlichial infectivity of bacteria that had been treated with anti-EplA95−104, but not anti-EcOmpA53−68. These results demonstrate that EplA contributes to E. chaffeensis infection of monocytic cells by engaging PDI and exploiting the enzyme's reduction of host cell surface disulfide bonds in an EplA C-terminus-dependent manner and identify EplA95−104 and EcOmpA53−68 as novel ehrlichial receptor binding domains.
Collapse
Affiliation(s)
- Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jerilyn R Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Waheeda A Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Nathaniel O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Edward B Breitschwerdt
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| |
Collapse
|
32
|
Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nat Commun 2020; 11:3363. [PMID: 32620750 PMCID: PMC7335160 DOI: 10.1038/s41467-020-17094-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Studying emerging or neglected pathogens is often challenging due to insufficient information and absence of genetic tools. Dual RNA-seq provides insights into host-pathogen interactions, and is particularly informative for intracellular organisms. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium that causes the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning to study the transcriptional architecture of Ot, we find evidence for wide-spread post-transcriptional antisense regulation. Comparing the host response to two clinical isolates, we identify distinct immune response networks for each strain, leading to predictions of relative virulence that are validated in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot.
Collapse
|
33
|
Burette M, Allombert J, Lambou K, Maarifi G, Nisole S, Di Russo Case E, Blanchet FP, Hassen-Khodja C, Cabantous S, Samuel J, Martinez E, Bonazzi M. Modulation of innate immune signaling by a Coxiella burnetii eukaryotic-like effector protein. Proc Natl Acad Sci U S A 2020; 117:13708-13718. [PMID: 32482853 PMCID: PMC7306807 DOI: 10.1073/pnas.1914892117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Q fever agent Coxiella burnetii uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating C. burnetii effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran. Interestingly, NopA triggers an accumulation of Ran-GTP, which accumulates at nucleoli of transfected or infected cells, thus perturbing the nuclear import of transcription factors of the innate immune signaling pathway. Accordingly, qRT-PCR analysis on a panel of cytokines shows that cells exposed to the C. burnetii nopA::Tn or a Dot/Icm-defective dotA::Tn mutant strain present a functional innate immune response, as opposed to cells exposed to wild-type C. burnetii or the corresponding nopA complemented strain. Thus, NopA is an important regulator of the innate immune response allowing Coxiella to behave as a stealth pathogen.
Collapse
Affiliation(s)
- Melanie Burette
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Karine Lambou
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Elizabeth Di Russo Case
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Cedric Hassen-Khodja
- Montpellier Ressources Imagerie (MRI), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 34293 Montpellier, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse, INSERM, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France
| | - James Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France;
| |
Collapse
|
34
|
Berk JM, Lim C, Ronau JA, Chaudhuri A, Chen H, Beckmann JF, Loria JP, Xiong Y, Hochstrasser M. A deubiquitylase with an unusually high-affinity ubiquitin-binding domain from the scrub typhus pathogen Orientia tsutsugamushi. Nat Commun 2020; 11:2343. [PMID: 32393759 PMCID: PMC7214410 DOI: 10.1038/s41467-020-15985-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
Ubiquitin mediated signaling contributes critically to host cell defenses during pathogen infection. Many pathogens manipulate the ubiquitin system to evade these defenses. Here we characterize a likely effector protein bearing a deubiquitylase (DUB) domain from the obligate intracellular bacterium Orientia tsutsugamushi, the causative agent of scrub typhus. The Ulp1-like DUB prefers ubiquitin substrates over ubiquitin-like proteins and efficiently cleaves polyubiquitin chains of three or more ubiquitins. The co-crystal structure of the DUB (OtDUB) domain with ubiquitin revealed three bound ubiquitins: one engages the S1 site, the second binds an S2 site contributing to chain specificity and the third binds a unique ubiquitin-binding domain (UBD). The UBD modulates OtDUB activity, undergoes a pronounced structural transition upon binding ubiquitin, and binds monoubiquitin with an unprecedented ~5 nM dissociation constant. The characterization and high-resolution structure determination of this enzyme should aid in its development as a drug target to counter Orientia infections.
