1
|
Ingusci S, Goins WF, Cohen JB, Miyagawa Y, Knipe DM, Glorioso JC. Next-generation replication-defective HSV vectors for delivery of large DNA payloads. Mol Ther 2025:S1525-0016(25)00264-3. [PMID: 40181547 DOI: 10.1016/j.ymthe.2025.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
The application of gene therapy to the treatment of human disease with complex etiology and pathology will often require the delivery of large payloads exceeding 10 kbp in size. This is generally not possible with the most popular vectors such as adeno-associated viruses (AAVs), lentiviruses (LVs), retroviruses (RVs), and many nonviral delivery systems. There is a high likelihood that the correction of many human gene defects such as those associated with neurodegenerative diseases and inflammatory processes will require single large genes or complex genetic payloads that will often necessitate precise regulatory control of the specificity, timing, and duration of corrective gene expression. The regulation of cellular gene products typically depends on genomic promoter systems and splicing-driven transcription variants, necessitating a delivery vector with substantial payload capacity. Replication-defective herpes simplex virus (rdHSV) mutants lack at least one essential viral gene product and are propagated in host cells that supply the missing gene product. This review explores next-generation rdHSV vectors, which do not express viral genes, offer high payload capacity, and can be engineered for safe, long-term transgene expression. These advanced vectors enable the correction of complex diseases affecting neurons and other tissues, paving the way for large or intricate gene replacement strategies.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
2
|
Pearson A, Bouhamar A. UL24 herpesvirus determinants of pathogenesis: Roles in virus-host interactions. Virology 2025; 603:110376. [PMID: 39765022 DOI: 10.1016/j.virol.2024.110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Members of the UL24 herpesvirus gene family are determinants of pathogenesis. The gene is widely conserved across the Orthoherpesviridae family, also commonly referred to as Herpesviridae. In this review, the impact of UL24 homologs on pathogenesis as studied with different model systems is presented, as well as mechanistic aspects related to the different roles of UL24 proteins in virus-host cell interactions. The targeting of UL24 for the development of therapeutic applications is also discussed.
Collapse
Affiliation(s)
- Angela Pearson
- Institut National de La Recherche Scientifique, Laval, Québec, Canada.
| | - Amel Bouhamar
- Institut National de La Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
3
|
Sukegawa M, Miyagawa Y, Kuroda S, Yamazaki Y, Yamamoto M, Adachi K, Sato H, Sato Y, Taniai N, Yoshida H, Umezawa A, Sakai M, Okada T. Mesenchymal stem cell origin contributes to the antitumor effect of oncolytic virus carriers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200896. [PMID: 39554905 PMCID: PMC11568361 DOI: 10.1016/j.omton.2024.200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Oncolytic virotherapy shows promise as a cancer treatment approach; however, its systemic application is hindered by antibody neutralization. This issue can be overcome by using mesenchymal stem cells (MSCs) as carrier cells for oncolytic viruses (OVs). However, it remains elusive whether MSC source influences the antitumor effect. Here, we demonstrate that their source affects the migration ability and oncolytic activity of OV-loaded MSCs. Among human MSCs derived from different tissues, bone marrow-derived MSCs (BMMSCs) showed a high migration ability toward cancer cells in two- and three-dimensional MSC-cancer cell co-culture models. Comprehensive gene expression and Gene Ontology-based functional analyses suggested that genes involved in cell migration and cytokine response influence the cancer-specific tropism of BMMSCs. Furthermore, MSC origin affected the susceptibility to OVs, including cytotoxicity resistance and OV release from MSCs. MSC-mediated OV delivery significantly increased the viral spread and antitumor activity compared with delivery by OVs alone, and OV-loaded BMMSCs demonstrated the most potent antitumor effect among OV-loaded MSCs. Our results offer promising insights into cancer gene therapy with carrier cells and can help with the selection of an appropriate MSC source for MSC-based OV therapy.
Collapse
Affiliation(s)
- Makoto Sukegawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
- Department of Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Seiji Kuroda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Motoko Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kumi Adachi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirofumi Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuriko Sato
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Nippon Medical School Musashikosugi Hospital, Kawasaki, Japan
| | - Hiroshi Yoshida
- Department of Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Sundstrom J, Vanderleeden E, Barton NJ, Redick SD, Dawes P, Murray LF, Olson MN, Tran K, Chigas SM, Orszulak AR, Church GM, Readhead B, Oh HS, Harlan DM, Knipe DM, Wang JP, Chan Y, Lim ET. Herpes Simplex Virus 1 Infection of Human Brain Organoids and Pancreatic Stem Cell-Islets Drives Organoid-Specific Transcripts Associated with Alzheimer's Disease and Autoimmune Diseases. Cells 2024; 13:1978. [PMID: 39682726 PMCID: PMC11640215 DOI: 10.3390/cells13231978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Viral infections leading to inflammation have been implicated in several common diseases, such as Alzheimer's disease (AD) and type 1 diabetes (T1D). Of note, herpes simplex virus 1 (HSV-1) has been reported to be associated with AD. We sought to identify the transcriptomic changes due to HSV-1 infection and anti-viral drug (acyclovir, ACV) treatment of HSV-1 infection in dissociated cells from human cerebral organoids (dcOrgs) versus stem cell-derived pancreatic islets (sc-islets) to gain potential biological insights into the relevance of HSV-1-induced inflammation in AD and T1D. We observed that differentially expressed genes (DEGs) in HSV-1-infected sc-islets were enriched for genes associated with several autoimmune diseases, most significantly, T1D, but also rheumatoid arthritis, psoriasis, Crohn's disease, and multiple sclerosis, whereas DEGs in HSV-1-infected dcOrgs were exclusively enriched for genes associated with AD. The ACV treatment of sc-islets was not as effective in rescuing transcript perturbations of autoimmune disease-associated genes. Finally, we identified gene ontology categories that were enriched for DEGs that were in common across, or unique to, viral treatment of dcOrgs and sc-islets, such as categories involved in the transferase complex, mitochondrial, and autophagy function. In addition, we compared transcriptomic signatures from HSV-1-infected sc-islets with sc-islets that were infected with the coxsackie B virus (CVB) that had been associated with T1D pathogenesis. Collectively, this study provides tissue-specific insights into the molecular effects of inflammation in AD and T1D.
