1
|
Hehner J, Schneider L, Woitalla A, Ott B, Vu KCT, Schöbel A, Hain T, Schwudke D, Herker E. Glycerophospholipid remodeling is critical for orthoflavivirus infection. Nat Commun 2024; 15:8683. [PMID: 39375358 PMCID: PMC11458896 DOI: 10.1038/s41467-024-52979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
Flavivirus infection is tightly connected to host lipid metabolism. Here, we performed shotgun lipidomics of cells infected with neurotropic Zika, West Nile, and tick-borne encephalitis virus, as well as dengue and yellow fever virus. Early in infection specific lipids accumulate, e.g., neutral lipids in Zika and some lysophospholipids in all infections. Ceramide levels increase following infection with viruses that cause a cytopathic effect. In addition, fatty acid desaturation as well as glycerophospholipid metabolism are significantly altered. Importantly, depletion of enzymes involved in phosphatidylserine metabolism as well as phosphatidylinositol biosynthesis reduce orthoflavivirus titers and cytopathic effects while inhibition of fatty acid monounsaturation only rescues from virus-induced cell death. Interestingly, interfering with ceramide synthesis has opposing effects on virus replication and cytotoxicity depending on the targeted enzyme. Thus, lipid remodeling by orthoflaviviruses includes distinct changes but also common patterns shared by several viruses that are needed for efficient infection and replication.
Collapse
Affiliation(s)
- Julia Hehner
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anna Woitalla
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Benjamin Ott
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Kim Chi Thi Vu
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Anja Schöbel
- Institute of Virology, University of Marburg, Marburg, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
- Thematic Translational Unit Tuberculosis, German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Site Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
| | - Eva Herker
- Institute of Virology, University of Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Zhou JF, Zhang MR, Wang Q, Li MZ, Bai JS, Dai Q, Zhang YH, Yan MX, Li XH, Chen J, Liu YY, Liu CC, Ye J, Zhou B. Two novel compounds inhibit Flavivirus infection in vitro and in vivo by targeting lipid metabolism. J Virol 2024; 98:e0063524. [PMID: 39158346 PMCID: PMC11406969 DOI: 10.1128/jvi.00635-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.
Collapse
Affiliation(s)
- Jiang-fei Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng-ran Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mei-zhen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ji-shan Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuan-hang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Meng-xue Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-han Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ya-yun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chun-chun Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Vlok M, Solis N, Sadasivan J, Mohamud Y, Warsaba R, Kizhakkedathu J, Luo H, Overall CM, Jan E. Identification of the proteolytic signature in CVB3-infected cells. J Virol 2024; 98:e0049824. [PMID: 38953667 PMCID: PMC11265341 DOI: 10.1128/jvi.00498-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.
Collapse
Affiliation(s)
- Marli Vlok
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Department of Oral and Biological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jibin Sadasivan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasir Mohamud
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reid Warsaba
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jayachandran Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M. Overall
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral and Biological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Gervais O, Papadopoulou A, Gratacap R, Hillestad B, Tinch AE, Martin SAM, Houston RD, Robledo D. Transcriptomic response to ISAV infection in the gills, head kidney and spleen of resistant and susceptible Atlantic salmon. BMC Genomics 2022; 23:775. [PMID: 36443659 PMCID: PMC9703674 DOI: 10.1186/s12864-022-09007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.
Collapse
Affiliation(s)
- Ophélie Gervais
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Athina Papadopoulou
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Remi Gratacap
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Alan E. Tinch
- Benchmark Genetics, Penicuik, UK ,The Center for Aquaculture Technologies, San Diego, USA
| | - Samuel A. M. Martin
- grid.7107.10000 0004 1936 7291School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ross D. Houston
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Diego Robledo
- grid.4305.20000 0004 1936 7988The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Cell Type Variability in the Incorporation of Lipids in the Dengue Virus Virion. Viruses 2022; 14:v14112566. [PMID: 36423175 PMCID: PMC9698084 DOI: 10.3390/v14112566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A lipid bilayer produced from the host membrane makes up around 20% of the weight of the dengue virus (DENV) virion and is crucial for virus entry. Despite its significance, the virion's lipid composition is still poorly understood. In tandem with lipid profiles of the cells utilised to generate the virions, this work determined a partial lipid profile of DENV virions derived from two cell lines (C6/36 and LLC-MK2). The results showed distinctive profiles between the two cell types. In the mammalian LLC-MK2 cells, 30.8% (73/237 identified lipid species; 31 upregulated, 42 downregulated) of lipid species were altered in response to infection, whilst in insect C6/36 cells only 12.0% (25/208; 19 upregulated, 6 downregulated) of lipid species showed alterations in response to infection. For virions from LLC-MK2 cells, 14 lipids were detected specifically in virions with a further seven lipids being enriched (over mock controls). For virions from C6/36 cells, 43 lipids were detected that were not seen in mock preparations, with a further 16 being specifically enriched (over mock control). These results provide the first lipid description of DENV virions produced in mammalian and mosquito cells, as well as the lipid changes in the corresponding infected cells.