Collapse
Affiliation(s)
- Jason M Berk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Christopher Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Judith A Ronau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Discovery, Research and Development, AbbVie, Inc., North Chicago, IL, 60064, USA
| | - Apala Chaudhuri
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Hongli Chen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - John F Beckmann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36830, USA
| | - J Patrick Loria
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
35
|
Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins (Basel) 2020; 12:toxins12040220. [PMID: 32244550 PMCID: PMC7232420 DOI: 10.3390/toxins12040220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called “nucleomodulins”. In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.
Collapse
|
36
|
Green RS, Naimi WA, Oliver LD, O'Bier N, Cho J, Conrad DH, Martin RK, Marconi RT, Carlyon JA. Binding of Host Cell Surface Protein Disulfide Isomerase by Anaplasma phagocytophilum Asp14 Enables Pathogen Infection. mBio 2020; 11:e03141-19. [PMID: 31992623 PMCID: PMC6989111 DOI: 10.1128/mbio.03141-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
Diverse intracellular pathogens rely on eukaryotic cell surface disulfide reductases to invade host cells. Pharmacologic inhibition of these enzymes is cytotoxic, making it impractical for treatment. Identifying and mechanistically dissecting microbial proteins that co-opt surface reductases could reveal novel targets for disrupting this common infection strategy. Anaplasma phagocytophilum invades neutrophils by an incompletely defined mechanism to cause the potentially fatal disease granulocytic anaplasmosis. The bacterium's adhesin, Asp14, contributes to invasion by virtue of its C terminus engaging an unknown receptor. Yeast-two hybrid analysis identified protein disulfide isomerase (PDI) as an Asp14 binding partner. Coimmunoprecipitation confirmed the interaction and validated it to be Asp14 C terminus dependent. PDI knockdown and antibody-mediated inhibition of PDI reductase activity impaired A. phagocytophilum infection of but not binding to host cells. Infection during PDI inhibition was rescued when the bacterial but not host cell surface disulfide bonds were chemically reduced with tris(2-carboxyethyl)phosphine-HCl (TCEP). TCEP also restored bacterial infectivity in the presence of an Asp14 C terminus blocking antibody that otherwise inhibits infection. A. phagocytophilum failed to productively infect myeloid-specific-PDI conditional-knockout mice, marking the first demonstration of in vivo microbial dependency on PDI for infection. Mutational analyses identified the Asp14 C-terminal residues that are critical for binding PDI. Thus, Asp14 binds and brings PDI proximal to A. phagocytophilum surface disulfide bonds that it reduces, which enables cellular and in vivo infection.IMPORTANCEAnaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging potentially fatal disease and the second-most common tick-borne illness in the United States. Treatment options are limited, and no vaccine exists. Due to the bacterium's obligatory intracellular lifestyle, A. phagocytophilum survival and pathogenesis are predicated on its ability to enter host cells. Understanding its invasion mechanism will yield new targets for preventing bacterial entry and, hence, disease. We report a novel entry pathway in which the A. phagocytophilum outer membrane protein Asp14 binds host cell surface protein disulfide isomerase via specific C-terminal residues to promote reduction of bacterial surface disulfide bonds, which is critical for cellular invasion and productive infection in vivo Targeting the Asp14 C terminus could be used to prevent/treat granulocytic anaplasmosis. Our findings have broad implications, as a thematically similar approach could be applied to block infection by other intracellular microbes that exploit cell surface reductases.