Collapse
Affiliation(s)
- Jonathan Sundstrom
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emma Vanderleeden
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nathaniel J. Barton
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sambra D. Redick
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Pepper Dawes
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Liam F. Murray
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meagan N. Olson
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Khanh Tran
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Graduate Program in Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samantha M. Chigas
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Adrian R. Orszulak
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Graduate Program in Immunology and Microbiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - George M. Church
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David M. Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer P. Wang
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yingleong Chan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Elaine T. Lim
- Department of Medicine, Division of Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Shallal MJM, Nasser HA, Naif AAH. Sequence analysis of isolated strains of herpes zoster virus among patients with shingles. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:524-535. [PMID: 39267939 PMCID: PMC11389764 DOI: 10.18502/ijm.v16i4.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives Herpes zoster, or shingles, is caused by the varicella-zoster virus (VZV), which initially presents as chickenpox in children. VZV is a global health concern, especially in winter and spring, affecting 10-20% of adults over 50 and posing a 30% risk for the general population. This study used PCR to detect VZV, confirming results with duplicated DNA samples and identifying 234 bp fragments by targeting the gpB gene. Materials and Methods This study examined 50 herpes zoster cases from October 2020 to April 2021, involving 30 males and 20 females aged 10 to 90, diagnosed by dermatologists. Data were collected via a questionnaire. PCR detected VZV by amplifying the gpB and MCP genes from skin lesion samples. Six positive 234-bp PCR products were sequenced at Macrogen Inc. in Seoul, South Korea. Results Six DNA samples with 234 bp amplicons were sequenced, showing 99-100% similarity to human alpha herpesvirus sequences in the gpB gene. NCBI BLAST matched these sequences to a reference (GenBank acc. MT370830.1), assigning accession numbers LC642111, LC642112, and LC642113. Eight nucleic acid substitutions caused amino acid changes in the gpB protein: isoleucine to threonine, serine to isoleucine, and threonine to Proline. These variants were deposited in NCBI GenBank as gpB3 samples. Conclusion The study found high sequence similarity to known VZV sequences, identifying six nucleic acid variations and eight SNPs. Notable amino acid changes in the gpB protein were deposited in NCBI GenBank as the gpB3 sample.
Collapse
Affiliation(s)
| | - Hind Ali Nasser
- Department of Microbiology, College of Medicine, University of Thi-Qar, Thi-Qar, Iraq
| | | |
Collapse
|
7
|
Vazaios K, Stavrakaki Ε, Vogelezang LB, Ju J, Waranecki P, Metselaar DS, Meel MH, Kemp V, van den Hoogen BG, Hoeben RC, Chiocca EA, Goins WF, Stubbs A, Li Y, Alonso MM, Calkoen FG, Hulleman E, van der Lugt J, Lamfers ML. The heterogeneous sensitivity of pediatric brain tumors to different oncolytic viruses is predicted by unique gene expression profiles. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200804. [PMID: 38694569 PMCID: PMC11060958 DOI: 10.1016/j.omton.2024.200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.
Collapse
Affiliation(s)
- Konstantinos Vazaios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Εftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Lisette B. Vogelezang
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Dennis S. Metselaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Michaël H. Meel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Dr, Pittsburgh, PA 15219, USA
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marta M. Alonso
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Avda. de Pío XII, 55, 31008 Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), Av. de Pío XII, 36, 31008 Pamplona, Spain
| | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
8
|
Yang Y, Gao Y, Sun H, Bai J, Zhang J, Zhang L, Liu X, Sun Y, Jiang P. Ursonic acid from medicinal herbs inhibits PRRSV replication through activation of the innate immune response by targeting the phosphatase PTPN1. Vet Res 2024; 55:67. [PMID: 38783392 PMCID: PMC11118551 DOI: 10.1186/s13567-024-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), has caused substantial economic losses to the global swine industry due to the lack of effective commercial vaccines and drugs. There is an urgent need to develop alternative strategies for PRRS prevention and control, such as antiviral drugs. In this study, we identified ursonic acid (UNA), a natural pentacyclic triterpenoid from medicinal herbs, as a novel drug with anti-PRRSV activity in vitro. Mechanistically, a time-of-addition assay revealed that UNA inhibited PRRSV replication when it was added before, at the same time as, and after PRRSV infection was induced. Compound target prediction and molecular docking analysis suggested that UNA interacts with the active pocket of PTPN1, which was further confirmed by a target protein interference assay and phosphatase activity assay. Furthermore, UNA inhibited PRRSV replication by targeting PTPN1, which inhibited IFN-β production. In addition, UNA displayed antiviral activity against porcine epidemic diarrhoea virus (PEDV) and Seneca virus A (SVA) replication in vitro. These findings will be helpful for developing novel prophylactic and therapeutic agents against PRRS and other swine virus infections.
Collapse
Affiliation(s)
- Yuanqi Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Slein MD, Backes IM, Garland CR, Kelkar NS, Leib DA, Ackerman ME. Effector functions are required for broad and potent protection of neonatal mice with antibodies targeting HSV glycoprotein D. Cell Rep Med 2024; 5:101417. [PMID: 38350452 PMCID: PMC10897633 DOI: 10.1016/j.xcrm.2024.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/26/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Multiple failed herpes simplex virus (HSV) vaccine candidates induce robust neutralizing antibody (Ab) responses in clinical trials, raising the hypothesis that Fc-domain-dependent effector functions may be critical for protection. While neonatal HSV (nHSV) infection results in mortality and lifelong neurological morbidity in humans, it is uncommon among neonates with a seropositive birthing parent, supporting the hypothesis that Ab-based therapeutics could protect neonates from HSV. We therefore investigated the mechanisms of monoclonal Ab (mAb)-mediated protection in a mouse model of nHSV infection. For a panel of glycoprotein D (gD)-specific mAbs, neutralization and effector functions contributed to nHSV-1 protection. In contrast, effector functions alone were sufficient to protect against nHSV-2, exposing a functional dichotomy between virus types consistent with vaccine trial results. Effector functions are therefore crucial for protection by these gD-specific mAbs, informing effective Ab and vaccine design and demonstrating the potential of polyfunctional Abs as therapeutics for nHSV infections.
Collapse
Affiliation(s)
- Matthew D Slein
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Iara M Backes
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Callaghan R Garland
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Natasha S Kelkar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
10
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
11
|
Salazar S, Luong KTY, Koyuncu OO. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023; 15:2284. [PMID: 38140525 PMCID: PMC10747186 DOI: 10.3390/v15122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha herpesvirus infections (α-HVs) are widespread, affecting more than 70% of the adult human population. Typically, the infections start in the mucosal epithelia, from which the viral particles invade the axons of the peripheral nervous system. In the nuclei of the peripheral ganglia, α-HVs establish a lifelong latency and eventually undergo multiple reactivation cycles. Upon reactivation, viral progeny can move into the nerves, back out toward the periphery where they entered the organism, or they can move toward the central nervous system (CNS). This latency-reactivation cycle is remarkably well controlled by the intricate actions of the intrinsic and innate immune responses of the host, and finely counteracted by the viral proteins in an effort to co-exist in the population. If this yin-yang- or Nash-equilibrium-like balance state is broken due to immune suppression or genetic mutations in the host response factors particularly in the CNS, or the presence of other pathogenic stimuli, α-HV reactivations might lead to life-threatening pathologies. In this review, we will summarize the molecular virus-host interactions starting from mucosal epithelia infections leading to the establishment of latency in the PNS and to possible CNS invasion by α-HVs, highlighting the pathologies associated with uncontrolled virus replication in the NS.