Collapse
|
6
|
Groth M, Łuczaj W, Dunaj-Małyszko J, Skrzydlewska E, Moniuszko-Malinowska A. Differences in the plasma phospholipid profile of patients infected with tick-borne encephalitis virus and co-infected with bacteria. Sci Rep 2022; 12:9538. [PMID: 35680957 PMCID: PMC9184562 DOI: 10.1038/s41598-022-13765-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne encephalitis (TBE) is an infectious viral disease, the pathogenesis of which is still not fully understood. Additionally, TBE can be complicated by co-infections with various bacteria that are also transmitted by ticks, which can affect the proper diagnosis and treatment. Therefore, the aim of the study was to evaluate changes in the plasma phospholipid (PL) and ceramide (CER) profile of patients with TBE and patients with bacterial co-infection (B. burgdorferi or A. phagocytophilum) in relation to healthy subjects. For this purpose, a high-resolution LC-QTOF-MS/MS platform as well as univariate and multivariate statistics were used. The results of this study showed that the levels of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) species were increased in the plasma of patients with TBE and patients with TBE co-infected with bacteria. On the other hand, observed differences in the content of phosphoethanolamines (PE) and sphingomyelins (SM) make it possible to distinguish TBE patients from patients with co-infections. The opposite direction of changes was also observed in the CER content. This study showed significant modifications to the metabolic pathways of linoleic (LA) and arachidonic acid (AA), as confirmed by the quantitative analysis of these fatty acids. The obtained results allow to distinguish the pathomechanism of TBE from TBE with bacterial co-infection, and consequently may improve the diagnostic process and enable more efficient pharmacotherapy against both pathogens.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| | - Justyna Dunaj-Małyszko
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Żurawia 14, 15-540, Białystok, Poland
| |
Collapse
|
7
|
Ahmed N, Ahmed N, Pezacki JP. miR-383 Regulates Hepatic Lipid Homeostasis and Response to Dengue Virus Infection. ACS Infect Dis 2022; 8:928-941. [PMID: 35254825 DOI: 10.1021/acsinfecdis.1c00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, microRNAs (miRNAs), as endogenous noncoding RNAs that inhibit mRNA translation, have been identified to broadly possess functional roles in regulating cellular signaling and metabolic processes due to their chemical and biological properties. In addition, they have emerged to be of critical importance in modulating host-virus interactions, especially for RNA viruses. Herein, we discovered that miR-383-5p targets certain lipid and cholesterol biosynthetic pathways and restricts Dengue virus (DENV) infection in hepatic cells. Global transcriptomics analysis of Huh7 human hepatoma cells overexpressing miR-383-5p revealed enrichment of lipid and cholesterol metabolic processes. Bioinformatics analysis of genes repressed in miR-383-5p overexpressing cells divulged the repression of a key target PLA2G4A, a pro-viral host factor essential for the production of infectious DENV particles. Our study demonstrated the effectiveness of miRNA mimics as tools to study cellular signaling pathways that contribute to viral pathogenesis. Overall, our study identifies miR-383-5p as an interesting host factor during DENV propagation and highlights a potential therapeutic role in the regulation of hepatic lipid metabolism and an antiviral response to DENV.
Collapse
Affiliation(s)
- Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
8
|
Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022; 307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.
Collapse
|
9
|
Havranek KE, Reyes Ballista JM, Hines KM, Brindley MA. Untargeted Lipidomics of Vesicular Stomatitis Virus-Infected Cells and Viral Particles. Viruses 2021; 14:v14010003. [PMID: 35062207 PMCID: PMC8778780 DOI: 10.3390/v14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
The viral lifecycle is critically dependent upon host lipids. Enveloped viral entry requires fusion between viral and cellular membranes. Once an infection has occurred, viruses may rely on host lipids for replication and egress. Upon exit, enveloped viruses derive their lipid bilayer from host membranes during the budding process. Furthermore, host lipid metabolism and signaling are often hijacked to facilitate viral replication. We employed an untargeted HILIC-IM-MS lipidomics approach and identified host lipid species that were significantly altered during vesicular stomatitis virus (VSV) infection. Many glycerophospholipid and sphingolipid species were modified, and ontological enrichment analysis suggested that the alterations to the lipid profile change host membrane properties. Lysophosphatidylcholine (LPC), which can contribute to membrane curvature and serve as a signaling molecule, was depleted during infection, while several ceramide sphingolipids were augmented during infection. Ceramide and sphingomyelin lipids were also enriched in viral particles, indicating that sphingolipid metabolism is important during VSV infection.