Collapse
Affiliation(s)
- Ryan S Green
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Waheeda A Naimi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Nathaniel O'Bier
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Jaehyung Cho
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
37
|
Long X, Song J, Zhao X, Zhang Y, Wang H, Liu X, Suo H. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-κB signaling. Food Sci Nutr 2020; 8:237-245. [PMID: 31993149 PMCID: PMC6977511 DOI: 10.1002/fsn3.1296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Acetaminophen (APAP) overdose causes severe hepatotoxicity and acute liver failure. The current study aims to investigate the protection effects of silkworm pupa oil (SPO) against acute hepatic injury in APAP-exposed Kunming mice. Our results showed that the liver index and the levels of serum alanine transaminase (ALT) and aspartate transaminase (AST) in mice subjected to APAP treatment were decreased by SPO. Supplement of SPO also restored hepatic histopathological alterations induced by APAP. The APAP-induced increase in proinflammatory cytokines, including TNF-α, IL-6, and IL-12, was reversed by SPO, which was mediated by the reduction of nuclear factor (NF)-κB p65 expression and the increase in the expression of IκB-α in liver tissue. Moreover, SPO inhibited APAP-triggered oxidative stress by decreasing MDA level and increasing the activities of SOD and GSH-Px. Collectively, SPO attenuated hepatic injury induced by APAP, which attributed to the suppression of oxidative stress-mediated NF-κB signaling. Our findings suggest that SPO supplementation may be potential strategy against acute hepatic injury.
Collapse
Affiliation(s)
- Xingyao Long
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Jiajia Song
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
| | - Yu Zhang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Hongwei Wang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
| | - Huayi Suo
- College of Food ScienceSouthwest UniversityChongqingChina
| |
Collapse
|
38
|
The Obligate Intracellular Bacterium Orientia tsutsugamushi Targets NLRC5 To Modulate the Major Histocompatibility Complex Class I Pathway. Infect Immun 2019; 87:IAI.00876-18. [PMID: 30559222 DOI: 10.1128/iai.00876-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium that infects mononuclear and endothelial cells to cause the emerging global health threat scrub typhus. The ability of O. tsutsugamushi to survive in monocytes facilitates bacterial dissemination to endothelial cells, which can subsequently lead to several potentially fatal sequelae. As a strict intracellular pathogen that lives in the cytoplasm of host cells, O. tsutsugamushi has evolved to counter adaptive immunity. How the pathogen does so and the outcome of this strategy in monocytes versus endothelial cells are poorly understood. This report demonstrates that O. tsutsugamushi reduces cellular levels of NOD-, LRR-, and CARD-containing 5 (NLRC5), a recently identified specific transactivator of major histocompatibility complex class I (MHC-I) component gene expression, to inhibit MHC-I biosynthesis. Importantly, the efficacy of this approach varies with the host cell type infected. In nonprofessional antigen-presenting HeLa and primary human aortic endothelial cells, the O. tsutsugamushi-mediated reduction of NLRC5 results in lowered MHC-I component transcription and, consequently, lower total and/or surface MHC-I levels throughout 72 h of infection. However, in infected THP-1 monocytes, which are professional antigen-presenting cells, the reductions in NLRC5 and MHC-I observed during the first 24 h reverse thereafter. O. tsutsugamushi is the first example of a microbe that targets NLRC5 to modulate the MHC-I pathway. The differential ability of O. tsutsugamushi to modulate this pathway in nonprofessional versus professional antigen-presenting cells could influence morbidity and mortality from scrub typhus.
Collapse
|
39
|
Zhang Z, Wang Z, Huang K, Liu Y, Wei C, Zhou J, Zhang W, Wang Q, Liang H, Zhang A, Wang G, Zhen Y, Han L. PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma. Cancer Lett 2019; 443:91-107. [DOI: 10.1016/j.canlet.2018.11.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/11/2023]
|
40
|
ESCCAR international congress on Rickettsiae and other intracellular bacteria. Microbes Infect 2018; 20:392-400. [PMID: 30315955 DOI: 10.1016/j.micinf.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
|