Collapse
Affiliation(s)
| | | | - Orkide O. Koyuncu
- Department of Microbiology & Molecular Genetics, School of Medicine and Center for Virus Research, University of California, Irvine, CA 92697, USA; (S.S.); (K.T.Y.L.)
| |
Collapse
|
12
|
Wang J, Wu K, Ni L, Li C, Peng R, Li Y, Fan Z, Yin F, Deng F, Shen S, Wu X. Effects of US7 and UL56 on Cell-to-Cell Spread of Human Herpes Simplex Virus 1. Viruses 2023; 15:2256. [PMID: 38005932 PMCID: PMC10675736 DOI: 10.3390/v15112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Human herpes simplex virus (HSV), a double-stranded DNA virus belonging to the Herpesviridae family and alpha herpesvirus subfamily, is one of the most epidemic pathogens in the population. Cell-to-cell spread is a special intercellular transmission mechanism of HSV that indicates the virulence of this virus. Through numerous studies on mutant HSV strains, many viral and host proteins involved in this process have been identified; however, the mechanisms remain poorly understood. Here, we evaluated the effect of the membrane protein genes US7 and UL56 on cell-to-cell spread in vitro between two HSV-1 (HB94 and HN19) strains using a plaque assay, syncytium formation assay, and the CRISPR/Cas9 technique. US7 knockout resulted in the inhibition of viral cell-to-cell spread; additionally, glycoprotein I (US7) of the HB94 strain was found to promote cell-to-cell spread compared to that of the HN19 strain. UL56 knockout did not affect plaque size and syncytium formation; however, the gene product of UL56 from the HN19 strain inhibited plaque formation and membrane infusion. This study presents preliminary evidence of the functions of US7 and UL56 in the cell-to-cell spread of HSV-1, which will provide important clues to reveal the mechanisms of cell-to-cell spread, and contributes to the clinical drugs development.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
| | - Ke Wu
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
| | - Longquan Ni
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
| | - Chenxuan Li
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Ruoyan Peng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China; (R.P.); (F.Y.)
- The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
| | - Yi Li
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy and Sciences, Guangzhou 510530, China;
| | - Zhaojun Fan
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China; (R.P.); (F.Y.)
- The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 571199, China
| | - Fei Deng
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
| | - Shu Shen
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
| | - Xiaoli Wu
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan 430071, China; (J.W.); (K.W.); (L.N.); (C.L.); (Z.F.); (F.D.)
| |
Collapse
|
13
|
Fukui A, Maruzuru Y, Takeshima K, Koyanagi N, Kato A, Kawaguchi Y. Establishment of a system to quantify wild-type herpes simplex virus-induced cell-cell fusion reveals a role of N-glycosylation of HSV-1 envelope glycoprotein B in cell-cell fusion. Microbiol Immunol 2023; 67:114-119. [PMID: 36606601 DOI: 10.1111/1348-0421.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Wild-type herpes simplex virus (HSV) strains infrequently mediate cell-cell fusion in cell cultures and barely induce large multinucleated cells. In this study, we established a system to quantify infrequent cell-cell fusion induced by wild-type HSV strains. The established system clarified that the HSV-1 envelope glycoprotein B and its N-glycosylation at asparagine at position 141 were required for efficient cell-cell fusion. This study provides a link between cell-cell fusion induced by wild-type HSV-1 and viral pathogenesis in vivo.
Collapse
Affiliation(s)
- Ayano Fukui
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kosuke Takeshima
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Gao Y, Sridhar A, Bernard N, He B, Zhang H, Pirotte S, Desmecht S, Vancsok C, Boutier M, Suárez NM, Davison AJ, Donohoe O, Vanderplasschen AFC. Virus-induced interference as a means for accelerating fitness-based selection of cyprinid herpesvirus 3 single-nucleotide variants in vitro and in vivo. Virus Evol 2023; 9:vead003. [PMID: 36816049 PMCID: PMC9936792 DOI: 10.1093/ve/vead003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and is advantageous to research because, unlike many herpesviruses, it can be studied in the laboratory by infection of the natural host (common and koi carp). Previous studies have reported a negative correlation among CyHV-3 strains between viral growth in vitro (in cell culture) and virulence in vivo (in fish). This suggests the existence of genovariants conferring enhanced fitness in vitro but reduced fitness in vivo and vice versa. Here, we identified the syncytial plaque formation in vitro as a common trait of CyHV-3 strains adapted to cell culture. A comparison of the sequences of virion transmembrane protein genes in CyHV-3 strains, and the use of various recombinant viruses, demonstrated that this trait is linked to a single-nucleotide polymorphism (SNP) in the open reading frame (ORF) 131 coding sequence (C225791T mutation) that results in codon 183 encoding either an alanine (183A) or a threonine (183T) residue. In experiments involving infections with recombinant viruses differing only by this SNP, the 183A genovariant associated with syncytial plaque formation was the more fit in vitro but the less fit in vivo. In experiments involving coinfection with both viruses, the more fit genovariant contributed to the purifying selection of the less fit genovariant by outcompeting it. In addition, this process appeared to be accelerated by viral stimulation of interference at a cellular level and stimulation of resistance to superinfection at a host level. Collectively, this study illustrates how the fundamental biological properties of some viruses and their hosts may have a profound impact on the degree of diversity that arises within viral populations.
Collapse
Affiliation(s)
- Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Noah Bernard
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Bo He
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Haiyan Zhang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Sébastien Pirotte
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Salomé Desmecht
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, Liège B-4000, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Owen Donohoe
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium.,Bioscience Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone, Co. Westmeath N37HD68, Ireland
| | - Alain F C Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège B-4000, Belgium
| |
Collapse
|
15
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Huang J, Tian B, Jia R, Liu M, Zhu D, Chen S, Zhao X, Zhang S, Ou X, Mao S, Gao Q, Sun D. Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners. Front Microbiol 2022; 13:829754. [PMID: 35722336 PMCID: PMC9205190 DOI: 10.3389/fmicb.2022.829754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The herpesvirus UL11 protein is encoded by the UL11 gene and is a membrane-anchored protein with multiple functions. In the last stage of viral replication, UL11 participates in the secondary envelopment process. It also plays a key role in primary envelopment, the transportation of newly assembled viral particles through cytoplasmic vesicles, and virion egress from the cell. UL11 is an important accessory protein and sometimes cooperates with other proteins that participate in virus-induced cell fusion. Cell fusion is necessary for cell-to-cell transmissions. This review summarizes the latest literature and discusses the roles of UL11 in viral assembly, primary and secondary envelopment, and cell-to-cell transmission to obtain a better understanding of the UL11 protein in the life cycle of herpesviruses and to serve as a reference for studying other viruses. Additionally, some recently discovered characteristics of UL11 are summarized.