Collapse
Affiliation(s)
- Katherine E. Havranek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.E.H.); (J.M.R.B.)
| | - Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (K.E.H.); (J.M.R.B.)
| | - Kelly Marie Hines
- Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence: (K.M.H.); (M.A.B.); Tel.: +1-706-542-1966 (K.M.H.); +1-706-542-5796 (M.A.B.)
| | - Melinda Ann Brindley
- Department of Infectious Diseases, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence: (K.M.H.); (M.A.B.); Tel.: +1-706-542-1966 (K.M.H.); +1-706-542-5796 (M.A.B.)
| |
Collapse
|
10
|
Vial T, Marti G, Missé D, Pompon J. Lipid Interactions Between Flaviviruses and Mosquito Vectors. Front Physiol 2021; 12:763195. [PMID: 34899388 PMCID: PMC8660100 DOI: 10.3389/fphys.2021.763195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.
Collapse
Affiliation(s)
- Thomas Vial
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,UMR 152 PHARMADEV-IRD, Université Paul Sabatier, Toulouse, France
| | - Guillaume Marti
- LRSV (UMR 5546), CNRS, Université de Toulouse, Toulouse, France.,MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Dorothée Missé
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
11
|
Singapore Grouper Iridovirus Disturbed Glycerophospholipids Homeostasis: Cytosolic Phospholipase A2 Was Essential for Virus Replication. Int J Mol Sci 2021; 22:ijms222212597. [PMID: 34830477 PMCID: PMC8618910 DOI: 10.3390/ijms222212597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/31/2022] Open
Abstract
Singapore grouper iridovirus (SGIV), belonging to genus Ranavirus, family Iridoviridae, causes great economic losses in the aquaculture industry. Previous studies demonstrated the lipid composition of intracellular unenveloped viruses, but the changes in host-cell glyceophospholipids components and the roles of key enzymes during SGIV infection still remain largely unknown. Here, the whole cell lipidomic profiling during SGIV infection was analyzed using UPLC-Q-TOF-MS/MS. The lipidomic data showed that glycerophospholipids (GPs), including phosphatidylcholine (PC), phosphatidylserine (PS), glycerophosphoinositols (PI) and fatty acids (FAs) were significantly elevated in SGIV-infected cells, indicating that SGIV infection disturbed GPs homeostasis, and then affected the metabolism of FAs, especially arachidonic acid (AA). The roles of key enzymes, such as cytosolic phospholipase A2 (cPLA2), 5-Lipoxygenase (5-LOX), and cyclooxygenase (COX) in SGIV infection were further investigated using the corresponding specific inhibitors. The inhibition of cPLA2 by AACOCF3 decreased SGIV replication, suggesting that cPLA2 might play important roles in the process of SGIV infection. Consistent with this result, the ectopic expression of EccPLA2α or knockdown significantly enhanced or suppressed viral replication in vitro, respectively. In addition, the inhibition of both 5-LOX and COX significantly suppressed SGIV replication, indicating that AA metabolism was essential for SGIV infection. Taken together, our results demonstrated for the first time that SGIV infection in vitro disturbed GPs homeostasis and cPLA2 exerted crucial roles in SGIV replication.
Collapse
|
12
|
D’Alessandro A, Thomas T, Akpan IJ, Reisz JA, Cendali FI, Gamboni F, Nemkov T, Thangaraju K, Katneni U, Tanaka K, Kahn S, Wei AZ, Valk JE, Hudson KE, Roh D, Moriconi C, Zimring JC, Hod EA, Spitalnik SL, Buehler PW, Francis RO. Biological and Clinical Factors Contributing to the Metabolic Heterogeneity of Hospitalized Patients with and without COVID-19. Cells 2021; 10:2293. [PMID: 34571942 PMCID: PMC8467961 DOI: 10.3390/cells10092293] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. The present large study sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831) that tested positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on plasma from acutely ill patients collected while in the emergency department, at admission, or during hospitalization. Lipidomics analyses were also performed on COVID-19-positive or -negative subjects with the lowest and highest body mass index (n = 60/group). Significant changes in amino acid and fatty acid/acylcarnitine metabolism emerged as highly relevant markers of disease severity, progression, and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half, yielding ~78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for mechanistic follow-up studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Tiffany Thomas
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Imo J. Akpan
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Francesca I. Cendali
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; (J.A.R.); (F.I.C.); (F.G.); (T.N.)
| | - Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Upendra Katneni
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA;
- Department of Anesthesiology, University of Oklahoma College of Medicine, Oklahoma City, OK 73126-0901, USA
| | - Stacie Kahn
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Alexander Z. Wei
- Division of Hematology/Oncology, Department of Medicine, Irving Medical Center, Columbia University, New York, NY 10032, USA; (I.J.A.); (S.K.); (A.Z.W.)
| | - Jacob E. Valk
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Krystalyn E. Hudson
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - David Roh
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA;
| | - Chiara Moriconi
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Eldad A. Hod
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Steven L. Spitalnik
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| | - Paul W. Buehler
- Center for Blood Oxygen Transport, Department of Pathology, Department of Pediatrics, University of Maryland, Baltimore, MD 21201, USA; (K.T.); (U.K.); (P.W.B.)