Collapse
Affiliation(s)
- Linjiang Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
16
|
Tian R, Ju F, Yu M, Liang Z, Xu Z, Zhao M, Qin Y, Lin Y, Huang X, Chang Y, Li S, Ren W, Lin C, Xia N, Huang C. A potent neutralizing and protective antibody against a conserved continuous epitope on HSV glycoprotein D. Antiviral Res 2022; 201:105298. [PMID: 35341808 DOI: 10.1016/j.antiviral.2022.105298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Infections caused by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) remain a serious global health issue, and the medical countermeasures available thus far are limited. Virus-neutralizing monoclonal antibodies (NAbs) are crucial tools for studying host-virus interactions and designing effective vaccines, and the discovery and development of these NAbs could be one approach to treat or prevent HSV infection. Here, we report the isolation of five HSV NAbs from mice immunized with both HSV-1 and HSV-2. Among these were two antibodies that potently cross-neutralized both HSV-1 and HSV-2 with the 50% virus-inhibitory concentrations (IC50) below 200 ng/ml, one of which (4A3) exhibited high potency against HSV-2, with an IC50 of 59.88 ng/ml. 4A3 neutralized HSV at the prebinding stage and prevented HSV infection and cell-to-cell spread. Significantly, administration of 4A3 completely prevented weight loss and improved survival of mice challenged with a lethal dose of HSV-2. Using structure-guided molecular modeling combined with alanine-scanning mutagenesis, we observed that 4A3 bound to a highly conserved continuous epitope (residues 216 to 220) within the receptor-binding domain of glycoprotein D (gD) that is essential for viral infection and the triggering of membrane fusion. Our results provide guidance for developing NAb drugs and vaccines against HSV.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Mengqin Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhiqi Liang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Min Zhao
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yaning Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanhua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxuan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yating Chang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
17
|
Rice SA. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses 2021; 13:v13122395. [PMID: 34960664 PMCID: PMC8704881 DOI: 10.3390/v13122395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1, or HSV-1, is a widespread human pathogen that replicates in epithelial cells of the body surface and then establishes latent infection in peripheral neurons. When HSV-1 replicates, viral progeny must be efficiently released to spread infection to new target cells. Viral spread occurs via two major routes. In cell-cell spread, progeny virions are delivered directly to cellular junctions, where they infect adjacent cells. In cell-free release, progeny virions are released into the extracellular milieu, potentially allowing the infection of distant cells. Cell-cell spread of HSV-1 has been well studied and is known to be important for in vivo infection and pathogenesis. In contrast, HSV-1 cell-free release has received less attention, and its significance to viral biology is unclear. Here, I review the mechanisms and regulation of HSV-1 cell-free virion release. Based on knowledge accrued in other herpesviral systems, I argue that HSV-1 cell-free release is likely to be tightly regulated in vivo. Specifically, I hypothesize that this process is generally suppressed as the virus replicates within the body, but activated to high levels at sites of viral reactivation, such as the oral mucosa and skin, in order to promote efficient transmission of HSV-1 to new human hosts.
Collapse
Affiliation(s)
- Stephen A Rice
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Kite J, Russell T, Jones J, Elliott G. Cell-to-cell transmission of HSV1 in human keratinocytes in the absence of the major entry receptor, nectin1. PLoS Pathog 2021; 17:e1009631. [PMID: 34587223 PMCID: PMC8505007 DOI: 10.1371/journal.ppat.1009631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) infects the stratified epithelia of the epidermis, oral or genital mucosa, where the main cell type is the keratinocyte. Here we have used nTERT human keratinocytes to generate a CRISPR-Cas9 knockout (KO) of the primary candidate HSV1 receptor, nectin1, resulting in a cell line that is refractory to HSV1 entry. Nonetheless, a small population of KO cells was able to support infection which was not blocked by a nectin1 antibody and hence was not a consequence of residual nectin1 expression. Strikingly at later times, the population of cells originally resistant to HSV1 infection had also become infected. Appearance of this later population was blocked by inhibition of virus genome replication, or infection with a ΔUL34 virus defective in capsid export to the cytoplasm. Moreover, newly formed GFP-tagged capsids were detected in cells surrounding the initial infected cell, suggesting that virus was spreading following replication in the original susceptible cells. Additional siRNA depletion of the second major HSV1 receptor HVEM, or PTP1B, a cellular factor shown elsewhere to be involved in cell-to-cell transmission, had no effect on virus spread in the absence of nectin1. Neutralizing human serum also failed to block virus transmission in nectin1 KO cells, which was dependent on the receptor binding protein glycoprotein D and the cell-to-cell spread glycoproteins gI and gE, indicating that virus was spreading by direct cell-to-cell transmission. In line with these results, both HSV1 and HSV2 formed plaques on nectin1 KO cells, albeit at a reduced titre, confirming that once the original cell population was infected, the virus could spread into all other cells in the monolayer. We conclude that although nectin1 is required for extracellular entry in to the majority of human keratinocytes, it is dispensable for direct cell-to-cell transmission. Herpes simplex virus 1 (HSV1) infects the epithelia of the epidermis, oral or genital mucosa to cause cold sores, genital herpes, or more serious outcomes such as keratitis and neonatal herpes. Like many viruses, HSV1 can spread through the extracellular environment or by direct cell-to-cell transmission, with the latter mechanism being important for avoiding antibody responses in the host. Here we have studied HSV1 entry and transmission in the human keratinocyte, the main cell type in the target epithelia, by generating a CRISPR-Cas9 knockout of the primary candidate virus receptor, nectin1. While HSV1 was unable to infect the majority of nectin1 knockout keratinocytes, a small population of these nectin1 KO cells remained susceptible to virus entry, and once infected, the virus was able to spread into the rest of the monolayer. This spread continued in the presence of neutralising serum which blocks extracellular virus, and required glycoprotein D, the main virus receptor-binding protein, and glycoproteins gE and gI which are known to be involved in cell-to-cell spread. Hence, while nectin1 is required for virus entry into the majority of human keratinocyte cells, it is dispensable for cell-to-cell transmission of the virus. These data have implications for the mechanism of HSV1 epithelial spread and pathogenesis.
Collapse
Affiliation(s)
- Joanne Kite
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Tiffany Russell
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Sarieva K, Mayer S. The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Front Mol Biosci 2021; 8:686410. [PMID: 34250020 PMCID: PMC8264783 DOI: 10.3389/fmolb.2021.686410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, a growing body of evidence has demonstrated the impact of prenatal environmental adversity on the development of the human embryonic and fetal brain. Prenatal environmental adversity includes infectious agents, medication, and substances of use as well as inherently maternal factors, such as diabetes and stress. These adversities may cause long-lasting effects if occurring in sensitive time windows and, therefore, have high clinical relevance. However, our knowledge of their influence on specific cellular and molecular processes of in utero brain development remains scarce. This gap of knowledge can be partially explained by the restricted experimental access to the human embryonic and fetal brain and limited recapitulation of human-specific neurodevelopmental events in model organisms. In the past years, novel 3D human stem cell-based in vitro modeling systems, so-called brain organoids, have proven their applicability for modeling early events of human brain development in health and disease. Since their emergence, brain organoids have been successfully employed to study molecular mechanisms of Zika and Herpes simplex virus-associated microcephaly, as well as more subtle events happening upon maternal alcohol and nicotine consumption. These studies converge on pathological mechanisms targeting neural stem cells. In this review, we discuss how brain organoids have recently revealed commonalities and differences in the effects of environmental adversities on human neurogenesis. We highlight both the breakthroughs in understanding the molecular consequences of environmental exposures achieved using organoids as well as the on-going challenges in the field related to variability in protocols and a lack of benchmarking, which make cross-study comparisons difficult.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Tong Y, Shi G, Hu G, Hu X, Han L, Xie X, Xu Y, Zhang R, Sun J, Zhong J. Photo-catalyzed TiO 2 inactivates pathogenic viruses by attacking viral genome. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 414:128788. [PMID: 33558800 PMCID: PMC7857067 DOI: 10.1016/j.cej.2021.128788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/31/2020] [Indexed: 05/03/2023]
Abstract
Previous observations have been reported that viruses were inactivated using strong irradiation. Here, new evidence was disclosed by studying the effects of nanosized TiO2 on viral pathogens under a low irradiation condition (0.4 mW/cm2 at UVA band) that mimics the field setting. We showed that photo-activated TiO2 efficiently inhibits hepatitis C virus infection, and weak indoor light with intensity of 0.6 mW/cm2 at broad-spectrum wavelength and around 0.15 mW/cm2 of UVA band also lead to partial inhibition. Mechanistic studies demonstrated that hydroxyl radicals produced by photo-activated TiO2 do not destroy virion structure and contents, but attack viral RNA genome, thus inactivating the virus. Furthermore, we showed that photo-activated TiO2 inactivates a broad range of human viral pathogens, including SARS-CoV-2, a novel coronavirus responsible for the ongoing COVID-19 pandemic. In conclusion, we showed that photo-catalyzed nanosized TiO2 inactivates pathogenic viruses, paving a way to its field application in control of viral infectious diseases.
Collapse
Affiliation(s)
- Yimin Tong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gansheng Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoyou Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Han
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Xie
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Sun
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
21
|
Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol 2021; 10:617578. [PMID: 33537244 PMCID: PMC7848091 DOI: 10.3389/fcimb.2020.617578] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) can infect a broad host range and cause mild to life threating infections in humans. The surface glycoproteins of HSV are evolutionarily conserved and show an extraordinary ability to bind more than one receptor on the host cell surface. Following attachment, the virus fuses its lipid envelope with the host cell membrane and releases its nucleocapsid along with tegument proteins into the cytosol. With the help of tegument proteins and host cell factors, the nucleocapsid is then docked into the nuclear pore. The viral double stranded DNA is then released into the host cell’s nucleus. Released viral DNA either replicates rapidly (more commonly in non-neuronal cells) or stays latent inside the nucleus (in sensory neurons). The fusion of the viral envelope with host cell membrane is a key step. Blocking this step can prevent entry of HSV into the host cell and the subsequent interactions that ultimately lead to production of viral progeny and cell death or latency. In this review, we have discussed viral entry mechanisms including the pH-independent as well as pH-dependent endocytic entry, cell to cell spread of HSV and use of viral glycoproteins as an antiviral target.
Collapse
Affiliation(s)
- Krishnaraju Madavaraju
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Raghuram Koganti
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ipsita Volety
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Prohibitin-1 Contributes to Cell-to-Cell Transmission of Herpes Simplex Virus 1 via the MAPK/ERK Signaling Pathway. J Virol 2021; 95:JVI.01413-20. [PMID: 33177205 DOI: 10.1128/jvi.01413-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Viral cell-to-cell spread, a method employed by several viral families for entrance via cell junctions, is highly relevant to the pathogenesis of various viral infections. Cell-to-cell spread of herpes simplex virus 1 (HSV-1) is known to depend greatly on envelope glycoprotein E (gE). However, the molecular mechanism by which gE acts in HSV-1 cell-to-cell spread and the mechanisms of cell-to-cell spread by other herpesviruses remain poorly understood. Here, we describe our identification of prohibitin-1 as a novel gE-interacting host cell protein. Ectopic expression of prohibitin-1 increased gE-dependent HSV-1 cell-to-cell spread. As observed with the gE-null mutation, decreased expression or pharmacological inhibition of prohibitin-1 reduced HSV-1 cell-to-cell spread without affecting the yield of virus progeny. Similar effects were produced by pharmacological inhibition of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, wherein prohibitin-1 acts as a protein scaffold and is required for induction of this pathway. Furthermore, artificial activation of the MAPK/ERK pathway restored HSV-1 cell-to-cell spread impaired by the gE-null mutation. Notably, pharmacological inhibition of prohibitins or the MAPK/ERK pathway reduced viral cell-to-cell spread of representative members in all herpesvirus subfamilies. Our results suggest that prohibitin-1 contributes to gE-dependent HSV-1 cell-to-cell spread via the MAPK/ERK pathway and that this mechanism is conserved throughout the Herpesviridae, whereas gE is conserved only in the Alphaherpesvirinae subfamily.IMPORTANCE Herpesviruses are ubiquitous pathogens of various animals, including humans. These viruses primarily pass through cell junctions to spread to uninfected cells. This method of cell-to-cell spread is an important pathogenic characteristic of these viruses. Here, we show that the host cell protein prohibitin-1 contributes to HSV-1 cell-to-cell spread via a downstream intracellular signaling cascade, the MAPK/ERK pathway. We also demonstrate that the role of the prohibitin-1-mediated MAPK/ERK pathway in viral cell-to-cell spread is conserved in representative members of every herpesvirus subfamily. This study has revealed a common molecular mechanism of the cell-to-cell spread of herpesviruses.
Collapse
|
23
|
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-Mediated Cell-Cell Fusion. Int J Mol Sci 2020; 21:E9644. [PMID: 33348900 PMCID: PMC7767094 DOI: 10.3390/ijms21249644] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.