| | - Richard O. Francis
- Department of Pathology & Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; (T.T.); (J.E.V.); (K.E.H.); (C.M.); (E.A.H.); (S.L.S.); (R.O.F.)
| |
Collapse
|
13
|
D'Alessandro A, Akpan I, Thomas T, Reisz J, Cendali F, Gamboni F, Nemkov T, Thangaraju K, Katneni U, Tanaka K, Kahn S, Wei A, Valk J, Hudson K, Roh D, Moriconi C, Zimring J, Hod E, Spitalnik S, Buehler P, Francis R. Biological and Clinical Factors contributing to the Metabolic Heterogeneity of Hospitalized Patients with and without COVID-19. RESEARCH SQUARE 2021:rs.3.rs-480167. [PMID: 34013258 PMCID: PMC8132252 DOI: 10.21203/rs.3.rs-480167/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide challenge. Exploratory studies evaluating the impact of COVID-19 infection on the plasma metabolome have been performed, often with small numbers of patients, and with or without relevant control data; however, determining the impact of biological and clinical variables remains critical to understanding potential markers of disease severity and progression. The present large study, including relevant controls, sought to understand independent and overlapping metabolic features of samples from acutely ill patients (n = 831), testing positive (n = 543) or negative (n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen and enzymatic activity assays on 831 plasma samples from acutely ill patients while in the emergency department, at admission, and during hospitalization. We then performed additional lipidomics analyses of the 60 subjects with the lowest and highest body mass index, either COVID-19 positive or negative. Omics data were correlated to detailed data on patient characteristics and clinical laboratory assays measuring coagulation, hematology and chemistry analytes. Significant changes in arginine/proline/citrulline, tryptophan/indole/kynurenine, fatty acid and acyl-carnitine metabolism emerged as highly relevant markers of disease severity, progression and prognosis as a function of biological and clinical variables in these patients. Further, machine learning models were trained by entering all metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other half yielding ~ 78% prediction accuracy. Finally, the extensive amount of information accumulated in this large, prospective, observational study provides a foundation for follow-up mechanistic studies and data sharing opportunities, which will advance our understanding of the characteristics of the plasma metabolism in COVID-19 and other acute critical illnesses.
Collapse
Affiliation(s)
| | - Imo Akpan
- Columbia University Irving Medical Center
| | | | | | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver
| | | | | | | | | | | | - Jacob Valk
- Columbia University Irving Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ci Y, Shi L. Compartmentalized replication organelle of flavivirus at the ER and the factors involved. Cell Mol Life Sci 2021; 78:4939-4954. [PMID: 33846827 PMCID: PMC8041242 DOI: 10.1007/s00018-021-03834-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Flaviviruses are positive-sense single-stranded RNA viruses that pose a considerable threat to human health. Flaviviruses replicate in compartmentalized replication organelles derived from the host endoplasmic reticulum (ER). The characteristic architecture of flavivirus replication organelles includes invaginated vesicle packets and convoluted membrane structures. Multiple factors, including both viral proteins and host factors, contribute to the biogenesis of the flavivirus replication organelle. Several viral nonstructural (NS) proteins with membrane activity induce ER rearrangement to build replication compartments, and other NS proteins constitute the replication complexes (RC) in the compartments. Host protein and lipid factors facilitate the formation of replication organelles. The lipid membrane, proteins and viral RNA together form the functional compartmentalized replication organelle, in which the flaviviruses efficiently synthesize viral RNA. Here, we reviewed recent advances in understanding the structure and biogenesis of flavivirus replication organelles, and we further discuss the function of virus NS proteins and related host factors as well as their roles in building the replication organelle.
Collapse
Affiliation(s)
- Yali Ci
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China. .,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Lei Shi
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China. .,Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
15
|
Nuclear localisation of West Nile virus NS5 protein modulates host gene expression. Virology 2021; 559:131-144. [PMID: 33866234 DOI: 10.1016/j.virol.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
The involvement of the nucleus during flavivirus infection has been observed in only a small number of cases and can be limited to primarily two viral proteins; the structural protein C and the RNA polymerase NS5. Previously we observed that by blocking nuclear transport, WNV strain Kunjin (WNVKUN) replication is severely affected and through mutation of the identified NLS in WNVKUN NS5 protein. In this study, we interrogated the potential nuclear functions of WNVKUN NS5 has on the host transcriptome, by means of RNA sequencing (RNAseq). In a direct comparison between wild type and mutant NS5, it can also be determined that the nuclear translocation of NS5 results in a significant down-regulation of host genes involved in the innate immune response. When compared to published RNAseq data from WNV infection, many of these genes were overlapping indicting the role of NS5 induced transcription during infection.