Collapse
Affiliation(s)
- Héloïse Leroy
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Lucie Bracq
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jérôme Bouchet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies UR2496, University of Paris, 92120 Montrouge, France;
| | - Maorong Xie
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Serge Benichou
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| |
Collapse
|
24
|
Zhou M, Kamarshi V, Arvin AM, Oliver SL. Calcineurin phosphatase activity regulates Varicella-Zoster Virus induced cell-cell fusion. PLoS Pathog 2020; 16:e1009022. [PMID: 33216797 PMCID: PMC7717522 DOI: 10.1371/journal.ppat.1009022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Cell-cell fusion (abbreviated as cell fusion) is a characteristic pathology of medically important viruses, including varicella-zoster virus (VZV), the causative agent of chickenpox and shingles. Cell fusion is mediated by a complex of VZV glycoproteins, gB and gH-gL, and must be tightly regulated to enable skin pathogenesis based on studies with gB and gH hyperfusogenic VZV mutants. Although the function of gB and gH-gL in the regulation of cell fusion has been explored, whether host factors are directly involved in this regulation process is unknown. Here, we discovered host factors that modulated VZV gB/gH-gL mediated cell fusion via high-throughput screening of bioactive compounds with known cellular targets. Two structurally related non-antibiotic macrolides, tacrolimus and pimecrolimus, both significantly increased VZV gB/gH-gL mediated cell fusion. These compounds form a drug-protein complex with FKBP1A, which binds to calcineurin and specifically inhibits calcineurin phosphatase activity. Inhibition of calcineurin phosphatase activity also enhanced both herpes simplex virus-1 fusion complex and syncytin-1 mediated cell fusion, indicating a broad role of calcineurin in modulating this process. To characterize the role of calcineurin phosphatase activity in VZV gB/gH-gL mediated fusion, a series of biochemical, biological and infectivity assays was performed. Pimecrolimus-induced, enhanced cell fusion was significantly reduced by shRNA knockdown of FKBP1A, further supporting the role of calcineurin phosphatase activity in fusion regulation. Importantly, inhibition of calcineurin phosphatase activity during VZV infection caused exaggerated syncytia formation and suppressed virus propagation, which was consistent with the previously reported phenotypes of gB and gH hyperfusogenic VZV mutants. Seven host cell proteins that remained uniquely phosphorylated when calcineurin phosphatase activity was inhibited were identified as potential downstream factors involved in fusion regulation. These findings demonstrate that calcineurin is a critical host cell factor pivotal in the regulation of VZV induced cell fusion, which is essential for VZV pathogenesis.
Collapse
Affiliation(s)
- Momei Zhou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vivek Kamarshi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ann M. Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stefan L. Oliver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
25
|
Roychoudhury P, Swan DA, Duke E, Corey L, Zhu J, Davé V, Spuhler LR, Lund JM, Prlic M, Schiffer JT. Tissue-resident T cell-derived cytokines eliminate herpes simplex virus-2-infected cells. J Clin Invest 2020; 130:2903-2919. [PMID: 32125285 PMCID: PMC7260013 DOI: 10.1172/jci132583] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/11/2020] [Indexed: 01/19/2023] Open
Abstract
The mechanisms underlying rapid elimination of herpes simplex virus-2 (HSV-2) in the human genital tract despite low CD8+ and CD4+ tissue-resident T cell (Trm cell) density are unknown. We analyzed shedding episodes during chronic HSV-2 infection; viral clearance always predominated within 24 hours of detection even when viral load exceeded 1 × 107 HSV DNA copies, and surges in granzyme B and IFN-γ occurred within the early hours after reactivation and correlated with local viral load. We next developed an agent-based mathematical model of an HSV-2 genital ulcer to integrate mechanistic observations of Trm cells in in situ proliferation, trafficking, cytolytic effects, and cytokine alarm signaling from murine studies with viral kinetics, histopathology, and lesion size data from humans. A sufficiently high density of HSV-2-specific Trm cells predicted rapid elimination of infected cells, but our data suggest that such Trm cell densities are relatively uncommon in infected tissues. At lower, more commonly observed Trm cell densities, Trm cells must initiate a rapidly diffusing, polyfunctional cytokine response with activation of bystander T cells in order to eliminate a majority of infected cells and eradicate briskly spreading HSV-2 infection.
Collapse
Affiliation(s)
- Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - David A. Swan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Duke
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Laura Richert Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health and
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
26
|
Cairns DM, Rouleau N, Parker RN, Walsh KG, Gehrke L, Kaplan DL. A 3D human brain-like tissue model of herpes-induced Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eaay8828. [PMID: 32494701 PMCID: PMC7202879 DOI: 10.1126/sciadv.aay8828] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/18/2020] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive decline, memory loss, and inability to perform everyday functions. Hallmark features of AD-including generation of amyloid plaques, neurofibrillary tangles, gliosis, and inflammation in the brain-are well defined; however, the cause of the disease remains elusive. Growing evidence implicates pathogens in AD development, with herpes simplex virus type I (HSV-1) gaining increasing attention as a potential causative agent. Here, we describe a multidisciplinary approach to produce physiologically relevant human tissues to study AD using human-induced neural stem cells (hiNSCs) and HSV-1 infection in a 3D bioengineered brain model. We report a herpes-induced tissue model of AD that mimics human disease with multicellular amyloid plaque-like formations, gliosis, neuroinflammation, and decreased functionality, completely in the absence of any exogenous mediators of AD. This model will allow for future studies to identify potential downstream drug targets for treating this devastating disease.
Collapse
Affiliation(s)
- Dana M. Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Rachael N. Parker
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
27
|
Deng L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Chen S, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Zhang L, Liu Y, Yu Y, Tian B, Pan L, Rehman MU, Chen X. The Pivotal Roles of US3 Protein in Cell-to-Cell Spread and Virion Nuclear Egress of Duck Plague Virus. Sci Rep 2020; 10:7181. [PMID: 32346128 PMCID: PMC7189242 DOI: 10.1038/s41598-020-64190-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
The duck plague virus (DPV) US3 protein, a homolog of the herpes simplex virus-1 (HSV-1) US3 protein that is reported to be critical for viral replication, has been minimally studied. Therefore, to investigate the function of the DPV US3 protein, we used scarless Red recombination technology based on an infectious bacterial artificial chromosome (BAC) containing the DPV Chinese virulent strain (CHv) genome and successfully constructed and rescued a US3-deleted mutant and the corresponding revertant virus (BAC-CHv-ΔUS3 and BAC-CHv-ΔUS3R, respectively). For viral growth characteristics, compared to the parental and revertant viruses, the US3-deleted mutant showed an approximately 100-fold reduction in viral titers but no significant reduction in genome copies, indicating that the US3-deleted mutant exhibited decreased viral replication but not decreased viral DNA generation. In addition, the US3-deleted mutant formed viral plaques that were 33% smaller on average than those formed by the parental and revertant viruses, demonstrating that US3 protein affected the viral cell-to-cell spread of DPV. Finally, the results of electron microscopy showed that the deletion of US3 resulted in a large number of virions accumulating in the nucleus and perinuclear space, thus blocking virion nuclear egress. In this study, we found that the DPV US3 protein played pivotal roles in viral replication by promoting viral cell-to-cell spread and virion nuclear egress, which may provide some references for research on the function of the DPV US3 protein.
Collapse
Affiliation(s)
- Liyao Deng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| |
Collapse
|
28
|
Reimer E, Stempel M, Chan B, Bley H, Brinkmann MM. Protein tyrosine phosphatase 1B is involved in efficient type I interferon secretion upon viral infection. J Cell Sci 2020; 134:jcs246421. [PMID: 32265274 DOI: 10.1242/jcs.246421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is a negative regulator of the leptin and insulin signalling pathways. This phosphatase is of great interest as PTP1B-knockout mice are protected against the development of obesity and diabetes. Here, we provide evidence for a novel function of PTP1B that is independent of its phosphatase activity, but requires its localisation to the membrane of the endoplasmic reticulum. Upon activation of pattern recognition receptors, macrophages and plasmacytoid dendritic cells from PTP1B-knockout mice secrete lower amounts of type I interferon (IFN) than cells from wild-type mice. In contrast, secretion of the proinflammatory cytokines TNFα and IL6 was unaltered. While PTP1B deficiency did not affect Ifnb1 transcription, type I IFN accumulated in macrophages, suggesting a role for PTP1B in mediating secretion of type I IFN. In summary, we have uncovered that PTP1B positively regulates the type I IFN response by promoting secretion of key antiviral cytokines.
Collapse
Affiliation(s)
- Elisa Reimer
- Helmholtz Centre for Infection Research, Viral Immune Modulation Research Group, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Markus Stempel
- Helmholtz Centre for Infection Research, Viral Immune Modulation Research Group, Inhoffenstr. 7, 38124 Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Genetics, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Baca Chan
- Helmholtz Centre for Infection Research, Viral Immune Modulation Research Group, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Hanna Bley
- Helmholtz Centre for Infection Research, Viral Immune Modulation Research Group, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Melanie M Brinkmann
- Helmholtz Centre for Infection Research, Viral Immune Modulation Research Group, Inhoffenstr. 7, 38124 Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Genetics, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
29
|
Herpes Simplex Virus 1 Spread in Oligodendrocytic Cells Is Highly Dependent on MAL Proteolipid. J Virol 2020; 94:JVI.01739-19. [PMID: 31748392 PMCID: PMC6997773 DOI: 10.1128/jvi.01739-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establish latent infections in neurons. HSV-1 may spread from infected to uninfected cells by two main routes: by cell-free virus or by cell-to-cell spread. In the first case, virions exit into the extracellular space and then infect another cell from the outside. In the second case, viral transmission occurs through cell-to-cell contacts via a mechanism that is still poorly understood. A third mode of spread, using extracellular vesicles, also exists. In this study, we demonstrate the important role for a myelin protein, myelin and lymphocyte protein (MAL), in the process of cell-to-cell viral spread in oligodendrocytes. We show that MAL is involved in trafficking of virions along cell processes and that MAL depletion produces a significant alteration in the viral cycle, which reduces cell-to cell spread of HSV-1. Myelin and lymphocyte protein (MAL) is a tetraspan integral membrane protein that resides in detergent-insoluble membrane fractions enriched in condensed membranes. MAL is expressed in oligodendrocytes, in Schwann cells, where it is essential for the stability of myelin, and at the apical membrane of epithelial cells, where it has a critical role in transport. In T lymphocytes, MAL is found at the immunological synapse and plays a crucial role in exosome secretion. However, no involvement of MAL in viral infections has been reported so far. Here, we show that herpes simplex virus 1 (HSV-1) virions travel in association with MAL-positive structures to reach the end of cellular processes, which contact uninfected oligodendrocytes. Importantly, the depletion of MAL led to a significant decrease in infection, with a drastic reduction in the number of lytic plaques in MAL-silenced cells. These results suggest a significant role for MAL in viral spread at cell contacts. The participation of MAL in the cell-to-cell spread of HSV-1 may shed light on the involvement of proteolipids in this process. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a neurotropic pathogen that can infect many types of cells and establish latent infections in neurons. HSV-1 may spread from infected to uninfected cells by two main routes: by cell-free virus or by cell-to-cell spread. In the first case, virions exit into the extracellular space and then infect another cell from the outside. In the second case, viral transmission occurs through cell-to-cell contacts via a mechanism that is still poorly understood. A third mode of spread, using extracellular vesicles, also exists. In this study, we demonstrate the important role for a myelin protein, myelin and lymphocyte protein (MAL), in the process of cell-to-cell viral spread in oligodendrocytes. We show that MAL is involved in trafficking of virions along cell processes and that MAL depletion produces a significant alteration in the viral cycle, which reduces cell-to cell spread of HSV-1.
Collapse
|
30
|
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent and important human pathogen that has been studied in a wide variety of contexts. This book provides protocols currently in use in leading laboratories in many fields of HSV-1 research. This introductory chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of virus structure, the prevalence of and diseases caused by the virus, replication in cultured cells, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.
Collapse
|
31
|
Herpes Simplex Virus 1 MicroRNA miR-H28 Exported to Uninfected Cells in Exosomes Restricts Cell-to-Cell Virus Spread by Inducing Gamma Interferon mRNA. J Virol 2019; 93:JVI.01005-19. [PMID: 31413129 DOI: 10.1128/jvi.01005-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
An earlier report showed that herpes simplex virus 1 (HSV-1) expresses two microRNAs (miRNAs), miR-H28 and miR-H29, late in the infectious cycle. The miRNAs are packed in exosomes and, in recipient cells, restrict the transmission of virus from infected cells to uninfected cells. We now report that (i) miR-H28 induced the synthesis of gamma interferon (IFN-γ) in both infected cells and cells transfected with miR-H28, (ii) IFN-γ accumulated concurrently with viral proteins in infected cells, (iii) IFN-γ was produced in HEp-2 cells derived from cancer tissue and in HEK293T cells derived from normal tissue, and (iv) HSV-1 replication was affected by exposure to IFN-γ before infection but not during or after infection. The results presented in this report support the growing body of evidence indicating that HSV-1 encodes functions designed to reduce the spread of infection from infected cells to uninfected cells, possibly in order to maximize the transmission of virus from infected individuals to uninfected individuals.IMPORTANCE In this report, we show that IFN-γ is produced by HSV-1 viral miR-H28 and viral replication is blocked in cells exposed to IFN-γ before infection but not during or after infection. The inevitable conclusion is that HSV-1 induces IFN-γ to curtail its spread from infected cells to uninfected cells. In essence, this report supports the hypothesis that HSV-1 encodes functions that restrict the transmission of virus from cell to cell.
Collapse
|
32
|
Yu FL, Miao H, Xia J, Jia F, Wang H, Xu F, Guo L. Proteomics Analysis Identifies IRSp53 and Fascin as Critical for PRV Egress and Direct Cell-Cell Transmission. Proteomics 2019; 19:e1900009. [PMID: 31531927 DOI: 10.1002/pmic.201900009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Pseudorabies virus (PRV) has been widely used as a live trans-synaptic tracer for mapping neuronal circuits. Systematically identifying mature PRV virion proteomes and defining co-purified host proteins are necessary to fully understand the detailed mechanism underlying PRV transmission processes. Here, a PRV virion purification strategy based on sorting with flow cytometry is developed and the mature extracellular and intracellular PRV virion proteomes using LC coupled with MS/MS are characterized. In addition to viral proteins, a large number of host proteins are also identified, including proteins related to actin cytoskeletal dynamics and membrane protrusion. How many of these host proteins are true virion components are unknown and the majority of these may not be. Through functional analysis, it is found that IRSp53 and fascin are critical for the egress process and play a role in direct cell-cell transmission. Moreover, it is shown that CDC42 and Rac1 are also involved in the production of mature extracellular virions. The results suggest that the formation of the filopodia-like cytoskeleton and the rearrangement of the membrane, which are both associated with IRSp53 and fascin, may be important for the transmission of viruses used in neuronal tracing.