Collapse
|
16
|
Casari I, Manfredi M, Metharom P, Falasca M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog Lipid Res 2021; 82:101092. [PMID: 33571544 PMCID: PMC7869689 DOI: 10.1016/j.plipres.2021.101092] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that has infected over a hundred million people globally. There have been more than two million deaths recorded worldwide, with no end in sight until a widespread vaccination will be achieved. Current research has centred on different aspects of the virus interaction with cell surface receptors, but more needs to be done to further understand its mechanism of action in order to develop a targeted therapy and a method to control the spread of the virus. Lipids play a crucial role throughout the viral life cycle, and viruses are known to exploit lipid signalling and synthesis to affect host cell lipidome. Emerging studies using untargeted metabolomic and lipidomic approaches are providing new insight into the host response to COVID-19 infection. Indeed, metabolomic and lipidomic approaches have identified numerous circulating lipids that directly correlate to the severity of the disease, making lipid metabolism a potential therapeutic target. Circulating lipids play a key function in the pathogenesis of the virus and exert an inflammatory response. A better knowledge of lipid metabolism in the host-pathogen interaction will provide valuable insights into viral pathogenesis and to the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Pat Metharom
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia; Western Australian Centre for Thrombosis and Haemostasis, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Curtin Medical School, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
17
|
Koriem KMM. Lipidome is lipids regulator in gastrointestinal tract and it is a life collar in COVID-19: A review. World J Gastroenterol 2021; 27:37-54. [PMID: 33505149 PMCID: PMC7789067 DOI: 10.3748/wjg.v27.i1.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
The term lipidome is mentioned to the total amount of the lipids inside the biological cells. The lipid enters the human gastrointestinal tract through external source and internal source. The absorption pathway of lipids in the gastrointestinal tract has many ways; the 1st way, the lipid molecules are digested in the lumen before go through the enterocytes, digested products are re-esterified into complex lipid molecules. The 2nd way, the intracellular lipids are accumulated into lipoproteins (chylomicrons) which transport lipids throughout the whole body. The lipids are re-synthesis again inside the human body where the gastrointestinal lipids are: (1) Transferred into the endoplasmic reticulum; (2) Collected as lipoproteins such as chylomicrons; or (3) Stored as lipid droplets in the cytosol. The lipids play an important role in many stages of the viral replication cycle. The specific lipid change occurs during viral infection in advanced viral replication cycle. There are 47 lipids within 11 lipid classes were significantly disturbed after viral infection. The virus connects with blood-borne lipoproteins and apolipoprotein E to change viral infectivity. The viral interest is cholesterol- and lipid raft-dependent molecules. In conclusion, lipidome is important in gastrointestinal fat absorption and coronavirus disease 2019 (COVID-19) infection so lipidome is basic in gut metabolism and in COVID-19 infection success.
Collapse
|
18
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
19
|
Mosquito metabolomics reveal that dengue virus replication requires phospholipid reconfiguration via the remodeling cycle. Proc Natl Acad Sci U S A 2020; 117:27627-27636. [PMID: 33087565 DOI: 10.1073/pnas.2015095117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dengue virus (DENV) subdues cell membranes for its cellular cycle by reconfiguring phospholipids in humans and mosquitoes. Here, we determined how and why DENV reconfigures phospholipids in the mosquito vector. By inhibiting and activating the de novo phospholipid biosynthesis, we demonstrated the antiviral impact of de novo-produced phospholipids. In line with the virus hijacking lipids for its benefit, metabolomics analyses indicated that DENV actively inhibited the de novo phospholipid pathway and instead triggered phospholipid remodeling. We demonstrated the early induction of remodeling during infection by using isotope tracing in mosquito cells. We then confirmed in mosquitoes the antiviral impact of de novo phospholipids by supplementing infectious blood meals with a de novo phospholipid precursor. Eventually, we determined that phospholipid reconfiguration was required for viral genome replication but not for the other steps of the virus cellular cycle. Overall, we now propose that DENV reconfigures phospholipids through the remodeling cycle to modify the endomembrane and facilitate formation of the replication complex. Furthermore, our study identified de novo phospholipid precursor as a blood determinant of DENV human-to-mosquito transmission.
Collapse
|
20
|
Onyango MG, Attardo GM, Kelly ET, Bialosuknia SM, Stout J, Banker E, Kuo L, Ciota AT, Kramer LD. Zika Virus Infection Results in Biochemical Changes Associated With RNA Editing, Inflammatory and Antiviral Responses in Aedes albopictus. Front Microbiol 2020; 11:559035. [PMID: 33133033 PMCID: PMC7561680 DOI: 10.3389/fmicb.2020.559035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Rapid and significant range expansion of both the Zika virus (ZIKV) and its Aedes vector species has resulted in the declaration of ZIKV as a global health threat. Successful transmission of ZIKV by its vector requires a complex series of interactions between these entities including the establishment, replication and dissemination of the virus within the mosquito. The metabolic conditions within the mosquito tissues play a critical role in mediating the crucial processes of viral infection and replication and represent targets for prevention of virus transmission. In this study, we carried out a comprehensive metabolomic phenotyping of ZIKV infected and uninfected Ae. albopictus by untargeted analysis of primary metabolites, lipids and biogenic amines. We performed a comparative metabolomic study of infection state with the aim of understanding the biochemical changes resulting from the interaction between the ZIKV and its vector. We have demonstrated that ZIKV infection results in changes to the cellular metabolic environment including a significant enrichment of inosine and pseudo-uridine (Ψ) levels which may be associated with RNA editing activity. In addition, infected mosquitoes demonstrate a hypoglycemic phenotype and show significant increases in the abundance of metabolites such as prostaglandin H2, leukotriene D4 and protoporphyrinogen IX which are associated with antiviral activity. These provide a basis for understanding the biochemical response to ZIKV infection and pathology in the vector. Future mechanistic studies targeting these ZIKV infection responsive metabolites and their associated biosynthetic pathways can provide inroads to identification of mosquito antiviral responses with infection blocking potential.
Collapse
Affiliation(s)
- Maria G. Onyango
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Erin Taylor Kelly
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Sean M. Bialosuknia
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| | - Jessica Stout
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Elyse Banker
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Alexander T. Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| | - Laura D. Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| |
Collapse
|
21
|
Manokaran G, Flores HA, Dickson CT, Narayana VK, Kanojia K, Dayalan S, Tull D, McConville MJ, Mackenzie JM, Simmons CP. Modulation of acyl-carnitines, the broad mechanism behind Wolbachia-mediated inhibition of medically important flaviviruses in Aedes aegypti. Proc Natl Acad Sci U S A 2020; 117:24475-24483. [PMID: 32913052 PMCID: PMC7533870 DOI: 10.1073/pnas.1914814117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 07/17/2020] [Indexed: 01/05/2023] Open
Abstract
Wolbachia-infected mosquitoes are refractory to flavivirus infections, but the role of lipids in Wolbachia-mediated virus blocking remains to be elucidated. Here, we use liquid chromatography mass spectrometry to provide a comprehensive picture of the lipidome of Aedes aegypti (Aag2) cells infected with Wolbachia only, either dengue or Zika virus only, and Wolbachia-infected Aag2 cells superinfected with either dengue or Zika virus. This approach identifies a class of lipids, acyl-carnitines, as being down-regulated during Wolbachia infection. Furthermore, treatment with an acyl-carnitine inhibitor assigns a crucial role for acyl-carnitines in the replication of dengue and Zika viruses. In contrast, depletion of acyl-carnitines increases Wolbachia density while addition of commercially available acyl-carnitines impairs Wolbachia production. Finally, we show an increase in flavivirus infection of Wolbachia-infected cells with the addition of acyl-carnitines. This study uncovers a previously unknown role for acyl-carnitines in this tripartite interaction that suggests an important and broad mechanism that underpins Wolbachia-mediated pathogen blocking.
Collapse
Affiliation(s)
- Gayathri Manokaran
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia;
- Institute for Vector Borne Disease, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Heather A Flores
- Institute for Vector Borne Disease, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Conor T Dickson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
| | - Cameron P Simmons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia
- Institute for Vector Borne Disease, Monash University, Clayton, Melbourne, VIC 3168, Australia
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
Abstract
Viruses manipulate cellular lipids and membranes at each stage of their life cycle. This includes lipid-receptor interactions, the fusion of viral envelopes with cellular membranes during endocytosis, the reorganization of cellular membranes to form replication compartments, and the envelopment and egress of virions. In addition to the physical interactions with cellular membranes, viruses have evolved to manipulate lipid signaling and metabolism to benefit their replication. This review summarizes the strategies that viruses use to manipulate lipids and membranes at each stage in the viral life cycle.
Collapse
Affiliation(s)
- Ellen Ketter
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
23
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Vial T, Tan WL, Wong Wei Xiang B, Missé D, Deharo E, Marti G, Pompon J. Dengue virus reduces AGPAT1 expression to alter phospholipids and enhance infection in Aedes aegypti. PLoS Pathog 2019; 15:e1008199. [PMID: 31815960 PMCID: PMC6922471 DOI: 10.1371/journal.ppat.1008199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/19/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
More than half of the world population is at risk of dengue virus (DENV) infection because of the global distribution of its mosquito vectors. DENV is an envelope virus that relies on host lipid membranes for its life-cycle. Here, we characterized how DENV hijacks the mosquito lipidome to identify targets for novel transmission-blocking interventions. To describe metabolic changes throughout the mosquito DENV cycle, we deployed a Liquid chromatography-high resolution mass spectrometry (LC-HRMS) workflow including spectral similarity annotation in cells, midguts and whole mosquitoes at different times post infection. We revealed a major aminophospholipid reconfiguration with an overall early increase, followed by a reduction later in the cycle. We phylogenetically characterized acylglycerolphosphate acyltransferase (AGPAT) enzyme isoforms to identify those that catalyze a rate-limiting step in phospholipid biogenesis, the acylation of lysophosphatidate to phosphatidate. We showed that DENV infection decreased AGPAT1, but did not alter AGPAT2 expression in cells, midguts and mosquitoes. Depletion of either AGPAT1 or AGPAT2 increased aminophospholipids and partially recapitulated DENV-induced reconfiguration before infection in vitro. However, only AGPAT1 depletion promoted infection by maintaining high aminophospholipid concentrations. In mosquitoes, AGPAT1 depletion also partially recapitulated DENV-induced aminophospholipid increase before infection and enhanced infection by maintaining high aminophospholipid concentrations. These results indicate that DENV inhibition of AGPAT1 expression promotes infection by increasing aminophospholipids, as observed in the mosquito's early DENV cycle. Furthermore, in AGPAT1-depleted mosquitoes, we showed that enhanced infection was associated with increased consumption/redirection of aminophospholipids. Our study suggests that DENV regulates aminophospholipids, especially phosphatidylcholine and phosphatidylethanolamine, by inhibiting AGPAT1 expression to increase aminophospholipid availability for virus multiplication.