Collapse
Affiliation(s)
- Fei-Long Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Miao
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fan Jia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Fuqiang Xu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Brian Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Feutz E, McLeland-Wieser H, Ma J, Roller RJ. Functional interactions between herpes simplex virus pUL51, pUL7 and gE reveal cell-specific mechanisms for epithelial cell-to-cell spread. Virology 2019; 537:84-96. [PMID: 31493658 DOI: 10.1016/j.virol.2019.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Herpes simplex virus spread between epithelial cells is mediated by virus tegument and envelope protein complexes including gE/gI and pUL51/pUL7. pUL51 interacts with both pUL7 and gE/gI in infected cells. We show that amino acids 30-90 of pUL51 mediate interaction with pUL7. We also show that deletion of amino acids 167-244 of pUL51, or ablation of pUL7 expression both result in failure of gE to concentrate at junctional surfaces of Vero cells. We also tested the hypothesis that gE and pUL51 function on the same pathway for cell-to-cell spread by analyzing the phenotype of a double gE/UL51 mutant. In HaCaT cells, pUL51 and gE function on the same spread pathway, whereas in Vero cells they function on different pathways. Deletion of the gE gene strongly enhanced virus release to the medium in Vero cells, suggesting that the gE-dependent spread pathway may compete with virion release to the medium.
Collapse
Affiliation(s)
- Erika Feutz
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Hilary McLeland-Wieser
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Junlan Ma
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Richard J Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
34
|
Differential Requirements for gE, gI, and UL16 among Herpes Simplex Virus 1 Syncytial Variants Suggest Unique Modes of Dysregulating the Mechanism of Cell-to-Cell Spread. J Virol 2019; 93:JVI.00494-19. [PMID: 31092572 DOI: 10.1128/jvi.00494-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
Like all the herpesviruses, herpes simplex virus encodes machinery that enables it to move through cell junctions to avoid neutralizing antibodies. This cell-to-cell spread mechanism requires the viral fusion machinery (gD, gH/gL, and gB) and numerous accessory proteins. Of all of these, minor alterations to only four proteins (gB, gK, UL20, or UL24) will dysregulate the fusion machinery, allowing the formation of syncytia. In contrast, removal of individual accessory proteins will block cell-to-cell spread, forcing the virus to transmit in a cell-free manner. In the context of a Syn variant, removal of a required accessory protein will block cell fusion, again forcing cell-free spread. This has been investigated most thoroughly for gBsyn variants, which lose their syncytial phenotype in the absence of several accessory proteins, including gE, gI, UL16, and UL21, which are known to physically interact. Recently it was found that UL21 is not needed for gKsyn-, UL20syn-, or UL24syn-induced cell fusion, and hence it was of interest to ascertain whether gE, gI, and UL16 are required for Syn variants other than gBsyn. Null mutants of these were each combined with seven syncytial variants distributed among gK, UL20, and UL24. Surprisingly, very different patterns of accessory protein requirements were revealed. Indeed, for the three gKsyn variants tested, two different patterns were found. Also, three mutants were able to replicate without causing cytopathic effects. These findings show that mutations that produce Syn variants dysregulate the cell-to-cell-spread machinery in unique ways and provide clues for elucidating how this virus moves between cells.IMPORTANCE Approximately 2/3 of adults worldwide are latently infected with herpes simplex virus 1. Upon reactivation, the virus has the ability to evade neutralizing antibodies by moving through cell junctions, but the mechanism of direct cell-to-cell spread is poorly understood. The machinery that assembles between cells includes the viral fusion proteins and various accessory proteins that prevent cells from fusing. Alterations in four proteins will dysregulate the machinery, allowing neighboring cells to fuse to make syncytia, but this can be prevented by removing various individual accessory proteins to further disable the machinery. Previously, the accessory protein UL21 was found to be important for the activity of some syncytial variants but not others. In this study, we discovered that UL16, gE, and gI all act differently in how they control the fusion machinery. A better understanding of the mechanism of cell-to-cell spread may enable the development of drugs that block it.
Collapse
|
35
|
Dual Transcriptomic Analysis Reveals a Delayed Antiviral Response of Haliotis diversicolor supertexta against Haliotid Herpesvirus-1. Viruses 2019; 11:v11040383. [PMID: 31022987 PMCID: PMC6520846 DOI: 10.3390/v11040383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022] Open
Abstract
Haliotid herpesvirus-1 (HaHV-1) is the first identified gastropod herpesvirus, causing a highly lethal neurologic disease of abalone species. The genome of HaHV-1 has been sequenced, but the functions of the putative genes and their roles during infection are still poorly understood. In the present study, transcriptomic profiles of Haliotis diversicolor supertexta at 0, 24 and 60 h post injection (hpi) with HaHV-1 were characterized through high-throughput RNA sequencing. A total of 448 M raw reads were obtained and assembled into 2.08 × 105 unigenes with a mean length of 1486 bp and an N50 of 2455 bp. Although we detected increased HaHV-1 DNA loads and active viral expression at 24 hpi, this evidence was not linked to significant changes of host transcriptomic profiles between 0 and 24 hpi, whereas a rich immune-related gene set was over-expressed at 60 hpi. These results indicate that, at least at the beginning of HaHV-1 infection, the virus can replicate with no activation of the host immune response. We propose that HaHV-1 may evolve more effective strategies to modulate the host immune response and hide during replication, so that it could evade the immune surveillance at the early stage of infection.
Collapse
|
36
|
Carmichael JC, Starkey J, Zhang D, Sarfo A, Chadha P, Wills JW, Han J. Glycoprotein D of HSV-1 is dependent on tegument protein UL16 for packaging and contains a motif that is differentially required for syncytia formation. Virology 2018; 527:64-76. [PMID: 30465930 DOI: 10.1016/j.virol.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022]
Abstract
Glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) plays a key role in multiple events during infection including virus entry, cell-to-cell spread, and virus-induced syncytia formation. Here, we provide evidence that an arginine/lysine cluster located at the transmembrane-cytoplasm interface of gD critically contributes to viral spread and cell-cell fusion. Our studies began with the discovery that packaging of gD into virions is almost completely blocked in the absence of tegument protein UL16. We subsequently identified a novel, direct, and regulated interaction between UL16 and gD, but this was not important for syncytia formation. However, a mutational analysis of the membrane-proximal basic residues of gD revealed that they are needed for the gBsyn phenotype, salubrinal-induced fusion of HSV-infected cells, and cell-to-cell spread. Finally, we found that these same gD tail basic residues are not required for cell fusion induced by a gKsyn variant.
Collapse
Affiliation(s)
- Jillian C Carmichael
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jason Starkey
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dan Zhang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Akua Sarfo
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Pooja Chadha
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - John W Wills
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jun Han
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Preventive Veterinary Medicine, China Agricultural University College of Veterinary Medicine, Beijing 100193, China.
| |
Collapse
|