Collapse
Affiliation(s)
- Thomas Vial
- UMR 152 PHARMADEV-IRD, Université Paul Sabatier-Toulouse 3, Toulouse, France
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Wei-Lian Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Dorothée Missé
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Eric Deharo
- UMR 152 PHARMADEV-IRD, Université Paul Sabatier-Toulouse 3, Toulouse, France
| | - Guillaume Marti
- UMR 152 PHARMADEV-IRD, Université Paul Sabatier-Toulouse 3, Toulouse, France
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| |
Collapse
|
25
|
Sanaki T, Wakabayashi M, Yoshioka T, Yoshida R, Shishido T, Hall WW, Sawa H, Sato A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro. FASEB J 2019; 33:13866-13881. [PMID: 31638831 DOI: 10.1096/fj.201901095rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dengue fever is an acute febrile infectious disease caused by dengue virus (DENV). Despite the significant public health concerns posed by DENV, there are currently no effective anti-DENV therapeutic agents. To develop such drugs, a better understanding of the detailed mechanisms of DENV infection is needed. Both lipid metabolism and lipid synthesis are activated in DENV-infected cells, so we used lipid screening to identify potential antiviral lipid molecules. We identified 1-stearoyl-2-arachidonoyl-phosphatidylinositol (SAPI), which is the most abundant endogenous phosphatidylinositol (PI) molecular species, as an anti-DENV lipid molecule. SAPI suppressed the cytopathic effects induced by DENV2 infection as well as the replication of all DENV serotypes without inhibiting the entry of DENV2 into host cells. However, no other PI molecular species or PI metabolites, including lysophosphatidylinositols and phosphoinositides, displayed anti-DENV2 activity. Furthermore, SAPI suppressed the production of DENV2 infection-induced cytokines and chemokines, including C-C motif chemokine ligand (CCL)5, CCL20, C-X-C chemokine ligand 8, IL-6, and IFN-β. SAPI also suppressed the TNF-α production induced by LPS stimulation in macrophage cells differentiated from THP-1 cells. Our results demonstrated that SAPI is an endogenous inhibitor of DENV and modulated inflammatory responses in DENV2-infected cells, at least in part via TLR 4.-Sanaki, T., Wakabayashi, M., Yoshioka, T., Yoshida, R., Shishido, T., Hall, W. W., Sawa, H., Sato, A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro.
Collapse
Affiliation(s)
- Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| | - Masato Wakabayashi
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Takeshi Yoshioka
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Ryu Yoshida
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - Takao Shishido
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - William W Hall
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Center for Research in Infectious Diseases, University College of Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Jiménez de Oya N, Esler WP, Huard K, El-Kattan AF, Karamanlidis G, Blázquez AB, Ramos-Ibeas P, Escribano-Romero E, Louloudes-Lázaro A, Casas J, Sobrino F, Hoehn K, James DE, Gutiérrez-Adán A, Saiz JC, Martín-Acebes MA. Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerg Microbes Infect 2019; 8:624-636. [PMID: 30999821 PMCID: PMC6493301 DOI: 10.1080/22221751.2019.1604084] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Flaviviruses are (re)-emerging RNA viruses strictly dependent on lipid metabolism for infection. In the search for host targeting antivirals, we explored the effect of pharmacological modulation of fatty acid metabolism during flavivirus infection. Considering the central role of acetyl-Coenzyme A carboxylase (ACC) on fatty acid metabolism, we analyzed the effect of three small-molecule ACC inhibitors (PF-05175157, PF-05206574, and PF-06256254) on the infection of medically relevant flaviviruses, namely West Nile virus (WNV), dengue virus, and Zika virus. Treatment with these compounds inhibited the multiplication of the three viruses in cultured cells. PF-05175157 induced a reduction of the viral load in serum and kidney in WNV-infected mice, unveiling its therapeutic potential for the treatment of chronic kidney disease associated with persistent WNV infection. This study constitutes a proof of concept of the reliability of ACC inhibitors to become viable antiviral candidates. These results support the repositioning of metabolic inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - William P Esler
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA
| | - Kim Huard
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA
| | | | - Georgios Karamanlidis
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA.,h Present address: Cardiometabolic Disorders Amgen Discovery Research , Thousand Oaks , California 91320 , USA
| | - Ana-Belén Blázquez
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | | | - Estela Escribano-Romero
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Andrés Louloudes-Lázaro
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Josefina Casas
- d Department of Biomedicinal Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) and CIBEREHD , Barcelona , Spain
| | - Francisco Sobrino
- e Department of Virology and Microbiology , Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid , Spain
| | - Kyle Hoehn
- f School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - David E James
- g Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School , University of Sydney , Australia
| | | | - Juan-Carlos Saiz
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Miguel A Martín-Acebes
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
27
|
Lipid Metabolism as a Source of Druggable Targets for Antiviral Discovery against Zika and Other Flaviviruses. Pharmaceuticals (Basel) 2019; 12:ph12020097. [PMID: 31234348 PMCID: PMC6631711 DOI: 10.3390/ph12020097] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne flavivirus that can lead to birth defects (microcephaly), ocular lesions and neurological disorders (Guillain-Barré syndrome). There is no licensed vaccine or antiviral treatment against ZIKV infection. The effort to understand the complex interactions of ZIKV with cellular networks contributes to the identification of novel host-directed antiviral (HDA) candidates. Among the cellular pathways involved in infection, lipid metabolism gains attention. In ZIKV-infected cells lipid metabolism attributed to intracellular membrane remodeling, virion morphogenesis, autophagy modulation, innate immunity and inflammation. The key roles played by the cellular structures associated with lipid metabolism, such as peroxisomes and lipid droplets, are starting to be deciphered. Consequently, there is a wide variety of lipid-related antiviral strategies that are currently under consideration, which include an inhibition of sterol regulatory element-binding proteins (SREBP), the activation of adenosine-monophosphate activated kinase (AMPK), an inhibition of acetyl-Coenzyme A carboxylase (ACC), interference with sphingolipid metabolism, blockage of intracellular cholesterol trafficking, or a treatment with cholesterol derivatives. Remarkably, most of the HDAs identified in these studies are also effective against flaviviruses other than ZIKV (West Nile virus and dengue virus), supporting their broad-spectrum effect. Considering that lipid metabolism is one of the main cellular pathways suitable for pharmacological intervention, the idea of repositioning drugs targeting lipid metabolism as antiviral candidates is gaining force.
Collapse
|
28
|
Byers NM, Fleshman AC, Perera R, Molins CR. Metabolomic Insights into Human Arboviral Infections: Dengue, Chikungunya, and Zika Viruses. Viruses 2019; 11:E225. [PMID: 30845653 PMCID: PMC6466193 DOI: 10.3390/v11030225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
The global burden of arboviral diseases and the limited success in controlling them calls for innovative methods to understand arbovirus infections. Metabolomics has been applied to detect alterations in host physiology during infection. This approach relies on mass spectrometry or nuclear magnetic resonance spectroscopy to evaluate how perturbations in biological systems alter metabolic pathways, allowing for differentiation of closely related conditions. Because viruses heavily depend on host resources and pathways, they present unique challenges for characterizing metabolic changes. Here, we review the literature on metabolomics of arboviruses and focus on the interpretation of identified molecular features. Metabolomics has revealed biomarkers that differentiate disease states and outcomes, and has shown similarities in metabolic alterations caused by different viruses (e.g., lipid metabolism). Researchers investigating such metabolomic alterations aim to better understand host⁻virus dynamics, identify diagnostically useful molecular features, discern perturbed pathways for therapeutics, and guide further biochemical research. This review focuses on lessons derived from metabolomics studies on samples from arbovirus-infected humans.
Collapse
Affiliation(s)
- Nathaniel M Byers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Amy C Fleshman
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Rushika Perera
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523-1692, USA.
| | - Claudia R Molins
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| |
Collapse
|
29
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
30
|
Aktepe TE, Mackenzie JM. Shaping the flavivirus replication complex: It is curvaceous! Cell Microbiol 2018; 20:e12884. [PMID: 29933527 PMCID: PMC7162344 DOI: 10.1111/cmi.12884] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022]
Abstract
Flavivirus replication is intimately involved with remodelled membrane organelles that are compartmentalised for different functions during their life cycle. Recent advances in lipid analyses and gene depletion have identified a number of host components that enable efficient virus replication in infected cells. Here, we describe the current understanding on the role and contribution of host lipids and membrane bending proteins to flavivirus replication, with a particular focus on the components that bend and shape the membrane bilayer to induce the flavivirus-induced organelles characteristic of infection.
Collapse
Affiliation(s)
- Turgut E. Aktepe
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|